This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

DEPARTMENT OF THE INTERIOR

CANADA

HON. ARTHUR MEIGHEN, Minister

W. W. CORY, C.M.G., Deputy Minister

PUBLICATIONS

OF THE

Dominion Observatory OTTAWA

OTTO KLOTZ, LL. D., D. Sc., Director

Vol. III, No. 9

Gravity

BY

F. A. McDIARMID, B.A.

O T T A W A. Government Printing Bureau 1918

PORENORD

With the view of reducing the cost of publication the greater part of he tilbular matter, the illustrations and the formula have been omitted.

PORENORD

With the view of reducing the cost of publication the greater part of he tilbular matter, the illustrations and the formula have been omitted.

FOREWORD

Tale: B.C. - ware the the observe

With the view of reducing the cost of publication the greater part of the tabular matter, the illustrations and the formulæ have been omitted.

.

OTTO KLOTZ Director.

November, 1917.

11 11 11

PORENORD

With the view of reducing the cost of publication the greater part of he tilbular matter, the illustrations and the formula have been omitted.

GRAVITY

By F. A. McDIARMID, B.A.

During the season of 1915 there were observed in Canada twenty-four gravity stations as follows:—St. John, N.B.; Moncton, N.B.; Charlottetown, P.E.I.; Sydney, N.S.; Truro, N.S.; Halifax, N.S.; Yarmouth, N.S.; Woodstock, N.B.; Edmundston, N.B.; Bathurst, N.B.; Percé, Que.; Kenora, Ont.; Winnipeg, Man.; Brandon, Man.; Moosejaw, Sask.; Medicine Hat, Alta.; Calgary, Alta.; Banff, Alta.; Field, B.C.; Glacier, B.C.; Revelstoke, B.C.; Kamloops, B.C.; North Bend, B.C.; and Vancouver, B.C. Two other stations—Dunmore, Alta., and Yale, B.C.—were on the observing programme prepared by Dr. Klotz, Assistant Chief Astronomer, under whose supervision the gravity work is carried on, but the difficulty of securing suitable observing rooms led to their abandonment.

The first observations were made at St.'John on the eleventh of May, and the last at Vancouver on the seventh of September. During that interval more than two weeks were spent in Ottawa standardizing the pendulums. The eleven stations in eastern Canada were observed in six weeks, and the thirteen in western Canada in less than eight weeks.

The instruments, their use, the method of observing, the determination of the instrumental coefficients are all described in the *Publications of the Dominion Observatory*, Vol. II, No. 10. In the observing, only knife-edge No. 1 was used and the pendulums were all swung with the direct face toward the flash apparatus. The flexure was determined by the same method as in 1914.

The observing chronometers were rated by comparisons with standard sidereal clocks. Through the kindness of Mr. D. L. Hutchinson, Director of the St. John, N.B., meteorological observatory, clock signals were sent twice a day from the St. John clock to the stations occupied in eastern Canada, and for the work in western Canada time signals were obtained from the Dominion Observatory Riefler standard sidereal clock. The St. John clock is a Riefler of the latest type, is splendidly mounted in a constant temperature room, and is enclosed under constant pressure. Its rate during the whole of the gravity campaign in the east was very nearly zero, and very constant. Mr. Hutchinson, largely on his own initiative, had built a splendid observatory. It is well equipped with modern instruments and the excellent results show a thorough knowledge of practical observing.

STANDARDIZING OF PENDULUMS

During the season of 1914 considerable difficulty was experienced due to changes in the lengths of the pendulums. On account of some injury to pendulum No. 2, it would only swing a very few hours, and the observations of that year were carried on with the two pendulums Nos. 1 and 3. Previous to commencing the 1915 work, pendulum No. 2 was repaired by slightly grinding the head of the pendulum where it rests on the lifter, and it has behaved very satisfactorily since. The periods of the three pendulums were determined in April, before commencing the season's campaign, again in July between the eastern and western work, and also in September after completing the season's work. There were changes in the lengths of the different pendulums during the summer, and these will be referred to later under "Variation in lengths of pendulums."

DESCRIPTIONS OF STATIONS

The pendulum stations observed in 1915 were referred, when possible to astronomic stations, and when no astronomic station was available, to survey posts. They are described as follows:—

St. John, N.B.—The pendulum pier was in the basement of the meteorological observatory, Douglas Ave., 109 ft. above mean sea-level, and 3284 ft. south and 4476 ft. west of astronomic station near corner of Lombard and Southwark streets, distance to astronomic station scaled from map of the city of St. John.

