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THE BIAS IN dT/d~ CALCULATED BY THE FAST CORRELATION METHOD 
FOR YELLOWKNIFE SEISMIC ARRAY DATA 

D.H. Weichert 

ABSTRACT: Automatic search-detection and processing of seismic events using a correlation technique has been used for 
several years for the data from the Yellowknife seismic array . Arrival vectors (azimuth and dT/dA) of detected events are 
estimated from the parameters of the maximum correlation. The simple interpolation used to estimate the position of the 
maximum leads to a frequency-dependent bias. Estimates of the bias are presented for several frequencies. For teleseismic 
frequencies around 1 Hz, the computational bias in the fast processing algorithm of determining dT/dA varies from o to 
about 4 ms km -l. An average scalar bias is 1.7 ms km -l, which is smaller than the published error vectors in dT/dA . These 
must therefore be explained by the structure of the earth. 

RÉSUMÉ: Les données séismiques recueillies par le réseau séismique de Yellowknife sont automatiquement enregistrées et 
analysées depuis plusieurs années à l'aide d'une méthode de corrélation. Les vecteurs arrivées (azimut et dT/dll) des 
phénomènes enregistrés sont calculés en fonction des paramètres de la corrélation maximale . L'interpolation simple utilisée 
pour déterminer la position du maximum entrafne une erreur systématique qui est fonction de la fréquence. L'auteur fait 
l'estimation de ces erreurs systématiques pour plusieurs fréquences. Dans le cas de fréquences téléséismiques de l'ordre de 1 
Hz, l'erreur systématique du calcul dedT/dA par la méthode algorithmique rapide varie de O à environ 4 ms km -l . L'erreur 
scalaire systématique moyenne est de 1.7 ms km -l, et donc inférieure aux valeurs publiées du dT/dA des vecteurs erreurs. 
Ces erreurs ont donc leur origine dans la structure terrestre. 

Introduction 

The data from the Yellowknife seismic array were first 
processed at the Dominion Observatory in Ottawa in 1965. 
Initially strong emphasis was placed on the implementation of 
an automatic process to detect and locate low magnitude 
events, the process to be performed in real time or faster and 
still adequately cover the so-called Third Zone (the distance 
range from about 25° to 90° around the array) (Manchee and 
Somers, 1966). Based on the suggestions of Birtill and 
Whiteway ( 1965), correlations between the phased sums of 
two groups of seismometers were formed on a digital 
computer. The magnitudes of the correlations served as 
decision parameters for the presence of a seismic event in the 
original data. The phase lags corresponding to the maximum 
correlation were used as an estimate of the direction and 
velocity of the seismic energy arrivai, and thus of the 
epicentre. 

In 1966 a different algorithm for the calculation of cross 
correlations was implemented. With this algorithm, it became 
possible to increase the processing speed by a factor of two, 
without any significant sacrifice in the density of coverage of 
the Third Zone. Details of both methods have been described 
by Weichert, et al. (1967). To improve the crude estimate of 
the azimuth and dT/dA of the incoming seismic signal, a 
maximum in the two-dimensional correlation surface was 
calculated by interpolation from the three beams with the 
highest energy. 

Weichert, et al. (1967) reported initial results obtained 
with the correlation program. They quoted nns errors in 
azimuth and range of epicentres, which were approximately 
equivalent to 3 to 5 ms km - 1 errors in the measurement of 
dT/dA. Manchee and Weichert {1968) reported similar errors, 
but also discovered pronounced regional trends in the errors. 
These authors recognized the bias inherent in their method of 
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calculation, due to rounding in the calculation of lags in the 
. first method, and to the asymmetry of the array response in 
both methods. They estimated the effect to be about 2 ms 
km-1 and concluded that it did not explain the epicentral 
errors. Indeed Weichert (1969) has shown, for events in 
Eastern Kazakh, that the regional trend of the error is caused 
by a systematic change of waveshape across the array, 
compared to which the computational bias is small. Mack 
( 1969) described similar signal variations at the LASA in 
Montana. Further research into the causes of these effects will 
obviously require more refined methods of calculation than 
those used for the automatic search of the Yellowknife 
records. However, the fast correlation program has been 
extremely useful for its purpose and will most likely continue 
to be used at the Dominion Observatory, although modifica
tions may be made from time to time. It is therefore important 
to understand the reasons for computational bias in the 
measurement of dT/dA by this method. 

This paper presents a detailed numerical evaluation of the 
effects of the method of calculation, from which nominal 
corrections to the automatically calculated dT/dA can be 
obtained. 

