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ABSTRACT

From the viewpolnt of practical rock engineering, radial flow must
be considered one of the most important aspects of groundwater hydrology.
All standard field testing - including pump tests, packer tests, flow
into drainage chambers and grouting - must be analysed based on radial
flow concepts.

Two distinct flow systems are encountered. These are:

(a) Conductivity tests in soil, where the medium can be idealized
as a continuum and a statistical Darcy approach assumed valid.

(b) Conductivity tests in fractured rock where the test section
will include only one or a few discrete fluid conduits, where
a statistical interpretation is seldom valid.

This report deals only with the iatter. The. fracture flow
formulations discussed are all based on the basic parallel plate model.

The aim is to compare the various derivations, assumptions, etc.
using consistent nomenclature so that any substantive variance in the
results could be analysed. This is done for both laminar and turbulent
flow regimes.

RESUME

Du point de vue de 1'Etude pratique des roches, 1'écoulement
radial doit €tre consideré comme 1'un des plus importants aspects de
1'hydrologie des eaux souterraines. Tous les essais.standard sur le
ter-aln -~ y compris les essais de production & la pompe, les essais
de packer,.l'écoulement dans les chambres de drainage ét le fongage
des pults par cimentation - d01vent etre analysés selon les principes
de 1'écoulement radial. :

Deux systémes distincts d'écoulement sont rencontrés. Ils sont:

(a) Les essais de conductivité dans un sol, oli le milieu peut 8tre
considéré comme continu et une approche statisthue de Darcy
est supposée valide.

(b) Les essais de conductivité dans la roche fracturée, od la
section sous épreuve ne comprend qu'une ou quelques passages
discontinus de flulde et ol une interprétation statistique
est rarement valide.

Ce rapport ne se concerne qu'avec le deuxiéme cas. Les

formulations de 1'écoulement dans les fractures discutées sont toutes

établies d'aprés le modele de base des plaques paralleles.

Le but est de comparer les diverses dérivations,suppositions, etc.
utilisant une nomenclature consistante de sorte qu'unc variation réelle
dans les ré@sultats peut Stre analysée, Ceci est accompli pour les
régimes d'écoulement laminaire et turbulent.
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CHAPTER I

INTRODUCTION

From the viewpoint of practical rock engineering, radial flow must
be considered one of the most important aspects of groundwater hydrology.
A1l standard field testing - including pump testg, packer tests, flow
into drainage chambers and grouting - must be analysed based on radial
flow concepts.

In geotechnical engineering, two separate and distinct problems are
encountered. These are:

(a) Conductivity tests in soil, where the medium can be idealized

as a continuum and a statistical Darcy approach assumed valid.

(b) Conductivity tests in fractured rock where thg test section

will include only one or a few discrete fluid conduits, where
a statistical interpretation is seldom valid.

The following report deals only with the latter. The fracture flow
formulations discussed are all based on the basic parallel p]qte model.
The Basic laws for streamline (laminar) flow between parallel plates can

be derived from the Navier-Stokes' equation. It is easily shown that

Qoe
where Q = flowrate
e = aperture between the plates

In radial flow further complications arise, however, as the effects

of inertia, kinetic energy and turbulence tend to be more influential.
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The main contributors to the analytical analyses of radial flow
are Baker (1955), Maini (1971), Iwai (1976) and Rissler (1978). At
first glance, due largely to varying conventions, nomenclature, etc.
these various authors' results appear radically different.

The purpose of the present report is to compare the various
derivations, assumptions, etc. using consistent nomenclature so that
any substantive variance in the results could be analysed. This is
done for both laminar and turbulent flow regimes.

The various formulations are briefly reviewed and critically
compared throhgh the remainder of this report. The detailed mathematical
formulations for each author are presented in the Appendices at the

end.
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CHAPTER II

DISCUSSION OF EXISTING RADIAL FRACTURE FLOW FORMULATIONS

II.1 Generalities

A11 of the following discussions deal with radial flow in a horizontal
fracture as outlined in Figure 1. Inclined fractures can also easily be

incorporated (Rissler 1978).

’ Borehole

Fracture

T e = constant

Fig. 1

IT.2 Baker (1955)

This author presents one of the earliest comprehensive discussions of
radial fracture flow. His assumptions are:

a) fracture is of uniform size

b) %racture is restricted to a horizontal plane

c) fracture aperture is very small compared to its width.

Baker then presents the following general equation for steady state

flow in self-consistent units;



(2-1)

Baker's terms are defined and translated into units consistent with

this report below:

where: Pf = fluid pressure in psi = h . vy
p = density in pcf = y
y = unit weight = g - P
Py = Mass density
n = dynamic viscosity = u = v °m

v = kinematic viscosity

T = fracture aperture = e
This previous equation may then be rewritten as:

. . 2
Loy Vm

C oy o= N :
he + ¥ = ——g o (e (2-2)

It should be noted that this approach is applicable to one-dimensional
(i.e. Tinear) flow (not radially symmetrical). The author then states that

for laminar flow

By s g (B }
¢(Vm'e'Y) k(Vm'E‘y) where k = 12 (2-3)

Substituting into (2.2) and rearranging the terms leads to

h
12 -
{s = g . e\z{ y Vm (2-4)




_g-ed fs
or Q=5 T (2-5)

Equations (2.4) and (2.5) can, of course, be simply derived from the
Navier Stokes' equation for one-dimensional flow between smooth parallel
plates (Ref. Louis, 1969).