Moncton, N.B.—The pendulum pier was in the basement of the general offices of the Intercolonial railway, 7 ft. below the level of the G.S.C. (Geodetic Survey of Canada) bench-mark on the east wall of the general office building, and 200 ft. north and 1000 ft. east of astronomic station, distance to astronomic station measured.

Charlottetown, P.E.I.—The pendulum pier was in the battery room of the Western Union Telegraph company, 25 ft. above mean sea-level, and 329 ft. south and 57 ft. west of astronomic station, distance to astronomic station measured.

Sydney, N.S.—The pendulum pier was in the basement of the Maritime Telephone and Telegraph office on Pitt street, 42 ft. above mean tide water, and 674 ft. south and 679 ft. east of astronomic station, distance to astronomic station scaled from map of the town of Sydney.

Truro, N.S.—The pendulum pier was in the Western Union Telegraph stores, nearly opposite the I. C. R. station, on level with rail opposite station, and 722 ft. south and 785 ft. west of astronomic station, distance to astronomic station scaled from map of the town of Truro.

Halifax, N.S.—The pendulum pier was in the battery room of the Western Union Telegraph company, near corner of Sackville and Hollis streets, 30 ft. above mean sea-level, and 4029 ft. north and 10730 ft. east of astronomic station, distance to astronomic station scaled from map of the city of Halifax.

Yarmouth, N.S.—The pendulum pier was in the battery room of the Western Union Telegraph company, 30 ft. above mean sea-level, and 66 ft. east and 787 ft. south of astronomic station, distance to astronomic station scaled from map of the town of Yarmouth.

Woodstock, N.B.—The pendulum pier was in the furnace room of the armoury, 14 ft. below the level of the G. S. C. bench-mark in the Woodstock post-office, and 2887 ft. north and 1403 ft. east of astronomic station, distance to astronomic station scaled from map of the town of Woodstock.

Edmundston, N.B.—The pendulum pier was in the basement of the Edmundston hotel, 2 ft. above the G. S. C. bench-mark near the C. P. R. station, and 415 ft. north and 421 ft. east of astronomic station, distance to astronomic station measured.

Bathurst, N.B.—The pendulum pier was in the basement of the Bathurst post-office, 15 ft. above mean sea-level, and 268 ft. south and 734 ft. east of astronomic station, distance to astronomic station measured.

Percé, *Que.*—The pendulum pier was in the cellar of Mr. Biard's house, 20 ft. above mean sea-level, 4118 ft. north and 1717 ft. east of astronomic station, distance to astronomic station measured.

Kenora, Ont.—The pendulum pier was in the battery room of the C. P. R. Telegraph company, in the basement of the C. P. R. station, 8 ft. below the G. S. C. bench-mark in the wall of the C. P. R. station. Geographical position, as scaled from the Department of Interior large scale map of the Northwest, is latitude 49° 46' and longitude 94° 30'.

Winnipeg, Man.—The pendulum pier was in the terminal room of the C. P. R. Telegraph company in the C. P. R. station, 10 ft. below the G. S. C. bench-mark in the Union station, and 7280 ft. north and 3500 ft. west of astronomic station, distance to astronomic station scaled from map of the city of Winnipeg.

Brandon, Man.—The pendulum pier was in the battery room of the C. P. R. Telegraph company, near corner of Rosser avenue and Tenth street, 10 ft. above rail in front of C. P. R. station, and 60 ft. west and 40 ft. north of northwest corner of Rosser avenue and Tenth street, city of Brandon.

Moosejaw, Sask.—The pendulum pier was in the terminal room of the C. P. R. Telegraph company, 5 ft. below the G. S. C. bench-mark in the C. P. R. station, and 50 ft. east and 2640 ft. south of the northwest corner of section 33, township 16, range 26, west of the second meridian, distance measured.

Medicine Hat, Alta.—The pendulum pier was in the battery room of the C. P. R. Telegraph company in the C. P. R. station, 5 ft. below the level of the bench-mark in the C. P. R. station, and 900 ft. east and 270 ft. south of the northwest corner of the southeast quarter of section 31, township 12, range 5, west of the fourth meridian, distance scaled from map of the town of Medicine Hat.

Calgary, Alta.—The pendulum pier was in the terminal room of the C. P. R. Telegraph company in the C. P. R. station, 7 ft. below the level of the G. S. C. bench-mark in the station, and 350 ft. north and 400 ft. east of the astronomic station, distance to astronomic station scaled from map of the city of Calgary.

