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Gravimetric Deflections of the Vertical by Digital Computer
DEzso Nagy '

ApstracT—A digital computer program has been developed to calculate plumb-line deflections from gravity data.
A region of 1,200 X 1,200 km for which free air anomalies were available was subdivided into units of 50 X 50 km.
With n denoting the number of points per unit, each unit was represented by one gravity anomaly calculated as an
average in cases where 0 £ n < 6 and where n > 50. For 6 n £ 50 the integral mean, obtained from a fitted sur-
face of second order in two variables, was used.

Weighting functions were derived for and calculations were done in the rectangular plane coordinate system. For
units with sufficient points for surface fitting, the contributions to the deflection components at the centre of the unit
from within the unit itself were computed first, and then the effect of the outer region was added. The contributions
from the outer region were obtained as the sum of the products of gravity anomalies and weighting coefficients over all
units. The computations were repeated with three different origins in order to analyse the effect of the change in the
number of points and the point distribution within the 50 X 50 km units. This analysie shows that non-uniform point
distribution may seriously distort the fitted surface, giving erroneous values for the horizontal gradients and hence
for the contribution to the deflection components at the centre from within the unit element.

The program solves for the gravimetric deflections relative to the origin. To make the two sets of deflections
comparable it was necessary to transform the astro-geodetic deflections from Clarke’s spheroid to the International
Ellipsoid and add a constant term to all gravimetric deflections. This constant term, representing the effect from
beyond the region of integration, is the difference between the astro-geodetic and gravimetric deflections at the origin.
A visual comparison of the plotted deflections shows generally good agreement both in direction and in magnitude,
indicating that the choice of weighting funection, grid distance, and order of fitted surface was suitable. The accuracy
of the astro-geodetic and gravimetric deflections is estimated at + 1 and + 2 seconds of arc respectively.

REsumME—On a mis au point un programme pour caleulatrice numérique afin de calculer les déviations du fil & plomb 4
V’aide de données gravimétriques. Une région de 1,200 km sur 1,200 pour laquelle on connaissait les anomalies & Vair
libre a été divisée en unités de 50 km sur 50. La lettre “n” désignant le nombre de points par unité, chaque unité
été représentée par une anomalie de la gravité prise comme moyenne dans les cas ot 0§ n < 6 et n > 50. Dans le
cas de 6 £ n £ 50, on a utilisé la moyenne intégrale calculée & partir d’une surface agencée de second ordre 3 deux
variables.

On a dérivé les fonctions de pondération et procédé a des calculs dans le systéme de coordonnées rectangulaires
planes. Dans le cas des unités qui comportent suffisamment de points pour ’agencement en surface, on a tout d’abord
calculé les contributions aux composantes de déviation au centre de Vunité 3 partir de données propres & 'unité
elle-méme, puis on a ajouté l'effet de la région extérieure. Les contributions de la région extérieure ont été obtenues
comme la somme des produits des anomalies de la gravité et des coefficients de pondération pour toutes les unités. Les
calculs ont été repris & partir de trois origines différentes afin d’analyser I’effet du changement dans le nombre de points
et de la répartition des points dans les unités de 50 km sur 50. L’analyse en question démontre que la répartition non
uniforme des points peut entrainer une distortion sérieuse de la surface agencée, indiquant des valeurs erronées pour
les gradients horizontaux et, partant, pour la contribution aux composantes de déviation au centre qui peut étre
attribuable & I'élément unitaire lui-méme.

Le programme en question vaut pour les déviations gravimétriques relativement & Vorigine. Afin de pouvoir
comparer les deux séries de déviation, il a fallu transformer les déviations astro-géodésiques de la sphéroide de Clarke
en celles de ’Ellipsoide international, puis ajouter un terme constant 3 toutes les déviations gravimétriques. La con-
stante en question, qui représente l'effet de la région en dehors des limites de l'intégration, constitue la différence
entre les déviations astro-géodésiques et gravimétriques a Vorigine. Une comparaison visuelle des déviations tracées
montre qu’il y a d’ordinaire un agencement relativement précis tant pour la direction que pour I'intensité, ce qui
indique que le choix de la fonction de pondération, de la distance de quadrillage et de la disposition de la surface
agencée était convenable. La précision des déviations astro-géodésiques et gravimétriques a été respectivement évaluée
4 + 1et + 2secondes d’arc.



6 PUBLICATIONS OF THE DOMINION OBSERVATORY

PART 1

Introduction

The fundamental problem of geodesy is to determine the size and shape of the earth. By the size, one usually means
the size of a reference surface, which is given by a closed mathematical form and best fits the observations. (By ‘best’
the least-squares fit is meant, i.e. when the sum of the squares of the deviations is minimized). The reference surface
which is accepted for world-wide use might be called the mathematical surface of the earth. To determine the shape, it
is necessary to find the deviations between the reference surface and the actual physical surface. The calculations are
carried out on the mathematical surface, the measurements are made on the physical surface, but these measurements
refer to the local niveau (level) surface, which is perpendicular to the gravity. The particular niveau surface, whiqh
passes through the mean sea level is called the geoid. The reference surface was chosen to approximate the geoid. It is
an ellipsoid of revolution, the parameters of which have been determined by Hayford (1910) and for reference, they

are given below:

a = 6 378 388 + 18 metres
(1)
a—b 1
e @ 29T+ 5

where a is the equatorial radius of the earth, and
a is the flattening.

These parameters were determined from 765 astronomic observations in the United States using isostatic reductions,
with the depth of compensation of 122.2 km and were accepted as the parameters of the International Ellipsoid by
the Madrid Assembly of the International Union of Geodesy and Geophysics (Bulletin Géodesique 1924, No. 4, p. 258).
This reference surface satisfies the present-day requirements for all geodetic work.

For gravimetric work the International Gravity Formula is used which gives the value of the theoretical (normal)
gravity on the surface of the international ellipsoid. By definition, this surface encloses the total mass of the earth, its
centre of gravity and rotational axis coincide with that of the earth, and its density distribution is such that the inter-
national ellipsoid is an equipotential surface for all practical purposes. The formula is given below:

v = 978.049 (1 4 .005 2884 sin® ¢ — .000 0059 sin? 2 ¢) 2)

where 7 is in gals, and
¢ is the latitude.

T[]}& éoeﬂicients in the formula were calculated by Cassinis (1930) and adopted by the Stockholm Assembly of the
I in 1930.

According to recent determinations of the corrections to a and « it can be said that the first part of the problem is
solved, i.e. the size of the mathematical surface of the earth has been determined. The remaining part of the problem
is to find the shape of the physical surface of the earth with reference to the international ellipsoid. This problem is one
of height determination: the determination of the height H from the reference surface to point P on the physical sur-
face, measured along a well-defined line. Choosing this line as the direction of normal gravity (normal plumb-line),
then the problem can be stated as follows: find H measured along the normal plumb-line of point P. In Figure 1 the
relative positions of the above mentioned surfaces are shown.

/h[H\ physical surface
— N
/N reference surface

geoid

Figure 1

From Figure 1 can be written:
H=h+ N 3)

where H is the height of point P, measured along the normal plumb-line,
h_is the elevation of point P, known from spirit levelling and referring to the mean sea level (geoid),
N is the geoidal height i.e. the separation between the geoid and the reference surface. (It is of the order
of + 50 metres.)
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Since in (3), A is available from levelling, the problem of finding the shape of the earth is reduced to finding N for every
point of the physical surface.
As is well known, N can be calculated by Stokes’ formula:

where B is the mean radius of the earth
G  is the mean gravity
S(Y) is Stokes’ function
Ag is the gravity anomaly which corresponds to the surface element
do is the surface element of the unit sphere.

At present this is the only method which can furnish the value of N with sufficient accuracy. The relative value, i.e.
the difference between the geoidal heights of two points (N1 — N,) not far from each other, can be calculated from
plumb-line deflections. From the differences the geoidal heights can be obtained if, at least for one point, N is known.

A variety of methods can be developed to solve the problem. Before deciding what method to use it is necessary to
consider such points as: available material; the rate of incoming material per year; the economy and flexibility of secur-
ing new material; ete.

There are only a few hundred astro-geodetic deflections available for Canada, and the rate of incoming information
is only a few tens per year. Since deflection determinations are tied to the triangulation net, it is only possible to obtain
deflection values at points of the net. On the average, it takes about one week of additional field work per station in
order to be able to calculate the deflection value.

As for gravity data, there are about 35,000 points where gravity is known and most of them are on punched cards.
The yearly increase is about 4,000 to 5,000 new points, usually processed on punched cards within about 6 months from
the time of the measurement. The distribution of points can be made to meet the demand.

It was therefore decided to base this study on the gravimetric method for the solution of the problem and to utilize
the astro-geodetic deflections, after the proper transformation, for the control of calculation.

To solve the problem, i.e. to calculate N, the work involves numerical integration. The accepted method is to use
templates: radial lines divide concentric circles into compartments. The radii of circles are such that for each com-
partment the same factor is used by which the estimated gravity anomaly for the compartment has to be multiplied,
and the sum of these products gives the solution. The points where gravity anomalies are known must be plotted on a
map of suitable scale and projection, and then the anomaly map prepared by the usual contouring technique. The main
disadvantage of this method is that the estimated mean values of gravity anomalies can be used only once. For another
computational point new estimates must be obtained.

In order to avoid this disadvantage the calculation was ‘‘digitized”’, and a grid system of 50-km grid-distance was
introduced, which divides the local area for which the calculation was being carried out into ‘“unit’” areas. To each unit
area, if the number of points was sufficient, a low-order surface was fitted by the method of least squares. Then the
gravity anomaly which represents the unit area was estimated from the fitted surface. These estimated values can be
used again if the computational point moves parallel to the grid lines by the grid distance or a multiple of it. For each
unit area there is a corresponding ‘‘weighting”’ coefficient which is multiplied by the estimated gravity anomaly, and the
sum of these products over all unit areas gives the solution. The number of computational points is equal to the number
of unit areas. The calculation is adapted for a digital computer (IBM 650, index registers, floating point device, 60-word
core memory, 3 tape units). The input is on the format of the Gravity Division, Dominion Observatory, Ottawa.

It is well known that the weighting function is inversely proportional to the distance if N is to be calculated, and
inversely proportional to the square of the distance if it is desired to determine deflection values. In other words, N
depends on the regional gravity field, while the principal part of the plumb-line deflection can be obtained from a local
survey. Besides some other advantages, this was the main reason why it was proposed to solve the problem “indirectly”’,
that is, first the plumb-line deflections are calculated, then, by numerical integration, the geoidal height or height
anomaly map is prepared.

It is emphasized here that the object of this study was to find a procedure for the calculation of the deflection of the
vertical only, and adapt that for a digital computer. The selection of the parameters, such as the grid distance, the order
of fitted surface, etc., was quite arbitrary, and was based on general practice rather than mathematical grounds. To
demoxcllstrate the validity of the assumptions made during the development of the procedure, sample calculations were
carried out.

Historical Development

In this section some of the important studies consulted in connection with the problem are briefly discussed. This
selection, which makes no claim to completeness, includes authors whose approach to the problem seems most per-
tinent in the opinion of the writer. .

Clairaut (1743), starting from the theory of a rotating fluid in relative equilibrium with uniform angular velocity
and assuming that this rotating body is built up from concentric and coaxial shells whose density may vary from shell

annnf o o1
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to shell in any manner, found that the gravity—on an equipotential surface of a rotational ellipsoid which encloses all
the attracting mass—can be given approximately by the formula

Y =7v.(1 + Bsin? ¢) %)

This equation is known as Clairaut’s formula. Substituting ¢ = 0, it is seen that . is the gravity at the equator. The
coefficient 3 is related to the flattening a by the equation:

a=-g—m— (6)

This is well known as Clairaut’s theorem, accurate to the first order of the flattening. In this equation

m = w'a i.e. the ratio of the centrifugal force to the gravity at the equator,

B Y p =Y
B e

where 7, is the gravity at the pole.

The coefficient 3 might be called the “gravitational” flattening.

About one hundred years later Stokes (1849a) showed that the assumptions made by Clairaut for the derivation of
the variation of gravity on an equipotential surface are not necessary: if it is merely assumed that the surface of the
earth is a surface of equilibrium, then, using only the theory of gravitation ‘“‘there exists a necessary connexion between
the form of the surface* and the variation of gravity* along it, so that the one being given the other follows’”. When the
surface is an ellipsoid of revolution of small eccentricity, then the variation of gravity on the surface is given (approxi-
mately) by Clairaut’s formula.

In another paper Stokes (1849b) actually “inverted’” Clairaut’s formula: from the variation of grayity on an unknown
surface of equilibrium he obtained a closed expression which enables one to determine the surface. The method is
independent of the density distribution of the earth, it requires only gravity anomalies on the mean sea-level surface
and assumes a sphere as reference surface. The method can be applied when the surface is nearly spherical. Stokes’
function is given below:

S(Y) =cosec}y+1—6sin}y — 5cosy @
—~ 3cosyln (sin iy + sin? i ¢)

To avoid ambiguity in connection with the figure of the earth Listing (1873) suggested the name of geoidf for that
particular niveau (level) surface which passes through the mean sea-level. This surface is understood to be the figure
of the earth, the determination of which is the main objective of geodesy.

Bruns (1878) derived a relation for the distance between two equipotential surfaces of the same mass with different
density distribution. The name Bruns’ term is associated with this approximation and because of its important role in
the problem it is discussed in some detail.

Let W be the potential of the actual earth, and U that of an idealized earth (say, of the reference ellipsoid) ; then the
disturbing potential T, at any point, is defined as:

T=W-U @)

Fué'thenﬁ)ore if 7y is the theoretical gravity corresponding to U, g is the actual gravity and ¢ is the angle between y
and g, then:

QUOW |, QUIW , U oW

TV S Ty T e e %

which gives ¢, i.e. the plumb-line deflection.

To get Bruns’ term, let point P (given by its coordinates z, y and z) be a point of the surface W = U, Q another
point (along the normal at P) of the surface U = U, (W and U are equipotential surfaces corresponding to the same
mass with different density distributions) and & the distance between the two points P and Q. Then the coordinates of
Qarex + Az, y + Ay and z + Az

‘*Emphasized by the writer.
.}.“Wir werden die vorhin definirte mathematische Oberfliche der Erde, von welcher die Oberfliche des Oceans einen Theil bildet, die
‘geoidische’ Fliche der Erde oder das Geoid nennen, . . .. "
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WhereAx=hcosa=-——’-La—I£
g 0z

Low

Ay =hecos 8 = — — —

Yy B e

h oW
Az—hcos'y_—--!;?’z_

The potential U at P is given as:

h(auaw AU oW gggz)
g

e 1 bl (el et e oo b Pl
But the potential at P from (8) is:
UP-—‘—WP—T}::Uo—Tp

and equating the right hand side of the last two equations the following form is obtained for any point P on the physical
surface

h [ U aW Y oU oW aUu aw
g dr dz dy dy dz Oz

The term in brackets from (9) is equal to g cos € and after substitution we get for the disturbing potential
T =hycose

Since the value of € is small (less than a minute of arc) we can write

T
R 10
= (10)
which is known as Bruns’ ferm.
Bruns also obtained the differential equation of physical geodesy and gives it in the following form:
ar 2
Ty 52 11
= S o Y (11)
where v’ = v + h 99 and
ok

a is the radius of the sphere representing the earth.

All the formulae and theorems just mentioned were treated by Helmert (1884) and in some cases were extended to
give higher order accuracy (for example Clairaut’s formula was derived including the terms which involve the square
of the flattening.) Helmert also introduced the use of a surface coating. His treatment of the problem was, in every
respect, definitely the most complete in his time.

Since, for the calculation of geoidal heights, the gravity anomaly on the geoid was required, the problem of the reduc-
tion of the gravity observations had special importance and various ways of reduction were investigated. In the next
three to four decades, scientists in the field of geodesy were mostly concerned with the problem of reduction, and with
criticism and extension of Stokes’ and Clairaut’s formulae.

Poinecaré (1901) has studied the problem of determining the geoid and has paid special attention to finding the local
shape of the geoid. He deduces Stokes’ solution from his own investigations without referring to Stokes (in the text,
reference was made to Helmert).

Cassinis (1930), basing his work on that of Pizzetti and Somigliana, calculated the coefficients in the ‘“‘extended”
Clairaut’s formula, which was accepted as the international gravity formula (see formula (2)).

Brillouin (1925, 1927) in two short papers obtained an expression for the density, and to avoid the difficulties en-
countered in connection with the reduction of gravity, he proposed that use be made of a reference surface which is
well above the physical surface (100 to 200 km).
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Vening Meinesz (1928) derived the relationship between gravity and the plumb-line deflection. The expression for
the north-south component of the deflection £, has the form:

e a5¥) "
g = o Ag 3y cos a do (12)
where 6;(;#) sin Y = cos? 3y [cosec iy + 12 sin 3¢ — 32 sin? 3¢
3 _12gin?} ( ; - )
+ T Tsnly 12 sin? 3¢ In { sin 3¢ + sin® 3y ]

The component of the deflection in the east-west directions "/, can be obtained from (12) by replacing cos a by sin a.
Vening Meinesz also gives the generalized Stokes’ function. The disturbing potential T outside the geoid at a distance
p is given in terms of gravity anomaly Ag on the geoid, which for purposes of integration is simplified to a sphere of
radius B. Then

© nt+l
_ R 2n+ 1 __R_)
r- £ ,,Z:z(_—_"—l )P,.(cosz?)( v) aea (13)
where E(M—)P (cosﬂ)(—E—)"+l=2 —11+£— —5(£)2cos¢—3£t —
g\ n-1 " P r P p o
1
—3(—?) cosyblnp—R;'o:"-‘_r

This “‘generalized” Stokes’ function reduces to the well known Stokes’ function (see formula (7)) by the substitution
p = R which gives r = 2 R sin $y.

As already mentioned in connection with the calculation of geoidal heights, a number of scientists have considered
the problem of gravity reduction from the measured point to the geoid level. Below are a few of the well known methods
of gravity reduction:

Free air

Bouguer

Helmert condensation

Rudzki inversion

Isostatic based on the hypotheses of:

Pratt-Hayford
Airy-Heiskanen
Vening Meinesz.

In this work only the free air method of reduction is used; for information on other methods refer to Heiskanen (1958).

To summarize, for geodetic work the international ellipsoid was accepted as the reference surface. The connection
between geodetic and gravimetric work was established when the international gravity formula was derived, which
gives the value of gravity on the surface of the international ellipsoid. Stokes’ formula was generalized to give the
distur}f)ingf potgntial outside the geoid, and an expression for the relation between gravity and the plumb-line deflection
was thus found.

Idelson and Malkin (1931) obtained the fundamental formula of Stokes as the solution of a boundary value problem
of potential theory.

Jeffreys (1931) made a very important advance when, starting from Green’s theorem, he derived, in a different way,
Stokes’ formula for the geoidal height and pointed out that the free air gravity anomaly is the appropriate one to use
for the calculation.

Malkin (1933) derived formulae to calculate the gravity anomaly Ag and the geoidal height N from the plumb-line
deflections and gave the expression to determine the curvature of the geoid from gravity anomalies.

