CANADA DEPARTMENT OF MINES AND TECHNICAL SURVEYS DOMINION OBSERVATORIES

PUBLICATIONS

OF THE

Dominion Observatory OTTAWA

VOLUME XXI No. 1

GRAVITY AND MAGNETIC INVESTIGATIONS ALONG THE ALASKA HIGHWAY

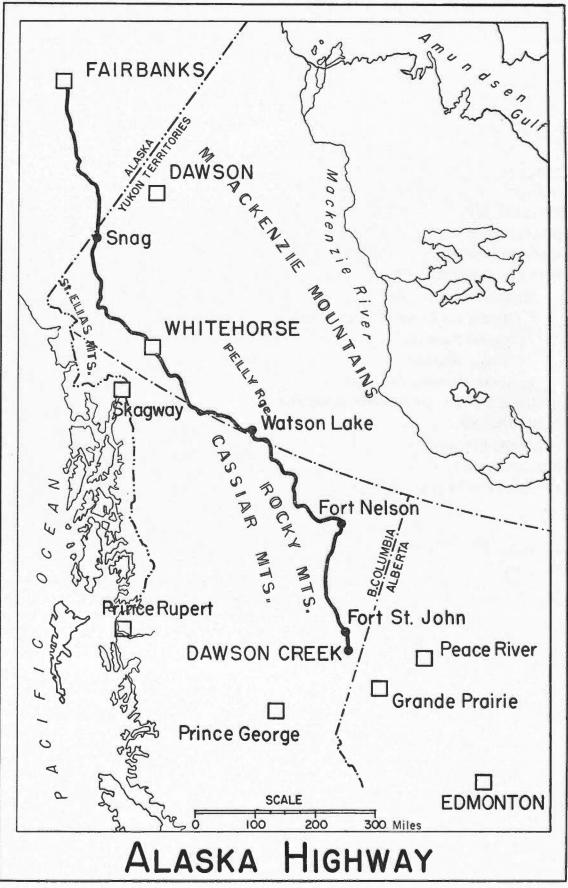
BY

C. H. G. OLDHAM

EDMOND CLOUTIER, C.M.G., O.A., D.S.P. QUEEN'S PRINTER AND CONTROLLER OF STATIONERY OTTAWA, 1958

57658-7-1 600-1262-1958

This document was produced by scanning the original publication.


Ce document est le produit d'une numérisation par balayage de la publication originale.

CONTENTS

	PAGE
ABSTRACT	5
INTRODUCTION	5
FIELD PROCEDURE	5
GRAVITY RESULTS	6
MAGNETIC RESULTS	7
INTERPRETATION	7
REGIONAL GRAVITY ANOMALIES	
Trutch and Rocky Mountain Anomalies	7
Cassiar Negative	9
Kluane Negative	10
REGIONAL MAGNETIC ANOMALIES	11
Local Gravity and Magnetic Anomalies	11
CONCLUSIONS	12
ACKNOWLEDGMENTS	12
BIBLIOGRAPHY	13
APPENDIX—The Principal Facts	16-22

Illustrations

FIGURE 1.	Location Map, Alaska Highwayfacing	5
FIGURE 2.	Gravity, Magnetic and Elevation Profiles, Alaska Highway Traversefacing	6
FIGURE 3.	Regional Gravity Map	8
FIGURE 4.	Bouguer Gravity Anomalies across Northern Rocky Mountains and Struc- tural Interpretation	9
FIGURE 5.	Gravity Profile across Cassiar Mountains and Geological Interpretation	10
FIGURE 6.	Generalized Vertical Magnetic Intensity Profile along the Alaska Highway	12
TABLE I.	Gravimeter Values at Pendulum Stations	6

FIGHRE 1.-Location Map.

Gravity and Magnetic Investigations Along the Alaska Highway

BY

C. H. G. Oldham*

ABSTRACT

A gravity and magnetic survey was made along the Alaska Highway between Dawson Creek, Alberta, and Fairbanks, Alaska, and 296 gravimeter stations were occupied. Ties were made to 10 pendulum stations covering a gravity range of 1486 mgls., and a calibration factor of 0.246804 mgl., per scale division was derived for the gravimeters. A study of profiles of elevation, Bouguer anomaly, magnetic intensity and lithology leads to the following general interpretation. A 60-mgl. negative anomaly across the Rocky Mountains has been attributed to a 16,000-foot crustal downwarp, while an anomaly of similar magnitude but with steeper gradients across the Cassiar Mountains is considered to be due to a mass of low-density granite occurring within the mountain system.

INTRODUCTION

During the summer of 1953 officers of the Dominion Observatory used a long-range geodetic gravimeter to carry out a reconnaissance gravity survey along the Alaska Highway. The purpose of the measurements was threefold; (i) to establish a series of precise gravimeter bases between Lethbridge, Alberta, and Fairbanks, Alaska, to serve as control points for future regional surveys in the area; (ii) to assess the accuracy of the Cambridge pendulum measurements being carried out that summer between Lethbridge and Fairbanks, Alaska, which were to provide a suitable gravity standard for calibration purposes (Garland, 1955); (iii) to extend the gravity and magnetic coverage of Canada in an area where few measurements had previously been made, and to assess the geological implications of the results. In connection with the second objective, gravimeter ties were made between the pendulum sites and principal airports to facilitate future gravimeter calibration.

FIELD PROCEDURE

A long-range North American gravimeter (No. 137) was used to establish base stations at about 25-mile intervals between Lethbridge and Fairbanks. The gravity difference between adjacent base stations was measured using standard looping procedure to remove the effect of instrumental drift. Along the Canadian section of the Alaska Highway (see Figure 1) a vertical component Askania magnetic field balance was used to establish magnetic base stations. On the final southbound traverse, both gravity and magnetic stations were established at about 5-mile intervals between the International Boundary at mile 1200, and Dawson Creek at mile zero.[†]

All gravity readings were made near bench marks of either the Geodetic Survey of Canada or the United States Coast and Geodetic Survey; hence station elevations are not likely to be in error by more than one foot.

Rock samples for density determinations were collected from exposures in the vicinity of the gravity stations, but because of overburden and glacial drift, the sampling was unsatisfactory from the point of view of the gravity interpretation.

^{*}Geophysicist, California Exploration Co., San Francisco, Calif., U.S.A.

[†]Most places along the Alaska Highway are referred to by their mileage from Dawson Creek, the start of the Highway.

PUBLICATIONS OF THE DOMINION OBSERVATORY

GRAVITY RESULTS

To provide a reliable calibration of the gravimeter, observations were mad-Cambridge pendulum stations (Garland, 1955) from Lethbridge, Alberta, to Fai Alaska, over a range of nearly 1500 mgls. It was assumed that the gravimeter k linearly over its entire range, and using a method of least squares the gravimeter were matched with those obtained by pendulum. The resulting calibration factor standard deviation is 0.246804 ± 0.000172 mgl. per scale division.