Banff, Alta.—The pendulum pier was in the cellar of the C. P. R. station, 4 ft. below the level of the G. S. C. bench-mark in bridge over the stream just west of Banff station, and 900 ft. south and 8880 ft. west of the northwest corner of township 25, range 12, west of the fifth meridian, distance scaled from map of the town of Banff.

Field, B.C.—The pendulum pier was in the basement of the Mount Stephen hotel, 6 ft. above the rail in front of the C. P. R. station, 645 ft. north and 700 ft. west of astronomic station, distance to astronomic station measured.

Glacier, B.C.—The pendulum pier was in the furnace room of the Glacier house, 4 ft. above the level of the rail in front of the C. P. R. station, and 396 ft. west and 3234 ft. south of the northeast corner of section 36, township 26, range 26, west of the fifth meridian, distance scaled from map of the township.

Revelstoke, B.C.—The pendulum pier was in the battery room of the C. P. R. Telegraph company, 10 ft. below the level of the rail in front of the C. P. R. station, and 1552 ft. west and 262 ft. north of astronomic station, distance to astronomic station measured.

Kamloops, B.C.—The pendulum pier was in the battery room of the C. P. R. company in the C. P. R. station, 5 ft. below the level of the rail in front of the station, and 660 ft. south and 640 ft. east of astronomic station, distance to astronomic station measured.

North Bend, B.C.—The pendulum pier was in the basement of the Fraser Canyon hotel, 4 ft. above the level of the rail in front of the C. P. R. station, and 794 ft. south and 14200 ft. west of the northeast corner of township 10, range 26, west of the sixth meridian, distance scaled from map of the township. Vancouver, B.C.—The pendulum pier was in the terminal room of the C. P. R. Telegraph company in the C. P. R. station, 15 ft. above the rail in front of the station, and 1409 ft. east and 5755 ft. south of the astronomic station at Brockton Point, distance to astronomic station scaled from the map of the city of Vancouver.

In the following table are given brief descriptions of the pendulum piers, the longitude, the latitude, and the altitude of each station. At every station the pendulum apparatus was mounted on a concrete floor, on three stones set in plaster of Paris. The method of mounting and the description of instruments are given in the *Publications of the Dominion Observatory*, Vol. II, No. 10. The temperature conditions were very satisfactory at all the stations, the temperature rarely having a range exceeding three degrees Centigrade.

Station	Lo	ngitu	ıde	La	titu	de	Altitude	Description of Station
making the time	0	1	a print	1	di-	1.10	d senois	construction in prairie of the second
ock comparisons.	h.	m.	s.	0	,	"	metres	di observing conservicence soineide
St. John	4	24	20	45	16	03	33	Pier in basement of meteorological observatory.
Moneton	4	19	09	46	05	04	14	Pier in basement of I.C.R. offices.
Charlottetown	4	12	30	46	13	55	8	Pier in cellar of Western Union Telegraph office.
Sydney	4	00	47	46	08	21	12	Pier in basement of Maritime Telegraph and Telephone company's office.
Truro	4	13	06	45	21	'40	18	Pier in Western Union Telegraph stores.
Halifax	4	14	15	44	40	47	9	Pier in battery room of Western Union Telegraph company.
Yarmouth	4	24	29	43	50	07	9	Pier in battery room of Western Union Telegraph company.
Woodstoek	4	30	18	46	09	02	56	Pier in furnace room of armoury.
Edmundston	4	33	18	47	22	11	148	Pier in cellar of Edmundston hotel.
Bathurst	4	22	36	47	37	10	5	Pier in cellar of Bathurst post-office.
Percé	4	16	51	48	31	33	6	Pier in cellar of Mr. Biard's house.
Kenora	6	18	00	49	46	00	. 330	Pier in battery room of C.P.R. Telegraph com- pany.
Winnipeg	6	28	32	49	54	23	231	Pier in terminal room of C.P.R. Telegraph com- pany.
Brandon	6	39	47	49	50	54	366	Pier in battery room of C.P.R. Telegraph com- pany.
Moosejaw	7	02	07	50	23	26	541	Pier in battery room of C.P.R. Telegraph com- pany.
Medicine Hat	7	22	40	50	02	25	664	Pier in battery room of C.P.R. Telegraph com- pany.
Calgary	7	36	15	51	02	43	1044	Pier in terminal room of C.P.R. Telegraph com- pany.
Banff	7	42	18	51	10	53	1376	Pier in basement of C.P.R. station.
Field	7	45	59	51	23	42	1239	Pier in basement of Mount Stephen hotel.
Glacier	7	49	58	51	15	44	1248	Pier in furnace room of Glacier house.
Revelstoke	7	52	47	50	59	48	453	Pier in battery room of C.P.R. Telegraph com- pany.
Kamloops	8	01	18	50	40	42	352	Pier in battery room of C.P.R. Telegraph com- pany.
North Bend	8	05	48	49	52	17	152	Pier in basement of Fraser Canyon hotel.
Vancouver	8	12	27	49	16	49	6	Pier in terminal room of C.P.R. Telegraph com- pany.

