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compact bias coil systems 
for geomagnetic measurements 

Abstract. Measurements of the geomagnetic components with the 
proton magnetometer require a coil system for producting a homo­
geneous bias field in a direction whlchcan bedetermined accurately. The 
theoretical advantages of various symrnetrical arrangements of coils are 
reviewed, and the precision of mechanical construction necessary to 
achieve the theoretical performance is estima ted. It is concluded tha t 
where a Helmholtz pair would be too large, the most practical choice is 
a system of four circula.r coaxial coils of equal diarneter. 

1 ntroduction 
The invention of the proton precession magnetometer in 

1954 provided for the first time a convenient method of 
measuring the geomagnetic total intensity with an accuracy of 
1 nT. Soon, several methods were developed to adapt the 
proton and other precession-type magnetometers for the 
absolute measurement of the components of the geomagnetic 
field (for reviews see Wienert, 1970; Stuart, 1972). Most of 
these methods require the addition to the geomagnetic field of 
an artificial magnetic field, of similar order of magnitude, in a 
known direction. A precession magnetometer measures the 
magnitude of the resultant, from which the desired 
component is deduced. 

A basic difficulty is that the magnitude of the resultant 
field must be highly uniform for satisfactory operation of the 
precession magnetometer. Using free nuclear precession, a 
difference of a few nT across the s1mple will cause the 
precessing nuclei to fall out of phase in a second or so, and the 
signal decays to the noise level before an accurate measure­
ment of frequency can be made. Other types of precession 
magnetometers are less susceptible to gradients, but ail suffer 
some degradation of performance in non-uniform fields. 

In the following discussion it is assumed that the free 
proton precession technique is used, with a sample which 
would fit inside a sphere 10 cm in diameter. Sin ce bias fields as 
large as 40,000 nT may be required (Bobrov and Trofimov, 
1968; Wienert, 1970), we adopt the criterion that within this 
sphere the components of the bias field must vary by no more 
than 1 part in 104 of the central axial field. 

The classical way to produce a uniform magnetic field is 
by means of a Helmholtz coil system. The above criterion 
requires a Helmholtz pair about 1 m in diameter. In 
determining the azimuth of the geomagnetic field, it is 
necessary to invert the coil system, rotating it about a 
horizontal axis, and this is very awkward with large coils. 
Moreover, the external field at a large distance x from a coil 
system of radius a is approximately (a/x)3 x the field in the 
centre, so that if the dimensions of the coil system can be 
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Résumé. Les mesures des composantes géomagnétiques effectuées à 
l'aide d'un magnétomètre à protons exigent l'utilisation d'un jeu de 
bobines qui p.roduit un champ homogène dévié dans une di.rection qui 
peut être déterminée avec précision. L'auteur étudie les avantages 
théoriques de diverses dispositions symétriques des bobines et il évalue 
l'exactitude mécanique nécessai.re pour atteindre le rendement thé­
orique. Il conclut que lorsqu'une paire de bobines Helmholtz occuperait 
un espace trop considérable, le choix le plus pratique serait un jeu de 
quatre bobines circulaires coaxiales de diamèt.re égal. 

reduced, the disturbing effect on other instruments in the 
same building can be greatly dirninished. This paper reviews 
coil systems more compact than the Helmholtz arrangement, 
and estimates the accuracy of construction necessary to 
achieve the theoretical homogeneity. 

Magnetic field of a circular current 
Consider the scalar magnetic potential V of a current i 

flowing in a circle of radius a. We take the origin on the axis of 
the loop at a distance d from the plane of the loop (Figure 1). 
At a point with polar coordinates (r, e) where r2 < d2 + a2

, 

the appropria te solution of Laplace's equation is 

OO 

V=- l: An ,npn (cose) 
n=O 

1 

where P n are Legendre polynomials. The axial and radial 
components of the field can be written immediately 

where 

av 00 

H =- -a = l: n An rn-l P n-l (cose) 2 
X X n=l 

av 
ay 

OO 

l: sine An rn-l Pn' _1 (cose) . 
n=l 

P~(cose) = 
a 

acose p n (cose) 

3 

4 

Defining 5 

and Writing r, p n and p~ in terms of X = r COS e and y = r sin e 

Hx = Ai [ 1 + n~l BnrnPncose J 
Ai [ 1 + B,x + ~B2 (2x2 

- y 2
) + ~B3 (2x 2 

- 3y2 )x 

+ ~B4 (8x4 
- 24x2 y 2 + 3y4

) + + J . 6 
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oo Bn , 
HY = - A 1 ~ sin8 -- r"P n (cos8) 

n=l n+l 

= - A1 [ ~B1Y + B2XY + iB 3 (4x2 - y 2 )y 

+ÎB4 (4x 2 
- 3y2 )xy + + J .... 7 

y 

y 

y 

Figure 1. Top: circular current loop and coordinate system. 
Centre: current loop displaced in y-direction. 
Bottom: current loop tilted about origin. 