For\convergent radial flow, Baker gives the following:

dp = %ir 3 dr (2-6)

However, it can be shown that this should be (Ref. Appendix B):

dp = %irnf dr (2-7)

Translating units again gives:-

_ 12 v

dh = >F ge

dr (2-8)
Integrating equation (2.8) between an outer radius R; and an inner radius
Ro gives:

_ _6wv
hfS = “—.g—g? n Rl/Rz (2-9)
This last equation describes the frictional (viscous) head loss in the
fracture. However, for radial flow into a well, kinetic energy losses may

also be important. Calculation of these losses requires a knowledge of
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the velocity distribution in the fissure. Baker assumes that the error
will be small if one assumes that the distribution curve is flat; i.e. at
any given radius the velocity is constant at all points between the

fissure faces and is equal to the mean flow velocity. For streamline flow,

Baker gives the following expressions:

P 2 t2
v = Ef% [.;_ - %] (2-10)

where v represents the velocity at a distance t from the axial plane of

the fissure. Translating terms once more gives:

" g
v = L5 ( gz - %?-) (2-11)

Then the mean square of velocities between the fissure faces is

h2 .g2,e'+

() = T - e

Baker then gives the pressure drop due to kinetic energy as

Prs = 10 w2 . (2-13)

(3

However, for an incompressible fluid this should be (refer to Appendix B),

2 g . el
P = (v2 ) m hoeg 9 - @

KS = "2 g 240 VI T2 (2-14)

Or, using equation (2.4),



P .= L (2-15)

-Note that this last equation has been derived based on one-dimensional
flow conditions. Baker then substitutes for V2m from radial flow to get
(see Appendix B):

- 3 0% L1
Pis =g mr e (R2 ~Rp2) (2-16)

Therefore, the total head drop for streamline radial flow may be

expressed as

_6-v-4Q 3 Q2 1 1
hg =1 g . e l"(Rl/Rz\*' 20 - g - 72 - e? ( Rp2 " Rlz) (2-17)

™

For the case of radial turbulent flow, Baker follows Miessback's.law

and assumes (see Appendix B):

Pey o< vmn (2-18)
such that
n L
o ( W) =k (W) (2-19)

where k and n are experimental constants.
From pipe flow analogy, Baker assumes n = 2 for the fully turbulent

case, giving for one-dimensional flow

v2sgo o (2-20)



For radial turbulent flow Baker gives:
dr (2-21)
Translating terms and integrating between R; and R, then gives:

hey = EEEQ"QEEQ ( %g - %}’ ' - (2-22)
For the calculation of turbulent kinetic energy losses Baker uses:

2
2 = ____:!Q__z__7 -
Ym T TATrre (2-23)

Substituting into equation (2-15) leads to:

. m 11 _
he = 575z (g2 "R (2-24)

and, therefore, the total head drop for radial turbulent flow is given
by: .
. K@ L 2 1 1
h=gey (f, 7 1)t raare (Re - e (2-25)
X .

Baker further realized that although flow through a fracture into a well at

|

Tow velocities will be streamlined, at higher velocities the flow will

become turbulent at some radius 'R' as shown in Fiaure 2.



L- Laminor Region
T: Turbulent Region

Figure 2 Laminar and turbulent regions in
radial flow (after Baker, 19585).
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Under these conditjons, the head drop will be given by

. 6vQ 3 Q2 1 1
hy = mged " Ri/R + 55— g - w2 . e? ( R2 ~ Rlz)

K Q? 1 1 Q2 1 1
trarer Ry ~ R g™ g - 72 - e2 (§§2 - 72) (2-26)

I1.3 Maini (1970)

Maini's radial flow formulation is fundamentally the same as that of
Baker. The author begins his formulation from equation (2-11). Then
using (2-12) and (2-14) he arrives at (2-15).

For radial flow conditions Maini gives (see Appendix C):

- $ A
v = Ky gg- (2-27)
and for flow into a fissure
Q=2 -e - v (2-28)

Now substituting into equation (2-15) leads to eauation (2-16) giving the
kinetic energy head loss. Then substituting (2-28) into (2-27) and

integrating gives

h = Q g: Igglérn) (2-29)

expressing the viscous head loss. Hence Maini's final relation between

flow and energy loss for streamline radial flow is
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- Qan (ry/rg) 3Q

(+2-+3)
2 K e ) g m2 el ' r;2 7 rg?