52191-2

RATING OF CHRONOMETERS

To all the stations, as stated above, clock signals were sent from standard sidereal clocks, time being secured for the eastern work from the St. John meteorological observatory, and for the western work from the Dominion Observatory.

Below follow tables of chronometer comparisons, the deduced daily rates, and the corrections to the periods of the pendulums due to clock rates. An examination of the corrections to the periods of the pendulums due to clock rates will show the absolute necessity of not depending on the chronometers for more than a very few minutes. The rates of the two observing chronometers, Bond 519 and Dent 48419, were constantly changing with changes of temperature and from other causes. Both of these chronometers, the best procurable, occasionally changed their daily rates as much as two seconds in a couple of hours. The rate of the observing chronometers is one of the most important considerations in pendulum observations, hence the necessity of making the time of observing coincidences coincide nearly with the time of clock comparisons. The standard clocks both at St. John and Ottawa have very constant rates, and the errors from these sources are nearly zero.

An ormania and a second				Сол	MPAR RONG	ison Met	OF			Rela- tive	DARLY	Rates	Correct 7th pl. per	TIONS TO ACE OF LOD
Station	Date			Bond		1	Rie	fler		rate B to R	Riefler	Bond	Riefler	Bond
The most section in the section	1915	14	h.	m.	8.	h.	m	h. 1	8.	312106	le an dy itali		1.19722.8	e maned El se -
	high last			19:00	6	1		4.4		1. 195 6			a second	
Ottawa	April	7	4	08	00	4	07	58.	16	-1.673	-0.140	-1.813	-8	-105
	66	7	10	44	00	10	43	57.	70		The sea	11.1	a data ini	
Sugar has a to the total	10 8 90					125				-2-128	-0.140	-2.268	-8	-132
	"	7	18	17	00	18	16	57 .	03	-2.108	-0.140	-2.248	-8	-130
	66	8	3	46	00	3	45	56.	22	-# 100	0 110			
										-1.690	-0-140	-1.830	-8	-106
	66	8	11	09	00	11	08	55	68					
	4	0	10		00		10		00	-1.559	-0.140	-1.699	-8	- 99
		8	18	14	00	18	13	55.	22	-1.899	-0.140	-2.039	-8	-118
	66	9	3	35	00	3	34	54	48	10 1 1	1. N.			her with
			110-		1.					-1.865	-0.140	-2.005	-8	-116
	66	9	10	32	00	10	31	53	94	1 000	0.110	0.000	0	100
	1						~~~		~	-1.928	-0.140	-2.068	-8	-120
		9	18	23	00	18	22	53	31	-2.223	-0.140	-2.363	-8	-137
1	66	10	4	06	00	4	05	52.	41		1	-		N.L. 19

363

Station	Det	10		СоСн	MPAF	RISON OF OMETERS	Rela- tive	DAILY	Rates	Correct 7th pl. peri	IONS TO ACE OF IOD
	Da	UC		Bond	ł	Riefler	rate B to R	Riefler	Bond	Riefler	Bond
alida atang binasa 11408 kemuta binasa	191	.5	h.	m.	8.	h. m. s.	de briggt artista	udhi ta Qili tara	d.A.A.	Zanie Die l	alageri Sadare
Ottawa	April	19	17	00	00	17 00 14.77	-2.513	-0.140	-2.653	-8	-154
	"	19	0	27	00	0 27 13.99	-2.532	-0.140	-2.672	-8	-155
	46	20	.8	59	00	8 59 13.09	-1.976	0.140	-2.116	-8	-123
	"	20	16	09	00	16 09 12.50	-2.090	-0.140	-2.230	-8	-129
		20	23	23	00	23 23 11.87	-2.179	-0.140	-2.319	-8	-135
	66	21	15	44	00	15 44 10.51	-1.758	-0.140	-1.898	-8	-110
	66	21	23	36	00	23 36 9.92	-1.800	-0.140	-1.940	-8	-113
in construction hit	"	22	8	51	00	8 51 9.07	-2.206	-0.140	-2.346	-8	-138
	**	22	16	24	00	16 24 8.47	1.906	-0-140	-2.046	-8	-119

CHRONOMETER COMPARISONS AND DEDUCED CORRECTIONS TO PENDULUM PERIOD-Con.