It is easily verified that Equations 6 and 7 satisfy Laplace's 
equation in the form 

aHx aHY Hy 
-+-+-=O ..... 8 
ax ay y 
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On the axis, Hy = 0 and 

A straightfoiward although tedious way to find the coefficients 
A1 and B0 is to compare Equation 9 with the expression 
found in textbooks for the induction on the axis of a circular 
current loop: 

H = ~ µ 0 i a2 
[ a2 + (d-x)2 ] -

312 

..... 10 

where H is in tesla, i is in amperes, and lengths are in metres. 
Writing R 2 for d2 +a2

, and expanding by the binomial 
theorem 

H = _21 µo i a2 K3 [ 1 (2d ) R 2 ] -312 - X -x - ..... 11 

we fïnd that 

B1 = 3dR-2 

B2 = ~(4d2 
- a2

) K 4 

B3 = Î(4d2 
- 3a2

) dR-6 

B4 = 1

8

5
(8d4 

- 12d2 a2 + a4 )K8 
••••• 12 

Combinations of current loops 
For combinations of coaxial pairs of similar loops spaced 

symmetrically with respect to the plane x = 0, the coefficients 
B1, B3 , B5 etc. will cancel, since they are odd fonctions of d. 
With a single pair of loops, there is one free parameter, d/a. By 
choosing a = 2d, B2 can be made to vanish, and the series for 
the error in Equations 6 and 7 begin with the fourth power of 
x and y. Near the origin, the first non-zero term provides a 
good estimate of the inhomogeneity. 

Maxwell (1873), Neumann (1884) and Fanselau (1929) 
showed that with four loops one can make the fourth-order 
term vanish as well. Braunbek (1934) pointed out that four 
loops carrying the same current provide three free parameters, 
di/ai. d2 /a2 , and aifa2 , and showed that it is possible to 
make B2 , B4 and B6 vanish simultaneously. The first non-zero 
error terms are then of the eighth order. 

If one allows unequal currents (or different numbers of 
turns) an additional parameter is available, and one would 
hope to be able to cancel the eighth-order term with four 
loops, but Sauter and Sauter (1944) have shown that no real 
solution to this problem exists. With four free parameters, 
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however, a great variety of four-loop systems with eighth-order 
errors are possible. A selection is included in Table I. 

The purpose of Table I is to show the overall length and 
diameter of various arrangements of circular loops required to 
produce a field uniform to 1 part in 104 within a sphere 10 cm 
in diameter. The calculations are based on the first non-zero 
term in the axial component (ex ce pt for the system of Everett 
and Osemeikhian, 1966, where the full series is used). This 
procedure is believed to provide a safe estimate of the 
homogeneity for ail the examples shown: the error on the axis 
is over-estimated. Also, at any point on the sphere the radial 
component, and the vectorial sum of the radial and axial 
errors, are no greater than the error on the axis. 

Table 1 
Combinations of Circular Currents with Errors < 10-4 

Within a Sphere 10 cm in Diameter 

Number Ortler 
System of loops of errer 

Ampere 1 2 
Hehnholtz 2 4 
Maxwell 3 6 
Barker 3 6 
Fanselau 4 6 
Braunbek 4 8 
McKeehan 4 8 
Sauter 4 8 
Sauter 4 8 
Garrett 6 12 
Garrett 8 16 
Garrett 10 20 

Braunbek 4 8 
McKeehan 6 12 
Garrett 8 16 
Garrett 10 20 
Everett 100 2 

Overall dimensions (cm) 

Characteristic length diameter 

0 1220 
52 104 

equalR 24.6 37.5 
equala 34.2 45.0 
equal i 33.9 37.0 
equal i 27.5 32.5 
equalR 26.6 33.4 
equald 20.7 47.6 
equala 27.9 29.7 
equala 23.9 20.0 
equala 21.2 15.4 
equala 20.6 13.5 

equal i 27.5 32.5 
equal i 22.3 22.5 
equal i 19.0 17.5 
equal i 17.6 15.4 
equal i,R 15.0 15.0 

Garrett (1967) gives convenient tabulations of the 
parameters of most of the systems of Table I, with charac­
teristics of the region of uniformity. 