Hirvonen (1934) discussed the history of the theory (Stokes, Helmert, Pizetti, Hopfner) and in the second part of his
work he made practical application of Stokes’ formula. He estimated the continental undulation of the geoid and in
agreement with Helmert it was found to be of the order of +50 metres. He introduced a fixed “square” system to carry
out the summation required to obtain the geoidal height. The accuracy of the solution was also estimated.
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From about this time on, mainly two different treatments of the problem can be observed:

(a) Starting from Stokes’ and Vening Meinesz’s formulae, the main problem is to reduce the gravity anomaly to the
geoid. The calculated values, geoidal height and plumb-line deflection, are obtained at geoid level. To compare
astro-geodetic and gravimetric deflections, it is necessary to reduce the former from the physical surface to
geoid level. Heiskanen and his co-workers followed this procedure. For further detail along this line reference is
made to Heiskanen (1958) and to the reports and publications of the Institute of Geodesy, Photogrammetry
and Cartography, Ohio State University, Columbus, Ohio. Of particular interest are two papers:

Tanni (1948) using the available gravity material applied Stokes’ formula to obtain the continental undula-
tion of the geoid. Details of calculations are described and the result is given in the form of geoidal contours.
Rice (1952) calculated the plumb-line deflections for a few selected stations where the astro-geodetic values
were known. From the comparison, errors in the astro-geodetic values were discovered. This shows the high
accuracy of the gravimetrically calculated deflections.

(b) Starting from Jeffreys (1931) a solution of the problem was developed in which only free air anomalies are
required. The values obtained from calculation are at the physical surface, not at geoid level. Since it is intended
to mainly follow this treatment, some details are given about the work of others along this line.

Idelson (1933) put the disturbing potential T in the form of an integral equation, which he solved. The solution is

given in the form of a Neumann-series and the first approximation for T is given as:

el o Tl L4
T—21rf = da_/rda (14)

gI= %4

o is the surface density of the simple layer placed on a sphere.

where v =

Moisseiev (1934) determined the disturbing potential outside and inside the geoid and found the solution of the
integral equation for the sum of the two potentials.

Malkin (1935) assumed the disturbing potential T in the form of surface coating, then he calculated the separation
between two equipotential surfaces of different density distribution (of the same mass) and as a special case Stokes’
solution is discussed. The solution for a triaxial ellipsoid is in the form of a series of Lame functions with variable
coefficients.

Kasansky (1935) considered the practical determination of the deflection from gravimetric data. From Vening Mein-
esz’s formula he obtained an approximate expression for small values of ¥ and applied it to gravity observations for a
region near Moscow.

Tsuboi and Fuchida (1937) initiated a new approach to the problem: assuming that surface densities p(y) responsible
for the gravity values g(z) are placed along a line y parallel to z at depth d (see Figure 2), and furthermore if

P = pacosny
— o2 r cO8 nY
then g(z) = 2k?p,d !m i T
ie. g(z) = 27 k*p, e~ ¢ cos nx

where £? is the gravitational constant.

The general formula for g(z) is in the form
g(z) = 2w k? [Z Aned cos nx + Z B,e"4 sin nx] (15)
Tsuboi (1937) also gives an expression for the deflection of the vertical Af. The n-th term contributes:
Al = — — = — —-——2——e“'"' sin nx (16)
and for the geoidal height h:

2
h=/A0dx=~&r—%—e“"‘cosnx—ho a7)
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ries of papers—Tsuboi and Fuchida (1937, 1938); Tsuboi (1937, 1938, 1939, 1948, 1952, 1954a, 1954b, 1959a,

19§gba,' i%.SSc, 19%9%, 1961a, 1961b); Tsuboi, Kaneko, Miyamura, and Yabasi ( 1939); Tsuboi and Kato (1952) ; Tsuboi,
and Hayatu (1955); Tomoda and Aki (1955); Tsuboi and Tomoda (1958); Tsuboi, Oldham and Waithman (1958);
Shimazu (1962)—the method was extended, applied to practical cases and numerical tables were given to facilitate the
calculations.

Mihal (1939) critized the wrongful interpretation of the free air gravity anomaly and then interpreted it in the
following manner: .

“Normal gravity at point A, lying on the physical surface of the Earth, is equal to:

_ 27
76— R (H+N)

“Consequently, the difference between the gravity of the Earth and normal gravity at point A is determined by the
formula

¢+ X @+ M-

“If we discard correction 27,N/R, we shall obtain Faye’s anomaly, i.e. obtain the difference between the gravity of
the Earth at point A and the normal gravity at a point lying at distance N above or below point 4, according to the
sign of N.”

This is the first correct interpretation of the free air gravity anomaly known to the writer.

X
gix) T
d
p i
)
i Figure 3
Figure 2

Molodensky (1945), in his fundamental work, summarized the results of the study of the figure of the earth and
derived a general solution. From this he obtained Malkin’s and Moisseiev’s solutions as special cases. Starting from
Green’s theorem he obtained an integral equation in a curvilinear coordinate system. The integral equation is a linear
integral equation of Fredholm type of the second kind with inhomogeneous term. The uniqueness of the solution was
also investigated. He considered the joint use of the astro-geodetic and gravimetric data and discussed the error of the
reduction and interpolation of the gravity anomalies.

Molodensky (1948) introduced the quasi-geoid which hardly deviates more than 2 metres from the geoid. The quasi-
geoid height { can be obtained from the disturbing potential T at the physical surface by dividing it through by 7, i.e.:

=T
f_"/

The disturbing potential satisfies the following boundary condition:

S AN, | i e -
-7 (8V Y BV)H

where v is the direction of the normal,
H is the height above the reference surface.
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The left hand side of the above equation is the free air anomaly at the physical surface. The disturbing potential is

assumed to be in the form:
T = / 5 an
r

where ¢ is the surface density and it is obtained by solving the following integral equation:

o R 3 @ 1 ‘p? — po?
27 pcosa = (g 'y)+————2po f : ds + T f o ¢ dS (18)
where p, is the radius vector to the fixed point P,
p is the radius vector to the moving point Q,
r is the distance from P to the point where p intersects the reference sphere.

Molodensky also introduced the orthogonal coordinate system of latitude B*, longitude L*, and height H above the
reference surface measured along the normal plumb-line. If the approximate values of the coordinates of a point on the
physical surface are B, L and H respectively, then the differences

AB =B* - B
AT T2
{ =H*-H

are so small, that the second powers or the products of these quantities can be neglected. Then from the Taylor series
expansion he obtained the following formula for the disturbing potential at any point of the physical surface:

T (B* L*, H*) = W (B* L*, H*) — U (B H*) = v (B, H) { + W, — U (19)

Thus Molodensky obtained a solution to determine the shape of the earth. This solution is free of assumptions and no
reduction problems arise: the free air gravity anomaly at the physical surface must be used and the values obtained from
the calculations belong also to the physical surface and not to the geoid.

Eremeev (1950) applying the method of models compared the solution of Molodensky with that of Stokes and Vening
Meinesz. He concludes that the result of the ecalculation by the Vening Meinesz formula also gives the deflection at the
physical surface and not at the geoid as previously interpreted. He also showed that even the first approximation of
Molodensky’s formula gives a better result than can be obtained from Vening Meinesz’s formula.

In the past few years considerable research has been carried out on this problem and a partial list of the contributors
follows:

Almquist (1959); Arnold (1956a, 1956b, 1959a, 1959b, 1960, 1961); Bjerhammar (1959, 1960a, 1960b, 1960c, 1961);
Bragard (1958); de Graaff-Hunter (1957, 1958) ; Hirvonen (1960); Levallois (1958) ; Molodensky, Eremeev and Yurkina
(1962a, 1962b).

Discussion of Levelling Corrections

Since the result of levelling enters into the calculations it is worthwhile to consider how it is obtained and its relation
to gravity.

As is well known the horizontal axis of the levelling instrument is parallel to the local niveau surface. Therefore, the
measured height differences give the distances between local equipotential surfaces. The sum of these differences from
A to B gives the height difference between the two points. If A is on the geoid then this difference gives the eleva-
tion of point B above mean sea-level. It is clear that the elevation depends on the path of levelling because of the non-
parallelism of equipotential surfaces of the earth. If both A and C are on the geoid and the elevation of point B is to be
determined by spirit levelling starting from both points, then the two results usually differ, (see Figure 3).

If the topography were as indicated by the dotted line (Bo, B,) then the levelling from B, to B would give the ortho-
metric height of B. The orthometric height is defined as the distance ByB measured along the plumb-line in natural units,
say, in metres.

Because of the flattening of equipotential surfaces of the earth, the distance between two equipotential surfaces at the
equator is larger than at the pole. But the work required to move a unit mass from one equipotential surface to another
is the same at both the equator and at the pole. Therefore, if the work is used as the measure of height, no ambiguity
arises; the points which have the same height are on the same equipotential surface. The geopotential value C is defined
as the work required to move a unit mass from the geoid to the point in question. This is independent of the path and
it is the potential difference between the point in question and the geoid. If A and B are two points not on the geoid
then by definition

ANNT7-2_7
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A
B e [ gdh
: (20)
B
(i ot f gdh
0
B
and s Y R, R B [ gdh 1)
A

Therefore the difference in the geopotential values of the two points A and B is also independent of the path.

Another measure of height already mentioned is the orthometric height which is obtained from spirit levelling plus
orthometric correction, the orthometric correction being necessary because of the non-parallelism of equipotential
surfaces. If L and M are two equipotential surfaces (see Figure 4) then taking elementary small distances the work that
is performed in moving from L to M is the same along every path, i.e.

0 Azl = g AZg (22)

Thus neither Az; nor Az; can be used as the orthometric height.

Figure 3 is now used to derive the connection between the orthometric height and the geopotential number. Let 4
be a point on the geoid and B a point on the physical surface. Furthermore let Z be the orthometric height of B, and
G the average gravity along Z. Then the geopotential value of point B is

B
Cars: = [ gdh (23)
0

To obtain C, the measured height differences and the gravity values at the physical surface along the levelling path are
required. g ;

On the other hand the work required to move the unit mass from 4 to B is

B, B -
Was = — j gh — [ gdz (24)
A By :

The first term is zero since A and B, are on the same equipotential surface. Therefore

B

Wi = — [ gdz (25)

To obtain this quantity, g is needed inside of the mass along Z. This work is also equal to

== WAB = ZBG (26)

Therefore Zp = -é— f gdz : @27
Comparison of (23) and (26) gives
s dpilt] " .

As can be séen, only the geopotential number C can be obtained without assumption. To obtain the orthometric
height Z, assumptions must be made. ‘
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It is emphasized that in this work the geopotential value has its natural place because of its relationship to the sur-
face value of gravity. On the other hand since for this study only orthometric heights are available, and because the
difference between the two heights is only of the order of centimetres, & in the remaining part of the study is used to
denote elevation above the geoid in metre units.

9 |AZ) g,/ A2,

Figure 4
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PART 1I

Statement of the Problem
The potential of the earth W is equal to the sum of the normal potential U and the disturbing potential T':

W=U+T (29)

Taking the normal derivative of (29) one formally obtains:

oW _ aU aT

on  dn + dn &)
But by definition %—27 = — gcos (g, n) (31)

i.e. the left hand side of (31) is the measured value of gravity on the physical surface. If » is taken along the direction
of the theoretical gravity 7 then (g, ), i.e. the angle between the actual and theoretical gravity, is of the order of 30”.
Therefore replacing g cos 30" by g, an error of the order of .01 milligal is introduced. Thus

aw
on

=-9 (32)

In the following pages we evaluate equation (30) at a point of the physical surface say at P. The distance k, which is the
elevation of point P above mean sea-level, is measured up from the reference ellipsoid along the normal plumb-line of P.
This value is obtained from levelling. Thus

P p
Bo= — [ gdh = — / gdz (33)
0 Pq

i.e. h is a measure of the work required to move a unit mass from the reference surface to point P’ (see Figure 5).

The distance between P’ and P is Ah and is called the height cor-
rectton by Bjerhammer. This height correction should not be con-
fused with any correction applied to levelling, as it is an entirely
different concept. The height correction is of the same order as
the geoidal height, the difference between the height correction
and the geoidal height being always less than 2 metres. Then if H

P is the distance from P, to P, from Figure 5
Ah H=h+ Ah (34)
P’/ Going back to equation (30) it is necessary to evaluate the term
PHYSICAL SURFACE P, Pz_ R dU/dn at P. From Taylor series expansion one finds:
o P/=
oU _au U =
L & P'P=ah on p— on p..+ ont P.P°P+.” )
REFERENCE ELLIPSOID P, P= In this case P, is on the reference surface and PP = H. The
— o P=H first term of equation (35) is given by the international gravity
Pox\ formula:
au
Figure 5 W [T

where 7 is the direction of the normal to the international ellipsoid.
Therefore (35) takes the form:

U
on

i B, (37)

2 on
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For a local area the normal potential can be approximated as:
M
U= % (38)

where f is the gravitational constant,
M is the total mass of the earth, and
R is the mean radius of the earth.

If n is the normal to the international ellipsoid and R is the radius vector of the point, then the difference between
the geodetic and geocentric latitudes ¢ and ¢ is approximately

o — ¢ =1esin2 ¢

a? — b?

where ¢ = 3
a

This expression reaches the maximum value at ¢ = 45° which, using the parameters of the international ellipsoid is
equal to:

(@ — &) mex. = } 0" & = (.5) (206 265) (.006 722) = 12’

This is the approximation if » is taken along R.

aU oU M
Then —a—n‘-—ﬁ——fﬁz———ﬁ/ (39)
U _, M _ _, 7
and W = 2f R? = 2 R (40)
Substituting (40) into (37) we obtain:
LU R k. YAR
Making use of Bruns’ term given by (10) we have
oU 2 2
= P__7+73—7h+?T+.... (42)

The last term of (30) is d7/dn.
Taking the normal derivative along R and substituting (32) and (42) into (30) we obtain

2 2 oT
ot e o 0 o gl i S (43)

The first two terms on the right hand side give the theoretical gravity at point P’ in Figure 5. The next term gives the
correction (to the theoretical gravity) required because of the unknown distance Ah. Therefore, it can be seen that the
problem can be solved only by successive approximations: first, the term 2 T'/R is neglected, then finding the disturbing
potential T, the normal derivative of which satisfies the given boundary condition, and substituting it into (43) a better
approximation can be obtained. This kind of solution requires a great deal of calculation and handling of large amounts
of data and, because of other larger uncertainties in the calculation due to insufficient knowledge of gravity anomalies,
this procedure has not yet been employed. Equation (43) can be given in the well known form:

2 oT

—Ag = §T+-é—l—e— (44)

where Ag is the free air gravity anomaly at the physical surface.
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Thus the problem to be solved can be stated as follows: find a potential which satisfies the boundary condition specified by
44).
: ’I)‘o solve the problem there are at least two main lines of attack:

(a) to use the result of the theory of integral equations,

(b) to use spherical harmonics.

Some work was done along the first line. The problem was transferred into a linear integral equation of Fredholm
type of the second kind with inhomogenous term. Some approximations were introduced and after defining and using
linear integral operators, a formal solution was obtained. It was shown that this solution is given in terms of the resolvent
but is based on the assumption that the kernel can be replaced by a degenerate one. The decomposition of the spec_lﬁc
kernel of the problem presented such a difficult mathematical problem, that it was necessary to follow the more classical
approach to it. This is dealt with in the next section. .

Calculation of the Deflection

Let U, and W, be two equipotential surfaces and T the potential difference between them. Then Bruns’ term gives
an approximation for the distance between U, and Wi:

Taking the partial derivative of Ak along an aribtrary direction ¢ we obtain the deflection of vertical 8 along that

direction:

T
v T
ay

L
v

d
0 =— (ak) = (45)

Yy

If «is the azimuth of this direction measured from the X axis as shown in Figure 6, then the components of deflection
along X and Y are:

1 T
t=0cosa=— Ty e (46)
n=0$ina=—lly %Sina (47)

To find £ and 7, first it is necessary to find an expression for T as a function of the gravity anomaly. As is known, the
solution of Laplace’s equation in a spherical system having aximuthal isotropy consists in funections of the kind

V=A.,Para+ BaP.r>1

where A, and B, are constants and
P, is the Legendre polynominal of degree n and of argument cos ¢ .
where 9 is the angle between the fixed and moving points.

If the solution is required outside or on the boundary of the attracting mass and furthermore to be harmonic and
regular at infinity, then A = 0 and V can be given as:

Ve Zo pj;?u

where f, is a spherical harmonic of degree n, and
p is the radius vector.

Equation (48) can bée applied for the disturbing potential, noting that the summation starts from n=2 because
T =W —U and the expansions for W and U differ only from this term onwards.* Therefore we can write:

(48)

T= Y- (49)

n+1
=2 p

*The zero and first order terms in W and U are equal due to the choice of the reference surface and coordinate system.
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@

e (n+1) fn
Then i ’; T
From (44) we obtain
1 v 2fn Y (n+1)fa
s Agtess. = =
g P ';2 pnH "Zl PLI
1.e Ag z(n :l-)z'f”
n=2

Applying the Fourier technique to determine f, we obtain:

i} 2n+l pn+2
L [n—lAgP"d"

g
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(50)

(51)

(52)

Here p is the radius vector to the physical surface, do is the surface element of unit sphere and Agis the gravity anomaly

at Q (Figure 7).

P

X A ............................................
:
:
;
:
:

=
Y

7

Figure 6

If the disturbing potential is required at point P whose radius vector is po, then

-y I
n+l
o= Po
and using (52) we obtain:
i 2n+1 pnt3 1
. =2 dn ,/ po™tt n—1 A 0

Ll n+2

T = n—1 Po

Interchanging the order of summation and integration,

© n+2
_ Po 2n+1 N3 )
T—4"./,.Zz n—1 P”(’po Agdg

(53)
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1 =R
Letting = 5
and using the identity
on+1 3
Gale e by
Y 3
(53) becomes T = Z”%f Z (2 + =5 ) P,z Agdo
n=2
From Figure 7 r = (po* + p? — 2 p pa cos Y)%
= po (1 + 2> — 2z cos Y)*
= Po X

where X = (22 — 2z cos ¢ + 1)% = (axI2+bx+c)"

Expanding 1/r in series of Legendre’s polynomials P,, we obtain:

1 1 1w ., 1 I
S _——Zx P = p0(1+xcos¢+Zx P,.)

PoX Po

n=2

8

or Zx"P,.=—)lz-—1—xcos¢

Dividing (59) by 2? and integrating

N dzx dzx cos ¢
n—2 e et e s
/ "22 z" 2 P,dz [ X / e / = dz

I+ I, + I

~
i

i.e.