The Yellowknife Array Response 

The response pattern of seismic arrays has been generally 
discussed by Birtill and Whiteway (1965). Somers and 
Manchee {1966) have given cross sections for constant azimuth 
and velocity of the Yellowknife array response for different 
processing methods. For our purposes it will be convenient to 
reformulate the well known results in vector notation. 

A seismic wavefront arriving at the surface of the earth 
from a distant epicentre can be considered a plane, to a first 
approximation. We describe its linear intercept with the 
surface by the arrival vector s pointing into the direction of 



370 PUBLICATIONS OF THE DOMINION OBSERVATORY 

arrivai and having magnitude dT/dD., which is the distance 
derivative of the seismic travel time. For convenience we 
assume initially a sinusoidal wave of frequency f. More realistic 
wavelets can then be considered via the superposition theorem. 
Assuming equal amplitudes on all channels, the signal arriving 
at the nth seismometer at location rn at time t is then 
represented by 

Yn =exp (iw (t +s • rn)) (1) 

If time delays corresponding to an arrivai vector p are inserted 
in the channels of one array line and the seismometer outputs 
are then summed with unit weights, the resulting output is 
represented by 

N-I 
g =exp (iwt) L exp (iw(s-p) • r 0n), where 

n:O 

r0 is the constant unit separation between seismometers, N 
equals 10 for both lines of the YK array and the beginning of 
the line has been used as reference point. This expression is 
more conveniently written in the form 

l {, )1\ sin( wq •ro N) 
K=exp~w\! +q •ro N2-l ') . 2 

sm wq •ro/2 (2) 

where q = s - p. The correlation between delayed suros along 
the NS (x = north) and the EW (y= east) lines are now formed 
by multiplying the individual suros, and averaging over a time 
T. (We ignore here a weighting factor used in the averaging 
process in the actual calculation in order to save computer 
memory.) Multiplying the real parts of the two line suros given 
by Equation (2), we obtain 

G=D,Dy(oo•2wt' +oo~q •(Lx ~Lyl) 
Dx and DY are the diffraction patterns in the x and y 

directions appearing in Equation (2),t' = t + q • (Lx ; Ly) 
represents a time shift of the output which depends solely on 
the chosen space reference point, and Lx/2 and Ly/2 are the 
centre points of the two array lines. We shall replace (Lx -
Ly)/2 by R, the vector connecting the two line centres; 
numerically it is 1.25 km north and 6.25 km east. Averaging G 
over a time T, and omitting irrelevant time shifts gives 

G =D_xDy~oswq •R +~Tsin (wD cos (2wt')) (3) 

The moving average over the product of the phased line suros 
is seen to consist of a constant and a time variable term. The 
second term also depends on q and on the choice of reference 
point. For the usual averaging time of 1.6 s, its maximum 
value is about 10 per cent of the constant term, over the range 
of typical teleseismic frequencies (around 1 Hz), but with 
fixed T it depends strongly on frequency. 

The coefficients Dx and Dy represent a two-dimensional 
diffraction pattern, which is symmetric because the line 
lengths are equal and contain the same number of seismo
meters. The first bracketed term compresses contours of this 
pattern slightly in the direction of R, which joins the centres 

of the array lines. The asymmetry in the second term will in 
general be different from that of the first, because of its 
complicated dependence both on q and on the reference point. 
To stabilize the correlation surface one would wish either to 
make the second term zero by proper choice of the averaging 
length, or to increase the averaging length until the second 
term becomes insignificant. The first method is impractical 
because sin.wT/wT contains the unknown w which varies with 
the seismic signal, and the second method introduces problems 
in the event detection process. A compromise for T between 
detection and automatic dT/d!:>, estimation had to be found, 
and T = 1.6 sis generally used. 

Only infinite sinusoids have been considered so far. 
Realistic seismic signais have finite energy and a definite onset 
time. As the signal moves across the array, the effective 
averaging tirne is initially zero, then increases to T. The second 
term in Equation (3) dominates therefore during the early part 
of the signal arrivai, and this leads to strong oscillations in the 
correlation surface. This effect is demonstrated in a later 
section. For the purposes of the following discussions, the 
time variable part will mostly be ignored: its magnitude is 
often small, and the constant level of the correlation can be 
estimated if the correlation is available as a fonction of time. 