6 v : 302 1 1
or h ;—7—5—3—;3 an (ri/rg) + §5*a#ﬁ%7;r( 2" FbZ) (2-30)

"
>
O
+
oo
P o]
N

or h

For the case of turbulent radial flow, Maini also bases his develop-

ment on Miessback's law:

n . oP )
(Vm) C 51 (2-31)
where n = degree of non-linearity 1 <n <2
C = constant - depends on v and the medium and is exper1ment—

ally determined in the field

Assuming Vm to be the mean velocity in the fracture, Maini substitutes

(2-28) into (2-31) to get

(L) - ¢h (2-32)

Integrating the last equation between ry and r; and hy and h; then gives

rln -1 ron-l :
=C (2me)" [ N o ron-l 1 (hg - hy)(1 - n) (2-33)

or for the fully turbulent case where n=2

QZ:C.Z].."" ez[Hj(hl-h) (2'34)
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Maini further notes that equation (2-33) can be rewritten as

E- Q"= (hy - hy)

Tog (hg - hy) (2-35)

or nlogQ+TogtE

Consequently, for non-linear flow, a diagram log (hy - h;) versus log Q
is represented by a straight line, such that the slope of the line

is given by n while the intercept on the h-axis is equal to E.

where E = non-linear permeability function

II.4 1Iwai (1976)

Iwai took a somewhat different, and for his radial flow development
much more fundamental approach in which he derived everything from the
Navier Stokes' equations,

For Tlinear viscous flow of an incompressible fluid, the Navier Stokes'

equation is:

=fF. 1 2 7
’ﬁ{"‘f?pVP"‘\)(V V) (2—36)

Assuming that:

a) the flow is governed only by mechanical and thermal energy present
within the system

b) the flow is isothermal
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c) the flow is Newtonian and homogeneous
d) Stokes' equation is valid.

The equation of continuity is:
V.vy=20 (2-37)

Those two last equations represent a system of four equations and four
unknowns. Solving for the appropriate boundary conditions (refer to
Appendix D), Iwai derives the following expression for linear streamline

flow:

Q=45 (- v h) (2-38)

For fractures with smooth walls in an axisymmetric coordinate system,

Iwat gTveé the Navier Stokes' equation in cylindrical coordinates as:

L EE¥E'+ X%f' = fp - %'§$'+ v [v2 Vp - ;E" %2 ;;QJ
SANUISELAS EF SRRt
9—-:-z—=fz-bl—%+vvzvz (2-39)
where:
SR AUS S T



-14-

The equation of continuity for an incompressible fluid in this system is

) sV

$ 8 Z _
—"(I"V)‘i‘ '56.-+8—Z-—0 ' (2-40)

ér r

S f
5=

Assuming that for axisymmetric steady state flow conditions the two last

equations may be rewritten as

2
6Vr sh 8V

_ _ . 8h r. 1l r r_._r -
rr - 9t et v e _ 7] (2-41)

s - ) (5.
= (rv)=0 (2-42)

v

-

Equation (2-41) contains a nonlinear term which is dependent on the
varfation of Vr in the r-direction, one of the important characteristics
of radial flow.

Iwai then assumes that the inertial term in that equation can be

fgnored. Then, recognizing that

v = Ez) (2-43)

r r

equation (2-41) becomes
_ sh 1 d2 F(z
0=-~g 3F'+ Vo ’—aié—l (2-44)

However, h is independent of z, and hence
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2 ;
g—agéll = constant

Cj 22 + C, z + Cg (2-45)

N =2

therefore, F(z) =

Solving this equation for the appropriate boundary conditions results in

- x__(hi o] 2 )2 4
F(z) = - o Iﬁ_F;7F;'(Z - (e/2])2) (2-46)

Substituting into equation (2-43) gives

(hy = h_}
R 1.9 2 . 2] -
Yy Zur an ro/ri [Z (e(z) (2-47)

Integrating between z = e/2 and z = -e/2, the average velocity can be

found

(h; - h)

_ye: i of _
Vr 12ur 2n rolri (2-48)

The flow rate into the fissure {is then

(.h.[ - hO)
an ro/ri

i} v ey -Tyed
Q=2 eV 3

. (2-49)

Hence when the inertial force is negligible, analogy with Darcy's approach

gives

f " 12 u 12 v (2-50)
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Where both the velocity and its gradient are significant, the effect

of the inertia term must therefore be considered.

A=B+C (2-51)

Since the term (Vr 6Vr/6r) is always negative and approaches zero in the
1imiting case, Iwai assumes that B and C are always opposite in sign.
Then:

a) For divergent flow,B is positive, therefore (sh/sr) is negative
and C must be negative, Therefore [C|>|B].

b) For convergent flow, B is negative, (8h/sr) is positive and
therefore C {s positive. Hence [C|<|B].