. REDUCTION OF OBSERVATIONS

The formulae and methods of reduction of the observations are given in the *Publications of the Dominion Observatory*, Vol. II, No. 10, and will not be repeated here.

VARIATION IN LENGTHS OF PENDULUMS

During the season of 1914 the pendulums changed their lengths at least three times. Fortunately, it was possible to secure frequent observations at Ottawa, the base point, and so from the periods obtained at the different stations, a reliable gravity result was secured. Also, during 1914, only pendulums Nos. 1 and 3 were used, some accident rendering No. 2 useless. The changes in the periods of the pendulums always showed themselves after a trip where there was frequent handling of the boxes. This led to the conclusion that better packing boxes might greatly lessen the trouble. During the winter new and more substantial boxes were made, the small box holding the pendulums was placed in a large box fitted with three-inch hair pads. This made a splendid carrying case, and as a result there has been very little trouble during the past summer. Pendulum No. 2 has been repaired by grinding out a small portion of the head, and the complete set has been used all the past season.

The pendulums were standardized at the Dominion Observatory in April, and after observing at all the stations in eastern Canada it was found that the differences of the periods of the pendulums agreed with the differences obtained at Ottawa. Observations were again made at Ottawa in July, and it was found that there were slight changes in the periods from those obtained in April. Pendulum No. 1 had changed its period from 0.5013225 second to 0.5013240 second, and pendulum No. 2 from 0.5014422 second to 0.5014408 second, while pendulum No. 3 remained constant at 0.5014109 second. The outfit was then taken to Kenora, and here another change was detected. Special precautions were then taken in handling the pendulums for the rest of the summer, and there were no further changes. On restandardizing at Ottawa in September, the periods of the three pendulums Nos. 1, 2 and 3 were 0.5013244 second, 0.5014431 second and 0.5014102 second respectively. These changes although small are very troublesome to good work, and if they had occurred in the middle of a trip would have necessitated the repetition of a part of the work.

The pendulum apparatus of the United States Coast and Geodetic Survey gave considerable trouble due to changing lengths of the pendulum. A careful examination of the pendulums failed to reveal any faults in construction, but on account of the trouble appearing frequently, the experiment was tried of putting a rivet through the bob of the pendulum and the stem. This seems to have removed the trouble, and there have been no further changes. Mr. Bowie, chief of the Department of Geodesy of the Coast and Geodetic Survey, recently informed the writer that it was the intention to treat all their pendulums in the same manner, and certainly some steps must be taken to provide pendulums of constant length, if satisfactory results are to be obtained. The three Ottawa pendulums have now each had the bob and stem rigidly connected by means of a rivet.

DEDUCTION OF ABSOLUTE GRAVITY

The ratio of gravity at two places is readily obtained from the fundamental formula of the simple pendulum, $P = 2\pi \sqrt{\frac{l}{g}}$, where P is the period; and l the length of the corresponding pendulum, and g is the force of gravity. There is then obtained the relation $P^{i}: P_{o}^{i} = g_{o}: g$, or $g_{o} = \frac{P^{i}}{P_{o}^{i}}g$, where P and g are the period and gravity at the base point, and P_{o} is the period at the field station.

The gravity at Ottawa as determined from Washington in 1914 is 980.615 dynes, and all our field stations are based on this value for Ottawa. In deducing

the gravity for the field stations, two different sets of values for the periods of the pendulums at Ottawa were used. The changes in the periods of the pendulums have already been discussed. For the stations, St. John, Moncton, Charlottetown, Sydney, Truro, Halifax, Yarmouth, Woodstock, Edmundston, Bathurst and Percé the periods obtained at Ottawa in April were used; and for the stations. Kenora, Winnipeg, Brandon, Moosejaw, Medicine Hat, Calgary, Banff, Field, Glacier, Revelstoke, Kamloops, North Bend and Vancouver the values obtained in September were used. The periods of the pendulums obtained in Ottawa in July were discarded entirely, as there were changes in the lengths of the pendulums between Percé and Ottawa, and also between Ottawa and Kenora.

In the following table are given the periods of the three pendulums for the different stations, and the deduced value of gravity in dynes.