Carrying out the integration we obtain

n=2
e X B A 2veX | 2
r=-% 42 ﬁln( £ +x+b)+cl
1
I, = = Is = —cosy¢inz

Substituting the values of these integrals into (60) and the coefficients b and ¢ from (58), we obtain

= n—1
Zx P, =— %(— —-cos¢ln(%+%—2cos¢)+(]l+—i-—cos:lzlnx

- n—1 =
Zz P, = lxX—-coswln2(l+X—xc0s¢)+Cl

(54)

(55)

(56)

(87)

(58)

(59)

(60)

(61)

(62)
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To determine the constant of integration let z = 0. To find the first term of the right hand side we must evaluate the
limit when z approaches zero:

_ T —cosy

- 1 Ty X % X
oty 1 = cos ¢
Then from (62): Ci= —cosy +cosylind (63)

Using this value (62) takes the final form:

Z P} P, = I;X —cos¢(1+ln 1+X—xcos¢/) (64)

n—1 2

n=2

Multiplying (59) by 2 22, (64) by 3 z® and then substituting them into (56), we get the following expression for T':

o 323;2(-—1—.—1—1:(;031#)4-3:&’(1;)( —cos¢/(1+ln 1+X;xcos¢)){Agd0' (65)

47 X
or =Lk fﬁ{—% +1—3X—5zcosy —3zcos yln 1+X'2'“°”}Agda (66)
Remembering that X = %’—
we can rewrite (66) into the following form:
T = :;’r /:ﬁ{ 2rp° +1 - —%:— — 5z cos ¢ — 3z cos ¢ In po+r-;::xcos¢ } Agdo (67)
Then letting p = R we have
SR 2 , 1 3 _ 5B _ 3R po+r— Rcosy
T = —ri fR { o i o o8 v o e ylin 7 } Agdo (68)
Letting po = R, then r = 2R sin % ¢ and we obtain
Ti= 41:_ /[ sinléylz + 1~ osin3y —5cosy —3cosyin (sin§¢+sin’=}¢):|Agda (69)

where the expression in the square bracket is the well known Stokes function, If do is the surface element of the unit
sphere and dS is that of a sphere of radius R, then

dsS
da’ = -R?
and using this relation (68) becomes
1 2 1 3r 5R 3R po+r—-Rcos¢]‘
T=— —_—t— - — — ==l
i f [ g + = S cos ¥ o cos ¢ In % 7 AgdS (70)
or = ‘—}; fK(po, Y) AgdS (71)

annntT o 4
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2 1 3r 5R _ 3R po+r — Rcos ¢
where K(po, ¥) = oy + s o cos ¢ T cos ¥ In 3 0
1 6T 1 0
From (45) 0 = —Ty- B0 - == a_lﬁ /K (po, ¥) AdgS

Formally the solution is given as

1 ,
i /K (poy ¥) AgdS

: - K
K’ (oo, ¥) = Jim, K (en v 29) = K (oo ¥)

where
that is, the derivative is taken in a direction perpendicular to po,

K’ (Po, 'l’) = 9K (po, #‘)

1L.e. o Y

Differentiating (72) term by term and remembering that r is a function of ¥, we obtain

K'(po,¢)=——;2TRsinnp— pT3=r Reiny 4 ,,—5;5 B ain g
3 ‘ T+ po— Rcosy 3 Rposin ¢ + rR sin ¢
+ > Rsin ¢ In T ] R cos ¢ S Ay T

From this expression Vening Meinesz’s formula results by letting po = B. In (74) we need
K’ (po, ¥) dS = K’ (po, ¥) R?*sin ¢ d ¢ do

and making use of (76) we obtain, for a sphere of radius R, Vening Meinesz’s formula:

1
sin 3¢

K' (R, ¢) R?sin ¢y = — cos’%\b[ + osin iy — 20s8in? 3y

— 12sint by n( sindy + sin*§9 ) + 3 cos y ST ESRAY ]
The last term T'5 of this expression can be put into a simpler form. Using the identity
cos ¢y =1 — 2sin*iy

_ 3 —6sin?3y 4 6sindy — 12sin iy
then Ts = T Eh iy

Adding to and subtracting 6 sin? ¢ from the numerator, we obtain

T = 3 —6sin*3y + 6sin* 3y 4 6sin ¢ — 12sin® 3y
s 1+ sin }¢

(72)

(73)

(74)

(75)

(76)

7)

(78)
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{_‘I — 12sin2 3y (1 + sin 3¢y) + 6sin 3 (1 ‘+ sin 3vy)

1+ siniy
ie. Ts = —_I_Tgin_%-xb— — 12sin? 3¢ + 6sin 3¢ (79)
Substituting this value back into (78), we have:
D (R, ¢¥) = K' (R, y) R*sin ¢ = cos? %‘Plis—inlw + 12 sin 1y — 32 sin? %up_
+ T-{-_gl;ﬁ- - 12 sin%ln(sin %'P+Sin2%¢)] (80)
The ei:pression in the square bracket is given on page 10.
1
From (74) 6 = s / Ag D (po, ¥) dyda (81)
where D (po, ¥) = K’ (po, ¥) R?sin ¢

If we expand D (po, ¥) about a sphere of radius R, we have:

2
D(p0,¢)=D<R,¢>+_9W H+—‘L95(,;’—¢> YH ... (82)
R R
where H=p0— R

Since the value of D (R, ¥) at ¢ = 1°is

i
1.0087

206, 265

D (&, ¥) = ~589, 000

[ L4 12 (.0087) — 32 (.0087)* +

.0087 — 12 (.0087) In (.0087 + (.0087)2)] = 25

and an upper bound for the coefficient of H is about — T(l)_()- ;

Taking the maximum H as 10 km, the contribution due to the second term of the right hand side of (82) would be of the
order of

i.e. in the ratio 1:250. As our calculation is not intended to reach this order of accuracy, at present only the first term
on the right hand side of (82) is used.

To summarize the result: generalized forms to calculate the height corrections and plumb-line deflections at the
physical surface have been obtained. These forms reduce to those of Stokes and Vening Meinesz respectively for the
sphere of radius R. When the topographic model is known for the area under study, then the corrections due to the
non-spherical properties of the earth can be obtained for the calculation of deflection. This correction is small for low
elevations. For practical purposes Stokes’ and Vening Meinesz’s formulae still can be used and usually satisfy the
required accuracy. However, we want to emphasize that,

a) the values obtained by using either Stokes’ or Vening Meinesz’s formula belong to the physical surface.
Therefore the gravimetrically determined deflection values are directly comparable with the astro-geodetic
deflections without reducing the latter to mean sea level;
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b) the values obtained by using either Stokes’ or Vening Meinesz’s formula are only first approximations. To
obtain corrections to this approximate solution requires a great deal of labour: to each point, weight must be
attached which depends on the elevation of the point. On the other hand, uncertainties are being introduced
owing to incomplete knowledge of the gravity anomalies over the whole earth, and therefore it is questionable
whether the corrections for elevation have any significance as yet.

It is clear that in the study of the shape of the earth the theoretical development is more advanced than the
practical application of it. The problem is now to apply the results of the theoretical studies and to work out practical
procedures for the calculation. The procedure should be flexible in order that different systems of weightings may be
incorporated easily. Because of the large amount of data-handling the problem is well suited for a digital computer:
with a standard program, the calculation can be repeated in minutes or hours depending on the equipment; changes
can be made according to request, and calculations can keep pace with the receipt of new data. By using machine pro-
cedures the plotting of points and the contouring are eliminated.

In the following pages some details about the programming of the problem are given.
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PART III

Outline of Area
The area for which the calculations were carried out is shown in Figure 8.
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Three overlapping sets were used, Sets I, IT and III. The coordinates and the deflections at the three origins are
given in Table L.

TaBLE 1
No. Set; £ n
306 I 40° 30’ 14780 74° 23’ 02734 2734 2738
150 11 47° 45’ 44714 73° 19’ 17770 2744 723
128 III 48° 23’ 23772 77° 20’ 40701 2740 2"54

The first column gives the station numbers and the second one identifies the origins. The geodetic coordinates and
the deflection components follow. These values refer to Clarke’s spheroid of 1866. The east-west component of the
deflection is positive towards the west.

The three different sets serve as a check on the calculations; by shifting the origins, the basic input data were
regrouped. This introduced changes in the number of points per unit area and affected the point distribution. The
central part of the area—around the three origins—should give basically the same result from each set. Direct com-
parison of any two sets is possible. The same coordinate system was used for each set as is described below in more
detail. A plane Cartesian coordinate system was used. This plane is tangential to international ellipsoid at the origin.
The X coordinate axis is along the meridian, which passes through the origin and is positive towards north. The Y axis
goes through the origin perpendicular to the X axis and is positive eastward (the reverse of the corresponding component
of the astro-geodetic deflection as given in Table I). The area of any set is divided into units measuring 50 X 50 km.
The number of grid-points is 19 X 19 so that the total area of each set is 950 X 950 km. To avoid negative coordinates
the origin of the plane system (after the geodetic coordinates were transformed into plane coordinates) was shifted into
the southwest corner. Thus the coordinates of the origins of the sets in the plane coordinate system are

X: = 500 km Y: = 500 km 1 = I, II, ITX

Eighty-five astro-geodetic deflections are used for this area. They are shown later, together with the gravimetrically
calculated deflections. There are about 6,000 gravity stations for the area.

Transformation of Astro-geodetic Deflections
In Canada the astro-geodetic deflections refer to Clarke’s spheroid of 1866, the parameters of which are given below:

o = 6 378 206.4 metres 1/a = 294.98

The gravimetric deflections refer to the international ellipsoid. For purposes of comparison the two sets must be referred
to the same reference system. Since the international ellipsoid is recommended for future work for all countries the
astro-geodetic values were transformed. The first transformation takes into account the change in the parameters of the
two ellipsoids. These formulae were derived by Vening Meinesz (1950b) and are given below:

A& = p" [sin (01 — @0) — 2 cos @o sin ¢, sin? 3 (A — 7\0)] AB — 4p” cos 1 cos } (01 — @) sin 3 (@1 — @o) A
+ o’ [(2 — 3 sin? 1 — cos (@1 + qoo)) sin (@1 — @o) — 2 cos o sin @, (2 + sin? @,
— 3 sin? 1) sin? § (A1 — Ao) — sin 2 @o 8in? § (@1 — @o) — 2 €08 @1 cos 3 (1 + @o) sin } (@1 — cpo)] alAB
+ o [% sin 4 @, (sin’% (¢1 — @o) + sin @ sin @ sin? 1 (A} — )\o))
— sin @o 8in § (@1 + @o) sin § (p1 — o) — sin @osin § (01 + @o) sin 3 (p1 — @o)
— 4 cos 1 €08 7 (o1 + @o) sin % (1 — @o) + 4 5in 2 @1 cos? § (1 + o) sin? } (p1 — <po)] ada (83)
A = — p” cos Bosin (A1 — No) AB + p" cos @osin (A1 — Ao) [sin (@1 — @o) sin (@1 + @o) aAp

+ 1 t2 @osin ¢, aAa] (84)
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where A£," and An," are the corrections to the north-south and east-west deflection components
@0, Mo and ¢, A1 are the geodetic coordinates of the origin and of the point where the transformed value is

required,

- ’
and AB = - aa + sin ¢y At

where a’ is the major axis of the international ellipsoid
a is the major axis of Clarke’s spheroid

and

fama'=a= 2 -Gu g (- )0-a(F-F)

Their numerical values are:

Aa = .000, 023, 057

e AL e e
AB = ~5375 054 T Aesin 30° 137 267686 = .000, 019, 242

Secondly it was necessary to take into account the change in the deflection component at the origin. As is well known,
it is customary to assume that the geodetic and astronomic coordinates of the origin are the same, i.e. the deflection is
zero. Nowadays it seems possible to accept one reference surface for world-wide use. In this case it is advisable to elim~
inate as many assumptions as possible. The deflection components for any point,—hence for the origin of geodetic
datum—can be calculated from gravity data. These values refer to the international ellipsoid and are sometimes called
the absolute deflections. Of course these values also depend upon the reference surface, and therefore the term is mis-
leading. The calculated values will differ from the assumed zero value at the origin of the geodetic coordinate system.
The necessary forms to take this into account are due to Vening Meinesz (1950a) and the transformation was made
according to his derivation. If A£; and A, designate the corrections at a point of the geodetic net due to the changes of
the deflection components and the geoidal height at the origin, then rearranging Vening Meinesz’s forms

Af, = (Wi3/ Wo'){cos @0 coS@; + sin @, sin ¢; cos Ao cos Ny + sin @ sin ¢y sin Ao sin )\,}E"o - (Wls/ Woll — e’])
{sin @1 8in A1 cos Ao — sin ¢y cos A sin )\o} 7" — (W’l/a [1 - eﬂ){sin ©o COS @)
— sin @1 €08 @ cos A; c0S Ay + sin ¢; cos @y sin Ao sin Ay AN, (85)

Any = — (W1 (1 - ez]) /Wl {sin @o sin Ay cos Ap — sin @ cos A sin 7\0} £+ (W/Wy) {cos A1 cos Ap

+ sin A; sin )\o} 7" — (Wyi/a) {cos @0 8in \; €08 Ag — €OS g COS A, 8in )\o} AN, (86)
where W; = +/ 1 — e*sin® ¢; fori=0,1
2 . h2
e = -—a—a,——ll— =a(2 - a)

and AN, is the change of geoidal height at the origin. Let £, and 5", be the corrected deflections values, then
.= + AF" + A, (87)
7" = 1" + An"1 + Ay”, (88)

Both sets of transformation formulae (83), (84) and (85), (86), respectively, were programmed. In the calculation,
floating point arithmetric was used. First, the transformations (83) and (84) were programmed. The input was obtained
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from the paper by Ney (1952), Geodetic Operations in Canada, January 1, 1954 to December 31, 1956 and privately
from J. E. Lilly, Dominion Geodesist, Geodetic Survey of Canada, personal communication. The actual input was:

Word 1.......... Identification number and year of observation
e Ear et geodetic latitude, ¢
- . geodetic longitude, A
s apenet [Erne et north-south component of the deflection, £&”
Dovsl el Gretaer s east-west component of the deflection 7”

On the output the first three words have not been changed.
Word 4.......... & 4+ A",

6and 7....A%”, and A7”; in fixed point notation

This output served as an input to the second transfotmation. The output of this calculation: no change in the first
three words:

Word 4.......... g, = & + AL + AP,
T oA S 'l]”c = 7'” 4 A")”l + Aﬂ”g
6and 7....Af; and An”; in fixed point notation

It is emphasized here that the values £” and #”, are the changes of the corresponding values at the origin of NAD 1927.
The numerical values used in (85) and (86) are: £”7¢ = — 1?3 and 9”y = — 179 respectively. In the first transformation
(because of the assumed tangency of Clarke’s spheroid and the international ellipsoid) they were kept fixed. From
gravimettic data, using free air anomalies Rice (1952) obtained: £’z = — 742 and 7"z = — 1764. Recently Szabb
(1960) found the following values from isostatic anomalies as referred to the geoid: §”s, = — 797 and 9”5, = — 1790.
AN, corresponds to the geoidal height at Meade’s Ranch (when the deflection values were calculated on Clarke’s
spheroid, zero geoidal height was assumed). This value for AN, was taken from a geoid contour map by Fischer (1960)
and was found to be 6 metres. Using the following arbitrary values:

Ay = - 173 An"y= — "3 AN, = 6 metres

the second transformation was carried out. It gives the order of 1”7 to 2” corrections in £ much less in # and it is not
very sensitive for AN, (as can be seen from (86)). Appendix A gives the result of the first transformation. The result
of the second transformation was not used. First some agreement must be obtained on what values to use for the origin
because small variations can introduce large errors in this transformation due to great distances involved.

Two additional important corrections are mentioned briefly:

(a) reduction to FK3 system.

(b) correction for variation of Pole.

These corrections can reach the order of .5” (see Rice (1952)). Unfortunately the necessary information (time of the
measurement) has not been made available and the ¢orrections can not be made.

_To summarize: an attempt has beeh made to make proper transformation of deflection values, but because of the
difficulties mentioned above, it is doubtful if high significance can be attached to the astro-geodetic deflection values
when compared with the gravimetric deflections.

Transformation from Ellipsoid to Plane

As briefly mentioned earliet, for the calculation of gravimetric deflections a plane coordinate system was introduced.
The geodetic coordinates ¢ and A of each point were converted irto plane coordinates X and Y respectively. The trans-
formation was carried out by using the formulae of the Transverse Mercator Projection with origin at Explorer, Que.,
No. 306. These forms of transformation were recently derived by Térezy-Hornoch and Hristow (1959) and the first
few terms of the series are given below:

X =B+ 3 NANsingcosg — s N AN sin®pcos ¢ (1 — 5cot? ¢ — 9 n2cot?p) + .. .. (89)
or X=B+D+F (90)
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Y=NAMNcosg — £ N AN sin? ¢ cos ¢ (1 — cot? ¢ — 7% cot? @)

or

+ s NANsintgcose (1 — 18cot? ¢ + 5cott ) + ... .
Y=44C+E

(91)
(92)

Before the meaning of the different symbols is given, it is noted that the geodetic coordinates of a point where gravity
measurement is available are given to the nearest one-tenth of a minute of arc. Therefore the terms in the expression
of transformation were selected to secure this accuracy only, and for more accurate transformation higher-order terms
must be included. In the above expression B is the length of the meridional arc from the equator to the point in question

and is given as:

B=a(1—e2)|:1+%ez+%%e4+...]<p

where ¢ is in radian.

The other symbols are:

Before the programming of the transformation formulae some of the terms were rearranged as follows:

—a(l—e*)l:%e2+ %%e4+...]sin2<p+

...................................

a a
N= = —
.V 1 -—éesin’p w

AN = (M — Np) in radian
where A, refers to the origin,
A refers to a particular point.

7% = e%cos @

a2 it b2 62
where ¢'? = =
b? 1—¢

C = 3 N AN?*sin? ¢ cos ¢ (1 — cot® ¢ — 7? cot? ga)

o . ; X
= —%NA)\asin*gocosga(sm Pr . woRp . - - cost g cOS <p)

=N A_)\“cos 07 ([

sin? @ sin? @ 1- sin? ¢

2

1ie2 cos2¢+2]cos2¢v— 1)

D= iip NA}\"’cos-cpsin“qa (1 — 18 cot? ¢ + 5cot4<p)

4
=T§1NA)\5cos<psin2¢(1—cosz¢___ 18.co8 @ + 52 qa)

sin? @

=1is N AN cos qosin’ga([5 cot? ¢ — 19] cos? ¢ + 1)

oennny o

(93)

(94)

(95)
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30
and finally
2
F=,1;NANsin<pcos<p<[9T_e_—e,cos’<p+6]cos’cp—1) (96)

The input to this calculation is the format of the Gravity Division (1960) shown in Figure 9 with all the information.
The output of this calculation is shown in Figure 10.

—
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B 71 D7 e P L et e Ll g e no change has been made

s OO (N SO Jerere o ol e, e are identical with words 3 and 4 of the input card,

R b T S O T T T i e o e is the elevation in metres

L Sl B s oy e 8 B B is the fee air gravity anomaly in milligals

B s L B U S BIE LMASIEAS: Br el AX is the z coordinate of a point referring to the unit area in which
the point is located, i.e. AX = X (mod 50), where all the values
are in km.

R o e L Il |y el o= P ey AYis the y coordinate of the same point

L Bl 1 e TR Tl G SN e ) this identification number was planned for two purposes:

It is composed of four parts:

a) to make an easy sorting possible
b) to find the actual coordinates of any point if required.

1X X[00000[YY

The first part is the area code. It is 1 for this area. The second part is the integer part of X/50, i.e. it gives the number
of unit areas to be passed along the X axis to reach the unit area where the point in question is located. Its AX
coordinate referring to that area is given in word 6. The last part of this word gives similar value for Y. The third part
is the station number which was reproduced from word 1, of the input.

Thus by the above transformation all the points can be identified uniquely by the identification number (word 8) and

by AX and AY. The function value is supplied by Ag. The coordinate system and the number of points in each unit
area are shown in Figure 11 for one out of the three sets for which the calculations have been carried out.

(eX(2(1)

@,
@,

()
080
1000,
(9((®)

4

O
4
4
2

2
3
O
4
3
3

1>~ (=) > [BIC)

-]« |» DG
|6

3|3
3 3|4
DOOGANGCO
oRcoCoonnonae
AE 2 a|3]ala 5|3 (Do)
i3 2 | 3(3|al K a|s(9fe
2| 1 3 2 af2]2 K 1[alal2]a
ufslaje)1|1|af2|3|3]4 3 (1 2|li1]|2]2]a
|0532232423533|32@242
osfie}(e) 2|s|1|2]a|3|3][3[3)(e)1[3]3]s]an[2{o)
osfeo)(io) 5 [P s|2]|4a[3]|a]|3|3]3]|e)7)2]2]| [o)2
or| 5 [23)1D|(7) s [(e}(o)(e)| 4| 4| 2|3 ] 1 | 5]ie) 5 |{o)Ne) 5
osaleol(e) 1 |3 &) 2| 1 (D@ e)(e) 3| [15)Mi2) 5 [(6)] 3
os| 2| 4|27 2 | 3 [(0fi3)(7 1| 3] 3[@9)] 1 olE3(9)| 5 fio
04@@@432@3 L[ 3]a]s]iD] 1 [12)E3) 1
0o BNN0CACO0ORED
ozfe0) [4]1]4l(6) 3]s |(®)@)10)z9)@8)|79]i50[4[i0)
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Figure 11

The total number of points for this area is 5491. As can be seen from Figure 11, for 50 units no information is available.
Fortunately they are mostly at the edges of the area. The number of points per unit is between 1 and 5 or over 50 for
195 units and is between 6 and 50 for 116 units.
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In the calculation an estimate for the gravity anomaly to represent each unit must be obtained. When no information
is available zero value is assumed. If the number of points is between 1 and 5, or over 50, the average value is taken as

the estimate. If the number of points is 6 or over but not more than 50 the coefficients of a second order surface of the
form:

Ag=got+ gzt g2y + gsxy + gaa® + g5 97)

are determined and this surface is integrated over the unit and divided by the area of the unit surface. Also estimated,
was the elevation 4 of the same form:

h=ho+hz+hey+ hszy + haz® + hs y? (98)

In (97) and (98) = and y are identical with the symbols AX and AY respectively. The coefficients in both (97) and (98)
are calculated if » = 6 (where n is the number of points). If 6 < n < 50 then the coefficients in (97) and (98) are ob-
tained by the principle of least squares.