Therefore Iwai concludes that:

a) For divergent flow one gets an apparent increase in permeability.
_ b) For convergent flow one gets an apparent decrease in permeaﬂi]ity.
In drawing the above conclusions, Iwai ignores the possibility of changes
in effective stress and subsequent fracture deformations causing these
effects. This will be discussed further in this report.

Iwai states that since variations in velocity and velocity gradient
are greatest at the inner boundary one can avoid these erroneous values
of K due to inertia effects.by measuring (sh/ér) at.an appropriate distance
from the inner boundary.

The author then determined the upper limit of applicability of Darcy's
Law such that inertial effects could be neglected. This was accomplished
by assuming that, as a first approximation, V,. and (svr/ar) can be deter-

mined from Darcy using equation (2-47). From this he derives that

sV
r. ah ;2 1 2
Ve 5t e (- ) [e/2)? - 22 (2-52)
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Then taking the average over the fracture aperture as

GVr 1 b/2 svr
[Vr g;-]a = E'[' Vr &7 d z (2-53)
~-b/2
One obtains
sV
Py =X —Ah __F_lyre i
[VY‘ 5Y‘a [2}1 n ro/ri]( ;3)[30] (2 54)

_gdh_9g _ah B}
% “rn ro/ri (2-58)

Iwai then determines the ratios between the inertia and head gradient

terms as
5vr
| Ve & |
n-=—-———---ﬁ———-= gge .

Using this ratio he determines the effects of inertia on radial flow as
discussed later in this report,

Iwat also briefly discusses the two dimensionless parameters:

Re - Reynolds' Number

A - friction factor

where

Re = — (2-57)
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VZ 729 (2-58)
where Dh = 2e

For linear flow these factors are given by Louis (1969). For radial

flow Iwai defines the Reynolds' Number as

Re = VSZb) - 2prR (2-59)

The Reynolds' Number is the ratio of viscous to inertial forces. If viscous

forces predominate over inertial, i.e. where R = r. in figure 3, then we

i
may take

¢ = 96/Re (2;60)

This last equation applies for Taminar flow, independent of geometry. Baker

suggests from his results that this may be applicable to critical Reynolds'

Numbers of 4000 to 8000, This is very high relative to linear flow values.
Finally, Iwai quotes Maini (1971) for turbulence, and for correction

factors for kinetic energy (see equations (2-30) and (2-33)).

’
D)
(P

Figure 3
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II.5 Rissler (1978)

2.5.1 Introduction

Rissler begins his flow formulation in exactly the same manner as Iwai.
Starting from the basic Navier Stokes' equation and integrating for parallel
plate boundaries, he shows that v o I (refer to equations (2.36) and (2.38)).

Following this, Rissler develops the governing flow laws for one-
dimensional flow in a fissure in some detail, He bases his development on

the basic law for energy losses in pipes of any cross-section given by
2
I”.%.L (2-61)

friction coefficient

where / A
Dh hydraulic diameter

2
l %a-- kinetic energy relative to the unit weight

For a fissure of aperture e

Dh = 2e (2-62)
Dh . V
and Reynolds' number is: Re = — (2-63)
Hence ) can be calculated
_ 96 :
A= Re (2-54)

This equation is valid for parallel walls and relative roughnesses below
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0.032. The relative roughness term that defines the roughness of the plate
(fracture walls) is an important parameter in fracture flow. The terms are

as defined below,

P
!

absolute roughness

D, = hydraulic diameter

The remaining flow laws have been determined experimentally on artificial
fractures (Ref. Louis, 1969) (see Appendix E).

For one-dimensional flow with non-parallel walls (k/Dh > 0.032)

_ 9% 1.5
A= Re [1+8.8 (k/Dh) ] (2-65)
For turbulent flow:
a) hydraulically smooth (k/D, = 0)
-L
A = 0,316 Re ? (2-66)
b) completely rough
(i) k/Dh ¢ 0,032
1 k/Dy
/T— -2 1og '3"-7'— (2"67)
(i1) k/Dh > 0.032
1 k/Dp
/-I—- - 2 ]Og 1'9 (2'68)
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For the laminar-turbulent transition for k/Dh < 0.032, the law proposed by

Colebrook-White is used
A = 0.316 Re ™%
Louis (1969) gives the critical Reynold's number for the laminar-

turbulent transition for parallel flow and relative roughness less than

0.0168 as
ReK = 2300 (2-69)
For relative roughness greater than 0,0168
ReK = F(k/Dh) (2-70)
On the A - Re diagram (refer to Figure 4) Rissler approximated this relation-
ship as a stratght l1ine., Using the equation of this line as well as (2-67)
and (2-68), he developed the following relations between Re and k/Dh
(refer to Appendix E):
a) For 0.0168 g k/Dh s 0.032