Station	OF I	Periods Pendulums Seconds	IN	Value of g in dynes				
3-1 Prove to hadron as	1	2 .	3	1	2	3	Mean	
With the the A constrainty of	(decepter)	61.00		ALS SA	195	and the		
Ottawa	·5013226	· 5014422	·5014109				980.615	
St. John	·5013108	·5014306	·5013997	980.660	980.660	980.659	980.660	
Moncton	·5012945	·5014140	·5013830	980.725	980.725	980.724	980.725	
Charlottetown	·5012930	·5014125	·5013814	980.730	980·731	980·730	980.730	
Sydney	·5012938	·5014130	·5013818	980.727	980.729	980-729	980.728	
Truro	$\cdot 5013112$	$\cdot 5014309$	$\cdot 5013997$	980.659	980 · 659	980.659	980·659	
Halifax	·5013339	·5014531	$\cdot 5014221$	980·570	$980 \cdot 575$	980·571	980.571	
Yarmoutk	·5013418	$\cdot 5014610$	$\cdot 5014300$	980.540	980·541	$980 \cdot 540$	980·540	
Woodstock	$\cdot 5013018$	$\cdot 5014212$	$\cdot 5013901$	980·696	980.697	980 · 696	980.696	
Edmundston+	$\cdot 5012825$	·5014023	· 5013713	980.772	980.771	980.771	980.771	
Bathurst	·5012667	·5013863	$\cdot 5013553$	980·834	980.834	980.832	980.833	
Percé	$\cdot 5012378$	·5013572	$\cdot 5013265$	980.946	$980 \cdot 948$	$980 \cdot 946$	980.947	
Kenora	·5012331	$\cdot 5013522$	$\cdot 5013195$	980 · 972	$980 \cdot 971$	980.971	980·971	
Winnipeg	$\cdot 5012293$	$\cdot 5013479$	$\cdot 5013151$	$980 \cdot 987$	980.987	980.987	980·987	
Brandon	$\cdot 5012381$	$\cdot 5013568$	$\cdot 5013239$	980 • 952	980.953	$980 \cdot 953$	980·953	
Moosejaw	$\cdot 5012409$	$\cdot 5013603$	$\cdot 5013276$	980.942	980.939	980.938	980·940	
Medicine Hat	$\cdot 5012606$	·5013795	$\cdot 5013465$	980-865	980.864	980 · 865	980.865	
Calgary	$\cdot 5012725$	·5013906	·5013579	980.819	980.820	980.820	980.820	
Banff	$\cdot 5012900$	·5014089	$\cdot 5013758$	980.750	980.749	980.750	980.750	
Field	·5012911	·5014100	$\cdot 5013775$	980.745	980.745	980.744	980.745	
Glacier	$\cdot 5012928$	·5014117	$\cdot 5013788$	980.739	980.738	980.738	980.738	
Revelstoke	$\cdot 5012515$	·5013705	$\cdot 5013377$	980.900	980.900	980.899	980.900	
Kamloops	· 5012407	·5013590	·5013264	980.943	980.944	980.944	980.944	
North Bend	·5012551	· 5013740	·5013412	980.886	980.886	980.885	980.886	
Vancouver	·5012398	·5013584	$\cdot 5013254$	980.946	980.946	980.947	980.946	
Ottawa	·5013244	.5014431	·5014102				980.615	

365

PUBLICATIONS OF THE DOMINION OBSERVATORY

COMPUTATION OF THE INTENSITY OF GRAVITY AT ANY SELECTED STATION

To compute the intensity of gravity at any point on the earth, account must be taken of the altitude of the point, of the effect of the attraction of all the topography upon the earth upon a unit mass at the point, and of the isostatic compensation of that topography.

This problem has been very fully and ably dealt with in Hayford and Bowie's publication^{*}, "The Effect of Topography and Isostatic Compensation upon the Intensity of Gravity"; and the method there set forth has been followed in the reduction of the Canadian observations.

There are two other methods of reducing the value of the force of gravity from sea-level to the observing station. These are known as the "free-air" method and Bouguer's method. As stated in the Publications of the Dominion Observatory, Vol. II, No. 10, the free-air method takes account only of the elevation above sea-level. The station is considered as if it were suspended in the air at a height equal to the elevation. In Bouguer's method $dg = -\frac{2g^{H}}{r}(1-\frac{3\delta}{4\lambda})$, on the supposition that the station is situated on an indefinitely extended plain. Here dg is the correction to computed gravity g, at sea-level, H is the elevation above sea-level, r is the radius of the earth, δ is the density of the matter lying above sea-level and Δ is the mean density of the earth. The Bouguer method takes no account of the isostatic compensation and neglects all curvature of the sea-level surface, the topography being treated as if it were on a plain of indefinite extent. The results from applying these two methods seem to lead to the conclusion that general continental elevations are compensated for by a deficiency of density in the matter below sea-level, but that local topographical irregularities, whether elevations or depressions, are not compensated for, such irregularities being maintained by the partial rigidity of the earth's crust.