Let Ag; be the given value and Aj; the estimate at the same point. Then it is required that the sum of the squares
of these deviations over a unit area be a minimum, i.e.:

o Z (Aj: — Agy)? = MIN.

or

P -

Z @+ gzt g2y + g2y F guahi + gs Y — Ag:)* = MIN. (99)

To get the minimum we differentiate G with respect to each coefficient and equate the result to zero.

g_G‘ =Z @+ gzt gy + gsziys + gaz% + g yv% — Agd)-1 =0
Jo

'g_j; =z (9°+91xi+921/¢+gaxiyi+94;l?’;+ysy2.- — Ag) z: = 0 (100)

TR,

G T .
—a—g; = Z Go+ gzt geys + gsziyi + gaz’ + gs v’ — Agd) % =0

Carrying out the summation and taking the known term to the right hand side, (100) takes the form (because of the
symmetry, only the main diagonal underlined and the upper triangle of the matrix is given):

-

"o+ 22 +2 g 2+ Zxivigs+Z 22 u+2Z yF gs=2 Ag
m-i- Zxiyige+Z 22 yigs + 2 28 gu+Z iyl gs = 2z Ag;
2yt g+ Zrnyla+IZatyig+Z yd g =2y Ay : (101)
22lylgs + Zalyiga+ Z 2yl gs = Z 2 y: Ags
2 2 g+ Z22yldgs = 2 1% Ags

Z yd Ag:

I

) Y g
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or in matrix notation:

Ag = G
where
Tn Zr; 2Zyi Dz Zxd Zyd Fgo ZAg:
2z Zxd Zzy: Zzdys Zxd Dayd 0 ZzAg:
A=y Zrays Zyd Zxayd iy Zyd| g8=|g:| G=| ZyAg: (102)
Zzys Zxdys Zayd Satyd Zxly: Sxyd gs Zzylg;
Zx2 2zl 2ty Zaly. Zxd Dxlyd 94 ZxiAg;
Zyd Zzyd 2yd Zryd Zziyd Zyd gs Zy2Agq

The matrix A was obtained by a simple matrix operation. If we define the coefficient matrix C as follows:

oo AETESL LU I B B (103)

.....................................

then
A = CC (104)
where C7 is the transpose of C. The solution is obtained by inverting A and is given as
g=A"1G
where A~ is the inverse such that
AAT =1

i.e. multiplying the original matrix A by the inverse A~?, the unit matrix I results (ones in the main diagonal, zeros
elsewhere).
This procedure was followed when this problem was programmed. The general flow diagram is shown in Figure 12.

-~}
FORM FORM FIND
MATRIX T ] 2
C A=c'c A
NO
PUNCH _ @
YES YES

CALCULATE

AVERAGE @

IS (n~6)
POSITIVE

Figure 12
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The output of this calculation is as follows (3 cards per unit area)
Output I: the coefficients of Aj of (97)

Output II: the coefficients of & of (98)

Output ITI: Word 1: identification number

2: number of points for the unit area

3:I"Z=§h.~/n for0<n<5 or n>50
4: h at the centre for 6 < n < 50, h for all other values of n
5: =§JAg¢/n for0<n<5 or n>50

Ag dzdy for 6 < n < 50, Ag for all other values of n

*—. &l
c\-

7: d&” of (119) for6 < n

8: dn” of (120) for 6

50, zero for all other values of n

N
n < 50, zero for all other values of n

ININ

The values d£” and dn” are the contributions to the components of the deflection at the centre due to the unit area in
question. More about this in the next section.

Effect of the Near Region

In this part we examine the effect of the unit area upon its centre and derive the formulae to calculate the contribu-
tion to the components of deflection making use of equation (97).
Combining the first term on the right hand side of (82) with (81) we obtain:

£ = 411'_7 / AgD (R, y)dycosada (105)

where D (R, ¥) is given by (78). As can be seen from (78) this integral becomes infinite for y = 0. Therefore it is nec-
sary to investigate the value of the integral for this case and to obtain an expression to find its value. We split (105)
into two integrals:

EeTi 11 (106)
1 Ay 2x
where L= / j AgD (R, ¥) dy cosada (107)
L ¥v=0 a=0
1 = 2x
and L= f [ AgD (R, ¥)dycosada (108)
i ¥v=A¢ a=0

The second integral presents no difficulty. We now try to evaluate I, when  is small.
When ¢ is small, then (see Figure 13)

tgAY = Ay = %

5 oy =
and SlnAl//= —E(I—W—i— ..... )
taking as r = 25 km
R =637l km
then €= z =1X 103

6R?
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AY

Figure 13
Allowing for this error, then simply
sin Ay = —;—

Then taking only the first, second and fourth terms of (78) we obtain:

1 :
D(R,Adl) =m +1281D%A¢+_1—-i_-—s§1_4}—AT

2 D(R,AY) = —— + g% iR B S f% +6AY +3

-
SR I+ 57

On the other hand we want to expand Ag around the centre of the unit area:

gAY, @) = 8g 00) + 8L\ pp 4 BB py gy PO A
ax 0,0 ay a,0 azz 0,0
d9?Ag 9?Ag
1 2
P55 o Ay + % 323y AzAy +.......
since r=RAY
and Az =rcosa = RAy cosa
Ay =rsina = RAYysina
(111) takes the following form:
Ag (AY, o) = Ag (0,0) + g RAY cos o + 2, RAY sina + % g RAY? costar
Jz dy Jdz?
+1 dAg R Ay sinta + 3 @*Ag R AY?sinacosa + ...

dy? Jdzdy

35

(109)

(110)

(111)

(112)
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Using (110) and (112) then (107) can be written as:

Il=

4

Ay 2x¢
[ / [Ag (0,0) + a(;xg RAY cos a;‘” RAY sin a +
o9
2
(w +3+6A¢)dt//cosada

(113)

We have 18 integrals altogether to evaluate. But it can be seen that because of the symmetry property of the function,
only the second term in the square bracket gives some contribution,

=

i.e.

Similarly

ie.

and

Then

i.e.

or

Ay 2x

i = 4_”7 [ [ L -3 RAY cos? adady

3 9Ag
8YR Oz

19 =

[§

b AT Ay cos? adady

e\»

Ay
% =='Z}"if

o L 9,
BE R 3

dE =1, =1+ 12 + 45

_ 1 dsg . 3 3, 1 aMg
d_Z‘Y 6xr+8'yR 6xr+

2vR* Oz

Making use of (97) we obtain:

a(.ig r=g+gy+2quz

Ay 2x = A
1 ddg 2 : = B dAg
= o/ b/ 3 Y RAY cos? adady 37y
Aol _R_ aAg i __l__ aAg
S oy T YT e T

3

v 2x
dy / cos® adar
]

(119)

(115)

(116)

(117)

(118)

Since at the programming stage the unit area actually was scaled to 1 X 1 therefore at the centre z = y = 4. Then
combining (118) with (117) we obtain:

with r = 25 km, R = 6,371 km, p" = 206, 265 and v = 980, 000 mgal we obtain

4 3r r?

dg = %(gl+%gs+g4)(1+—m + &=
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206, 25 :
W = —raom L+ 3 + 5o ) (o +1a+a)

(2) 980, 000 4 6,371
ie.
d§&" = 1055 (g1 + 3 gs + g4) Gy
Similarly for dn”’ we obtained
dn” = 1055 (g2 + 3 g5 + gs) (120)

These values were calculated and punched out in words 7 and 8 of the program for surface fitting.

So far we are able to attach an estimate to the unit area and to calculate the contribution of the unit area upon the
components of deflection. Before proceeding, a few words should be said about the estimate Ag.

It is quite clear that the accuracy of this estimate depends on the number of observations available for this area, the
point distribution, and the property of this local gravity field. Although it would have been possible to obtain some
measure of the accuracy of the fit and to try to weight accordingly, our primary purpose was to get away from contour-
ing and manual caleulational procedures. It is felt that the problem of how to obtain an estimate of the gravity anomaly
for each unit area from a set of measured values, is not solved. It is necessary to study the problem in detail using dif-
ferent sample size, area and weighting, and by practice and experimenting to gain more information about the properties
of the gravity anomaly field. For this purpose the flexible procedure programmed seems to be very useful.

In the next part is outlined the method of finding the components of the deflection due to the region outside of the
unit area.

Effect of the Outer Region

By outer region is meant the region outside of the unit area but still inside of the local area of 950 x 950 km. It is clear
that some errors are introduced into the calculation near the edge of the area.
To calculate the components of the deflection £”, we rewrite (106) into the following form:

g =i+ o Lz
where d£&" is given by (119) and
0&" corresponds to (108)
Equation (108) can be written as:
»
0 =1, = 427 ZZ W.; cos a Agi; dzxdy (122)

where Ag;; is the gravity anomaly corresponding to the surface element dzxdy at 1, j,
W; is the weighting function by which the gravity anomaly Ag;; must be multiplied.

Following the notations used in programming the problem and letting

a=1Ag b= W cosadrdy (123)
we have for:
”
I: = Sk+e, L1o = 4;7 Z Z armysorm bry—ky204500m—50 L
(124)
K =9,8, eos 0, es0 —9
Bt vt e
For the east-west component of the deflection #” similarly we can write
with o = p" ZZ ab’ (126)

where b’ = Wsinadrdy
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Derivation of the Weighting Function

The previous section outlines how the calculation is carried out when the weighting function is known. Now we
derive this function from (108).

Since the area for which this procedure is developed is relatively small compared with the dimensions of the earth,
some approximations may be introduced into (108). It is desired to approximate D(R, ¥) in the range 3° < ¥ £ 7°and
it is necessary to decide on the order of approximation. The number of significant figures of the gravity anomalies in-
dicates that the second and higher order terms of the series expansion can be ignored. This eliminates, at once, the third
term of (180) in the square bracket. Then, using the Taylor expansion of each function, we can write:

D(R,¢)=( _%+"')2[—'§——'—<§—2—‘2’—)’+0. +12(%—...)+

+ 1+_£ —2 (% - )m (% - )]

on

1 3 ¥
ie. D(R,y)=1]—— +6¢+—————61//ln—-]
v v 4 2
[T(l" 24) Lekssg
_ 2 v v ¥
or D(R,¢)——¢-(1+-2T)+6¢+3(1——2—')—-61#%’!&—2—
and collecting the like powers:
_ 2 1 3 ¥
D(R,%)——‘p—+(—17+6——2-—61n7>¢+3 (127)

In the bracket we have to approximate [n3y in the given range. Since it is multiplied by y it must be constant over
the range, so as not to introduce second order quantities. As is well known, the mean value of a function f(z) of one
variable over the interval b — a is given as

b
1
M= [f(:v)dx
Applying this to In —g— we obtain
v
1 14
M= In—d
= B
ie.
- T W _'P_]
M= %_%[211»2 v (128)
where ¥, and ¥; are given in radian.
Substituting the limits Y1 = 3° = .008, 727
Y= 7° = .122, 173

we have

2
M = T BT [.061, 086 (— 2.7953) — .061, 086 — .004, 363 (— 5.4353 — .004, 363)]
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ie. — 3746 = — 2>

2

Using this value for In - in the given range, (127) takes the form:

D(R,¢)=l+3+—112—(1+72—18+270)l//

'
or DEN) = o +3+ 15 ¥ (129)
Substituting (129) back into (108) we obtain
Iy = 41” ! fA [7 0 el 325 4/] cos a dadyy (130)

where ¥ is the upper limit of integration.

By change of the variable we can obtain I, in cylindrical coordinate system.

Using the relation ¥ = —Ire—-
then dy = —%——
1 " i 1 325 cos o dadr

and L= e I o[ Ag [2R — +3+ 53 ] = (131)

or expressing I, in seconds of arc we have
rs/R 2«
AR 1 3 325 ]
= By JR of Ag [ 2 +-——2R +———24R r | cos a dadr (132)
Finally transforming (132) into Cartesian coordinate system we obtain
5 p” 3 325 — 7 zdzdy

If we assume that Ag is constant for the surface element dzdy and that the corner points of the surface element are
given by the pair of coordinates (z, ¥1); (1, y2); (%2, ¥1) and (z3, ¥2) respectively (see Figure 14) then the weight func-
tion W,;; which corresponds to this unit area can be obtained from the following integral:

v2 zs
ol Sl TS 3 325
Wi = 2wy ! / [ VvV (@ + )3 T @@+ T 2R g ]"d"dy (134)

Integrating term by term we obtain

” H

ff xdxdy P [d -1
21r'y V@t oemy )Y Vary

1_
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2
o S S = i L ]
2wy ”[[ vV ozl + 3 vV ozt 4y dy

s it Y by o 35 o i) ]
R [Arsh Logoarh L2~ Amh L Ak 22 (135)
where Arshz =sinh 2 =In(z + v 22+1 )

The second term of (133) gives:

30" [ [ zdzdy Y O " 5 " 2y |4
S= 47yR / f xz+y2= iTvR In (x% + y*) — In (2% + %) y =
n n n

S ___473;; = [% Y {ln (2 + ya?) — In (22 + y2?) }+ 3 yl{ In (2 +y®) — In (2 + yl’)}

+ z; {arctan % — arctan -‘:—' } + z {arctan —%‘- — arctan 22 }] (136)
2

2 1 51

and finally from the last term of (133) we obtain:

825 [ f _addy 325 T
i f | Forr —W[[\/ WEV -V EET |
325 . e s ELEN
T 96Ty R? y2 VvV 2 +yd — v @ty +yndv zd+yd — Vv ozt oy
+ 2 {Arsh % — Arsh 2% } + 32 {Arsh YL _ Arsh Y2 }] (137)
2 X2 Z1 )
X &

X ) P S e &
0 E] .................. -

xz ....................... 300_]@

) ST CERCTTITPTEPPEPPRP ; : 2004

IOO-Di

-100 | I00 200 300 400 500 Y

Figure 14 Figure 15
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Then using (135), (136) and (137) the weighting function W;; corresponding to the unit surface element shown in
Figure 14 is given by the following form:

”
Wi = JB I:Arsh 2, + Arsh Y2 _ Arsh YL — Arsh _y_z]
2my T2 T T z

1 1 2
II

Y amE 47"’)'R [ {l’n (@0 + o) — In (2 + yzz)} 1{ In (x® + y*) — In (x* + 1112)}

+ {arctan LR arctan —yl } +x {arctan L arctan Y8, }]
Z2 T z

1

———936215‘7,;3’ ['!/2 {\/ 22+ y?: — V2t +yd } + % {\/ o+ yt — vVttt }

+

+ z.? {Arsh Y2 _ Arsh y; }+x1 {Arsh Y Arsh B2 }] (138)
x T T

2

This weighting function corresponds to the symbol b in (123).
ie. Wi = b = W cos a dzdy (139)

Now the calculation of the component £ of the deflection is simple: the sum of the products of the weighting coefficients
and the corresponding gravity anomaly all over the area give the required component. The weighting function which
gives the east-west component has been obtained similarly and is given below:

U4
Wiy = -?:_T[Arsh 2L + Arsh B Arsh B — Amsh x_z]

Yz T2 n Yo

+ 22 l:%xz {im e+ 9 — @2 + 40} + 42 { ot + ) = 1o @2+ 9 }

2 1 1

T2 X Zy Zy
arctan — — arctan — arctan — — arctan —
+ ¥ { " ™ } +un { v ” }]

0 3621:':13 I:xz {\/xﬁz +y: Vzlt+yd } + {\/ T+ yf VIR + ys }

(140)
+ yo? {Arsh 2 _ Arsh 2 } + y:2 Arsh { ZL _ Arsh =L, }]
Y2 Y U

Y

which corresponds to b’ of (126).

As can be seen the functions given by (138) and (140) are complicated to evaluate. Therefore an attempt was made to
find some approximation to them sufficient for the present purpose. One such approximation can be obtained by taking
the point value of the weighting function at the centre of the unit area instead of integrating over the unit area. If [
i),nd. m af,re the grid distances along = and y respectively then starting from (134) we can approximate (138) by the fol-
owing form;

Imp” z 3lmp” z
Wi = d £

i 325 lmp” %
27y V @+y) | AmE @ +9)

B vV @B+t

-+

(141)

where z=%3@+x), Y=%5@+y)
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Similarly for the east-west component of the deflection, we have the approximation for the weighting function:

Imp” y 3lmp” y 4 325 lmp” ¥ (142)
27y VvV (@ 4+ ¥)? 4myR @+ 9 48TYR? VR 4+

Wi =

For comparison (138) and (141) were evaluated for five differently situated unit areas, the locations of which are shown
in Figure 15. Table II gives the coordinates of the unit areas.

Tasre II
No. £ 2 » Y :: :: :: ::
100 0 50 0 0 1 500
% 283 250 50 100 .25 .200 500 400
3 400 450 100 150 .25 .200 375 300
4 300 350 200 250 .60 571 830 714
5 450 500 400 450 .80 800 1 400
The following numerical values of constants were used
p” = 206, 265 Y« = 980, 180 mgal
R = 6,371 km l=m=50km
27 = 6.283 185
= = 3.7349 190 X 10~% mgal™*

27y

30" =" —6 -1 -1
TR - 7.7885 4 X 10~*mgal~! km

_3_25 p"___ S —8 -1 —2
By 1717 X 10~® mgal~! km

The numerical values of the three terms (a, b, and ¢) of (138) and (141) are given in Table III. In the last two columns
of the table the sum of the terms i.e. the value of the weighting functions are given. (The values are given in the unit
of the 6th decimal).

TasLe ITI
197 200
No. (197) (200)
a b [ a b c
1 13402 337 27 12709 237 28 13766 12974
Y2 1420 79 28 1412 79 28 1527 1519
3 470 42 28 409 43 28 477 480
4 440 41 24 440 41 24 505 505
5 149 23 22 153 23 22 194 198

The difference between the two sets of weighting function is the greatest the closer the unit area is to the centre of
origin. The maximum difference for the above case is:

Drax. = (1013, 766 — .012, 974) "Ag, = ”.000 792 Ag,

This difference means an error of the order of a tenth of a second of arc if Ag, is taken as 100 milligal. This justifies the
use of the point value of the weighting function in our calculations.
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PART IV
Sequence of Calculations

The input for calculating the plumb-line deflections
consists of two sets:

Astro-geodetic data were punched from publications
(see p. 28). The number of astro-geodetic deflections
used in this study for the area covering all three SETs I,
II and III is 85. These deflections are transformed from
Clarke’s spheroid into the international ellipsoid. The
formulae of transformation (83) and (84) are given on
p. 26. This calculation takes about 4 seconds per card.
The format of input and output is described on p. 28.
Although formulae (85) and (86) of the second trans-
formation were programmed, the results (for reasons
explained on p. 28) were not used. The output of the first
transformation is plotted on a map and is shown, to-
gether with the gravimetrically calculated deflections
for each SET. The output is also given in numerical form
in Appendix A.