The most compact system of Table I is the spherical coil of 
Everett and Osemeikhian (1966). However, its error on a 
sphere of 7.5 cm diameter is 10· 5

' whereas the error of the 
10-loop systems would be (O. 75)2 0 x Hf4 = 3 x l(f6 • Thus 
the mean inhomogeneity within the proton sample would be 
less with a 10-loop or even a 6-loop system. 

Precision of construction 
A subject rarely discussed in the literature of coi! systems 

is the precision of construction necessary to realize the 
theoretical homogeneity of ideal systems. The only systematic 
treatment known to the author(Blednov and Rotshteyn, 1972) 
is unfortunately based on an incorrect version of Equation 7. 

Here we investigate various distortions one at a time, and 
calculate the tolerances in dimensions which must be 
maintained in order to avoid inhomogeneities greater than 
Hf4 on the sphere where the maximum inhomogeneity of the 
ideal system is 1 ()4 

• 

The tolerances were calculated by partial differentiation 
of Equations 6 and 7. The easiest case is when a loop is moved 
along the axis of symmetry through a distance /::id from its 
ideal position. The resulting change in field is 

aH 
Lfü = - /'::,.d 

ad 

Sin ce 

aH aH 
-=--
ad ax 

..... 13 

..... 14 

..... 15 

+ ~B4 (4x 2 
- y 2 )y + + ] . . 16 

In these series, and in similar series for other deformations, 
the second-order terms are comparable in magnitude to the 
first, and must be included in the calculation. The Helmholtz 
case is unique in that the coefficient B2 is zero for each loop 
individually, making it relatively insensitive to displacements 
of one loop as far as homogeneity is concerned. However, the 
diameters of the two loops must be equal to 1 part in 1,000, 
since here the first-order term does not vanish. 

Probably the deformation most likely to occur with the 
usual method of construction is that the loops are parallel but 
not coaxial. If one loop is moved so that its axis is a distance 
Ay from the axis of the others 

Ai/'::,.Y [ B2Y + 3B 3 xy + iB4 (4x 2 
- y 2 )y + +] 

. .... 17 

+ ~Bd4x2 
- 9y2 )x + +] ..... 18 
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It will be noticed that this deformation changes the direction 
of the central field. First-order terms vanish in the Helmholtz 
case. 

Finally, the effect of tilting one loop, so that its axis still 
passes through the origin but at an angle a to the axes of the 
other loops, was investigated by rotating x and y coordinates. 
Remembering thaty is always positive 

ax ay = ±X 
aa 

±y 
aa 

lilix = ± [aHx ± 
aHx 

x] a -y 
ax ay 

liliy = ± [aHY ± aHY x] a -Y ax ay 

with the signs depending on the quadrant of the field point. 
The effect on the homogeneity of departures of the loops 

from true circles was not calculated. Knowing that circular 
loops can be replaced by square ones with little loss of 
homogeneity, such effects are assumed to be small provided 
that some degree of symmetry is maintained. 

Table II gives two sets of tolerances. The first tolerances 
refer to asymmetrical deformations, when one loop of a 
system is varied. The tolerances in brackets apply to symme­
trical distortions, when both loops of a pair are varied by the 
same amount. In the coaxial cases, symmetry about the 
mid-plane is preserved. In the b.y case, the two loops of a pair 
are moved in opposite directions. In the last case, both loops 
are tilted in the same sense about the origin. With symmetrical 
deformations, odd powers of x and y vanish. 

Table Il 
Dimensions and Tolerances for Homogeneity of Hf4 on 

Sphere of Radius r 

Helmholtz Braunbek Sauter 

r/a 1 .0965 .307 .337 
a1 1.0000 ± 8 (±141) 1.0000 ± 4 (± 11) 1.0000 ± 5 (± 8) 
a2 .7639 ± 11 (± 8) 1.0000 ± 6 (± 7) 
d1 .5000 ± 50 (± 28) .2780 ± 3 (± 3) .2432 ± 3 (± 4) 
d2 .8457 ± 4(±11) .9407 ± 5 (± 32) 
i1 1.0000±17 1.0000 ± 9 (± 17) 1.0000 ± 11 (± 1 7) 
i2 1.0000 ± 8 (± 17) 2.2604 ± 15 (± 38) 
t.yi .0000 ± 99 (± 56) .0000 ± 6 (± 7) .0000 ± 7 (± 8) 
t.y2 .0000 ± 8 (± 22) .0000 ±10 (±63) 
a1 0 ± 6

1 
0 ± 31 (± 4

1
) 0 ± 31 (± 4') 

ai 0 ± 3
1 
(± 4

1
) 0 ± 2' (± 41

) 

Note: The first tolerances quoted refer to asymmetrical deformations; 
those in brackets refer to symmetrical deformations. See text 
for exp !ana tion. 
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Table II does not include the effects of deformation on the 
magnitude and direction of the field at the origin. The most 
troublesome case, as far as rigidity of the system is concerned, 
is likely to be the /::,.y deformation. Moving one loop in its own 
plane by .0003 a will produce a radial field at the origin of 
10-4 Hx in the Helmholtz case. The four-loop systems are 
about half as sensitive to the displacement of one loop, since it 
contributes a smaller fraction of the central field. 