A comparison of the anomalies from the three methods of reduction will be given in the table entitled "Table of anomalies from different methods of reduction." A comparison of the anomalies by the new method of Hayford and Bowie, on the one hand, with those by the two older methods on the other hand will show the merits of the Hayford and Bowie method in comparison with the Bouguer and free-air methods.

The means of the anomalies with regard to sign from the new method, the Bouguer and the free-air method are respectively -0.001, -0.042 and -0.011

^{*}Special Publication No. 10, Coast and Geodetic Survey, Washington.

dynes; and the means without regard to sign are 0.012, 0.049 and 0.026 dynes respectively, thus showing that as far as our Canadian work is concerned the new method is vastly superior to the other two methods.

			1			Corr	ECTIONS			
12 2 1	Station	Longitude	Latitude	Altitude	Com- puted g at sea-level	Altitude	Topography and Isostatic Compen- sation	Com- puted Gravity	Ob- served Gravity	Anomaly 0-C
		h. m. s.	0 / 1	metres	dynes	dynes	dynes	dynes	dynes	dynes
1	. Ottawa	5 02 52	45 23 39	83	980.651	026	.000	980.625	980-615	
2	. Maniwaki	5 03 55	46 22 28	169	980.740	052		980-687	980.685	002
3	Kingston	5 05 55	44 14 37	79	980.547	024	·008	980·531	980.527	004
4	Roberval	4 48 54	48 30 54	107	980-933	033	015	980.885	980-865	020
5	Tadoussac	4 38 52	48 08 25	12	,980·900	004	004	980-892	980-901	·009
6	. Portneuf	4 47 35	46 42 32	59	980.770	018	·005	980.757	980.760	·003
7	St. Jérôme	4 56 00	45 46 34	107	980-686	- • 033	.006	980.659	980-678	·019
8	Ste. Anne-de-Bellevue	4 55 46	45 24 27	34	980-653	010	·003	980-646	980 · 660	.014
9	Mattawa	5 14 49	46 18 43	170	980.734	052	013	980.669	980-647	022
10	Liskeard	5 18 41	47 30 34	194	980·843	060	004	980.779	980-785	·006
11	Cochrane	5 24 05	49 03 44	277	980 - 983	085	004	980.894	980-880	014
12	. Sault Ste. Marie	5 37 18	46 30 26	186	980-752	057	005	980-690	980.677	013
13	. Chapleau	5 33 37	47 50 27	430	980·872	133	.012	980.751	980.763	.012
14	Port Arthur	5 56 52	48 26 00	189	980-926	058	014	980.854	980-817	037
15	. Rose Point	5 20 10	45 19 02	183	980-644	→ • 056	·001	980 . 589	980.603	.014
16	. Whitby	5 15 46	43 52 43	84	980·514	026	004	980.484	980.458	026
17	. Woodstock (Ont.)	5 23 08	43 08 33	299	980·448	093	002	980.353	980.349	004
18	. Windsor,	5 32 10	42 19 16	178	980·373	055	·000	980·318	980.338	·020
19	. St. John	4 24 20	45 16 03	33	980.640	010	·016	980.646	980-660	.014
20	. Moncton	4 19 09	46 05 04	14	980.713	004	·014	980.723	980.725	.002
21	. Charlottetown	4 12 30	46 13 55	8	980.727	002	·013	980.738	980.730	008
22	. Sydney	4 00 47	46 08 21	12	980·719	004	·014	980.729	980.728	001
23	. Truro	4 13 06	45 21 40	18	980.649	006	·014	980.657	980.659	·002
24	. Halifax	4 14 15	44 40 47	9	980-587	003	·008	980.592	980.571	021
25	. Yarmouth	4 24 29	43 50 07	9	980.510	003	·014	980.521	980.540	·019
26	. Woodstock (N.B.)	4 30 18	46 09 02	56	980.720	017	·008	980.711	980-696	015
27	. Edmundston	4 33 18	47 22 11	148	980.830	046	010	980.774	980.771	003
28	. Bathurst	4 22 36	47 37 10	5	980.853	002	·000	980.851	980.833	018
29	. Percé	4 16 51	48 31 33	6	980.935	002	002	980.931	980.947	·016
30	. Kenora	6 18 00	49 46 00	330	981.046	102	·018	980-962	980.971	·009
31	. Winnipeg	6 28 5 2	49 54 23	231	981.057	071	.002	980.988	980.987	001
32	Brandon	6 39 47	:9 50 54	366	981.053		002	980.938	980.953	-015