Gravity data were made available for this study by the
Dominion Observatory, Gravity Division. The informa-
tion is given in the format of the Division and the
number of points is about 6,000. This format (Figure 9,
p. 30) was converted into another one (Figure 10, p. 30)
which was used for the calculations. On the output card
(p. 31) Word 8 was designed to facilitate fast sorting
according to unit areas. Formulae (89) and (91) were
used to make the transformation from the geodetic to
the plane coordinate system. These transformations
were carried out separately for each Ser. The output
cards were then sorted, using the identification number
(Word 8). The sorting requires 4 passes and takes about
1% hours per SET. By sorting, the points belonging to the
same unit areas are grouped together. A blank card
separates the different unit areas, in order to transfer
control in the program when the calculation is finished
for a unit area. The sorted cards give the input to the
surface-fitting routine. In addition to the average values,
when the number of points is between 6 and 50, second-
order surfaces in two variables, given by (97) and (98)
on p. 32, are fitted by the least-squares procedure to the
gravity anomalies Ag and the elevations h. The calculation
of the coefficients for both surfaces requires 40 seconds
when n = 6 and almost 2 minutes when n = 50. These
estimates include input and the output of results. In
the calculation the Matrix Package of the Computation
Centre was used. It requires a fast excess-memory of 60
ten-digit words and 3 magnetic tapes. One tape, the
library type, has the matrix package routine on it. The
other two serve as working tapes to store the intermediate
results of matrix manipulations. The largest matrix which
can be handled by the matrix package is of the order of
37 X 50. Because no information was available for about
159, of the unit areas, it did not seem worthwhile to
spend the great amount of machine time involved in
partitioning the matrices in cases where n > 50; the
average values were therefore used. On the average one
SET requires 33 hours of machine time. The format of the
output is given on p. 34. These cards can be referred to as
Ag cards. Before reading them in again, the locations
reserved for this array are set to zero, so if no information
is available for some of the unit areas, zero value will be
used. After the reading is completed the weighting func-
tion, (141) on p. 41 to give the x component of the deflec-

*for SETs designated by S.

tion, is generated and stored as a square array, which
takes only 3 minutes. The next step is to carry out the
double summation, the result of which is actually an
estimate for the deflection component at the grid point
given by its identification number. A brief description
of this procedure is as follows:

Let us imagine that the two square array of numbers—
i.e. the gravity anomalies at the grid points Ag,; repre-
senting the unit areas, and the weighting function W,; —
are put on two separate pages. Then the centre of the
W ; array is placed over one corner of the Ag,; array and
the sum of the products of the corresponding members
gives the required result—the deflection component.
Then the centre of the W,; array moves to the next
point, and the procedure is repeated for all grid points.
The program, which generates the weighting coefficients
for the z and y components of the deflection, and carries
out the double summation, has 237 instructions plus the
square-root routine. In the double summation routine,
most of the instructions are used to control the calcula-
tions. Actually only two arithmetic codes are used (mul-
tiply and add the result to the previous sum). The result
of the double summation is punched for each grid point,
giving the identification number and the deflection com-
ponent. The minimum number of multiplications is 100
for the corner points and the maximum is 361 (=
19 X 19) for the centre. The running times are about 5
and 15 seconds respectively. After the  components of
the deflections are calculated, the control in the program
goes back to generate the weighting coefficients for the
y component, and then the double summation starts
anew. The calculation of the z and y components of the
deflections for all the 361 grid points requires 1 hour and
50 minutes. The calculations were carried out using,
firstly, the average value estimates for Aga, and secondly,
where available, the integral mean values Ags (see
Average and Surface in Appendix B). For the three Sets,
the program was run six times. The information from the
5 output cards was compiled into a single card, the num-
bers given in floating point representation were con-
verted, for the convenience of the reader, into fixed-
point format; they were then rounded off to the nearest
tenth of a second of arc and given in Appendix B.

Discussion of Results

In the procedure developed in the previous part of the
paper for calculating the deflections from gravimetric
data, the reference surface is a plane which is tangent
to the international ellipsoid at the origin of the system.
This means that all the calculated values are relative to
this origin and the proper orientation of the plane must
be given by some other means, as the calculation cannot
supply it. This other means is the knowledge of the
astro-geodetic deflection at the chosen origin of the
plane system. Figure 16 gives the deflections at the centre
of each unit area for SEr I as they are obtained directly
from the calculations (referring to the plane system). In
all the maps the letters A and S after the words SeT I,
II or III mean that the basic input data for the calcula-
tions of the deflection values were obtained either from
Average values or as the result of Surface fitting. For
those units where surface fitting was not possible*, the
average values were used. The small diagram on the
right of each map shows the point distribution. In order
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to be able to estimate the magnitude of errors involved, height determination due to these closures. The error
for SET IA the closures were calculated, and are shown which corresponds to 17 is

in Figure 16. The closures are expressed in seconds of
arc. Since the final purpose is to obtain the height correc-
tions, it is interesting to see the order of error in the €an = 50 km X sin1” = 24 em
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that is 1” error in the closure corresponds to a 24-cm
error in the height determination when 50-km grid
distances are used. Figure 17 gives the percentage
occurrence of the absolute values of the closures grouped
together in half-second intervals. The closures in centi-
metres are also shown.

As can be seen, the absolute values of the closures are
less than %7 for 399, of the area. For more than 609, of
the area they remain less than 1”. In order to appreciate
the accuracy of the calculations it is emphasized that
SET IA is the result of a procedure where the Ag’s
representing the unit areas were obtained from simple
averaging. In all these cases the contribution of the near
region was not taken into account (this is possible in
this procedure only when a surface is fitted the gravity to
anomaly values). This contribution can be quite ap-
preciable as shown Ilater, but is far from systematic,
since it depends on the local gravity field. The maximum
of the closure is 5”.5 at X = 06, 07 and Y = 14, 15
which corresponds to 1.2 metres error in height deter-
mination. A comment on this is given later.

As indicated earlier, the orientation of the plane is
obtained from the astro-geodetic deflection at the origin.
Giving this constant correction to all the calculated
values of a ST, the gravimetric deflections become
directly comparable with the astro-geodetic values.
This has been done for Set IS, SET II A and Ser ITI S.
(See pocket). The plotted deflections are so reproduced
that any SET can be directly compared with any other.

SET I S is examined first.

On the map the astro-geodetic deflections are also
shown. Unfortunately the locations of the astro-geodetic
deflections are not the most favourable for comparison
purposes. They are scattered near the southern edge of
the area and along the St. Lawrence River. In some cases
the agreement is excellent (89, 91, 106, 108, 109, 128,
150)*. In other cases it is very poor (307, 308, 141, 125,

144) but on the average the general trend of the astro-
geodetic and gravimetric deflections does agree. It may
be noticed that the points with poor agreement are also
situated near the edge of the area.

Now it is possible to comment on the large closures
around the astro-geodetic points 82 and 83. As described
previously, Appendix B also gives the results of calcula-
tions which are graphically given in the maps. Taking the
figures for the point X = 07 and ¥ = 14, the components
of deflection from surface fitting are as follows:

Es =178 ns = — 2”.1
and the correction
At = 6".7 An =2"8

thus the components of the deflection are

£E=8"5 n="7

It is apparent that the correction which is the contribu-
tion due to the near region, is too large. Although the
number of points is 16 for this unit area, the point
distribution (shown in Figure 18) indicates that extra
heavy weighting was given for the region to the right.
In fitting a surface to this unit the inherent error due to
the uneven distribution is enlarged when the directional
derivatives are taken to obtain the corrections to the
deflection components. This may explain why the cor-
rections are large. Of course another reason could be that
the gravity field is a complex one. Since no more sur-
face fittings could be made in the neighbourhood of this
particular unit area, no further conclusion can be drawn.

Examination of ST II A shows a similar pattern.
The agreement is fairly good for the central part of the
area.

*Station numbers of astro-geodetic deflections as listed in Appendix A.

°/°
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Figure 17
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Skt III S was chosen as an example to discuss some
of the details of the various relationships which exist
among the different quantities: the degree of agreement
between astro-geodetic and gravimetric deflections; the
size of the contribution of the near region as a function (i)
of the gravity field, (i) of the point distribution, and (iii)

PUBLICATIONS OF THE DOMINION OBSERVATORY

of the number of poinis per unit area.

In Figure 19 the point distributions for twelve selected
unit areas are shown. The number of points per unit
area varies from 6 to 50, and also different types of
distributions are shown. In Table IV some information
concerning the selected unit areas are given.

TasLE IV
Aga — Ags =&+ i s Identification

N ! ‘iﬁ mga{’ | in sg:onds Distribution number
44 4 1.1 a 01 12
36 711 3.5 a 04 03
15 24.9 13.6 ) 04 11
23 1.9 .8 a 04 15
30 2.5 3.6 a 05 05
50 13.0 4.0 P 06 03
6 18.3 9.5 P 09 08
6 .6 1.2 g 10 10
9 6.7 3.8 P 10 13
8 51.1 3.7 P 10 17
9 Ll .6 g 18 13
11 .2 .4 g 18 14

In the first column N is the number of points per unit
area. The second column gives the absolute value of the
difference between the two estimates—which are the
average Aga and the integral mean Ags which represent
the unit area, given by the identification number in the
last column. In the next column 8 is the contribution to
the deflection due the unit area upon its centre. The
fourth column arbitrarily classifies the point distribution
into three broad groups: poor, average or good. A short
inspection of Table IV shows that when the number of
points is large and the distribution is good then reason-
able values for # can be expected, that is in the order of
few seconds of arc. A more careful examination indicates
that the most decisive factor might be the point distribu-
tion alone, since for the unit areas 10-10, 18-13 and 18-14
where the distributions are good, reasonable values were
obtained with the number of points equal to 6, 9, and 11,
which cannot be said to be large. It seems that an even
distribution of points gives the maximum amount of
information. The best distribution for fixed N could have
been obtained only if the points were placed in a pattern
characteristic of the gravity field, so as to give the maxi-
mum information with the minimum number of points.

To explore further the statement made about the role
of the distribution in connection with the calculation of
the contribution, some more unit areas were examined.
The facts are summarized in Figure 20 and the details
are given in Table V. It can be seen from this sample that
when the point distribution is good @ is always small, in
the present case less than 2”. Unfortunately the basic
gravity data used for this study were much less favour-
able than expected and no detailed analyses could be
made.

Conclusions

It is verified by the results that the plane coordinate
system introduced for a local area of the size of
950 X 950 km is sufficient to use. The simplification
achieved by the use of this system needs no comment.
On the other hand the extension of the procedure for

larger areas using other coordinate systems is just a
question of an increase in computing time.

The astro-geodetic deflections have been transformed
from Clarke’s spheroid into the international ellipsoid.
Ounly one transformation has been carried out and used
because of the lack of information to carry out the other
transformation and corrections. Thus even the trans-
formed astro-geodetic deflections given in Appendix A
contain systematic errors. It is estimated to be of the
order of +1”.

In the gravimetric deflections the largest error (apart
from the region near the edges, say about 100-150 km) is
caused by not taking into account the effect of the unit
area upon its centre. A good average figure for this error
is +2”. The error caused by ignoring the effect of the
region outside of the limits of the integration is much
less; thus the value +2” can be used as a measure of the
error in the gravimetrically calculated deflections. Keep-
ing in mind the error bounds of the astro-geodetic and
gravimetric deflections, a comparison indicates that very
good agreement was obtained. This agreement could be
made better if, instead of the one value at the origin, all
the astro-geodetic deflections were used to obtain the
best orientation of the gravimetric deflections. This
could be done by minimizing the sum of the squares of
the deviations between the astro-geodetic and gravi-
metric deflections. The gravimetric deflection can be
obtained at a geodetic station by two-dimensional linear
interpolation.

The length of the grid distance in this calculation
serves as a filter. The smaller the grid distance, the more
detail can be obtained. The choice of 50 km as the grid
distance seems suitable; enough details can be obtained.
Much smaller grid distances would be impracticable since
it would require many more gravity stations to maintain
the same point distribution per unit area. On the other
hand, for studies involving a much larger area and for
seeking general information, greater grid distance may
serve the purpose better.
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TasLE V

N |Aga — Ags| Distribution Identification
6 15.6 10.4 p 09 11
8.6 11.2 p 02 1
19.6 8.2 P 06 17
12.1 8.0 S 08 08
9.5 4.0 a 06 16
.5 2.7 a 11 17
3L 2.6 a 18 18
7.6 1.2 g 07 11
7.6 1.3 a 01 06
7 1 1.0 P 08 07
12.0 3.9 P 00 08
1.0 2.4 P 18 10
3.7 4.3 a 10 18
19.6 6.7 a 00 10
3.5 2.2 P 01 11
.3 2.9 a 03 08
.6 7 a 17 13
1.2 3.6 a 05 07
g 3 9 ¥ 17 14
.8 1.5 b 05 14
12.7 1.9 b 09 12
1.5 1.8 b 08 10
7.7 5.8 a 09 09
9 .9 1.1 g 18 15
1.4 3.0 g 18 16
.9 .6 b 06 07
3.9 2.1 a 05 06
1.4 1.4 a 09 13
10 2.3 3.6 b 12 04
2 1% g 18 22
15.3 9.3 b 12 03
11 25.8 3.2 a 02 11
11.3 8.4 b 09 07
2.6 2.6 a 07 10
13 5.7 3.0 a 05 15
6.1 6.8 P 05 16
3 6 P 09 10
14 5.2 3.5 P 07 16
15 3.5 2.5 a 08 16
4.3 1.9 P 04 04
. 27.0 2.7 » 08 05
16 16.3 11.7 P 04 12
3.7 .3 a 05 12
17 3.1 4.1 a 08 06
19 3.7 4.6 a 09 05
20 1.8 .6 a 11 04
21 S 1.4 a 10 04
22 .5 12 a 10 05
25 2.8 2.1 a 09 06
26 7.2 3.6 P 06 18
28 9.9 7.0 P 07 06
34 13.7 6.7 P 02 15
44 2.9 1.6 a 05 17
50 6.7 5.2 p 05 01

The approximation of the gravity field over a unit
area by a second-order surface in two variables is
adequate. The minimum number of points required to
determine the coeflicients is six. The third-order surface
would require ten points. It is also known that the
higher the order of the surface, the larger the number of
points are needed (in excess of the minimum require-
ments) to control the fitting and not to introduce un-
wanted oscillations. Since not many more than ten points
can be expected per unit area, the second-order surface
may provide a good choice.

The necessary weighting functions were derived for
the plane system. Then approximations for them were
obtained. No systematic error due to the approximations
can be observed. The approximations greatly simplify
the calculations.

The test calculations indicate that the distribution of
points over the unit areas plays an important role in
estimating the gravity anomaly which represents the
given unit area. It is concluded that on the average 10
points, evenly distributed over the unit area may supply
very good input information. This would require about
4,000 points to the size of the area used in this study.
Although the number of points available for the test
calculations is about 6,000 it is believed that less favour-
able results were obtained than would have been pos-
sible from 4,000 points of even distribution.
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APPENDIX A
Astro-Geodetic Deflections
. Geodetic Coordinates Deflection Components
Station
Number f" i
46° 03’  13.98 71° 53  18.38 12.8 ~13.0
;:1:, 46 51 33.04 71 13 08.53 =3 B
74 47 02 32.74 70 53 23.05 —11.6 - 55
77 45 21 05.45 73 17 32.42 3.0 T
78 48 27 33.31 72 05 20.49 10.7 - 26
82 48 24 59.20 71 06  50.94 4.5 B3
83 48 25 44 .40 71 03 16.74 6.1 - 6.7
86 45 17 24.95 74 12 07.89 5.5 s g
87 45 17 29.35 74 10 35.50 8.4 - 1.8
88 45 01 04.68 73 47 45.82 9.2 - 2.4
89 48 00 55.92 74 21 25.58 3.7 —- 4.0
90 46 12 37.01 73 12 01.31 .3 TR
91 46 16 09.25 76 19 15.98 3.3 - 1.6
95 45 50 33.56 76 44 13.95 .5 —~ 6.5
96 45 50 03.34 71 22 55.51 - .8 .8
98 483 14 45 .56 69 32 49.36 - 3.5 4.7
100 45 05 33.60 74 15 15.30 8.3 - 6.2
102 47 16 17.28 72 18 14.06 - .7 - 2.9
103 47 39 32.02 72 16 23.99 3.3 — 6.4
106 46 38 32.73 76 01 37.61 3.4 2.3
107 45 16 06.56 72 09 22.70 - 2.0 - .3
108 48 49 22.00 79 03 06.73 3.4 — 2.4
109 46 22 50.22 75 57 14 .41 3.7 2.8
110 45 44 48.30 73 36 08.50 2.7 - 2.2
113 45 30 18.71 73 34 42.91 2.1 1.1
116 47 00 30.50 70 52 18.82 - 6.2 3.8
121 46 42 39.28 71 53 31.86 — 5.0 — 3.8
122 48 36 34.82 69 05 22.76 -"1.3 2.3
124 45 27 02.76 74 17 54.91 8.7 - 1.4
125 46 59 21.46 72 10 50.18 - 3.6 - 5.0
127 48 30 5417 72 13 25.89 10.6 - 5.9
*128 48 23 23.72 77 20 40.01 3.6 — 3.6
129 45 36 15.29 76 29 37.82 - 1.1 - 3.4
132 45 29 08.26 72 31 43.48 2.5 —11.2
134 47 40 24 .35 69 43 46.59 2.0 — 2.6
136 45 56 21.59 70 56 32.93 4.0 - 1.2
140 45 57 45.14 73 42 51.25 3.1 4 U
141 47 22 16.36 70 24 30.58 — 5.6 7.4
143 48 08 32.21 69 42 59.20 - 4.0 2.7
144 46° 36’ 11.61 72° 37 10.61 - 2.4 — 4.9
146 48 06 31.50 69 09 16.94 6.8 - 8.0
*150 47 45 44 .14 73 19 17.70 3.5 =G
152 446 24 23.40 80 24 59.29 - .6 — b
153 45 09 05.27 76 01 54.85 2.3 — 4.6
154 46 33 20.00 81 05 14.80 .5 - 3.0
155 44 27 43.09 77 50 21.72 - 3.5 — 45
156 45 07 32.83 74 50 06.11 3.8 - 3.8
158 48 46 41.17 80 46 41.08 3.3 - 1.1
159 46 09 12.50 78 28 32.27 5.2 = 1.5
164 4 41 22.23 76 26 04.28 - 1.8 - 7
167 44 57 33.35 75 16 56.02 3.4 — 8.0
168 4 41 22.60 75 42 18.99 2.1 — 6.6
172 50 07 35.05 81 38 31.69 6.2 - 1.4
173 44 19 30.14 76 10 01.63 - 1.4 — 4.1
176 4 01 59.27 77 06 19.04 - .6 - 1.5
180 4 30 42.39 79 02 25.59 - .4 - 3.3
181 48 32 01.30 80 27 54.31 5.0 - 2.0
182 46 18 39.80 78 42 16.35 1.7 - 4.1
183 45 17 43 .27 74 48 49.36 3.9 - 5.2
185 45 26 05.77 75 23 47.21 4 3.3
186 47 30 39.19 79 40 47 .44 3.7 - 5.2
187 46 03 33.79 79 27 04.12 6.8 - 1.8
188 46 18 42.89 79 27 58.21 - 1.6 = |
189 45 08 56.34 75 42 49.33 .6 3.9
192 4 31 51.18 79 39 33.63 - 1.5 - 19
193 45 23 36.77 75 42 52.70 2.6 - 5.2
194 45 20 02.89 76 17 31.26 3.7 - 1.7
195 45 49 04.78 77 05 23.94 2.9 - 3.4
196 45 51 36.69 77 18 37.56 - .9 - .2
197 45 30 05.57 75 03 21.41 2.9 - 6.9
198 4 25 59.10 76 38 19.60 - 2.4 - 29
199 45 28 15.45 76 40 53.62 3.6 - 3.3
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Station Geodetic Coordinates Deflection Components
Number éu 11”
202 45 51 26.62 81 50 59.71 - .3 - 2.2
203 4 36 48.07 78 39 25.77 - 1.6 = 2.7
205 46 23 57.10 79 56 07.25 - 1.4 = i
206 45 23 07.74 74 b4 22.93 5.1 - 9.5
208 46 12 50.76 77 53 43 .44 .3 -~ 2.8
210 4 46 01.66 79 58 57.71 1 - 2.2
213 45 30 33.82 74 39 58.85 4.5 - 1.2
215 47 36 16.71 79 31 44 .66 6.3 2.3
216 44 28 43.93 719 59.72 -/ - 2.7
218 49 24 33.00 81 03 46.54 2.6 ~ 1.0
*306 49 30 14.77 74 23 02.25 3.6 —~ 3.6
307 5L |25 55.92 72 52 19.15 - 3.2 -~ 7.4
308 STLLES0 21.35 72 47 17.01 - 1.1 — 4.5