The beam energy method of estimating the arrivai vector 
consists in finding the coordinates of the maximum of the 
constant term of the correlation surface represented by 
Equation (3). Because of physical restrictions, array beams are 
formed only for a 20 X 20 ms km -l grid, and the position of 
the maximum is estimated by a simple interpolation which is 
discussed later. Typical distances of the grid points from 
the centre of the diffraction response pattern are therefore 
about 0.01 km- 1 at 1 Hz. At this distance a one.dirnensional 
(single-line) diffraction pattern has decreased to about 90 per 
cent of its maximum value, while the strongest decrease of the 
asymmetric term, cos wR • q, in the direction of R, is also 
about 90 per cent. Interpolations between beams with energy 
differences of this order can be expected to lead to reasonable 
estimates. As the frequency of the signal increases, however, 
the response pattern contracts relative to the beam grid, 
and justification of the simple interpolation becomes very 
difficult. 

Use of the Fast Correlation Algorithm 
for dT/dt>, Estimation 

This algorithm for beamforming and for the calculation of 
the correlation between the individual line suros of the two 
array arms was suggested by Weichert, et al. (1967). It was 
programmed in 1967 and has since been used for all routine 
processing of Yellowknife data. The program name is ARA. 

The method is based on the highly regular geometry of the 
Yellowknife array (Weichert and Manchee, 1969), and on the 
results of early experiments which showed that the geology 
directly under the array must be highly uniform (Weichert and 
Whitham, 1969). For steeply arriving teleseismic wavefronts 
this means that time term corrections do not have to be 
applied to the signais from the individual seismometers. 
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Instead of forming beams for a given set of arrival conditions 
the signais from each line are summed for a given set of 
delays. The delays vary linearly along the line, and only 
integer values of the sampling interval are used. Finally, the 
delayed sums from the two lines are multiplied and averaged 
with a weighting fonction, resulting in a two-dimensional 
correlation matrix. The calculations are represented by 

sumin (t) =~signal i (t-jn L1t) 
j 

(4) 

i = 1, 2 for the NS and EW array arms, j = 1 to 10 for the 10 
seismometers in each line, and 

(5) 

The exponent k(= 5) bas been empirically selected: this makes 
the effective averaging length equal to 25 sampling intervals, or 
1.6 s for routine teleseismic analysis (Llt = 50 ms). 

The correlation matrix is interpreted as a measure of 
seismic energy arriving from the direction (m, n) in u-space (or 
dT/dLl -space), that is with slowness components mLlt/d and 
nLlt/d, where d is the 2.5-km seismometer spacing. The spacing 
of points in the correlation matrix therefore corresponds to 20 
ms km-1 (2.22 s deg-1

) in travel time slope. Compared to t.he 
range of the travel-time slope over the Third Zone (approx. 80 
to 40 ms km - 1 

), this spacing is much too large for a useful 
epicentre estimate. To obtain finer estimates of the co
ordinates of the correlation maximum, several approaches are 
possible. The correlation matrix can be defined and calculated 
on a fmer grid. This would be achieved either by interpolating 
the data, or by rounding the required delays to the nearest 
available sampling points. Either method results in a sub
stantial increase in calculation time and is therefore not 
practical for an automatic real-time, or faster, search of the 
entire Third Zone. 

Another obvious approach is an interpolation of the 
correlation surface near the maximum. Ideally one would like 
to fit a scaled version of the theoretical correlation response to 
the points surrounding the maximum. This proves too cumber
some, because signal frequency and relative signal strength on 
different channels must be taken into account. Simpler 
quadratic least-squares fits have, therefore, been tried. 
Numerical experiments with several variations, paying atten
tion both to calculation time and to performance, have led to 
the adoption of the simplest version: the coordinates of the 
maximum are estimated by two independent 3-point interpola
tions along the row and column of the maximum Cmn value, 
i.e., 

~ 
Cm+l n -Cm- 1,n ) 

uxmax = L1t/d m + ---' -------
2 (2Cm,n - Cm.1,n-Cm+ 1,n) 

(6) 

with a similar expression for the y-component of the slowness. 
This method introduces a small bias into the result, because it 
presumes a symmetric parabola connecting the 3 points in 
either cross section, whereas the actual cross sections of the 
correlation surface are usually not symmetric. This bias bas 
been shown to be proportional to the ratio of the third to 

second derivatives of the actual cross section (Wilson, 1965). A 
more severe effect of the asymmetry of the correlation 
response, given by Equation (3), is illustrated by Figure 1, 
which shows schematically the response of the YK configura
tion. The position of the actual maximum of any cross section 
deviates from the axis increasingly with the distance of the 
cross section from the origin of the response pattern. Of 
course, corrections or iterations could be used, but this would 
completely offset the advantage of simplicity of the interpola
tion estimate. 
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FIGURE 1. Schematic of the main lobe of the steady state correlation 
response of the Yellowknife seismic array at 1 Hz: the 95, 70 and 5- per 
cent power contours and the loci of maxima of NS and EW cross 
sections are indicated. The pattern is placed between four ARA beams 
(open circles), the worst location for both detection and interpolation. 