PRINCIPAL FACTS FOR GRAVITY STATIONS OBSERVED IN 1914 AND 1915

				17.				Sec. 14	CORE	ECTIONS		hada	115. 50-20
Station .	Lon	gitı	ude	La	titu	ıde	Altitude	Com- puted g at sea-level	Altitude	Topography and Isostatic Compen- sation	Com- puted Gravity	Ob- served Gravity	Anomaly O-C
	h.	m.	8.	0	,		metres	dynes	dynes	dynes	dynes	dynes	dynes
33. Moosejaw	7	02	07	50	23	26	541	981·101	167	.003	980-937	980.940	•003
34. Medicine Hat	7	22	40	50	02	25	664	981.070		002	980·863	980-865	•002
35. Calgary	7	36	15	51	02	43	1044	981.160		022	980-816	980-820	.004
36. Banff	7	42	18	51	10	53	1376	981 • 172	425	012	980.735	980-750	·015
37. Field	7	45	59	51	23	42	1239	981·190	382	060	980.748	980.745	003
38. Glacier	7	49	58	51	15	44	1248	981 • 179	385	066	980.729	980·738	.010
39. Revelstoke	7	52	47	50	59	48	453	981.155		080	980·935	980.900	
40. Kamloops	8	01	18	50	40	42	352	981 · 127	109	073	980.945	980-944	001
41. North Bend	8	05	48	49	52	17	152	981.055	047	122	980.886	980.886	· 000
42. Vancouver	8	12	27	49	16	49	6	981.002	002	046	980.954	980.946	

ter in the second rate of the second se

AND THE REAL PROPERTY OF THE CASE

PRINCIPAL FACTS FOR GRAVITY STATIONS OBSERVED IN 1914 AND 1915-Concluded

CP A	V	77	v
OILU	y.	Τ1	

			1
In reado (transfer out think step in a fer			
tore sive entrophic relativional, information		ANOMALY	
Station			1.4
to a state to supply to the world valid	Hayford and Bowie's new method	Bouguer method	Free-air method
berrythone with this of the Lands St	(Gilling of)	ALT DESIGNA	Ret Para
ttawa	010	020	010
aniwaki	002	022	003
ingston	004	005	·004
oberval	020	047	035
adoussac	·009	·003	·005
ortneuf	.003	·001	·008
. Jérôme	.019	·013	· ·025
e. Anne-de-Bellevue	·014	·013	·017
attawa	022	054	035
skeard	·006	021	·002
ochrane	014	050	018
ult Ste. Marie	013	039	018
hapleau	.012	026	·024
ort Arthur	037	073	051
ose Point	.014	006	·015
hitby	026	040	030
oodstock (Ont.).	004	039	006
indsor	.020-	001	·020
John	.014	.026	.030
oneton	.002	.015	.016
herlottetown		.005	.005
rdnev	001	.011	.013
runoy	.002	.013	.016
alifay	021	014	013
amouth	.019	.032	.033
and tools (N B)	015	013	007
downdstop	003	030	012
athumat		010	
athurst		019	
erce	010	011	.027
enora	-009	025	.001
innipeg		020	.013
randon	-013		-015
loosejaw	.005	077	.000
leatene nat	.002	077	-000
augary	015	- 156	
8/11/	.013		.062
1e10		- 200	
analataka	.010	- 169	
evelstoke	030		
authous and	.000		199
ancouver	008	055	054
with regard to sign	001	042	011
	.012	.040	.026

TABLE OF ANOMALIES FROM DIFFERENT METHODS OF REDUCTION

52191-2

the state of the s

Street All I while the back is hills

a company alents

Canada has now a line of gravity stations right across the continent covering more longitude than is covered by any other series of stations on the American continent. These in conjunction with the gravity observations taken in other parts of the world will give valuable additional information for the determination of the figure of the earth, and in a few years, if the gravity observations are continued, Canada will be able to supply to the world valuable scientific knowledge concerning the earth. Mr. Wm. Bowie, Chief of the Department of Geodesy of the United States Coast and Geodetic Survey, is at present combining the Canadian observations with those of the United States in his new publication on the "Figure of the Earth."

Dominion Observatory Ottawa April, 1916.

211

Seattle ...

alar P

370