*origins of sets.
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Gravimetrically Calculated Deflections

SET |
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56
IDENT.
X Y

[0} 00

00 01

00 02

00 03

Qo 04

00 05

00 06

00 07

00 08

0o 09

00 10

00 11

00 12

00 13

00 14

00 15

00 ls

00 17

Q0 18

01 00

01 01

38 02

01 03

01 04

o1 05

ol 06

01 o7

ol 08

ol 09

o1 10

01 11

01 12

01 153

01 14

0l 15

01 16

01 17

01 18
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PLUME=LINE DEFLECTION

AVERAGE
S5el =4e2
4eB =442
4e5 =440
4ol =422
3.6 =368
38 =240
540 =3.9
beb =566
460 =348
3.5 =3,7
3.1 =4e2
3.1 =36l
369 =1.7
546 =269
S83. =37
4e9 =3l
449 =345
560 =342
5¢2 =242
4eT =445
443 =4e7
3.0 =4.8
1e8  =4e7
2s4 =3.9
33 =1a3
540 =246
6ed =56
448 =540
3.0 =447
204 =442
266 =248
23 =0¢5
EXL =leb
429 =442
440 =349
4¢0  =3,1
4s7 =249
5.0 =340

SURFACE
542  ~bel
649 =440
Te3 bl
7e8  ~bob
345 =349
345 =1e9
5S¢ | =BT
447 =56
4ol =348
8e2 =347
BaT  ~4e2
342 =36l
440 =1e8
6e1 =340
64 =348
4.9 =344
4e8 =345
540 =342
5.2 =3e2
4e8  =4e5
403 =447
248 =449
1e8 =448
942  =bal
346 =le0
5.1 =2a2
645 =547
69 =51
340  ~ba7
2.5 =44l
940 =248
245 =045
802 =146
5.1 =444
440 =44l
3.9 =3.2
762 =249
540 =249

CORRECTIONS
= 1e3 = 10
= 2ol = 140
= 140 3.0

10e2 = 640

D63 - 69

1.0 1.7

NUMBER

OF

POINTS

494
413
421
176
127
196
144

47

w > & -~ &

100
102
355
138
102
112
130

63

48

IDENT.
X Y
02 00
02 01
02 02
02 03
02 04
02 05
02 06
02 07
02 08
02 09
02 10
02 11
02 12
02 13
02 14
02 15
02 16
02 17
02 18
03 00
03 01
03 02
03 03
03 04
03 05
03 06
03 07
03 08
03 09
03 10
03 11
03 12
03 pit-)
03 14
03 15
03 16
03 17
03 18

PLUMB=LINE DEFLECTION

AVERAGE
543 ~449
bLe5 =549
3¢0 =6eb
246 =45
3.9 =2
4¢3  ~0el
369 =10
bo2 ~5¢8
3.8 ~6e9
306 =565
4ol =443
3e8 =343
3.1 =13
19 =Qe3
208 =3:2
346 =444
400 =246
4a5 ~2+2
4e8 =2e7

Se8 =5s2
502 =509
52 =68
549 =348
55 =242
be7 =1le8
263 =247
1le8 ~5e2
3s6 5,7
500 ~hele
5.7 =348
549 =345
548 ~241
59 =1e¢5
4¢3 =340
33 ~346
249 =24
420 =149

426

=203

SURFACE
53 =540
443 =549
340 =506
247 =he5
b4el =242
408 Oel
349 ~1.0
43 =549
4e0 =7el
367 =5e5
402 =440
4ol =3e2
346 ~le2
245 =0s3
346 =3¢5
3.8 =50
3eh ~2¢8
442 =201
4e8 «2e6

66l =5e5

Sek =Tel

49 ~6eb

5.8 =347

565 =240

be6 =1le6

23 ~2e6

149 =5s1
3.7 «5.7

563 whol

549 =36
642 =3l
6ol =1s9

S5e8 ~1e7
342 =344
342 =449
249 =247
3.9 =1.2
4eb =242

CORRECTIONS
0e6 163
- 442 = 3.0
343 4.8
069 1.0
21 0e8
0e2 Oel
- 27 202
- 27 240
1.6 1.7
= 346 = Oal
= 342 1.3
= 340 1044

NUMBER
OF
POINTS

20

w w o & o~ &

- o

35
48
79
150
94
19

67
14

£ w o w0

12

12

31

50



IDENT.

X Y
04 00
04 01
04 02
04 03
04 04
04 05
04 06
04 o7
04 08
04 09
04 10
04 11
04 12
04 13
04 14
04 15
04 !16
04 17
04 18
05 00
05 0l
05 02
05 03
05 04
05 05
05 06
05 o7
05 08
05 09
05 10
05 11
05 12
05 13
05 14
05 15
05 16
05 17
05 18

PLUMB=LINE DEFLECTICON

AVERAGE
S5e3 =543
56 =68
6el =6el
604 =41
545 =340
5.1 =248
465 =347
4a7 =442
5.9 =4el
6ol =440
5.9 =306
509 =345
6ol =1l
Tets =10
Te7 =546
be9 =6e2
36l =240
3e5 =0e5
348 “1e7
4e3 =542
4e5 =63
4e9 =548
4o -be2
4e8 =30l
448 =249
S5e7 =34
67 =346
68 =440
6e5 =4ek
549 =440
540 =347
4e8 =1le2
347 Ol
4e8 =50
58 =Ts7
Se4 =345
345 =l.1
348 =0e9

SURFACE
S5e4 =53
548 =75
60 =642
be4 ~3e6
546 =248
5e2 =2l
4e7 =346
S5al =442
640 ~he2
662 =349
6e0 =3¢4
6.0 =209
640 =143
6e9 =248
6e8 =5¢7
4e7 =507
3.8 =23
3.7 =0t
3.8 =1le7
b4el =5¢3
445 =607
52 =549
4e9 =349
540 =3.1
S5el =247
549 *340
608 =345
68 =b4e3
666 =443
6e3 =349
4e9 =304
4e2 =let
3.7 =1s0
Seds w5e4
561 =Te5
543 =3e4
345 =le3
369 =0.9

CORRECTIONS
- 5e4 0e9
- 440 243
=266 = SNIT

Gl ~ 649
= 43 =107
= G446 345
- 062 lett
- 049 = 1.0
= 2.3 - le2
- 046 = 1.6

345 - Tets
. 3B - 4,8
= Ol 363
- 1,C = 1.0

GRAVIMETRIC DEFLECTIONS

NUMBER
OF
POINTS

31

11

11

12
33

10

13

17

10
13

IDENT.

X Y
06 00
06 01
06 02
06 03
06 Ca
06 05
06 0¢
06 o7
06 08
06 09
06 10
06 11
06 12
056 13
06 14
06 15
06 16
06 L
06 18
07 0o
07 01
07 G2
07 03
07 04
07 05
07 06
07 07
07 08
07 09
07 10
07 11
07 12
07 13
07 14
07 15
07 16
07 17
07 18

PLUMB-LINE DEFLECTICN

AVERAGE
be2 =548
405 =549
408 =548
4a7 =442
405 =343
440 =246
349 =21
50 =320
521 =4al
540 =446
489 =540
403 =4yl
3.l =27
Qe5 =15
Cel =345
3e1 =545
409 —4e3
404 =240
4ab 0.0
Sets =549
Sel =5.6
4e9 =58
469 =466
4e5 =4l
3eb =347
204 =204
20l =244
243 LYY
243 =446
207 =445
3¢5 =560
1.8 ~449
Qe? =340
leé “le7
4e8 =245
682 ~3e2
59 =23
53 0s0

SURFACE
442 =5¢8
4a5 =6e2
48 =58
be7 =4el
445 =249
Gel =2e4
be2 =22
47 =31
5.0 LLYY
50 =4e2
4e9 =540
402 =407
248 =2.9
0e5 =149
0e2 =bhek
3.1 =505
469 =346
G645 =1e9
4o 00
563 =548
Sets =549
540 ~548
49 ~443
bols =348
362 =343
243 =2e4
240 =247
262 -he2
242 ~hel
Z2e3 =445
3e4 =541
2.0 =540
Ge9 =343
1.8 =21
S5e7 =246
646 =3,0
6.l =243
Sett Vel

CORRECTIONS

349

= 0.9

K

= 17

33.7

- 247
= el

6e7

2e4

- 201

= 4eb

246

342

~4249

= le4

57

MUMBER
OF
POINTS

29

15
12

23
17

16

w N e



58
IDENT.
X Y

08 oo

08 01

[+2:3 02

08 03

08 04

08 05

08 06

o8 o7

08 08

08 09

08 10

08 1

08 12

08 13

08 14

08 15

08 16

08 17

08 18

09 00

09 01

09 02

0% 03

09 04

09 05

Q9 a6

09 07

09 08

09 09

09 10

09 11

09 12

09 13

0% 14

09. 15

09 ie

09 17

0% 18

PUBLICATIONS OF THE DOMINION OBSERVATORY

PLUMB=LINE DEFLECTION

AVERAGE
Se4 ~5e3
447  =beb
Lol =6el
4ol  =heb
346 =4eb
2.9 =hod
360 =30l
202 =249
262 =38
249 =403
3¢l =3.8
3.1 =543
33 =546
443 =202
545 009
Te3 =03
Teb =3+9
607 =343
665  =0e2
640 =68
548 =606
508 =6e2
503 =54
43 =5e4
349 =bals
3+7 =3l
4e2 =342
bels ~3e3
5¢3 =345
Se4 =42
55 449
7.0 =4l
Te5 =15
Teb 1s2
6s7  =0sl
Te2 =347
8,1 =342
Te7 =0e6

SURFACE
5e4 =500
he8 =6el
4e6 =643
41 =445
345 =445
247 ~4e2
266 =341
200 =340
240 =38
2¢7 =443
340 =37
340 =540
362 =56
he3 =246
566 Oe7
T+6 =0e3
82 =348
Te0  =3e4
6e7 =0e3
640 =607
545 =606
548 =603
5e2 =5¢4
4e3 =5ab
3.8 =4el
346 =320
bel =362
be3 =3e3
5e2 =345
53  =he2
5e¢3 =448
606 =4l
rx} =1leé
Ts6 le2
608 0e3
T3 =347
8sl =347
Te8 =067

NUMBER
CORRECTIONS oF |/
POINTS
- 1.0 = 2.9 30
- 4,1 0e2 10
5
7
5
2
&4
3
4
3
3
3
544 1245 6
- 143 = 149 7
2
o
8
2
= lel = 249 16
- 643 = 347 6
2
5
1
2
&
3
3
3
3
6
1
3
3
5
344 , - 248 41
2
9

IDENT.
X Y
10 00
10 (13
10 02
10 03
10 04
10 05
10 06
10 o7
10 08
10 09
10 10
10 11
10 12
10 13
10 14
10 15
10 16
10 17
10 18
11 00
11 01
11 02
11 03
11 04
11 05
11 06
1 o7
11 08
11 09
11 10
11 11
11 12
11 13
11 14
11 15
11 16
11 17
11 18

PLUMB=LINE DEFLECTION

AVERAGE
Te2 =645
Tete =547
T.0 =607
5¢8 =603
502 ~5¢8
53 =4e9
501 =29
547 =20k
[ YT =267
646 =343
6.8 =309
Te3 ~3:8
8e1 =3:4
8,9 L '
B8e5 Oets
Te? ' =0e7
Tob «2e7
Te9 =248
Te8 ~1:8
6.0 =548
6e9 =66
Te3 =Te5
Tel =Teb
602 =549
640 =4e5
bets =2e8
6a5 1,9
607 =204
605 =3el
606 “3¢8
6a7 =348
608 =262
Te6 =09
73 =042
Ts0 =lel
Te3 =362
Te0 =248
68 =240

SURFACE
Te2 - TT3
Te3 “5e7
669 ~6e7
567 «6e3
5e1 =5+8
53 -4e9
540 =249
5¢6 =20
643 =2+7
6a6 “342
608 =39
702 =348
Te9 =34
8.8 =1e5
8e4 O
Teb =0e5
Tel =246
Te8 =340
Te8 =18
640 =508
609 =606
7e3 =745
Tel =Tes
6e1l =549
5.9 ~hol
6e3 =248
6ol =1a9
606 =2¢%
6ot =3¢l
606 =348
6e6 =308
648 =202
Te6 =009
Te3 =0e2
T«0 =1e0Q
Te3 =342
760 =248
6.9 =240

CORRECTIONS

- 342

1.9

NUMBER
OF
POINTS

N &£ N N W WY WY W N PN YNNG W

oW e P W W NP =W

F N N »» N



IDENT,

X h
12 00
12 01
12 02
12 03
12 04
12 0s
12 06
12 o7
L2 o8
12 09
12 10
12 ui
12 12
12 13
12 14
12 15
12 16
i2 17
12 18
33 00
13 01
13 02
13 03
13 04
13 05
L) 06
33 o7
13 o8
13 09
13 10
13 by !
13 12
13 13
23 14
13 15
13 16
23 L
13 18

PLUMB=LINE DEFLECTION

AVERAGE
5¢5 =545
602 =5e3
740 =645
7.8 =Te6
Te3  =Ta0
Te0 =heb
647 =246
6e& =240
6al =247
528 =344
548 =346
60 =347
545 =246
443 =l.l
LYY =046
448 =044
63 =204
6al =3e4
S5e6 =244
602 =545
640 =541
602 =642
549 =Te3
743 =646
Te2 =649
602 =3e5
Se2  ~ZaB
540 =249
542 =343
546 =345
Bu¥ =37
640 =348
349 =240
3s2  =0sl
343 0e3
3:3 =240
349 =346
Y47 =2l

SURFACE
545 =55
6e2 =5¢3
Tel =6e5
Te8 =Te6
T3 =740
Te0 =4e6
6a7 =246
6ot =240
640 =27
5.8 =343
548 =345
600 =3¢6
5e5 =245
&e3 =140
4eb =0e6
Ge8 =0e4
6e3 =23
602 =343
5x9 olas
62 =545
549 =5.1
602 =662
59 =7¢3
Te3 =646
Te2 =649
6e2 =345
5e2 =2e5
540 =249
5e2 =343
S5e6 =344
507 =37
640 =348
3.9 =240
3¢2 =0el
362 Qo4
343 =1e8
bats =32
57 =2¢0

CORRECTIONS

= 1e2

GRAVIMETRIC DEFLECTIONS

Osl

NUMBER
OF
POINTS

o W NN N =W

=

& N B

=

LI R I I N T B R T T T R TR )

IDENT,

X Y
14 00
14 01
14 o2
14 03
14 04
14 05
14 06
14 07
14 08
14 09
14 10
14 11
14 12
14 13
14 14
1% 15
14 16
16 17
14 18
15 00
15 o1
15 o2
15 03
15 04
15 05
15 06
15 o7
15 08
15 09
15 10
15 11
15 12
15 13
15 14
15 15
15 16
15 17
15 18

PLUMB=LINE DEFLECTION

AVERAGE
645 =546
60t =5.0
604 =645
6s8 =5s7
be2 =549
6s]1 =58
546 =445
5¢0 =34l
$el =245
509 =246
606 =3l
TEd v =29
Te5 =442
Tel =440
53  =1e3
Ak =047
2eh =147
Gal =222
447 =142
662 =543
6e8 =51
6¢9 =641
Tel =746
502 =Te0
5¢1 =545
Sels =47
5¢6 =34l
662 =149
Te0 =148
746 =24
840 =248
Te9® =307
Re8 =441
Bal =344
665 =246
582 =leo
449 =14t
50 “0e9

SURFACE
645 =546
6att =540
64 =645
6e4 =6e7
642 549
6sl =548
56 =4e5
540 =3e1
Sel =245
509 =2e6
6e5 =3.1
740 =29
Te5 =442
Tel =440
543 =1e3
3e& =046
244 =1e2
4e2 =069
547 =12
6e2 =53
648 =540
609 =641
Tel =746
5e2 =649
5¢0 =504
-5ek =l4eb
Seb =3¢l
6e2 =1.9
Te0 =1e8
Te6 =245
840 =248
Te8 =346
Be9 ~4el
842 =34
606 =246
4e9 =le3
349 000
40 =0e6

CORRECTIONS
91 309
4eb - 2e2
1.5 = 3¢5
= 5.8 = 3e3
1e2 0e6
= 0l 201
= 047 = 09
= 0.7 = 02
= 1.8 = Oel
- 0.1 le8
Osl = 446
= 3T 266

59

NUMBER
OF
POINTS
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9. e
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v N

10
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~ & O

o w



60
IDENT.
X Y

16 00

16 o1

16 02

16 03

16 04

16 05

16 06

16 07

16 08

16 09

16 lo

16 11

16 12

16 13

16 14

16 15

16 18

16 17

16 18

17 00

17 01

17 02

17 03

17 04

17 05

17 06

17 o7

17 o8

17 09

17 10

17 11

17 12

17 13

17 14

17 15

17 1e

17 17

17 i8

PUBLICATIONS OF THE DOMINION OBSERVATORY

PLUMB=LINE DEFLECTION

AVERAGE
647  ~5el
648 4ol
649 =640
648 ~Bets
Gl =840
549 “5e4%
Geh  =4e2
607 27
740 =1le2
Te3  =1s2
Te6 =240
T8 =248
B0 ~3e3
Beh =347
8e7 LETY
Beb =345
Te8 =340
607 =20l
662 ~0s4
Te7 =49
Te2 =540
Te2 =600
Tete =845
Te8 =84l
844 =540
Be5 «3s9
Bak =26
8el ~le4
Te5 =les
Te4 =1a8
Tett =244
Te7 =340
Te9 =343
863 =305
B8s7T  =3eb
8¢9 =34l
Beb =247
Te8 =13

SURFACE
6e7 =5a.l
648 =hok
609 =640
68 =863
el =8¢0
59 =54
6e3 ~4el
6T =247
6e9 =143
743 =2
Te6 =240
840 =248
Be2 =342
8a8 =346
Be8 =3.8
Beb =346
Te6 =34
6e3 =leb
560 0e3
TeT =449
Te2 =540
Te2 =640
Tete  =Bs5
7s9 =84l
8e4 =540
845 =39
803  =2.7
Bel =l
746 =142
Teb =1.8
Ted =246
Te8 =247
BeO =343
8e3 =348
Bs7 =347
849 =33
89 =246
Te6 =140

CORRECTIONS
Oe8 0e2
Osl 1le5
161 0eb
0sl 0e3
1.8 lel
043 Ot
1e5 0.7
4e9 Be7
li4 1.8
045 Ook
07 Ce9
03 0e2
0a3 065
046 Oel
142 043
le2 0e3
065 OeB
02 Ot
12,8 904