The relevant quantities used in the calibration are shown in Table I. Co gives the adjusted gravimeter values for the pendulum stations, and in column differences with pendulum values are listed. The r.m.s. difference between pendul gravimeter results is ± 0.9 mgl. and reflects errors in both the gravimeter and per measurements.

Using this calibration constant and differences between bases, in scale di values of gravity have been obtained for all the base stations between Edmont Fairbanks, relative to the gravimeter values deduced for the Cambridge pendulum st Table I, column 5. Values of gravity for the detail stations, observed on the retu from Fairbanks, have been adjusted to these base station values.

1	2	3	4	5.	
	PEN	NDULUM	GRAVIN	GRAV.	
Station	g (cm/sec ^s)	Differences from Lethbridge (mgls.)	Differences in scale div.	Adjusted g (cm/sec ²)	m
Lethbridge	980.7612	0	0	980.7617	
Red Deer	980.9988	237.6	961.3	980.9990	
Edmonton	981.1691	407.9	1645.5	981.1678	
Grande Prairie	981.3195	558.3	2254.3	981.3181	
Fort St. John	981.4077	646.5	2617.7	981.4078	
Fort Nelson*	981.6832	922.0	3771.0	981.6824	
Watson Lake	981.7165	955.3	3873.9	981.7178	
Whitehorse	981.7502	989.0	4012.2	981.7519	1
Snag†	981.9339	1172.7	4754.1	981.9351	
Fairbanks	982.2477	1486.5	6015.9	982.2465	

TABLE I Gravimeter Values at Pendulum Stations

*This station was not included in the least-squares solution because of uncertainty in connection to pendu †This station was not included in the least-squares solution because it was not part of the looped net.

The principal facts for all stations are listed in the usual manner and appear Appendix. The latitudes and longitudes of the stations were measured from the scale maps available for the area. The error in their determination should not ± 0.2 minutes or approximately ± 0.3 mgls. in the gravity anomaly. No terrain tions were made; for the majority of stations the terrain effect was estimated to be le

Figure 2. Gravity, Magnetic and Elevation Profiles, Alaska Highway Trave

6

two-tenths of a milligal. For a few mountain stations it was probably much greater than this, but lack of detailed mapping precluded accurate determinations.

The free air and simple Bouguer anomalies shown in the tables are based upon the International Formula for gravity at sea level and a crustal density of 2.67 gms./cm³.

MAGNETIC RESULTS

An Askania vertical component magnetometer was used to measure the variations in the vertical component of the earth's magnetic field. The observations were made along the 1,200-mile Canadian section of the Alaska Highway at the same locations as the gravity measurements.

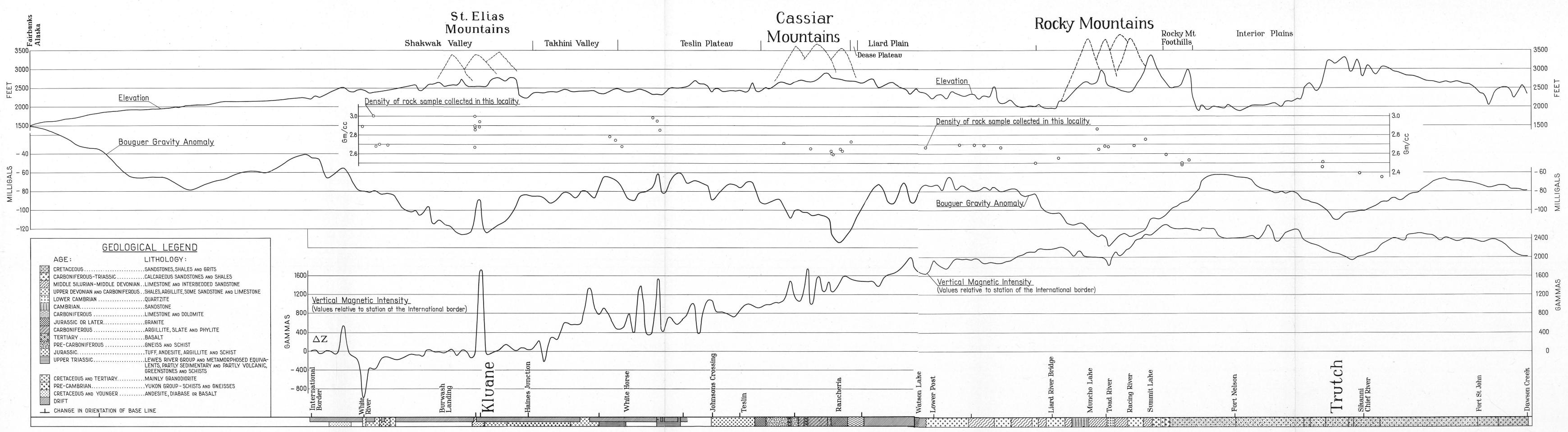
The observations have been converted into gammas using a calibration factor determined prior to leaving Ottawa, with a Helmholtz coil. The results are shown in Figure 2 and are relative to the station at the Alaska-Canadian border.

INTERPRETATION

The combined results, gravity, magnetic and density, are illustrated in Figure 2. To assist in the interpretation the elevation profile and generalized geological section are also indicated. The elevation profile is based upon heights of stations and therefore is not necessarily indicative of the surrounding topography. For this reason mountainous areas are shown schematically in the diagram. The geology profile was compiled from available literature, which included publications of Bostock (1950, 1952); Hage (1944); Williams (1944); Lord (1944); McLean and Kindle (1950); Kindle (1952); Wheeler (1952); and Muller (1954).

REGIONAL GRAVITY ANOMALIES

A study of the gravity profile (Figure 2) reveals that four main negative anomalies occur along the Canadian section of the highway. These anomalies, listed in order from Dawson Creek, are: the Trutch negative; the Rocky Mountain negative; the Cassiar Mountain negative; and the Kluane negative.


The Trutch and Rocky Mountain Anomalies

Although these are shown on the profile as two distinct negative anomalies, it appears likely that they are both part of the same anomaly. That this should be the case is more apparent from Figure 3 on which gravity anomalies and physiographic divisions (Bostock 1948) of this portion of the western Cordillera are shown.

For the most part this map is based on gravity data obtained along the highway, but probably represents a first approximation to the gravity field in the area. The Trutch 'negative' coincides with the closest approach of the highway to the Rocky Mountain foothills in the section between Fort St. John and Fort Nelson. Hence it would appear that the Trutch and Rocky Mountain anomalies are both part of the same "negative" and are related to the Rocky Mountains.

Three possible explanations of the negative anomaly associated with the Rockies were investigated. First, the anomaly may be due to a trough-like depression in the underlying Precambrian basement, the axis of the trough coinciding with the axis of the mountains.