Tog Re, = Ilﬁ log [142,000 (log %}lhm (2-71)

b) For k/D, > 0,032

1 .
log Rey = 7ovz log [142,000 (log %-/—g--h)zj (2-72)
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c) For the transition from

hydraulically smooth (2-66) to completely
rough (2-67) gives

8
Rey | = 2.552 [Tog —53/'7'1] (2-73)
A
00 pee-rrrrrrmss flow laws: o
o s R '
e ol e Somn — =2} {equ.9)
50‘__\_::{ = : @ A:%f-(fqus) ©’|T 2tog 53
T EZR e : s 1 k/On
E 5 g, X 2 fequ.10)
I%"_:,TF. R*‘%E‘[\-OJ(B;’ )lm'l) ®R Nog —g— leau
204 \\gbi‘;“
e ,Vt © »=0.216 R¢%2S (equd)
WU
o R e
= BT e e e Y + —— Ew
sLE — 2 e 5 St . 5 B S i S SRS LT T R
= o =
13 T T EERNIHIRT A, e =
02 # YUYy LI EEIm Lo £
metHb~ Tmy 1 ﬁﬁ]1“n: { Il [ ANETHEm
01 : l 1 1 i R } | IMEE I - | TH 4 -~
= Cmwsmomme = i S reregl
00sH tests by Sharp: \N&=5 s === o
? :%28 accordingd—t = T ‘I _—*-‘.’i:’m"“'gm
| km/On) o 0175 (10 o 7] 4 -~ ST Yo
0.02"" & 0.09 J i “l 1: | |
for the v?
L e T PO T T TCST [Tl e
2T BES Lo 0° - Lo

fig. 4 Laws for one-dimensional flow in a fiss.urs

(After Rissler 1978)

Wittke and Louis (1969) showed that the velocity profile for laminar
divergent radial flow varies only slightly from that corresponding to one-
dimensional flow conditions (see figure 5). They concluded that the flow

laws applicable to one-dimensional flow can also be used as a good approxi-
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joint wall

“A
_j_o_int axis .10 . e
08 —/}
divergent radial tlow //
0.6 \ 4

7

0.4

7/ parabolic distribution

b ; {one-dimensional flow )
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mation for divergent radial flow and can be handled using potential theory.

Rissler also discussed the field implications.

A typical water test set-up is shown schematically in figure 6. Know-

ledge of the energy head of water at the joint ehtrance is required for

h éf) /ﬂ

U i

“———— Borehole wall

\vi
e 3z
=l
A A«——— Packer
h ¢is
W
Figure 6 (After Rissler 1978)

reliable evaluation of water pressure tests. If the pressure is measured
at the wellhead, the energy losses between the gauge and joint entrance must
be calculated, (

If gravity is the only mass force acting, then the total energy head

of a fluid element can be computed using Bernoulli's equation, i.e,

H=z+%+—— | (2-74)



-25-

where z = geometric head
P = static pressure
v = fluid density
v = mean flow velocity
g = acceleration of gravity

The total ﬂead is then composed of two parts:
(1) piezometric head h
(it) velocity head v2/2g.
Since in most practical rock engineering situations v is very small, the

equations can be simplified, and
- P _
H=2z+—==nh (2-75)
Y
Referring to figure €
H= hA + h. - hw (2-76)
The total energy loss between the gauge and the fracture consists of the

following terms:

hy: Tlosses due to bends in tubing

ha: friction losses in Tines

hg: losses due to enlargement in cross-section below packer

hy: losses due to bending and contracting at entrance from borehole

to fracture

The energy head acting at the fracture is consequently

Hy=hy +he =R =hy-hy=hy-h, (2-77)
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Rissler calculates expressions for h; through h, and presents these graphic-

ally. (Refer to Appendix E.)

2,5.2 Steady Radial Symmetrical Flow in Horizontal Joints

The conditions for this development are limited to nonparallel, laminar
flow in a fissure. The friction law of Poiseuille for parallel flow is
however also included,

Rissler considers a circular cut of radius r (see figure 1) and defines

the continuity condition as
Q=v - -F=v:.2mr- e (2-78)

giving

V=l (2-79)

Introducing the flow law of Louis (refer to equation (2-65)) into (2-61)

and replacing I by ( - %g-),

_ g e? dH
VS TTNT 8.8 (DS dr (2-80)

Equating the right-hand sides of both equations leads to:

dH _

12 v[1 + 8.8 (k/D,) -5 ] Q
i : - (2-81)

g . 2 Znr - e

Integrating between appropriate boundary conditions gives
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6 v 1 +8.8 (k/D,)!"3]

-H - Qg -
H o= H e TN (2-82)

This last equation describes the energy head 'H' in the fracture as

f (Ho, Fo» 9» Vs € and k/Dh) which is constant for one test, H decreases
with increasing r. Generally it is sufficient to introduce H = 0 at

r = R as a boundary condition if R is very large. Then (2-82) gives a
linear relation between the energy head at the fracture entrance (Ho)

and the flow rate (Q).
Hy = Q- 55—1[-253‘[ 1+8.8 (k/D,)15 7 an R/, (2-83)

Equation (2-83) contains.the measurable values v and o along with the

parameters e and k/Dh which are decisive to the fracture conductivity.