NUMBER

OF

POINTS

11
10
11
12
10
11
18
22
14

w

S W W W

IDENT.
X Y
18 00
18 0l
18 02
18 03
18 04
18 05
18 0é
18 o7
18 08
18 09
18 10
18 11
18 12
18 13
18 14
18 15
18 16
18 17
18 18

PLUMB-LINE DEFLECTION

AVERAGE
69 =4e7
Te0 =540
Te3 =546
843 =76

1063 =740
1100 =47
11:0 =40l
1048 =340
1061 =21
9e3 =149
Be7 =201
Be3 =245
Bal =248
8s2 =3:0
Beh =249
8eb =302
8e8 =304
845 =34l
Be3  =2e1

SURFACE
669  =he?
Te0 =540
Te3 =506
8e3 =745

10e3 =740
1160 =47
1160  =4.1
108 =3,0
102 =240
943 =1.8
866 =240
8e2 =243
840 =27
Te® =gl
8e3 =36l
8e6 =342
B8e7 =344
845 =3el
842 =240

CORRECTIONS
247 0e3
1.0 1.2
0e6 le4
Qo 08
Osl Ce3
046 0e2
0e9 1.8
140 Ol
1,3 Oe3

NUMBER
OF
POINTS

13
1
18
13
11
11
14
23
10



SET Il
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62
IDENT.
X Y
00 00
00 o1
00 02
00 03
00 04
00 05
00 06
00 07
00 [+1:}
00 09
00 10
00 11
00 12
00 13
00 1s
00 15
00 16
00 17
00 i8
01 00
o1 0l
o1 02
01 03
01 04
01 05
0l 06
01 07
01 08
o1 09
ol io0
01 11
01 12
01 13
01 14
01 15
0l 16
01 17
0l 18

PUBLICATIONS OF THE DOMINION OBSERVATORY

PLUMB=LINE DEFLECTION

AVERAGE
le8 =243
1e3 =1a2
le2 =1le2
1s5 =14l
17 ~0e8
204 =067
2eT =009
340 =0e9
3s1 =10
3¢2 =1lel
3¢2 =1le2
303 =1e2
323 =le3
304 =13
364 =le3
304 =13
ETLY =13
35 =13
3¢5 =1e3
340 =3e1
245 =149
262 ~=lel
202 =049
20l =0eh
240 =0e2
2e1 =065
208 =046
3e2 =049
342 ~=led
3e2 =la2
3e2 =le2
3¢3 =142
343 =13
3e3 =143
323 =140
3¢4 =143
344 =13
344 =le3

SURFACE
le8 =242
le4 =140
leé ~=lel
1e8 =0s9
241 <048
207 =008
249 =100
3s1 =le0
362 =lel
3¢3 ~le2
3e3 ~le2
363 ~le3
3¢6 -1le3
34 =le3
3eb =1e3
3¢4 ~le3
3e4  =leé
3¢5 ~leé
3¢5 ~le3
343 =340
247  ~1e7
245 =048
249 =0eé
3e4 0ol
206 =006
2¢4 =008
360 =007
3e3 ~le0
343 ~le2
3e3 ~le3
3e3  ~le2
3e4 ~le2
3¢5 =1e3
3¢5 =l
3eb =le&
34 =lek
304 ~le3
3e4 =1e3

CORRECTIONS

0s3

= lel

NUMBER

OF

POINTS

46

IDENT.
X Y
02 00
0z 0l
02 02
02 03
02 04
0z 05
02 06
02 o7
02 08
02 09
02 10
02 11
02 12
02 13
02 14
02 15
02 ie
02 17
02 is8
03 (1]
03 01
03 02
03 03
03 04
03 05
03 06
03 07
03 08
03 09
03 10
03 i1
03 12
03 13
03 14
03 15
03 16
03 17
03 18

PLUMB=LINE OEFLECTION

AVERAGE
bel =249
4e7  ~1e8
4e8 ~le#k
4eb =1s2
be2 ~lel
30 =0e9
206  =0el
3el Oel
3¢5 ~0.8
34 =1e2
249 ~=1e2
3s1 ~lel
301 ~le2
3sl ~le3
3el =163
302 =142
32 ~1le2
3e2 =162
33 «le2
4e5 =243
406 ~lets
be6 =143
5.0 ~0e8
Te0 =18
beob =263
3e3 =045
245 Qe3
242 =0e8
le8 =148
240 =16l
3s2 =068
3¢0 =1e3
340 =143
209 =1le3
209 =142
360 =le2
381  ~le2
32 =le2

SURFACE
bels =247
4e9 =147
500 =1e0
“o8 Oeld
hokh =102
362 =241
267 =045
361 0.0
37 =0e9
35 =le4
249  =le4
269  =1el
343  =lel
3e5 =143
3a&  =le&
362 ~let
3e2 =le3
342 =143
33  =1le3
4¢3 =21
4e6 =1e3
4e7 =049
469  =0e2
6e3  =le8
bets =247
4e0 =048
343 Oel
267 =048
201 =242
1e9 =145
346 =06
3e6 =066
4¢5 =143
364 =18
340 =145
340 =13
360 =142
34l =1le2

CORRECTIONS

0s7 = 146
- 129 = 0e3
=3640 265
- 347 le4
- 0e7 = 003
= 0e5 = 0e8

1e6 = 346
- 9,8 209
=1606 le4

NUMBER
OF

POINTS

e ® & & ®

16

E3Y
b4

41

25



IDENTo
X Y
04 00
04 ¢33
04 02
04 03
04 04
04 05
04 06
04 o7
04 o8
04 09
04 1o
04 11
04 12
04 13
04 14
04 15
04 16
04 17
04 18
05 00
a5 138
05 02
05 03
05 04
05 05
05 06
05 o7
05 08
05 09
05 i0
05 11
05 12
05 13
05 14
05 15
05 16
05 17
05 18

PLUME=~LINE DEFLECTION

AVERAGE
3¢9 =2e1
Beb  ~1.8
206 =17
202 le3
362 =le5
3¢9 =4e7
247 =1s6
1e1 =0e8

=0.0 =le4
=00 =1le¢6
0e9 Qe
206 0e2
342 =leb
2¢7 =1e5
243 =1e3
246 =1e¢0
268 =1lel
2¢9 -=lel
340 =l1lel
2pd' | mZad
Eae =247
Qe6 =247
Oel =062
=lel 042
206 =247
265 =343
10 =242
0e2 ~le7
Oe3 -le2
Ge2 1le2
Oel leb
2e1 =lal
202 =23
1.9 =143
243 =006
2e5 =069
246 =la1
245 =049

SURFACE
346 ~1le8
304 =~leb
28 =1e3
245 260
4eb =le2
6ot =4eb
4e2 ~le7
201 =1e¢3
0e7 =1e9

=0el =26
1.0 0Ce7
3e8 0Oe8
3eb =06
206 =1le6
242 =249
245 =le&
2e7 =le2
248 =lel
249 =1lel
1.8 =240
1le7 =2e1
Oe5 =242
=0e0 1e0
=140 263
340 =248
245 =542

Oe8 =248
=0l =27
=00 =243
Ge2 2¢2
=0e& 21
146 =1le8
Oe3 =245
le1 =1le7
2.l =0e8
2e5 =10
245 =lel
2e4 =1e0

GRAVIMETRIC DEFLECTIONS

CORRECTIONS
006 = Be3
249 13
1e5 = 943
Osl 249
1.8 3eh
3.0 240
6ol 32
0e3 = 0e2
57 561
3l - 442
Te7 247
244 = 2.9
2el = 244
0e3 Qe4
265 Ce2
3e2 = 502
50 365
le5 0ot

NUMBER
OF
POINTS

45
41
33
40
35
50
46
42

10

14
27
44

49

43
45
41
40

35

IDENT»

X Y
06 00
06 01
06 02
06 03
06 04
06 05
06 06
06 o7
06 08
06 09
06 10
(¢ 11
06 12
06 13
06 14
06 15
06 16
06 R
06 i8
07 00
07 0l
07 02
07 03
07 04
07 G5
07 06
o7 07
07 08
07 09
a7 10
07 11
07 12
o7 13
o7 14
07 15
07 i6
o7 17
07 18

PLUMB=LINE DEFLECTION

AVERAGE
2s2 =3l
lsl  =3e4
17 =2e9
240 =0e¢7
1.1 08
0s9 =le2
1.5 =348
1le5 =3e0
169 =18
240  =1le2
le7 0e0
Osl 149

«0e0 0«5
1e0 =1.9
240 =1e2
1e9 =Qe4
243 =007
2e5; =12
2e& =0e8
342 =4e3
245 =34
3e4  =leb
3e4  =leé
2e5 =0s8
140 =16
Lis =2x7
340 =149
3¢8 ~le2
9 =1ad
349 Qo4
bals Oel
263 =0e3
1e7 =0e8
1.0 =0s8
le7 =043
21 =0+2
245 =140

=065

SURFACE
le6 =248
lel =246
let =245
163 0s0

=0e6 le7
=le7 =1le0
062 ~4eb
0e9 =347
le4 =245
246 =1le8
1.8 Oel
=0e8 242
=048 =0e1
0e2 =244
240 =049
1e9 =003
242 =048
206 =le3
243 =0e8
362 =37
244 =243
3el =le6
249 =lel
le7 =006
Oel =leé
Oe7 =249
204 =203
3.5 =le2
3e7 =1e5
3e6 =0e8
4e0 =002
le4 =le2
1e2 =0e2
261 =0el
1e9 «0s7
240 =043
244 =lel
28 =045

CORRECTIONS
3e8 = 240
600 ~18e4
244 = 0e7
Ostt = 03
361 25
065 1.8
160 =246
346 = 6e2
209 96
1.8 = Oe4
264 200
5e3 = 140
3.8 57
262 Oeb
443 0s3
1.2 Oeb
bole - 243
1le3 Oe9

NUMBER
OF
POINTS

&

n

@ W &

13

20
30
36
37
38
41

36

oW -

14

15

13
32
50

50



64
IDENT
X Y
08 o0
08 01
08 02
08 03
o8 04
08 05
08 gé
08 07
08 08
08 09
08 10
08 i1
08 12
08 13
08 14
08 15
08 16
08 17
08 18
09 00
09 0l
09 02
09 03
09 04
09 Q5
09 06
09 07
09 08
09 0%
09 10
09 T
09 12
09 13
09 14
09 15
09 16
09 17
09 18

PUBLICATIONS OF THE DOMINION OBSERVATORY

PLUMB=LINE DEFLECTION

AVERAGE
3e2 =46l
3.9 =34
3 =1e8
3e4 =le4
345 =le5
3s4 =1e9
3e8 =le7
bols =le2
3.9 =1e3
306 =le4
345 0.8
beb Qo e
45 =le5
4e9 “2e7
202 =1e8
17 (11
15 Oel
201 =0e2
3e3 ~0sl
209 =349
340 =340
365 =2:0
3el ~1e5
343 =lel
bel ~le&
he8 =le&s
bals =1e7
247 =241
249 =1le7
244 0e5
le3 0e5
2.0 =0sl
204 =2e¢4
3e2 =445
1le3 =09
lel 0e9
242 142
3.1 046

SURFACE
3.8 =349
3e6 “2e7
3el =17
340 =163
249 =le4
246 =1e8
31 =leb
349 =1e¢3
345 =lel
2¢9 =149
3.0 0e3
349 060
344 =248
2s2 =13
Oe2 ~0eé
Oeb =0e4
069 =002
1e7 =0¢3
362 0e0
39 =368
3e4 =300
343 =21
265 ~1e5
248 “le2
he0 =le&
4e3 =142
4ol =leb
346 =242
247 =201
243 0e0
lel =0¢2
1.7 =247
2l =27
17 =leh
1.2 =01
1e2 Goé
242 lo#
343 Ve9

NUMBER IDENT,.
CORRECTIONS OF
POINTS X Y
02 le8 18 10 V1]
= 1le2 = lel 10 10 01
3 10 02
2 10 03
5 10 o4
5 10 05
3 10 06
2 10 07
2 10 o8
2 10 09
062 1.9 14 10 10
1 10 11
4 10 12
=110 560 24 10 13
10 14
10 15
10 16
10 17
=-2s2 = 33 13 10 18
11 00
3 11 01
4 i1 02
4 11 03
= 1le2 Oe5 15 11 04
- le2 204 7 11 05
2 11 06
11 o7
3 11 oy
2 i1 09
07 0e8 18 11 10
1 11 11
11 12
36l Bel 11 11 13
= 3l 449 19 11 14
448 - 863 9 11 15
440 248 10 11 16
- 06l = 246 11 11 17
5 11 18

PLUMB~=LINE DEFLECTICON

AVERAGE
343 ~4e3
249 =27
246 ~1e9
2e2 =149
1.9 =0ads
204 =064
2s7 =17
2.0 =202
19 =245
262 =243
1e5 =009

=lel =0e2
=1le3 =0s6
~1s7 =1&5
1.3 =28
245 =1e5
240 le2
1e9 19
243 0e9
365 =443
249 =3e6
1.9 =246
lets =20l
1s1 =1e0
Osl =05
Oel =1l¢8
Oels =246
Qa7 =148
le7 “le2
341 -3¢0
=03 =245
-Ne7 =0el
le5 0e5
366 =05
4a5 =1e3
el 040
lets 145
1e2 17

SURFACE
37 4ol
34 ~3e¢4
204 =247
1.2 =24l
1.5 0e0
243 =0e5
244 =165
1e8 =l1l.8
le8 =246
262 =2e7
145 =1s5

~lett =0,9
=1.0 =1e6
Oel =1e5
246 =lel
27 =049
204 Te7
263 149
245 1.0

263 =348
206 =490
263 ~le)
17 =245
140 =0e2

=00 =05

Oel =le?
003 =22
0e6 =18
1.8 =165
343 =348

=0,0 =3,1
~0e2 =047
2e2 [ 1Y ]
bl 0e7
hely =1le¢0
342 =0e1
1le5 le4
1e3 17

NUMBER
CORRECTIONS oF

POINTS

300 = 3.0 34

= 0s6 = Cul 7
= le8 = 240 8
4

1

- 402 Tl 6
Osl 062 8

- Xs% Os4 8
= 248 08 7
3

1

3

3

= 249 1.0 8
1

1

= 542 10 39
=551 Ye= 259 11
5

- 649 =1047 9
= 2.1 240 15
- 0.6 Ge5 6
264 = 069 6

4

1

3

2

- 24 2e2 9
607 = 20 7
10,8 502 12
4



GRAVIMETRIC DEFLECTIONS 65
1DENT .« PLUMB=LINE DEFLECTION NUMBER IDENT. PLUMB~LINE DEFLECTION NUMBER
CORRECTIONS oF CORRECTIONS OF
X Y AVERAGE SURFACE POINTS X Y AVERAGE SURFACE POINTS
12 00 364 =4ed 169 =445 Uey 3e4 26 14 00 a3 =47 485 =447 - 4ot = 042 6
12 01 247 =bes4 1e7 =343 5 14 Ol 48 =845 448 =349 2
12 02 240 =343 240 =347 14 02 502 =4eb 5.0 =442 2
12 03 lel =245 19 =302 2 14 03 406 =308 4e5 =347 2
12 04 1¢0 =145 le3 =143 4 14 04 3,8 =243 347 =243 2
12 05 0e7 =143 Oe7 =162 3 i 05 3¢9  =0e8 349 =047 3
12 06 Nes  =1a2 066  =lel 3 14 06 407 Oel 447 02 2
12 o7 le6 =147 le7  =le4 2 14 07 468 =045 4e7 =043 3
12 08 241 =~le8 2¢4  =1e5 3 14 08 540 =145 406 =1l 3
12 09 1e7 0e3 267 0sl 4 14 09 49 =149 3¢9  =1e9 4
12 10 1e7 =3l 243 =348 1 14 10 5¢3 =ls4 560 =le8 -t
12 11 2e5 =443 3e3 =447 4 1% 12 66l  =0Oel 641 =062 1
12 12 364 165 443 145 3 14 12 Seb 148 643 19 2
12 13 469 26 646 340 2 14 13 549 1s2 Se4 15 4
12 16 Sel 0e3 645 067 3 14 164 640 Oel 5¢0 Ol 2
2. 15 Se4 =149 6al =240 14 15 5s5 =062 449 =045 4
12 16 5¢0 =1e9 5e2 =240 549 = 94 10 1 16 5¢4 =lel 562 =le4 1
g2 * 27 4ol Ol 44l 0e0 2 14 17 560 =240 4e9 =241 &
12 s 3¢5 201 345 21 5 14 18 362 =002 361  =0e2 2
13 00 346 =540 36  =4a9 = O0el = 0e3 14 15 00 468 =442 500 =4e2 = 1¢7 = 165 9
iz o1 347 =540 364 =349 3 15 01 562 =42 563 =347 4
13 02 3ot =4e2 267  =4e0 3 15 02 4o7 =445 4eT  =beh
13 03 247 =341 206 =342 1 15 03 409 =445 4e9  =Geb 3
13 04 202 =145 243  =1le5 2 15 04 409 =242 409 =242 3
13 05 240 =1e3 240 =1e2 5 15 05 Se7  =0e2 566 =0el 3
13 06 207 =047 2¢7 =046 2 15 06 545 Osl 545 0e2 2
13 07 343 =049 3e3 =046 4 15 07 5¢3 =07 562 =046 4
13 08 3e8  =le7 348 =047 4 15 08 4¢8 =147 466 =146 3
13 09 364 =146 34 =1e7 15 09 489 =149 447 =149 3
13 10 201 =24 202 =345 2 15 10 448 =141 487 =162 1
13 1 502 =13 S5e4 =le6 4 15 11 502 Vo4 5e1 Oet 1
13 12 6ol 21 64 204 4 15 12 540 17 449 1e7 1
13 13 55 240 548 249 5e1 1sl 6 15 13 405 145 42 1.5 1
13 14 465 0e2 447 0e3 545 Te5 39 15 14 5¢1 040 467 040 2
13 15 Se4  =0e9 Se4  =1le7 15 15 5¢5 =143 561 =1e3 3
13 16 65 =145 665 =149 b 15 16 404 =145 4e2 =le6 3
i3 17 604  ~0ab 664 =045 =2247 1042 8 15 17 Gehs =246 463 =246 3

13 18 4e8 1el 48 lel 15 18 485 =Qe4 bebh =0e& 1




66 PUBLICATIONS OF THE DOMINION OBSERVATORY

IDENT. PLUMB=LINE DEFLECTION R THE NuggER IDENT, PLUMB=LINE DEFLECTION ARk T NUggER
T SUERACE SURFACE x Y AVERAGE SURFACE

. W s 447 =345 18 00 500 =248 501 =248

S = A SaEa el e 18 o1 501 =33 5.2 =343

16 o2 562  =he? 502  =4eb 18 02 5¢7 =340 5¢7 =340

16 03 566 =348 5¢6  =3e7 18 03 607 =245 608 =246

16 Os 640 =1e8 5¢9 =le8 18 o4 740 =249 Tel =149 3
16 05 5.8 =002 5¢7 =0el i8 05 607 =149 6e8 =344 6
ER0- fg xo Lo 502 =02 18 06 663  =1e2 6e4 =047 3
s il mayes &i7 =142 18 o7 603  =le2 603 =049 5
e v =i el SN 18 08 605 =le4 6e5 =13 6
16 09 4s7 =148 406 =148 i8 09 666 =13 666  =loé 6
16 10 462  =1e2 4e2 =13 18 10 Tel =243 Tel =204 5
16 31 361 Oel 340 040 18 11 707 =202 7¢8 =243 1
e s S04 Db 202 07 s 12 Te2  0e3 7e3  0el 2
16 13 2.7 le4 2e2 el 3 18 13 5¢6  0e7 640 043 4
16 14 3¢5 143 204 Lot 4 18 14 4el  0Oel Sel 043 8
16 15 3¢9  -lel 3¢8 =048 2 18 15 bel 0ol “e3 0s7