57658-7-21

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale. • -

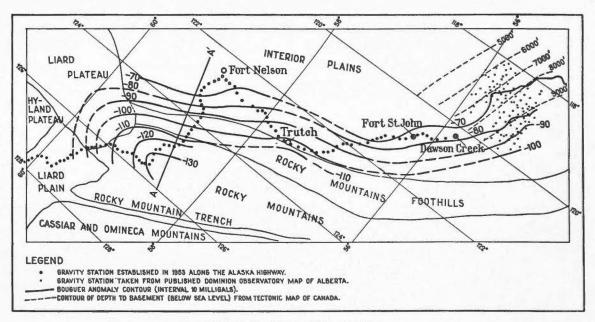


FIGURE 3.-Regional Gravity Map.

A negative anomaly would then occur if the average density of the limestones and other sediments constituting the Rockies were less than the average density of the basement; however, the average density of all the rocks collected from the Rocky Mountain area was 2.69 gm/cc., which is close to the average density usually assumed for basement rocks.

The second possible explanation is that the anomaly arises from a low-density granite core within the mountains. However, no granitic intrusions are known to exist within the Rocky Mountains. According to some geologists (Wilson, 1954) the Rocky Mountains form part of a secondary mountain arc, characteristically formed from great thicknesses of sedimentary rocks, unaccompanied by igneous activity.

A third possible explanation is that the anomaly reflects a thicker crust beneath the mountains. To test the plausibility of such an explanation, a gravity profile (Figure 4) was drawn along the line AA' (Figure 3) perpendicular to the strike of the gravity contours. Densities of 2.7 gms/cc. and 3.3 gms/cc. were assumed for the crust and underlying mantle, respectively, and an average thickness of 20 miles was taken for the crust. It was found that an undulation having a maximum amplitude of 16,000 feet is sufficient to explain the anomaly. This is a reasonable result and is considered the most likely explanation of the Rocky Mountain anomaly.

The cause of the depression is a matter of interest. It may be due to the isostatic compensation of the Rocky Mountains; on the Airy hypothesis such a root would be expected. Alternatively the depression may be a legacy from the time when the area now occupied by the Rocky Mountains was a sedimentary basin. The association of crustal downwarps with such basins has been the subject of several reports (Glennie, 1932; Skeels, 1940; Woollard, 1940) and it would seem that this is part of the mechanism of their formation.

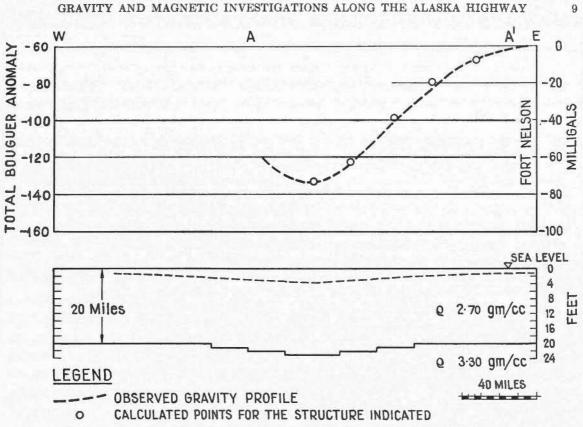


FIGURE 4.—Bouguer Gravity Anomalies across Northern Rocky Mountains, and Structural Interpretation.

The Cassiar Negative

A negative Bouguer anomaly, comparable in size to that encountered in the Rocky Mountain region, was discovered in crossing the Cassiar Mountains. The shapes of the profiles over the two mountain ranges are, however, quite different. The profile across the Rockies has gentle gradients, whereas that across the Cassiars is marked by quite steep gradients. Although the Rocky Mountain anomaly can be explained theoretically by either shallow or deep-seated disturbances, the steep gradient across the Cassiars demands a near-surface origin.

A comparison of the gravity profile with the lithology reveals that the minimum anomaly coincides with outcropping of granite, a part of the Cassiar batholith. Many examples have been reported (Bott, 1953) of granites having negative gravity anomalies associated with them. The densities of all the samples collected from the Cassiar batholith were low, 2.62 gms/cc. on the average. On the other hand, the rocks in contact with the granite, mainly limestones, dolomites and volcanic rocks, all had higher densities. The gravity profile across the Cassiar mountains together with the geological interpretation is shown in Figure 5.

In order to compute the shape of the batholith at depth, average densities were assigned to the two rock groups. The measured value of 2.62 gms/cc. was used for the granite and a value of 2.72 gms/cc. was used for the surrounding rocks. This latter value was based on measured values from field specimens, and a study of rocks of similar composition from other areas.

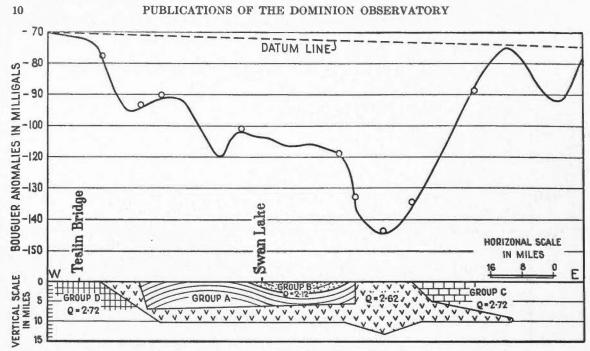


FIGURE 5.-Gravity Profile across Cassiar Mountains, and Geological Interpretation.

A two-dimensional chart (Gassman, 1951) was used in computing the shape of the body. The surface outcrops are known; the length was assumed to be considerably greater than the width and the anomaly variation to be entirely due to the low-density granite in the upper regions of the crust. Such a condition may be considered as a limiting case in which none of the anomaly is due to isostatic compensation and the negative load is supported by the strength of the crust.

The Kluane Negative

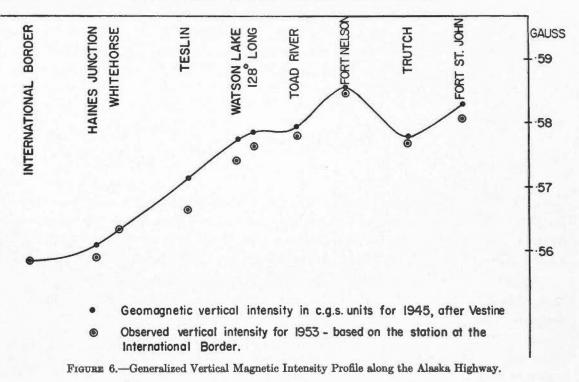
The final large negative anomaly along the Canadian section of the Alaska Highway occurs in the vicinity of Kluane Lake and the St. Elias Mountains. It is important in examining both the gravity and magnetic profiles to distinguish between the large local positive and the regional negative anomalies. The positive anomaly occurs where the highway skirts the southern shore of Kluane Lake and in so doing makes a short excursion into the western system of the Canadian Cordillera (Bostock, 1948). Here the western system consists predominately of the high-density volcanic rocks which make up the Kluane range. These rocks have been brought into contact with those of a predominantly granitic character by large scale faulting. A huge linear fault which has been traced the full length of the Shakwak Valley separates these two regions of contrasting lithology. The two stations with positive anomalies lie to the west of the fault and are associated with highdensity volcanics. The regional negative anomaly, on the other hand, is more likely to be associated with the effects of the St. Elias mountain range.