Calculation of the Interpolation Bias 

The actual magnitude and direction of the computational 
bias in the interpolation of arrival vectors by the standard 
ARA-program used at the Dominion Observatory is most 
easily estimated through numerical experiments. Two series of 
calculations have been made: one uses the constant term of 
the theoretical array response (Equation (3)) to predict the 
bias, while the other uses simulated noiseless wavefronts as 
input, both to the actual ARA program, and to a simulation of 
the ARA program. In all cases identical signal strengths and 
gains have been assumed for a11 channels. 

In the first calculation the array response pattern is shifted 
relative to a 20 ms km -l grid and its magnitudes at the 
neighbouring beams are calculated. Using Equation (6) , an 
interpolated maximum position is obtained and compared 
with the originally assumed position. The difference is the 
interpolation bias. The problems due to the time-variable term 
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FIGURE 2. Interpolation bias for 0.7 Hz sinusoid based on steady 
state response. 

of the response have already been discussed, but they are 
ignored in this approach. Figures 2 to 4 show the results of 
this calculation for monochromatic 0. 7 Hz, 1.0 Hz and 1.4 Hz 
sinusoïdal signals. The arrows point from the assumed position 
to the position generated by the program. Any correction 
would, of course, have to oppose the arrows. 

The response pattern for real signals of finite length can be 
obtained by superposition of responses over a finite band
width. As a representation of a realistic signal the expression 

s (t,f,g) = t exp --- sin (2rrft}, if t > 0 
[

-t2 J 
2(j/g)2 

(7) 

=O t<o 

with g = 0.8 s-1 and f = 1 Hz, has been selected. This is the 
same wavelet which is also used for the second series of 
calculations, and an ex ample of the wavelet is shown in Figure 
6. The amplitude spectrum of the wavelet was obtained 
numerically, using a 50 ms sampling interval (64 points). Table 
1 lists the component frequencies and their relative amplitudes 
down to the 1 per cent level. The response pattern was then 
calculated as a weighted sum over the component responses. 
Figure 5 shows the resulting steady state interpolation bias. 

As explained above, the origins of the arrows in Figures 2 
to 5 indicate the positions of the centres of the theoretical 
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FIGURE 3. Interpolation bias for 1.0 Hz sinusoid based on steady 
state response. 

response pattern. The arrows point to the interpolated 
maxima. Only the upper half of a 20 by 20 ms km- 1 square 
surrounding the beam at the origin is plotted. The values for 
the lower half of the square can be obtained by rotating the 
upper half by 180 degrees, because of the corresponding 
symmetry of the cosine term in the response. The bias for any 
arrival vector outside the plotted area is obtained by shifting 
the diagram to the beam with the maximum correlation, which 
is generally the be am nearest to the arrival vector. However, 
special care must be exercised in the regions that are centrally 
located between beams. Although the ideal pattern may result 
in a maximum value on one of the adjacent beams, noise may 
actually shift this maximum to another beam, resulting in an 
interpolation between a different set of beams than in the 
ideal case. The shift in the calculated maximum will then 
generally be greater than the small actual change in the 
correlation surface which caused it. Examples of this are 
discussed later. 
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FIGURE 4 . Interpolation bias for 1.4 Hz sinusoid based on steady 
state response. 

The above discussion illustra tes the origin of the interpola
tion bias and predicts its magnitude and direction. A1though 
allowance is made for a real signal by using a broad band 
pattern in one case, the time-dependent part of the correlation 
fonction and the weighting factor for averaging are ignored. In 
order to check the theoretical predictions and the effect of 
this simplification, a series of synthetic noiseless events was 
generated on digital tape in the usual ARA format. These tapes 
were then processed by the standard ARA program. The 
seismic wavelet was represented by the Equation (7). An 
example of this wavelet is shown in Figure 6. The results of 
the experiment are listed in Tables 2 and 3, and are plotted in 
Figures 7 and 8. As in the earlier figures, the arrows point 
from the actual arrivai vector to its interpolated position. The 