16 16 347 =260 346 =201 4 18 16 4e8 =062 5¢0  =0e3

16 17 4s6  =leb 4e3 =147 3 18 17 466  Oel 560 040

16 18 5¢9  =0e6 508 =0e5 6 8 18 bods 0.0 4e6 Oel

17 00 4ol =361 4e3  =3el

17 01 408 =342 4e9 =342

17, 02 504 =4l Ses  ~4e0

17 03 605 =345 6e5 =346 4

17 o4 606 =241 6e2 =243 3

17 05 5¢3 =1e0 448 =140 2

17 06 4e5 =069 heb =007 2

17 o7 4e4 =15 4es  =lo4 3

17 o8 407 =leb 448 =146 1

17 09 4e9  =1a7 4e9 =148 2

17+ Ao 540 =246 500 =246 3

17 11 365 =led 3¢5 =145 1

17 12 207 1e2 247 140 1

17 13 2.7 244 2¢7 143

17 14 2.0 1l 2.0 14

17 15 1e7 =143 1e7 =042

17 16 3.2 =lel 344 =1e5

1717 308 =0sl 349 =~0s2

17 18 5s1 =063 5¢2 060



SET I
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68 PUBLICATIONS OF THE DOMINION OBSERVATORY

IDENT, PLUME=LINE DEFLECTICN NUMBER IDENT, PLUMB-LINE DEFLECTION NUMBER
CORRECTIONS oF CORRECTIONS OF
X Y AVERAGE SURFACE X Y AVERAGE SURFACE POINTS
00 00 309 =346 3.9 =346 oz o0 345 =440 345 =440
00 0l 367 =348 3.7 =348 02 o1 382 =443 342 =63
00 G2 304 =440 304 =4el 02 02 207 =446 2.7 =446
00 03 269 =346 249 =344 02 03 345 =367 3¢5 =346 1
00 U4 360 =348 340 =343 02 04 342 =248 3e1 =248
00 05 207 =beb 246 44t 02 05 483 =31 4e2 =340
00 06 247 =37 245 =346 02 06 448 =3el 449 =340 &
00 07 227 =342 207 =268 02 07 449 “3e2 %49 =340
00 08 267 =248 248 =36l 02 08 405 =341 4e5 =249
00 09 340 =244 361l =344 02 09 366 =267 3.8 =245 5
00 10 3¢l =245 3e3 =245 0z 10 369 =263 a4 =leb
o0 11 249 =148 343  =le2 02 11 4e9 =28 509 =247 6
00 12 360 =146 3e3 ~le5 02 12 400 =247 4ol =343 118
00 13 366 =24l 348 =241 02 13 3.0 =148 362 =1e9 172
00 14 368 =204 400 =244 0z 1a 2.8 =240 269 =16 91
00 15 309 =206 el =246 0z 15 26 =342 2¢7 =342 34
00 16 349 =246 4ol =247 02 16 267 =242 248 =27 36
00 17 4sl =246 462 =247 02 17 349  =le7 4s1 =149 52
00 18 4s2 =247 443 =248 02 18 4e2 =247 443 =248 20
01 00 348 =348 348 =348 03 00 27 =4 266 =445
01 o1 366 =440 346 =440 03 o1 246 =448 265 =4e8
o1 02 364 =445 3e6 =445 03 02 340  =del 360 =440 1
oL 03 360 =348 36l =347 4 03 03 3s3 =346 3e6 =346
01 04 304 =345 342 =344 6 03 04 343 =340 36l =340 1
01 05 402 =349 38 =4l 4 03 05 3s1 =243 340 =242
01 06 449 =343 406 =342 6 03 06 320 =248 249 =247 2
01 07 449 =342 465 =248 4 03 07 362 =364 362 =342 5
01 o8 500 =247 4s6 =247 2 03 a8 340 =4eU 3.0 =348 7
01 09 408 =244 560 =265 5 03 09 262  =3s1 203 =207 5
01 10 4e7 =247 567 =244 % 03 10 3¢3 =049 304 Ot 4
or 11 445 =245 Se3 =242 7 03 11 560 =243 5.4 =204 1
o1 12 346 ~1a8 440 =149 03 12 402 =8l 349  =5e2 698
61 13 3¢5  =leb 3.8  -1e7 03 13 267 =248 206 =249 327
01 le 369 -2e2 4e2 =241 03 14 16  =2e6 145 =245 553
01 15 349 =247 4e5 =247 03 15 lel =340 0e8 =340 133
01 16 3ab =245 3.7 =247 03 16 168 =140 169 =12 195
o1 17 440 =244 4e2 =245 03 17 249 =046 342 =047 200
ol 18 4e0 =246 4ol =27 03 18 464 =245 beb =247 129



IDENT .
X Y
04 00
04 01
04 02
04 03
04 04
04 05
04 06
04 07
04 o8
04 09
04 10
04 Tl
04 12
04 13
04 14
04 15
04 16
04 T
04 18
05 00
05 o1
05 02
05 03
05 04
05 05
05 06
05 07
05 08
05 09
05 10
05 LY
05 12
05 13
05 14
05 15
05 le
05 17
05 18

PLUMB=~LINE DEFLECTION

AVERAGE
341  =5e1
3e3 =349
483 =348
45 =3e3
4e9 =30l
3e8 =345
22 =3e2
led =36l
1a7 =4l
26T =247
3e2 0e5
247 =240
247 =53
200  =4el
165 =343
ls4 =249
1e5  =0e7
1.0 049
2e7  ~leb
4eb =540
5¢2 =346
4s9 =3l
Sals =249
5e2 =3¢5
4e8 =407
4e0 =5.0
248 =38
249 =248
348 =1e9
249  =lel
lel =247
1.8 =447
245 =440
3s1 =36}
323 =246
362 ~1le6
240 0e3
let Oel

SURFACE
342 =5e2
3el =40
Gel =346
4e3 =3eb
46T =342
346 =343
2e2 =31
leé =340
le7 =348
246 =243
248 le6
149 =24
2e5 =643
240 =348
le6 ~3¢2
le8 =248
240 =0e7
1e5 0e7
340 =1le7
4e7 =563
S5e2 =349
4eb =340
heb =340
540 =345
47 ~heob
349 =448
27 =348
248 =246
3eb =1leb
245 =0e6
0e2 =27
169 =449
246 =440
341 =248
35 =20l
3¢9 =1le4
209 0e0
20 =05

GRAVIMETRIC DEFLECTIONS

NUMBER
CORRECTIONS oF
POINTS
6
86
144
243 = 246 36
- 046 1.8 15
1
4
1
2
9
=1145 = T¢3 15
402 =109 16
18
63
06 0e5 23
80
107
115
247 245 9
-~ 447 =~ 23 50
134
- 2.8 243 30
= 143 1s7 9
= 346 05 7
5
5
2
042 Qe2 16
5
- 0sl = 1.5 8
- 1.8 2e4 13
~ 646 145 13
= 145 05 44
94

IDENT.

X Y
06 00
06 o1
06 02
06 03
06 04
06 05
[¢]-] 06
06 07
06 [+1-]
06 09
06 10
06 11
06 12
06 13
06 14
06 15
06 16
06 17
06 i8
07 00
o7 01
o7 02
07 03
07 04
07 05
o7 06
o7 o7
07 [+1.]
o7 09
o7 10
07 11
o7 12
o7 13
07 14
a7 15
07 16
o7 17
07 18

PLUMB-LINE DEFLECTION

AVERAGE
543 ~hek
4e9 =36
4e8 =369
3e3 =340
fHel =343
4e6 =446
4e8 =5¢2
5.0 -hel2
be8 =27
4ot =243
348 =244
362 =3e1
346 =346
4eb =361
4e9 =248
540 =247
be8 =-1e7
53 =0s9
4e0 ~0e2
505 =4e8
502 =348
5e3 =446
407 =347
Lokt =244
349 =44¢5
4ol =561
4e0 =440
349 =340
349 =245
4e3 =246
406 =34l
S5el =2e9
58 =247
S5t =340
448 =340
406 =l.1
5e5 =06
540 =le¢4

SURFACE
S5e1 =445
540 =349
4e7 =443
36l -3¢0
349 =29
445 =443
48 =560
468 =4l
4e7 =246
4¢3 =241
3e6 =2s1
31 =340
3e4 =307
45 =361
49 =245
448 =240
Ge7 =lel
5e2 “le2
440 =-1e2
54 =409
Sel =440
S5ets =48
Sel =349
4e2 «2e5
209 =fel
365 =447
3e7 =440
347 =246
4ol =243
4e2 =242
45 =249
4e9 =3l
546 =246
53 =28
445 =245
349 =08
447 “0e8
446 =148

69

NUMBER
CORRECTIONS oF
- POINTS

e 201l = le3 34

= leU = 440 50

204

= 043 0eb

N W NN W 0

w

11
1.6 3.8 6
= 8.3 Qel 6

= ' Feid 249 26

W

Noow b

- 245 6e6 28

R 255 0.3 11

1.7 3.2 l4a



70
IDENT,
X Y

08 o0

08 o1

08 02

08 03

08 04

[o1:3 05

08 413

08 o7

08 08

08 09

08 10

08 11

08 12

08 i3

08 14

08 15

08 16

08 17

08 i8

09 00

09 o1

09 02

09 03

09 04

09 05

09 06

09 07

09 08

09 09

09 1o

09 11

09 12

09 13

09 14

09 15

09 16

09 17

09 18

PUBLICATIONS OF THE DOMINION OBSERVATORY

PLUMB=LINE DEFLECTION

AVERAGE
S5e2 =400
509 =3s7
562 =445
53 =420
4ol =420
365 —4e8
348 =540
3e7 =bok
a4 =340
3646 =242
3e3 =240
4e2 =243
S5e1l =243
50 =267
407 =348
4ol =347
365 =1l
247 =05
3l - =1sT
40T =307
446 =4l
3e4 =542
3e7 =847
3e4 =bel
349 =4e5
3e7 ~448
3.8 ~bekt
345 =33
36l =248
204 =201
243 =1s4
243 =242
1le7 =31
1le8 =346
245 =349
2e1 =246

=0s1 =140
Oe7 =063

SURFACE
540 =4el
549 =348
502 =46
S5e¢4 =he3
440 =449
343 ~448
3e2 =hel
249 =442
245 =242
248 =18
Je2 mhet
hpZ «X33
beb =245
hal =245
heb =345
4e0 =345
363 =08
248 =0e5
3e2 =240
407 =38
&eb ~he0
3e5 & =5
348 =he8
3.8 ko5
4e8 =4e5
4e0 =4e8
348 =4e8
343 =208
245 =149
241 =13
261  =1eb
242 =246
le6 =246
1s7 =343
245 =345
246 =1e9
1e5 =1e0
1e3 =140

CORRECTIONS
- 745 = 1le6
242 36
0,8 0e7
367 Tel
le6 = 09
1.9 147
241 = 443
= 340 ~ 346
- 2.1 - 0s3
- 842 1.9
Yets 19
545 - 242
0e5 - 0e5
6e5 = 83
1.8 0e9
= 140 - 1lel

NUMBER

OF

POINTS

¢t W o= v N

15
17

r& ® & N 0~

& W e

15

19
25
11

@

& N £+ > > 0

IDENT
X Y
10 00
10 01
10 02
10 03
10 0%
10 05
10 06
10 07
10 08
10 09
10 10
10 11
10 12
10 13
10 14
10 15
10 16
10 17
10 18
11 00
11 01
11 02
11 03
11 04
11 05
11 08
11 o7
11 08
11 09
11 10
11 11
11 12
11 13
11 14
n 15
11 16
11 AT
11 i8

PLUMB=LINE DEFLECTION

AVERAGE
4ol =346
hel =448
46  ~5.1
5.0 =4l
445 =he3
440 =46
365 542
34 =46
340 =346
201 =343
240 =247
leé =240
0e8  =2,7
0e9 =343
1e2 =340
1e7 =340
246 =349
0s9 =243
1.1 146
4al =349
LTL2 =34
5.9 =4e3
566 ~48
565 =4e9
409 =543
4e5 =5¢4
LTS =4e8
305 =47
245 =348
244 =246
262 =244
245 =246
362 =27
3e6 =340
3eh =245
302 =347
348 =29
he2 202

SURFACE
402  =3,7
4e2 =448
4e6 =541
560 =4¢2
beT ket
hoh =he7
3e8 =543
440 =&e7
3e7 =304
2eh =249
1e8 =242
140 =240
160 =247
069 =3,0
lel =247
le6 =245
264 =2¢1
QB8 =242
le0 =062
402 =4,0
heb =345
548 =45
S5el =48
S5eb =he8
540 =543
4e7 ~5e4
he6 ~he7
3¢T =46
266 =346
204 =204
201 =243
205 =245
341 =245
345 =248
3e2 =2,1
2¢5 =3,1
1.9 =28
LY leé

CORRECTIONS
= 346 15
« 1¢0 = 1al
= 0e5 = 141
0e3 1e2
341 241
349 - 201
= Qal 0e7
= 27 = 0e6

NUMBER
OF
POINTS

v = NP

21

- @ = W W NWwW N O N v

W = N

n
o

WoN S W W W o o W e O



IDENT
b v
12 00
1z 01
12 02
12 03
1z 04
12 05
12 06
12 07
12 o8
12 09
12 10
12 1
12 12
12 13
%12 14
1z 1s
12 16
g% 17
12 18
13 00
13 o1
113 02
h 13 03
113 04
13 05
13 06
13 o7
13 o8
13 09
13 10
13 11
13 12
13 13
13 14
13 15
13 16
A 17
13 18

PLUMB=LINE DEFLECTION

AVERAGE
a6 =he0
4eb =29
540 =346
6ol ~heb
668 =448
667 =547
6el  =5.8
Se4 =546
445 =546
bl =442
40 =249
401 =2.1
4e9 =147
Sels =243
545 =248
S5e66 =343
5¢1 =346
67  =leb
6e8 240
he3 =4el
hel =248
beb =246
Sebé =343
59 =4e¢5
620 =6ol
600 =644
640 =602
5¢5 =6sl
506 =443
54 =247
5¢8 =146
640 =1e3
548 =242
57 =340
549 =340
649 =242
Besl =048
Te3 0e5

SURFACE
47 =44l
446 =30l
5e1 =ael
6e2 =443
648 =443
6e8 =547
642 =5.7
505 =545
4e6 =545
4ol Aol
4e0 =248
440 =240
4.8 =146
5¢6 =242
504 =246
5¢2 =34l
4e7 =304
6l =leo&
6e3 1.8
bols =4e2
4e2 =3,0
4e8 =248
549 =343
6sl =443
6ol =600
6el =604
6el =642
565 =640
546 =42
S5¢4 =246
S5e8 =165
640 =162
507 =241
566 =249
567 =249
6eT =242
TeB =048
740 Oste

GRAVIMETRIC DEFLECTIONS

NUMBER
CORRECTIONS OF
POINTS

507 Teb

-
=1

= 347 Osl

[
o

N NN W R W W W W NN W N

WOV W W oW W NP W NN N Y N

[

IDENT .

X Y
14 oo
14 01
14 02
14 03
14 04
14 05
14 06
14 o7
14 08
14 09
14 10
14 11
14 12
14 13
14 1la
14 15
14 16
14 17
14 18
15 00
15 0l
15 02
15 03
15 04
15 05
15 06
15 o7
15 08
15 09
15 10
15 11
15 12
15 13
15 14
15 15
15 16
15 17

15

i8

PLUMB=LINE DEFLECTION

AVERAGE
4ot =lbehs
beT =246
4e6 =2e4
4ol =3s3
309 =43
47 =545
5e8 =546
603 =643
6sl =640
66 ~G4e3
6dl =249
663 ~le&
600 =147
546 =245
Sett =248
640 =245
665 =13
645 =0e7
60 =046
409 =349
502 =265
4eT7 =340
4eb =348
42 LLTY
4a5 =4l
546 =409
5.9 =6eb
6el  =5.8
666  =4e3
662 =362
505 =17
he9  ~1le8
5¢1 =246
583 =27
Sets =1e9
S5¢1 =17
3.7 =1¢3
4ol =0eé

SURFACE
445 =4e4
4e8 =27
4o ~2e4
4e3 =343
440 ~442
4o =545
59 =546
643 =6e3
6sl =640
646 =4e3
6ol =248
6e2 =143
569 =146
506 =245
503 =27
548 =204
6e3 «le3
643 =07
548 =0e6
409 =349
5e3 =26
4e8 =3,0
445 =349
443 —4el
446 =4e2
547 =449
549 =6e3
6ol =547
666 —be2
62 =342
Se4 = BT
4e9 =148
540 =26
562 =207
543 =1e9
540 =17
346 =143
440 =066

CORRECTIONS
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NUMBER
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IDENT.
X Y

16 o0

16 01

16 02

le 03

16 04

16 05

16 06

16 07

16 08

16 09

16 10

16 11

16 12

16 13

16 1%

16 15

16 16

16 17

16 18

17 00

17 (13

17 02

17 03

17 04

17 a5

17 06

17 o7

17 o8

17 09

17 io

17 11

17 12

17 13

17 14

17 15

17 16

17 17

17 18

PUBLICATIONS OF THE DOMINION OBSERVATORY

PLUMB~LINE DEFLECTION

AVERAGE
5¢2 =440
400 =249
4e3 =31
b4e5 =346
5.0 =4,
5.1 =3¢9
545 ~442
640 =640
6e7 =5e2
6el =43
S5e5 =442
646 =246
4¢3 =240
&4s6 =2s1
562 =248
56 =240
Sel =3.0
460 =242
346 05
52 =48
43 «347
348 =246
3.7 =304
40 =34
563 =35
546 =4al
Se8 =542
549 =505
56 =542
58 =406
545 =249
5.7 “le7
640 =1e7
-7 =240
6eb =0e9
648 =342
Te0 =440
549 0.2

SURFACE
5¢2 =420
40 =249
443 =301
&e6 =346
540  =4el
52 =349
5a5 =442
640 =600
67 =542
6ol =443
55 =44l
466 =246
443 =240
446 =2.1
502 =244
55 =240
640 =340
349 =242
3.5 045
53 =he9
463 =347
348 =246
3.8 =34
4e0 =3e4
S5¢4 =3¢5
546 =441
548 =542
509 =545
546 =5.2
547 =445
S5e5 =249
567 =147
60 =147
6e4 =240
646 =069
67 =342
669 =440
548 0e2

CORRECTIONS
Oet 06
- O0eb Oe8

NUMBER

OF

POINTS

w

- W e

N W W N

@® ~N =

IDENT,
X Y
18 o0
18 01
18 02
18 03
18 04
18 05
18 06
18 o7
18 08
18 09
18 10
18 11
18 12
18 13
18 1s
18 15
18 16
18 17
18 18

PLUMB=LINE DEFLECTION

AVERAGE
504 ~beb
6ol =4e4
5.4 =34
562 «3¢5
53 =27
55 =246
5.7 =3.9
640 =544
6e6 =543
Teb =443
843 =443
846 =340
8.2 =1e¢6
Te8 =146
Te6 =1e9
Tk =1e9
602 =27
Te8 =340
76 =1.0

SURFACE
S5e4 =446
6el =844
Seb =344
562 =345
563 =247
505 =266
547 =349
640 =544
666 =53
Te6  —he4
843 =443
Beb =249
862 =1e6
TeB  =le6
766 =149
Tel =149
662 =247
Tel =341
7¢5 =140

CORRECTIONS
222 1.2
1.5 1.1
- 042 0eb
~ 0s5 0e2
Osl 161
1,1 2+8
- 202 1.3

NUMBER
of
POINTS

~ - N L

-~ & &
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