Coils with finite cross-section 
Practical coil systems usually employ coils of many turns 

rather than single loops, and the cross-section of the winding is 
much larger than the tolerance of the dimensions discussed 
ab ove. 

When the required number of turns is not too large, the 
simplest procedure is to wind them in a single cylindrical layer 
with the same radius a and mean distance d as the loop of the 
prototype. ln the Helmholtz case, for example, one then has 
an array of identical Helmholtz pairs distributed along the 
x-axis. The axial field of the pair located at d +li, -d +li will 
be 

Adding the field of the corresponding pair a t d - li' - d - li, the 
odd powers of x cancel 

H = 4A1 [ 1 + B4 (x4 + 61~ x 2 + lJ + +] 

Averaged over li= 0 to li= l, the first error term becomes 

If l is one tenth of the useful radius x, the inhomogeneity is 
increased by only 2 per cent over that of the prototype. 

When more turns are necessary than can be accommodated 
in a single layer, the breadth and depth of the winding 
cross-section provide additional parameters which can 
sometimes be used to advantage. Maxwell (1873, Sect. 713) 
showed that the Helmholtz loops can be replaced by coils of 
rectangular cross-section without significant effect on the 

112 
homogeneity if the ratio of breadth to depth is (31/36) = 
0.9280. However, Maxwell's approach has not been very 
successful with higher order systems; for example, there is no 
analogous solution for the Braunbek arrangement (McKeehan, 
1936). More recently, Garrett (1967) has pointed out that in 
general any single loop of radius a

0 
can be replaced by a coil 

of square cross-section of mean radius ac without significantly 
affecting the homogeneity if 

a 2 = a2 - 2... D2 
c 0 12 

where D is the depth of the square cross-section. 



Obviously any of the prototype coi! systems can be 
expanded into systems of solenoids with equivalent orders of 
homogeneity. Thick solenoids are difficult to wind accurately, 
and do not appear to have any advantages in the present 
application. 

Practical considerations 
In most instrument workshops it is difficult to make 

accurately circular coils larger than 40 cm in diameter, and 
square coils are often used in the larger sizes. The Helmholtz 
loops can be replaced by escribed square loops with no 
significant Joss of uniformity (Fanselau, 19S6). The appro­
priate separation is O.S445 time the length of the side of the 
square. However, Lee-Whiting (1957) has shown that at least 
five square coils are required to match the uniformity of the 
four-coi! systems with circular loops. For diameters less than 
40 cm, it is probably easier to make circular coils. 

When a Helmholtz system would be too large, the best 
choice for accurate construction is the system of Sauter and 
Sauter (1944) with four coils of equal diameter. lts only 
disadvantage relative to the Braunbek arrangement is that the 
number of tums on the outer coils must be 2.2604 ±38 times 
the number on the inner coils. This ratio can be approximated 
by pairs of integers such as S2/23 or 113/SO. The currents can 
be adjusted by resistors in parallel with the coils. In fact, it is a 
simple matter to trim the system empirically by varying a 
resistor connected across one or two of the coils and observing 
the decay of the proton precession signal. Often errors in the 
geometry can be compensated in this way. 

Table Il shows that for a coi! system 30 cm in diameter 
tolerances of the order of .OS mm must be maintained. It is 
not difficult to achieve this precision in the radius of the coi! 
forms, but it is difficult to assemble the system with the 
required accuracy, especially in the centring of the coils. The 
best way would seem to be machining the complete form from 
a single cylindrical tube. As Stuart (1972) points out, the most 
serious practical problem is in winding uniformly multi-layer 
coils. 
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Everett and Osemeikhian (1966) estimated that their 
spherical coils were constructed with a precision of .OS mm. 
However, with a sphere 17 cm in diameter they found that the 
proton signal decayed more quickly than expected, and in 
their final design they used spheres having diameters of 21 cm 
and 2S cm, which did not appreciably increase the rate of 
decay. 
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