The highway never crosses the St. Elias range, but approaches close to it and then diverges in a way similar to the close approach of the highway to the Rocky Mountains, in the section from Dawson Creek to Fort Nelson. In fact, the Kluane negative anomaly is associated with the St. Elias Mountains in much the same manner as is the Trutch anomaly with the Rocky Mountains. These anomalies, however, require different explanations. Whereas the Trutch negative seems best explained by crustal warping beneath the Rockies, the Kluane negative may reflect a granitic core within the St. Elias Mountains. These latter mountains, the highest in Canada, are known to contain an abundance of granite and granodiorite (Sharpe, 1943 and Muller, 1954). It is therefore probable that here, as in the Cassiar Mountains, at least a part of the anomaly is due to low density granitic rocks.

REGIONAL MAGNETIC ANOMALIES

A study of the profile (Figure 2) of vertical magnetic intensity reveals many local anomalies superimposed upon a fairly well defined regional field. The main features are: (1) negative magnetic anomalies coinciding with the Trutch and Rocky Mountain negatives, (2) a fairly regular regional decrease from Liard River to about Kluane Lake, and (3) a flat portion of little or no change from Kluane to the International Boundary.

The correlation between gravity and magnetic anomalies at Trutch and across the Rocky Mountains suggests a common origin. However, a correlation also exists between the magnetic intensity profile and the orientation of the Alaska Highway as shown in Figure 1. Whenever the highway trends in a westerly direction, the magnetic intensity decreases; whenever the highway trends in a more northerly direction, the intensity remains approximately stationary. This suggests that the regional magnetic anomalies may be a consequence of the large-scale, world wide, geomagnetic variation (which probably bears little relation to the near-surface geology), and the meandering character of the highway. To further test this hypothesis, a profile was constructed along the line of the Alaska Highway from Vestine's (1947) world map of vertical magnetic intensity. This is shown as the solid line in Figure 6. The observed 1953 values, relative to the station at the International Boundary, are also shown on this figure. The agreement between the two is striking and suggests that the similarity between the gravity and magnetic profiles does not necessarily indicate a common origin for the anomalies.


LOCAL GRAVITY AND MAGNETIC ANOMALIES

The gravity and magnetic profiles can be divided into two parts based on the character of the local gravity and magnetic anomalies. From Dawson Creek to Liard River the local anomalies are all relatively small and have moderately gentle gradients. Beyond Liard River, the amplitudes and the gradients of the anomalies increase, suggesting a fundamental difference in the rock types underlying the two divisions. The rocks to the south and east of Liard River are apparently much more uniform and homogeneous than the rocks to the north and west.

It is interesting to note that this division coincides with Bostock's (1948) physiographic division of the Cordillera into a Central and an Eastern system, and also with Wilson's (1954) division into a metamorphosed median land, and a sedimentary secondary mountain arc. In many instances an excellent correlation can be found between the gravity, magnetic and lithology profiles. This correlation has been used in some cases to extend the geology into areas covered by drift, (see Figure 2) and to predict the underlying rock types.

11

PUBLICATIONS OF THE DOMINION OBSERVATORY

CONCLUSIONS

Conclusions based on the study of a single gravity and magnetic profile must be regarded as tentative. As more data become available and an areal picture of the gravity and magnetic fields becomes known, these may be changed. It is with this reservation that the following are stated.

The main conclusion to be drawn is that negative gravity anomalies found over mountain ranges may be due to two principal causes: crustal warping into the underlying mantle, or the presence of a low-density granitic core. The Rocky Mountains are thought to be an example of the former and the Cassiar and St. Elias Mountains examples of the latter.

Regional magnetic anomalies appear to be related to the large-scale geomagnetic variations and probably do not reflect the near-surface geology.

The smaller gravity and magnetic anomalies which show an excellent correlation with the known surface lithology provide a means for dividing the profiles into two parts. In the section to the south and east of Liard River, the anomalies have small amplitude and gentle gradients. To the north and west, the anomalies are generally larger in amplitude and have a steeper gradient. This division reflects a major difference in the geological history of the two areas.

ACKNOWLEDGEMENTS

The writer wishes to thank M. J. S. Innes, G. D. Garland, and N. Isenor of the Dominion Observatory, Ottawa, and Professor J. T. Wilson of the University of Toronto, for their assistance in different phases of the study.

12

GRAVITY AND MAGNETIC INVESTIGATIONS ALONG THE ALASKA HIGHWAY

The field work was carried out while the writer was a summer employee of the Observatory. The interpretation was made in the Geophysics Laboratory at the University of Toronto and was included as part of a Ph.D. thesis.

Financial assistance at the University of Toronto was received from scholarshisp given by the Worshipfull Company of Goldsmiths, and the Shell Oil Company, to whom grateful acknowledgment is made.

BIBLIOGRAPHY

Bosrock, H. S. (1948). Physiography of the Canadian Cordillera with special reference to the area north of the fiftyfifth parallel. *Geol. Surv., Canada, Mem.* 247.

------ (1950). Potential Mineral resources of Yukon Territory. Geol. Surv., Canada, Paper 50-14.

(1952). Geology of Northwest Shakwak Valley, Yukon Territory. Geol. Surv., Canada, Mem. 267.

Borr, M. H. P. (1953). Negative gravity anomalies over acid intrusions and their relation to the structure of the earth's crust. Geol. Mag., VXC, 4, 257-267.

GARLAND, G. D. (1955). Gravity measurements in North America with Cambridge Pendulum Apparatus II. Proc. Roy. Soc. A., V. 233, 203-213.

GASSMAN, F. (1951). Graphical evaluation of the anomalies of gravity and of the magnetic field, caused by three dimensional bodies. Srd World Petroleum Congress, The Hague.

GLENNIE, E. A. (1932). Gravity anomalies and the structure of the earth's crust. Prof. Paper, Survey India, 27.
HAGE, C. O. (1944). Geology adjacent to the Alaska Highway between Fort St. John and Fort Nelson, B.C. Geol. Surv., Canada, Paper 44-30.

KINDLE, E. D. (1952). Dezadeash Map-area, Yukon Territory. Geol. Surv., Canada, Mem. 268.

LORD, C. S. (1944). Geological reconnaissance along the Alaska Highway between Watson Lake and Teslin River, Yukon and British Columbia. *Geol. Surv., Canada*, Paper 44–25.

McLEAN, F. H. and E. D. KINDLE (1950). Geology of Northeastern British Columbia. Geol. Surv., Canada, Mem. 259.