2,5,3 Turbulent Flow Near the Borehole - Smooth and completely rough
with nonparallel walls

The following discussion is valid for k/Dh = 0 and k/Dh > 0.0168.
For 0 < k/Dh < 0,0;68 further considerations are necessary as will be

discussed later,

a) Extent of the turbulent zone
From the continuity equation (2-79) one can easily see that the mean

flow velocity decreases as r increases. Since

Re

is

(2-84)

if the flow adjacent to the borehole wall is turbulent, the Reynolds' number
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decreases with increasing r until it reaches a critical value re at which

a change from turbulent ( r < Ty ) to laminar ( r > ry } flow occurs (see

figure 7).

J "k 7 "o
e .

I ros. R K Re0

Turbulent Laminar
F XXXX ool XXXX
RXX R &KX
| § re

Figure 7 (After Rissler 1978)

To calculate re substitute

in equation (2-8¢) to obtain

" Ty - ey (2-85)
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Now substituting for Rey from (2-69) through (2-72)

s for k/Dh < 0.0168

e Q
‘ Tk T v e 2300 (2-86)

e for 0,0168 s'k/Dh 5 0.032

1
i 3.7 2, " 1.7%

] re = T3 [142,000 (log ol (2-87)
-t
_ 1.9 1.76

re = o [142,000 (log k7, (2-88)

- Hence the extent of re for a given Q and v is not constant but depends on

k/Dy-

2.5.4 Distribution of energy head in section of turbulent flow and
transition conditions

a) For k/D, > 0,032

The general relation for energy losses in radially symmetrical flow is

SR
A D7 (2-89)

1
Qla.
'SII

Ustng (2-79) and (2.68), this equation becomes:

dH _ Q2 1
dr = " B e g (Tog TO/k,p T2 2 (2-90)
h
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Integrating for the appropriate boundary conditions then gives

H=H - ¢ ¢ -4 (2-91)

0 3 2 1.9 42 'r
64 e -g 72 (log k/Dﬁ) 0

Hence
H= F(r)

Rissler now extends this concept into the laminar zone, Hence referring
to figure 7, he first determines the energy head H = HK at the outer
boundary of the turbulent zone ( r = rK) using equations (2-88) and (2-91).
This is then applied as the inner boundary condition for the laminar
flow area.

Hence the energy head at the turbulent boundary is obtained first

by substituting equations (2-88) into (2-91), (rK +>r),

1
) Q2 1 wr 1.9 12.1.76
H = H - [= - =~ [142,000 (log 5= )]
K™ "0 64 @3 g 72 (log %7%_02 ro « k/Dy
h (2-92)

The function H = F(r) for laminar flow was derived previously. Substituting

the right-hand side of equation (2-92) for the energy head Ho in (2-82)

then gives
2- 1
H=F(r) = H_ - : - {L-
o 3 2 1.9 r
64 e3 g 2 (log F75;9 0
> T 142,000 (log 52)%] "‘"‘1176
q ’ Swm,

6 + v - 1.5
-t 1+ 88 (ko tS
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an r 1 (2-93)
4 [142,000 (Tog k/D 1.9 ,%,71.76

| If this equation is to be considered as a function H0 = F(Q) then constant

numerical values must be assigned to H and r. Therefore,

and,

6 1.5
5—%—83 [1+8.8 (kD) 7]

- 1

R.wv 1.76

| an —vvvﬁv———- (142,000 (log E7ﬁ') ] (2-94)

Analogous considerations can be made for completely rough (0.0168 s k/Dh
s 0,032) and for smooth (_k/Dh = 0) conditions. The corresponding flow
laws must of course be introduced and result in

-3

o for 0,0168 g k/Dh < 0,032

oL 3 Q2 1
(] 3.7 \¢ )r

64 e3 g 72 (log o ) 0
h
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1
o TuE
3.7 )7 1.76

e +

2 6 L [142,000 (log

6 1.5
5—%—83 [1+8.8 (k/D) 1 -

L

y2q 1.7 (2-95)

Rvaw 3.7
2n (142,000 (log
{ Q k/Dh
e for k/Dh =0

_ by Q2 -3/4 Q -3/4
HO = 0.0263 ) g - 72 . e3 [rO - (\) . T . 2300) ]

. 4 2300 v 7w R (2-96)

6 vQ
Tome q
Equations (2-94) through (2-96) represent, for the given roughness range,
a relationship between the data H0 and Q resulting from the test and e

and k/Dh decisive for the fracture permeability.

2,5,5 Turbulent flow near the borehole - transition zone

The previous development has assumed that there is an abrupt change
from hydraulically smooth to rough (turbulent) flow at a certain Re =
F(k/Dh). However, under certain conditions the change may be gradual in

which case there will be two flow changes:

i.e. turbulence (Nikuradse) - transition (Blasius)

+ laminar (Louis, Poiseuille)

as shown in figure 8,
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(After Rissler 1978)
Figure 8

The radius for the transition from completely rough to hydraulically
smooth (i.e. "y, in figure 7) can be immediately derived from equations

(2-84) through (2-88), 1i,e.