Frequency 
Amplitude 

Table 1 

Norrnalized Amplitude Spectrurn of Wavelet, 

t exp(2 J:t:)2)sin (2rrt), g = 0.8 s-1, f= 1 Hz 

0.31 0.62 0.94 1.25 1.56 1.87 2.19 2.50 2.81 
0.1 0.47 1.0 0.73 0.21 0.06 0.03 0.02 0.01 
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Table 2 

ARA Slowness for Synthetic Wavelet Fronts, 
f = 1.0 Hz,g =0.8 s-1 

Actual Slowness Estimated Steady Components Typed out at 
Components State Components Time of Trigger 

sx Sy SX Sy Asx Asy SX Sy Asx Asy 

(ms km-1 ) 

-10. -10. - 7.8 -12.4 2.2 -2.4 - 7.8 -12.1 2.2 -2.2 
-10. - 5. -10.5 - 3.0 --0.5 2.0 -10.8 - 3.9 --0.8 1.1 
-10. o. - 9.5 - 0.6 0.5 --0.6 - 9.7 - 0.6 0.3 --0.6 
-10. 5. - 8.6 3.0 1.4 -2.0 - 8.9 2.9 1.1 -2.1 
-10. 10. - 7.8 8.0 2.2 -2.0 - 7.8 7.8 2.2 -2.2 
- 5. -10. - 3.1 -10.5 1.9 --0.5 - 3.1 -11.4 1.9 -1.4 
- 5. - 5. - 4.8 - 4.3 0.2 0.7 - 4.6 - 5.1 0.4 --0.1 
- 5. o. - 4.2 - 0.2 0.8 --0.2 - 3.9 - 1.4 1.1 -1.4 
- 5. 5. - 4.0 3.0 1.0 -2.0 - 3.8 3.1 1.2 -1.9 
- 5. 10. - 3.2 8.2 1.8 -1.8 - 3.1 8.6 1.9 -1.4 

o. -10. 1.0 -11.0 1.0 -1.0 1.1 -10.8 1.1 --0.8 
o. - 5. - 0.6 - 3.5 -0.6 1.5 - 0.3 - 4.2 --0.3 0.8 
o. o. 0.0 o.o 0.0 0.0 0.2 - 0.7 0.2 --0.7 
o. 5. 0.6 3.8 0.6 -1.2 0.5 3.5 0.5 -1.5 
o. 10. 1.0 9.4 1.0 --0.6 1.1 9.2 1.1 --0.8 
5. -10. 3.4 - 9.8 -1.6 0.2 3.2 - 9.8 -1.8 0.2 
5. - 5. 3.8 - 3.2 -1.2 1.8 4.0 - 4.4 -1.0 0.6 
5. o. 4.5 0.5 --0.5 0.5 4.4 - 0.3 --0.6 --0.3 
5. 5. 5.0 4.0 0.0 -1.0 5.0 3.6 0.0 -1.4 
s. 10. 3.4 10.4 -1.6 0.4 3.3 10.1 -1.7 0.1 

10. -10. 12.0 -12.0 2.0 -2.0 12.2 -12.2 2.2 -2.2 
10. - 5. 9.2 - 3.0 --0.8 2.0 9.2 - 3.9 --0.8 1.1 
10. o. 10.0 - 0.7 0.0 --0.7 10.3 - 0.6 0.3 --0.6 
10. 5. 11.0 3.0 1.0 -2.0 11.0 2.9 1.0 -2.1 
10. 10. 12.0 7.7 2.0 -2.3 12.2 7.8 2.2 -2.2 

tables show, for the two different frequencies, the delays 
(slowness components) used for the generation of the digital 
data tape, and the interpolated coordinates for the correlation 
maximum. Two values are given: the second is the trigger value 
which is typed out by the ARA program at the time of event 
detection, while the first is the best estimate of the steady 
state value picked by eye from the processed traces. The two 
values differ slightly in most cases. This is partly due to the 
accuracy to which the slowness components can be estimated 
from the processed traces. The main reason is the oscillatory 
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FIGURE 5. Interpolation bias for broadband signal, fo = 0.94 Hz, 
based on steady state response. 

character of the actual correlation surface caused by the 
time-dependent term in Equation (3). The trigger logic of the 
ARA program makes no allowance for this oscillation, but 
simply assumes that the trigger delay of 1.6 s is sufficient for 
the oscillatory term to become negligible. 