MULLER, J. E. (1954). Preliminary Map, Kluane Lake (West half), Yukon Territory. Geol. Surv., Canada, Paper 53-20.

SHARPE, R. P. (1943). Geology of the Wolf Creek area, St. Elias Range, Yukon Territory, Canada. Bull. Geol. Soc. Amer. V. 54.

Skeels, D. C. (1940). Gravity and sedimentary basins. Trans. Am. Geophys. Union. pp. 187-202.

VESTINE, E. H. (et al.) (1947). Description of the earth's main magnetic field and its secular change, 1905-1945. Carnegie Institution of Washington, Pub. 578.

WHEELER, J. O. (1952). Geology and mineral deposits of Whitehorse map-area, Yukon Territory. (Preliminary account). Geol. Surv., Canada, Paper 52-30.

WILLIAMS, H. Y. (1944). Geological reconnaissance along the Alaska Highway from Fort Nelson, B.C. to Watson Lake, Yukon. Geol. Surv., Canada, Paper 44-28.

WILSON, J. T. (1954). The development and structure of the crust. Ch. 4 of "The Earth as a Planet" edited by Kuiper, The Univ. Chicago Press.

WOOLLARD, G. P. (1940). Gravitational determination of deep-seated crustal structures of continental borders. Trans. Am. Geophys. Union, 808-815.

APPENDIX

The Principal Facts

Alaska Highway Bases, Canada, 1953.

	Station	Lar	mituda	Te	titude	Elevation	Observed	Gravity 1	Anomalies
No.	Name	Lon	gitude		utude	Lievation	Gravity	Free Air	Bougue
1	Edmonton	113°	31/3	530	31:3	2197 ft.	981.1678	0134	088
2	Legal		37.4		57.2	2290	.2035	0062	084
3	Rochester	1.1	27.1	54	22.4	2000	.2691	0039	072
4	Athabasca		15.9	01	43.2	1746	.3260	0005	060
5	Lawrence Lake		37.0		59.7	2114	.3221	.0068	065
6	Smith	114	02.4	55	09.8	1862	.3523	0010	064
7	Slave Lake	114	46.5	00	17.0	1921	.3596	.0017	063
8	Kinuso	115	25.1	1051	20.2	1927	.3506	0113	076
9	Joussard	110	55.7		22.7	1968	.3572	0043	071
10	High Prairie	116	29.2		25.7	1956	.3564	0105	071
11	Matan		24.1	5.5	40.0	0001	0057	0000	
11	MacLennan		54.1	FO	42.6	2081	.3857	.0068	064
12	Nampa	117	08.0	56	02.4	1885	.4224	0026	066
13	Peace River Dom. Obs.		17.2		14.2	1065	.4875	0311	067
14	Peace River (McCallum)		17.2		14.0	1065	.4872	0311	067
15	Grimshaw	118	36.4		11.5	2001	.4285	.0017	066
16	Fairview		22.9		03.9	2141	. 4097	.0066	066
17	Rycroft		42.6	55	45.4	1984	.3862	0057	073
18	Grande Prairie (Woollard)		50.0		15.0	2163	.3176	0147	088
19	Grande Prairie (Garland)		47.7		10.4	2149	.3181	0090	082
20	Beaverlodge	119	25.6		12.6	2358	.2998	0108	091
21	Dawson Creek	120	13.7		45.6	2196	.3655	0068	081
22	B.M. 889J		37.9	56	00.9	2548	.3722	.0116	075
23	B.M. 897J		47.6		13.1	2157	.4114	0030	076
24	Fort St. John (BM. 898J) Garland		50.8		14.2	2209	4100	0000	075
25	Fort St. John (Airport)		30.8 44.1				.4102	0008	075
26	Beaton River Road	121			14.3	2274	.4078	.0028	074
20	B.M. 921J	121	15.0		32.5	2801	.4063	.0255	069
28	B.M. 939J		50.6		44.6	3053	.3948	.0210	083
29			34.6	111	05.1	3219	.4004	.0139	095
29 30	Buckinghorse Bridge Beaver Creek	122	50.5 52.1	57	23.1 47.9	3331 2387	.4104	.0098	103 094
01	Indian Creek	1	10.0		00.0	1000			
31			42.6	58	06.3	1760	.5849	0223	082
32	B.M. 990J		44.2		31.6	1570	.6359	0232	076
33	Fort Nelson (Airport)		41.7		48.3	1360	. 6925	0088	055
34	B.M. 1002J	100	41.1		48.4	1348	.6827	0198	065
35	B.M. 1010J	123	03.4		53.3	1480	. 6833	0133	063
36	Kledo River		30.3	100	49.8	1268	.6796	0329	079
37	B.M. 1031J	124	1000		40.4	2544	. 5697	0096	096
38	B.M. 1041J		40.5		38.7	4213	.4531	.0330	110
39	B.M. 1055J	125			50.7	2371	. 5629	0465	127
40	B.M. 381F		45.6	59	00.1	2695	.5604	0310	122
41	Liard Bridge	126	10.7		22.2	1422	.6873	0560	104
42	(Smith)		28.6		33.4	1512	.7149	0319	083
43	B.M. 339F	127	08.8		40.1	1695	.7157	0227	080
44	B.M. 326F		27.7		55.8	2127	.7109	0074	079
45	B.M. 318F		54.4	60	the second second	2226	.7115	0034	079
46	B.M. 307F	128	29.7	59	55.5	1911	.7286	0097	074
47	B.M. 298F		42.8	60	03.7	2300	.7127	.0003	078
48	Watson Lake (Airport)	1 2		-			.7172		

Alaska Highway Bases, Canada, 1953.