- _Q 1
r, = 0. (2-97)
Ki ™V 2 552 (log %7[7)- )’
h

Figure 9 shows the characteristic curves calculated by Rissler for
Q= f(Ho). He found that for apertures 0.13 < e ¢ 0.4 mm a numerical
evaluation of the theory showed that - for certain apertures - the laminar-
turbulent change is nearly independent of (k/Dh) at a nearly constant energy
head Ho' Rissler then uses this fact to determine the fracture aperture
from the critical energy head without knowing (k/Dh). However, in order
to do this it is first necessary to represent the relationship found
between HOK and e using equations (2-83) and eijther (2-94),62-95) or
(2-96).
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Ho is the critical energy head at which laminar fracture flow becomes
K
turbulent directly at the borehole wall. Using a numerical evaluation of

these equations Rissler derives

6 v2rg 1.5, . R
HOK = T . ReK (k/Dh) [1+8.8 (k/Dh) ] 2n FO (2-98)
where the flowrate Q has been replaced by the critical Reynolds' number
Rey = f (k/Dh).

Solving equation (2-98) for e gives

yARESED 1.5 R
e = —a-j—ﬁgv——-v ReK (k/Dh) - [1+8.8 (k/Dh) ]+ an Fb (2-99)
’ K
Introducing then the fo]]owiﬁg values
B = o—2p— * Re, (k/D,) + [1+8.8 (k/p,)%
g « o K h : h
K
_ 6
el f (k/Dh) (2-100)
()
K
= o2 . Ry -
C=v2 vy« fn ( v ) (2-101)
Then e=3/B.C (2-102)

Rissler evaluated the influence of (k/Dh) on the relation between
H0 and e and came up with a possible 8 percent error,
K
For practical purposes, Rissler produced several nomographs which will

be discussed in the following section of this report.
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CHAPTER III

COMPARISON OF RADIAL FLOW FORMULATIONS

The previods section of this report discussed the basic developments
of each of the various authors dealing with radial flow conditions. In

this section the various approaches are compared and analyzed.

3.1 Laminar Flow

When dea]ing with laminar radial flow,the basic flow relation for
frictional losses must be examined prior to considering the correction
factors for kinetic energy and inertia,-

A1l derivations-considered previously were based on the following
basic laws.

a) the Navier-Stokes' equation

b) the continuity equation
Iﬁ additton, the following assumptions were.made:

a) the fracture is of uniform size

b) the fracture is restricted te the horizontal plane (although
this can be easily extended)

c) the fracture aperture is very small with respect to its width

d) the flow is governed by the mechanical and thermal energy in
the system

e) the flow is isothermal
f) the flow is Newtonian and homogeneous

g) the Navier-Stokes' equation is valid.*

Based on the previous assumptions and theories, and neglecting kinetic

*“A1th6ugh Baker (f§55) does not state that hfs'generé1 f]ow equation

is derived from Navier-Stokes' law, it is apparent from the form of
the expression that it must be.
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energy and inertial terms, the authors all derive the following expression

for the viscous head loss in a fracture,

Ry

_6 v v o
Ah—rT—gjknﬁE (3"‘1)

Baker (1955) and Maini (1971) both derive correction factors for
kinetic energy losses, This requires an assumption that the velocity
distribution curve in the fracture is flat, i.e. at any given radius
the velocity is constant at all points between the fissure faces
and 1s equal to the mean flow velocity. Then using Bernoulli'’s equation
plus the equation for the mean square velocity between the fissure faces
(derived from Navier-Stokes) for linear flow they derive

3 vm2
PKS = gg" (3"2)

Substituting sz for radial flow, (assuming that this substitution is

valid), gives

i 3 Q2 11
Phs = g er LRz T Ry (3-3)

Hence the relation between flow and energy loss for streamline divergent

radial flow is given by

528 D 302 . 1 1
= p— - —-——— -

Note that this equation is for radial divergent flow while equation (2-17)
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was for radial convergent flow.

Maini notes that equation (3-3) corresponds to a small correction term;
and for most practical field problems, can easily be ignored. He notes,
however, that if nonlinear flow is observed this term should definitely
be evaluated before assuming turbulence.

If one evaluates (3-3) more closely, it can easily be seen that it

may be rewritten as
) 2 1 1
Pes = 0.00155 35 ( 82 - 72 (3-5)

in metric units.

For most practical cases, the following assumption can be made:
Ry >> Ry
and, therefore,

0,155 Q2
Prs < ER (3-6)

Stnce Q o e3, then as e decreases, Q will decrease much more rapidly. Hence

the i{nfluence of the kinetic energy term will largely vary as follows:

Pps @ R,2 (3-7)

Hence for most practical cases where fracture apertures are very small, the
influence of the kinetic energy term will be small and as R, increases,

will become negligible,
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Iwai (1977) begins his development from the basjc Navier-Stokes'
equations written in cylindrical coordinates, and shows that for axi-
symmetric steady state flow it contains a nonlinear inertia term which
is dependent on the velocity gradient.