Figure 6 illustrates the effect of the oscillation in the 
correlation in two dimensions. A special program was written 
which simulates the ARA-processing of the ideal wavefront. 
Every 50 ms, as the wave passes the array, the maximum of 
the correlation surface is calculated by interpolation and 
plotted on a cathode ray tube. The actual delay components 
of the ideal wavefront are marked by an open circle. The 
coordinates of the correlation maximum after passage of the 
front are marked by a cross. To show the time sequence of the 
2-D output, the NS and EW slowness components are plotted 
as time sequences in the top and right-hand margins. Also 
shown is the wavelet used as an ideal signal. lt is identical to 
the wavelet described in earlier paragraphs. The slowness 
components of the generating wavefront are recorded in the 
lower right corner. A sequence of synthetic wavefronts was 
processed in this way and the CRT outputs, of which Figure 6 
is an example, were photographed. The interpolation bias was 
then estimated on the film negative. The results are plotted in 
Figure 9 in a format similar to Figures 7 and 8. 

Table 3 

ARA Slowness for Synthetic Wavelet Fronts, 
f= 1.5 Hz, g = 0.8 s-1 

Actual Slowness Estimated Steady Components Typed Out 
Components State Components at Time of Trigger 

sx Sy sx Sy Asx As} sx Sy tux Asy 

(ms km-1) 

-10. -10. - 7.5 -13.5 2.5 -3.5 - 7.5 -13.1 2.5 -3.l 
-10. - 5. -11.0 - 1.8 -1.0 3.2 -11.l - 1.9 -1.1 3.1 
-10. o. - 9.8 - 0.2 0.2 --0.2 - 9.8 o.o 0.2 0.0 
-10. 5. - 8.7 1.7 1.3 -3.3 - 8.6 1.7 1.4 -3.3 
-10. 10. - 7.7 6.8 2.3 -3.2 - 7.6 6.9 2.4 -3.1 
- 5. -10. - 2.8 -12.0 2.2 -2.0 - 2.8 -11.8 2.2 -1.8 
- 5. - 5. - 4.0- 2.5 1.0 2.5 - 4.0 - 2.5 1.0 2.5 
- 5. o. - 3.6 o.o 1.4 0.0 - 3.4 - 0.2 1.6 --0.2 
- 5. 5. - 3.2 2.0 1.8 -3.0 - 3.1 1.7 1.9 -3.3 
- 5. 10. - 2.7 8.2 2.3 -1.8 - 2.8 8.1 2.2 -1.9 

o. -10. 0.6 -10.5 0.6 --0.5 0.5 -10.5 0.5 --0.5 
o. - 5. 0.0- 1.8 o.o 3.2 - 0.1 - 2.2 --0.1 2.8 
o. o. 0.0 0.2 o.o 0.2 0.0 o.o 0.0 0.0 
o. 5. o.o 2.4 0.0 -2.6 0.2 1.9 0.2 -3.1 
o. 10. 0.5 10.0 0.5 0.0 0.4 9.6 0.4 0.4 
5. -10. 2.5 - 9.0 -2.5 1.0 2.7 - 8.7 -2.3 1.3 
5 . - 5. 3.0- 1.8 -:-2.0 3.2 3.2 - 2.0 -1.8 3.0 
5. o. 3.0 0.0 -2.0 o.o 3.6 0.0 -1.4 0.0 
5. 5. 4.0 2.5 -1.0 -2.5 3.9 2.2 -1.l -2.8 
5. 10. 2.2 11.0 -2.8 1.0 2.7 11.3 -2.3 1.3 

10. -10. 12.3 -13.3 2.3 -3.3 12.5 -13.2 2.5 -3.2 
10. - 5. 8.5 - 1.7 -1.5 3.3 8.9 - 1.9 -1.1 3.1 
10. o. 10.0 o.o 0.0 o.o 10.2 0.0 0.2 0.0 
10. 5. 11.3 1.8 1.3 -3.2 11.4 1.7 1.4 -3.3 
10. 10. 12.3 7.0 2.3 -3.0 12.5 6.9 2.5 -3.l 
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FIGURE 6. Sample output from ARA-simulation program. Grid 
spacing is 2 ms/km. True arrivai of synthetic wavefront marked by open 
circle. Cross marks final location of maximum in correlation surface. 
The wavelet used for synthesis is shown in lower margin, with 5 s long 
time scale. The two-d.imensional output is resolved into 1-component 
time sequences in the upper and right margins. Their time scale is 
shown in lower right margin. Below it are the coordinates of the 
synthetic wavefront in s/km. 