	Station	Tan	gitude	Tel	itude	Elevation	Observed	Gravity A	nomalies
No.	Name	Lon	grude	Lau	Truce	LIEVALION	Gravity	Free Air	Bouguer
49	Watson Lake (Pendulum)	128°	49'1	60°	07:0	2240 ft.	981.7178	0045	0808
50	B.M. 286F	129	23.2		05.1	2819	.6673	.0019	0941
51	B.M. 271F	130	19.4		06.4	2855	.6392	0245	1218
52	B.M. 258F	131	11.0		00.6	2923	.6434	0063	105
53	B.M. 249F		40.7	59	56.5	2790	.6502	0067	101
54	B.M. 240F	132	08.5	60	00.4	2611	.6772	0016	090
55	B.M. 228F		44.6		10.2	2257	.7297	.0048	072
56	B.M. 214F	133	17.2		29.0	2299	.7327	0127	0910
57	(Atlin)		58.1		20.3	2518	.7360	.0225	0635
58	Whitehorse Airport	135	03.6	60	42.9	2285	.7520	0126	090
59	Whitehorse Airport			2.0					
00	(Pendulum)		03.5		42.8	2281	.7519	0129	090
60	(1 chauran)		46.5		51.0	2213	.7792	0026	0779
61	Atlin	133	42.7	59	34.6	2215	.6734	0089	084
62	B.M. 430E		40.9		38.2	2410	.6655	0031	085
63	B.M. 427E		44.3		43.2	2455	.6652	0058	089
64	B.M. 424E		48.1		48.6	2337	. 6843	0049	084
65	B.M. 421E		47.7		52.8	2362	.6759	0164	096
66	B.M. 418E	1	47.0		56.5	2468	.6909	.0037	080
67	B.M. 414E		48.5	60	03.4	2492	. 6956	.0017	083
68	B.M. 411E		52.2		07.6	2528	. 6963	.0003	085
69	B.M. 407E		54.5		13.5	2350	.7127	0075	087
70	B.M. 404E		55.7		22.0	2435	.7181	0054	088
71	B.M. 195F2	134	19.1		30.7	2133	.7535	0097	082
72	B.M. E-7	136	28.7		47.2	2295	.7623	0069	085
73	B.M. 461F	137	30.5		45.2	1962	.7796	0183	085
74	Kluane Village	138	22.9	61	01.9	2575	.7234	0383	126
75	B.M. N-10		35.3		09.8	2597	.7313	0384	126
76	B.M. G-11		59.9		21.1	2620	.7548	0271	116
77	B.M. N-12	139	38.9		37.5	2755	.7802	0097	103
78	White River	140	33.4		59.5	2326	.8562	0017	081
79	B.M. 214		41.2	62	14.2	2536	.8862	.0297	056
80	Snag Airport		24.5		21.4	1902	.9347	.0096	055
81	Alaska Border		58.0		36.2	1912	.9614	.0190	046
82	Dawson City	139	24.6	64	03.4	1050	.1023	0267	062

Alaska Highway Bases, U.S.A., 1953.

1		141° 06:0	64° 41.'6	1994 ft.	981.9733	.0320	0360
2	Fairbanks (Rose Pend.)	147 47.8	51.5	450	982.2465	.0045	0108
3	Fairbanks (USCGS—Ladd Air Base)				.2486		
4	Fairbanks (GDG— Pendulum)	49.4	51.5	515	.2465	.0106	0069
5	Fairbanks (Univ. Alaska Gravimeter)	47.8	51.5	450	.2466	.0046	0107

17

Station		T		T		Elevation	Observed	Gravity Anomalies	
No.	Name	Longitude		Latitude			Gravity	Free Air	Bouguer
6	Fairbanks—Airport	_	_	_			982.2463		
7	Fairbanks (Eilson Air Base)	147°	04:9	64°	38:6	529 ft.	.2255	.0060	0120
8	Silver Fox Lodge	146	51.3	1	22.0	921	.1767	.0135	0178
9	Shaw Creek	144	05.6		15.7	922	.1552	0004	0318
10	Delta Junction		42.9		02.4	1157	. 1209	.0031	0363
11	Big Gerstle River		54.0	63	49.0	1339	.0639	0208	0664
12	Dot Lake		02.2		39.1	1410	.0433	0229	0665
13		143	44.6		23.3	1558	.0062	0270	0801
14	Tok Junction	142	58.3		20.1	1632	.0076	0158	0715
15	Tetlin Junction		36.7		19.2	1765	.0015	0073	0674
16	Banks of Yukon						. 1027		
17	Bitter Creek		05.5		09.7	1791	981.9959	.0011	0599
18	Northway Cutoff	141	46.4		00.6	1809	.9819	0002	0618

Alaska Highway Bases, U.S.A., 1953

Alaska Highway Detailed Stations, Canada.

	the second s			1					
1	B.M. E-14	140°	58:4	62°	31:8	2057 ft.	981.9480	.0246	0454
2	B.M. J 14		51.9		29.7	2017	.9463	.0217	0470
3	B.M. Q14		52.5		22.9	2071	.9136	.0025	0680
4	B.M. V14		46.9	1.00	17.7	2396	.8957	.0217	0599
5	Snag—Pendulum		24.5		21.3	1898	.9351	.0097	0549
6			32.4		18.5	2123	.9140	.0133	0590
7	B.M. 452F		40.8		10.0	2362	.8866	.0189	0615
8	B.M. 450F		39.8		05.8	2296	.8712	.0026	0756
9	B.M. 448F		36.6		02.2	2421	.8542	.0018	0806
10	B.M. R-13		24.5	61	58.3	2215	.8599	0070	0824
11	B.M. N-13		17.5	1.1	55.5	2248	.8532	0071	0836
12	B.M. J-13		10.4	1.000	51.9	2293	.8455	0060	0841
13	B.M. D-13		03.4		48.3	2387	.8360	0021	0835
14	B.M. Y-12	139	56.0		45.0	2440	.8243	0047	0878
15	B.M. T-12		48.7		42.4	2517	.8050	0135	0992
16	B.M. J-12		31.5		36.3	2654	.7870	0109	1013
17	B.M. E-12		25.0	8	35.4	2373	.7979	0253	1062
18			22.0		33.7	2363	.7977	0243	1048
19	B.M. X-11		18.4	1	30.4	2638	.7663	0339	1237
20	B.M. S-11	1.0	14.1		27.0	2682	.7581	0254	1168
21	B.M. M-11		07.5		23.6	2792	.7524	0165	1117
22	B.M. B-11	138	52.5		17.8	2651	.7468	0280	1183
23	B.M. X-10		47.8	80	14.7	2628	.7375	0355	1250
24	B.M. T-10		42.2		12.3	2709	.7274	0349	1272
25	B.M. H-10		32.8		04.9	2577	.7289	0364	1242
26	B.M. C-10		29.8	-	01.2	2573	.7482	0128	1004
27	B.M. Z-9		29.2	60	58.9	2570	.7555	0280	0904
28	B.M. Q-9		14.6	61	00.0	2959	.7020	0211	1219
29	B.M. J-9		05.7	60	57.8	3114	.6954	0103	1164
30	B.M. D-9	137	55.5		55.7	2878	.7106	0146	1127

Alaska Highway Detailed Stations, Canada.

	Station	Taraka	T . 414. 1.	Florest	Observed	Gravity A	Anomalies
No.	Name	Longitude	Latitude	Elevation	Gravity	Free Air	Bougue
31	B.M. B-9	137° 50'3	60° 54:3	3032 ft.	981.7056	0034	106
32	B.M. W-8	45.7	50.2	2949	.7181	.0066	093
33	B.M. S-8	40.4	47.7	2103	.7734	0145	086
34	Haines	135 26.9	59 14.3	65	.8384	0193	021
35	Tanto	36.6	16.1	24	.8143	0496	050
36		42.4	18.5	38	.7940	0718	078
37		43.3	21.3	55	.7847	0832	085
38		54.5	24.2	111	.7887	0777	081
39		136 03.4	25.4	180	.7863	0752	
		150 05.4	25.5				081
40		22.2	25.5	380 602	.7624 .7509	0805 0733	093 093
41		44.4	21.2	002	. 1909	0755	093
42		27.4	30.2	817	.7418	0661	094
43		31.0	32.9	1226	.7102	0628	104
44		27.6	38.4	2510	.6326	0269	112
45		34.0	40.6	3036	.6153	.0024	101
46		35.9	43.9	3212	.6166	.0158	093
47		37.9	48.6	3312	.6294	.0319	080
48		39.4	50.6	2898	.6688	.0298	068
49		42.5	52.7	3117	.6571	.0258	070
50		42.3	55.9	3012			
00		51.0	59.8	2755	.6717 .6784	.0365	066
51		01.0	09.0	4100	.0701	.0139	078
52		54.5	60 04.0	2958	.6610	.0101	090
53		55.6	07.9	2883	.6694	.0064	091
54		55.6	14.8	2301	.7052	0216	099
55		137 00.2	17.4	2445	.7168	.0002	083
56		01.4	23.8	2317	.7403	.0034	075
57		01.8	28.7	2453	.7359	.0054	078
58	STATES AND A VESTI	06.9	32.0	2400	.7474	.0077	074
59		13.0	34.5	2522	.7478	.0163	069
60		22.1	41.2	2723	.7537	.0325	060
61	B.M. H-8	25.6	48.6	2215	.7670	0115	086
62		16.0	50.5	2243	.7683	0100	086
63	B.M. R-M-2	06.2	51.4	2231	.7684	0122	088
64	B.M. R-7	136 55.9	49.9	2302	.7561	0159	094
65	B.M. N-7	48.5	48.8	2256	.7616	0133	090
66		37.1	48.6	2422	.7587	0003	082
67	B.M. A-7	19.8	47.3	2302	.7583	0103	088
68	B.M. W-6	11.3	45.5	2294	.7641	0030	081
69	B.M. 8-6	02.0	48.6	2326	.7655	0026	081
70	B.M. M-6	135 52.8	50.5	2349	.7600	0083	088
71	B.M. F-6	36.8	51.1	9100	7000	0005	
72	B.M. X	25.8	51.1	2190	.7926	.0085	066
73	B.M. R		51.1	2331	.7831	.0123	067
74	B.M. K	18.9	48.9	2458	.7704	.0144	069
75	B.M. E-1	09.7	46.9	2362	.7645	.0020	078
	D.IVI. E-1	134 59.7	37.9	2383	.7390	0099	091
76	B.M. 188F2	52.9	35.9	2405	.7423	0020	083
77		43.0	34.9	2342	.7465	0023	082
78	B.M. 191F	32.1	33.9	2166	.7610	0032	077
79	B.M. 193F	25.9	33.3	2164	.7743	.0107	063
80	B.M. 198-F	11.6	25.9	2493	.7367	.0136	071

	Station	T	والمعاد	T	the de	Planation	Observed	Gravity A	nomalies
No.	Name	Lon	gitude	La	titude	Elevation	Gravity	Free Air	Bouguer
81	B.M. 200F	134°	06:2	60°	22:5	2491 ft.	981.7412	.0223	062
82	B.M. 204F	133	50.8		22.3	2584	.7254	.0155	072
83	B.M. 206F		43.4		24.4	2867	.7139	.0279	069
84	B.M. 208F		36.9		26.6	2719	.7247	0220	070
85	B.M. 210F		27.7		27.6	2726	.7231	0197	073
86	B.M. 212F		25.1		29.7	2600	.7310	0131	075
87	B.M. 216F		12.4		26.4	2481	.7224	0025	074
88	B.M. 218F		08.2	1.2	23.3	2327	.7352	0001	079
89	B.M. 221F		01.4		19.0	2349	.7333	.0056	074
90	B.M. 223F	132	56.3		15.7	2348	.7307	.0072	072
91	B.M. 226F		51.5		12.5	2367	.7213	0037	076
92	B.M. 230 F		37.9		08.1	2800	.6948	.0237	071
93	B.M. 232 F		31.0		06.8	2291	.7111	0062	084
94	B.M. 235 F		21.5		05.4	2520	.6852	0087	094
95	B.M. 237 F		17.8		02.5	2474	.6859	0092	092
96	B.M. 243 F		03.0	59	58.0	2787	.6647	0056	089
97	B.M. 245 F	131	56.1		56.3	2795	.6531	0031	098
98	B.M. 247 F		48.9		56.6	2692	.6473	0189	110
99 100	B.M. 252 F B.M. 254 F		27.8 20.1		56.2 55.5	2907 2850	.6413 .6433	0042 0067	103 103
101	B.M. 256 F	501.23	13.5		58.2	28 13	.6460	0110	106
102	B.M. 260 F		01.3	60	02.4	3259	.6245	.0040	107
103	B.M. 262 F	130	56.4	1.12	04.7	3288	.6228	.0020	110
104	B.M. 263 F		51.0		04.7	3065	.6198	0219	126
105	B.M. 264 F		46.6	£	05.1	3034	.6182	0270	130
106	B.M. 266 F		39.5		05.7	2959	.6179	0351	135
107	B.M. 268 F	1 .	31.1		04.2	2923	. 6203	0341	133
108	B.M. 273 F	-	13.1		08.6	2809	.6570	0139	109
109	B.M. 275 F	1.1	08.1		11.1	2770	.6730	0048	099
110	B.M. 277 F	129	58.1		11.9	2913	.6779	.0125	086
111	B.M. 279 F		50.5		10.7	3002	.6797	.0242	078
112	B.M. 281 F		42.6	1.000	09.5	2545	.7098	.0129	073
113	B.M. 283 F		34.9		08.2	2630	. 6950	.0078	081
114	B.M. 288 F	100	17.2		04.1	2567	.6932	.0054	082
115	B.M. 290 F	100	08.0		02.3	2480	.7056	.0120	072
116	B.M. 292 F	128	59.6		02.5	2168	.7041	0191	093
117	B.M. 296 F		51.1		04.3	2461	. 6906	0074	091
118	B.M. 303 F		36.0 33.2		01.9	2220	.7197 .7218	.0021	073 075
19 1 20	B.M. 305 F B.M. 309 F		21.5		58.8 55.7	2085 2143	.7165	0002	073
21	B.M. 311 F		13.4		56.2	2119	.7119	0077	079
122	B.M. 314 F		08.6		57.5	1953	.7356	0013	068
123	B.M. 316 F		00.9	59	58.0	2337	.7104	.0089	070
124	B.M. 320 F	127	48.8	60	00.4	2121	.7222	0027	075
125	B.M. 322 F		42.9	59	59.9	2089	.7224	0049	076
126	B.M. 324 F		33.7		58.8	2192	.7112	0050	079
127	B.M. 328 F		24.1		52.0	1911	.7191	0146	079
28	B.M. 330 F		28.9		49.3	2057	. 7089	0075	077
129	B.M. 332 F		28.4		45.4	2003	.7049	0115	079
130	B.M. 335 F	1	22.6		43.1	2534	.6736	.0102	076

Alaska Highway Detailed Stations, Canada.