Discussion 

A cursory inspection of Figures 3, 7 and 9 reveals the basic 
sirnilarity of the bias patterns as estimated by the different 
approaches. This establishes the validity of the steady state 
method. Figures 7 and 9 are really based on variants of the 
same method ; they should therefore show the same pattern, as 
they very nearly do. In fact, the only reason for using the two 
variations was to check the simulation program with two
dimensional output against the ARA program. The obvious 
differences between the steady state and the synthetic 
wavefront approach lie along the outer boundaries and corners 
of the plotted 20 by 10 ms km -l area which must be 
considered in order to include all possibilities occurring in a 20 
by 20 ms km- 1 beam grid spacing. 
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FIG URE 7. Errors in ARA slowness for synthetic wavelet fronts, 1 Hz. 

Consider first the simpler steady state bias shown in Figure 
3. lts amplitude and direction along the axes can easily be 
estimated from the YK-array response schematic in Figure 1. 
The response contours in this figure are shown as ellipses, but 
are only approximately so, near the response centre. For the 
present purposes the approximation is quite good at 1 Hz. For 
any event west of the beam with maximum energy, the NS 
interpolation will eut the actual pattern, due to the arriving 
signal on its east side. The true maxima of all such cross 
sections are south of the response centre, as shown by the 
respective locus in Figure 1. This corresponds to the negative 
bias in the x coordinate, west of the centre beam, as shown by 
Figure 3. The bias for events towards the north is sirnilarly 
obtained from the locus of maxima in EW across sections. 
Since the beam is south of the response pattern, the bias is 
expected to be easterly and smaller than the x-bias at 
comparative distances from the beam. This is again confirmed 
by Figure 3. The good agreement of prediction from the 
schematic and the actual 3-point interpolation show that this 
interpolation is really quite effective, as long as the centre 
point is near one axis. As events move into the quadrants, and 
farther into the corners, distortions begin to appear, which 
cannot be predicted from the simple interpretation of Figure 
1. They are caused by the symmetric interpolation over 
intervals of 20 ms km -l in cross sections which are no longer 
symmetric. 

In the NE quadrant of Figure 3 several arrows point 
outside the area belonging to the centre beam. This is the 
forrnal result of the simulated interpolation; however, in such 
a case, an ideal signal front should have maximum power on 
one of the adjacent beams, and the bias would have to be 
calculated with respect to that beam, resulting in a bias almost 
at right angles to the one shown in this figure. 

12-~ ~ 

10- "'r-------~------ ---~-----~ 
1 1 
1 1 

8- 1 1 
1 1 
1 1 
1 1 ! 

' 6-

~ 4- ~ ~ ~ ~ .. 
0 
z 
X 2· 1 1 

1 1 
o- ~ 1 

1 1 1 1 1 1 1 1 
-12 -10 - a -& - 4 - 2 0 10 12 

Y IEASTl ms /km 

FIGURE 8. Errors in ARA slowness for synthetic wavelet fronts, 1.5 Hz. 

Figures 2 to 4 show the calculated steady state bias for 
increasing frequencies. As predicted, the errors become greater 
because the response pattern which is constant in wave 
number, con tracts relative to the constant 20 ms km -l beam 
spacing. However, for the higher frequencies one naturally 
wishes to increase the sampling rate , which would narrow the 
beam pattern automatically. It is interesting in this connection 
to note that the results shown in Figure 3 for 1 Hz reflect the 
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decision to take 20 samples per second, i.e ., per period, which 
is 10 times more than demanded by the Nyquist criterion of 
two samples per period of the highest frequency present in the 
signal. If the broadband nature of seismic signais is con
sidered, our rate is still about 2 to 3 times the Nyquist 
sampling rate. To maintain the interpolation bias at the level 
of Figure 3 for higher dominant frequencies, the sampling rate 
must be increased proportionally. In Figure 5, the broadband 
bias centred on 0.94 Hz looks like a single frequency pattern, 
slightly above 1 Hz. This is doubtless due to the weighted 
summation of single frequency responses in which the higher 
frequencies dominate slightly. Figure 6 is a very good 
illustration of the effect of the time dependent term in 
Equation (3), which in this case is actually a transient. As 
predicted, the position of the maximum oscillates strongly as 
the signal passes over the array; as the effective averaging time 
lengthens, the amplitudes of the oscillation decrease and the 
position of the maximum becomes quite steady, at the value 
predicted by the constant term in Equation (3). 
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FIGURE 9. Interpolation bias from 2-D output of ARA simulation 
program for synthetic wavelet fronts, 1 Hz. 