Alaska Highway Detailed Stations, Canada

	Station	Longitude	Latitude	Elevation	Observed	Gravity A	Gravity Anomalies		
No.	Name	Longrade	Datitude	Inevation	Gravity	Free Air	Bougue		
131	B.M. 337 F	127° 15'6	59° 43'0	1676 ft.	981.7202	0238	080		
132	B.M. 341 F	02.3	38.4	1861	.7050	0155	078		
133	B.M. 343 F	126 53.7	39.2	1690	.7160	0217	079		
134	B.M. 346 F	46.1	36.7	1493	.7194	0335	084		
135	B.M. 347 F	39.8	35.8	1500	.7162	0349	086		
136	B.M. 360 F	24.2	32.5	1586	.7001	0385	092		
137	B.M. 362 F	28.6	29.2	1432	.6972	0516	100		
138	B.M. 364 F	24.1	26.3	1424	.6898	0559	104		
130	B.M. 369 F	10.7	22.2	1832	.6611	0408	103		
140	B.M. 371 F	04.7	19.0	1756	.6528	0520	111		
141	B.M. 373 F	125 57.4	15.6	1983	.6310	0480	115		
142	B.M. 375 F	55.9	12.0	2262	.6082	0398	116		
143	B.M. 377 F	52.1	08.9	2657	.5824	0243	114		
144	B.M. 379 F	48.3	04.8	2796	.5662	0220	117		
145	B.M. 384 F	45.6	55.9	2758	.5458	0341	128		
146	B.M. 1063 J	45.6	52.6	3442	.5014	0098	127		
147	B.M. 1062 J	42.8	49.3	3205	.5090	0201	129		
148	B.M. 1060 J	40.1	58 46.6	2606	.5314	0504	139		
140	B.M. 1057 J	28.6	48.6	2527	.5464	0455	131		
149	B.M. 1053 J	15.5	50.8	2330	.5660	0434	124		
151	B.M. 1051 J	07.3	49.5	2273	.5656	0514	128		
152	B.M. 1049 J	00.6	49.4	2356	.5624	0466	126		
153	B.M. 1047 J	124 58.5	46.6	2657	.5407	0363	126		
154	B.M. 1045 J	53.4	42.7	2983	.5188	0223	123		
155	B.M. 1043 J	47.7	40.9	3550	.4848	0006	121		
156	B.M. 1038 J	28.8	39.6	3356	.5057	.0038	110		
157	B.M. 1035 J	17.0	39.5	2769	.5456	0114	105		
158	B.M. 1033 J	09.4	39.1	2488	.5678	0151	099		
159	B.M. 1030 J	123 52.4	40.4	2626	.5672	0044	093		
160	B.M. 1027 J	44.3	41.0	3504	.5176	.0278	091		
161					. 5691				
162	B.M. 1024 J	40.1	42.1	2020	.6139	0170	085		
163	B.M. 1021 J	34.7	47.0	1340	.6663	0351	080		
164	B.M. 1017 J	26.8	52.1	1569	.6701	0166	070		
165	B.M. 1014 J	19.4	53.6	1323	.6917	0201	065		
166	B.M. 1012 J	11.0	54.0	1504	.6829	0124	063		
167	B.M. 1008 J	122 54.7	50.6	1424	.6827	0156	064		
168	B.M. 1006 J	48.0	49.6	1620	.6698	0087	063		
169	B.M. 99 J	40.0	45.2	1269	.6815	0242	067		
170	B.M. 996 J-2	40.5	40.0	1371	.6684	0207	067		
171	B.M. 993 J	39.1	35.4	1561	.6483	0168	070		
172	B.M. 985 J	49.3	22.4	1606	.6173	0261	080		
173	B.M. 982 J	50.1	18.2	1690	.6034	0264	084		
174	B.M. 979 J	47.0	13.0	1480	.6110	0316	082		
175	B.M. 977 J	46.0	11.0	1746	.5900	0248	084		
176	B.M. 971 J	42.6	01.3	1919	.5651	0204	085		
177	B.M. 969 J	43.4	57 59.9	1877	.5615	0260	089		
178	B.M. 967 J	49.8	55.6	2535	.5148	0050	091		
179	B.M. 965 J	50.5	51.8	2754	.4944	.0004	093		
180	B.M. 960 J	56.8	43.1	2850	.4719	0013	098		

Alaska	Highway	Detailed	Stations,	Canada.
--------	---------	----------	-----------	---------

Station		Tan	Turniturda		itude	Floretion	Observed	Gravity Anomalies	
No.	Name		— Longitude		Ituae	Elevation	Gravity	Free Air	Bouguer
181	B.M. 957 J	122°	57:6	57°	38/9	3981 ft.	981.3928	.0317	1038
182	B.M. 955 J		55.4		34.7	3772	.3917	.0167	1118
183	B.M. 952 J		52.8		27.9	4132	.3683	.0365	1043
184	B.M. 947 J		46.6		17.8	3975	.3655	.0327	1027
185	B.M. 944 J		40.6	1	13.9	3116	.4119	.0037	1025
186	B.M. 942 J		40.4		10.1	3708	.3727	.0254	1009
187	B.M. 936 J		29.3		02.3	3604	.3765	.0301	0926
188	B.M. 933 J	-	21.0	56	59.9	3593	.3741	.0300	0924
189	B.M. 930 J		11.8		58.9	3372	.3877	.0242	0907
190	B.M. 928 J		05.3		57.4	3309	.3889	.0215	0912
191	B.M. 926 J		00.0		53.6	3203	.3920	.0199	0892
192	B.M. 925 J	121	59.2	- L 1	51.2	3137	.3962	.0212	0857
193	B.M. 918 J		41.7		40.6	2876	. 4060	.0211	0769
194	B.M. 915 J		34.2	1.0	37.7	2850	.4092	.0258	0712
195	B.M. 913 J		27.8		36.0	2744	.4150	.0240	0694
196	B.M. 910 J		21.7		33.2	2830	.4071	.0281	0683
197	B.M. 906 J		11.0		26.5	2829	.3959	.0261	0703
198	B.M. 904 J		06.6		22.3	2727	.3949	.0213	0715
199	B.M. 902 J		00.7		18.7	2660	.3928	.0179	0727
200	B.M. 894 J	120	41.2		09.5	1589	.4404	0244	0765
201	B.M. 891 J		38.6		05.2	2395	.3871	.0061	0754
202	B.M. 887 J		33.8	55	57.4	1979	.3877	0215	0889
203	B.M. 883 J		25.8		52.5	2636	.3502	.0096	0801