Returning to the comparison of Figures 3 and 9 the gross 
discrepancies half way between different beams must now be 
explained. In the NW corner Figure 3 shows a bias of about 2 
ms km - 1 pointing towards the centre beam, while Figure 9 
shows an almost exactly opposite bias. For an event which 
arrives between 4 beams the two strongest beams will be NW 
and SE. This is the configuration shown in Figure 1. For the 
synthetic noiseless signal the two beams are equal. The trigger 
logic will then consistently pick the same beam, depending on 
the order in which the C-matrix is searched, and on the 
programmed inequality used for selecting the maximum (i.e., 
~eater-than-or-equal, or greater than). The program selects the 
NW beam; relative to this beam the event is in the SE corner. 
The bias for this corner is obtained by a 180° rotation of the 
plotted values. It points toward the selected centre beam, 
which is NW of the plotted area and thus exactly opposite to 
the arrow shown in Figure 3. The same reasoning also explains 
not only the direction of the bias for the NE corner in Figure 
9, but all other arrows along the boundaries which appear to 
disagree with the steady state bias, in Figure 3. 

The region of the sharp switch from one direction of bias 
to another one should be somewhat smeared out by the noise 
background of real signais; however, it is quite real and could 
have been predicted from the steady state approach by 
comparing two diagonally adjoining diagrams, which predict 
opposite bias for the same point. 

Manchee and Weichert (1968) published error vectors 
derived from the older correlation method which used a polar 
beam grid at equal azimuth and slowness. For instance, for 
two neighbouring source regions in the Aleutians they showed 
error vectors which on the average were at right angles to one 
another. Comparison with the beam pattern then used shows 
that one region was close to the north boundary of one beam 
area, and the second region was SE of the next beam; the 
errors were almost 10 ms km-1 

• A nominal correction 
decreases the angle between the average error vectors in the 
two regions, but the difference is still significant. Moreover, 
the arrivai vector anomaly for these regions, as well as for 
others, have been confinned by least-squares calculations 
involving only the earliest parts of the signais. It is therefore 
clear that substantial anomalies remain which must be ex
plained in terms of structure within the earth. The bias effect, 
although smaller than the anomalies, is of similar order of 
magnitude and must be considered in future large-scale 
experiments. 

Conclusions 

The method of interpolation used in the standard fast
correlation ARA-program, to obtain an improved estimate of 
the position of maximum correlation, introduces a bias into 
the results. For 1 Hz frequency this computational bias is 
generally about 2 ms km - 1 but does reach 4 ms km - 1 for the 
worst signal-beam configuration. The bias is largest in the NW 
and SE quadrants around any one beam, and pointing toward 
the beam. In the SW and NE quadrants the bias is small and 
swings slowly away from the beam. In the boundary region 
between beams the bias is indefinite since it depends on the 
selection of beams by the program logic. In these regions, 
small effects can reverse the bias. For higher frequencies the 
bias is stronger, unless the sampling rate is also increased, 
which decreases the grid spacing. Tables and diagrams of the 
bias for several frequencies and event-to-beam configurations 
have been given for constant signal strength across the array. 
Corrections to arrivai vectors measured by this method should 
always be applied. 

The bias originates from two causes: one is the shape and 
orientation of the centre lobe of the Yellowknife array 
response. It causes maxima of non-axial cross sections to shift 
away from the axes of the response. The second cause is the 
inefficiency of the interpolation used to locate the correct 
maximum of asymmetric cross sections far from the lobe 
centre and over the grid intervals used. 

Both faults can be corrected by a denser grid spacing. This 
is not possible for a multiple-real-time speed process such as 
the ARA program. A slow version of this program has, 
therefore , been developed. Since it is many times slower than 
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real-time speed, data input must be from digital tape. Beams 
are formed for a fine grid of delays, surrounding the 
approximately known arriva! vector, with a typically 1 or 0.5 
ms km - 1 spacing for each slowness component, or an 
equivalent spacing in azimuth and dT/dl:l. This is believed to 
be near the useful limit for our array. For delays which are not 
integer multiples of sampling intervals, data points are inter
polated linearly between the sampled values. Interpolations in 
the correlation surface are no longer necessary. For optimum 
epicentre location and for research measurements of dT/dl:l by 
the correlation method, this program should always be used 
after an event has been detected and digitized by the standard 
ARA program. 
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