He first calculates the viscous head loss as if the inertia term
is negligible. He then calculates the inertia term by assuming that,
as a first approximation, Vr can be taken from the derivation based on
Navier-Stokes' equation. Finally, by integrating, he obtains the average

over the fracture aperture:

8y
r _ Ah 2 1 ek
L, g;“‘]a = [ %ﬁ' Eﬁ—F;7?;'J (- ;3) [35] (3-8)

Iwat then takes the ratio of this inertia term to the head gradient and

gets
sV
l Vr\g;r' |
ns; = et = pQe
! sh 20 urr, (3-9)
: -9 or | 1

which is shown plotted in figure 10, This graph is used to determine the
Timit of applicability of Darcy's assumption. On figure 10 Iwai also
shows two sets of plots, one based on Ahn and the second on Aht. The

difference, Ahv,i’ is:

- 3 Q2 1 '
thy i = BTEETT T2 (3-10)

i

Equation (3-10) is, of course, the same as equation (3-6). As can be easily



-40-

‘l |8 I A ] ] re 4 1 T T T L R
L <;‘Jc;
5y O
AN -
L 0 \ \ é g
5 N\ = Y s S
. OX €
® & (e8]
\ o o
s ) \ \.\ \ . \ \
- ~ \ \5;&'\
\ $ % \
0 - ,_, \ \\ \ \\
N Y VI
03 \\L-\ AN \
EUED N R\
T £ \\ \\\ \
| ~S\ O\
w3 ™~ - AN ) »
5-0/r & ‘\? N\ 3
<, S8 D e \
p— 7 £ . \ A\ \\ N
TE e "~~~§\\ \ °. S\
- "{ ~ AN
~ TG
\\\“~=>\
1 i 1 1 l | A1 L i L i 4 1
Q Q Q
K Q S

(oas/gw:)) 0 ‘3ioy mOl4

Figure 10

60 80 100
Head Difference, Ah (cm)

40

20



-41-

seen on figure 10, for a constant flowrate and increasing head difference
(and hence decreasing aperture) Ahv,i appears to increase.s1ight1y. More
importantly, however, Ahv,i increases significantly for increasing flow-
rate for a set fracture aperture, '

Iwai notes that if Darcy's Law is valid the pressure should decrease
Tinearly with the log of the radius. He shows two cases, one showing
perfect linearity at the Tower injection pressures but departing from
Jinearity at higher pressures, while the second case for a larger aperture
shows a rather curved profile except at the lowest injection pressures.
The author states that when Ny becomes significant the velocity head
around the injection hole begins to increase and the piezometric head
therefore decreases, He concludes that the Tine ny = 0.5 in figure 10
roughly borders the region where constant permeability can be assumed.

From equation (3-9),

-..0Qe _ Qe
T2 nrrZ 020 v r‘.iz (3-11)

taking v = 1070

ny = 1.6 x 104 Qr_Te_ (3-12)

ny e o (3-13)

as was concluded in equation (3-7) for the kinetic energy term. Hence for

practical rock engineering purposes the effects of both the kinetic energy
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and inertial losses can be avoided by reading in an observation well which is
sufficiently remote from the injection well. However, if nonlinear effects
are geen,then the effect of kinetic energy and inertia should be evaluated
prior to assuming turbulence,.

Rissler (1978) takes a different approach in developing the radial
flow laws. He based his development on the general law for losses in
pipes of any cross-seption. Introducing then Louis' law for one-dimensional

flow with nonparallel walls he derives the flow law
= %% 1.5
A ® Re [1+8.,8 (k/Dh) ] (3-14)

Rissler then, based on work by Wittke and Louis, where they showed that the
velocity profile for laminar divergent radial flow varies only slightly

from that for a corresponding one-dimensional flow - concluded that one-
dimensional flow laws can be used. Ignoring kinetic energy and inertia

effects he derived

6vl1+8.8 (|</Dh)1'5
H=H - —

(0} g . ed

|-

]
+ L n
™

-

o]

which for the case of smooth parallel walls (k/Dh_= 0) reduces to

th=eo2d L (3-15)

0

where ah = Ho - H,

Hence equations (3-15) and (3-1) are identical, proving that the approxi-

mation using one-dimensional flow laws appears valid.
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3.2 Turbulent Flow

Baker (1955), Maini (1971) and Rissler (1978) all derive formulations
for turbulent radial flow, while Iwai (1977) does not. Iwai does, however,
recommend extension of the flow tests to the turbulent region to confirm
if any of the existing flow equations are applicable.

Baker and Maini both base their turbulent flow derivations on
" Miessbach's law. Baker derives terms for both the frictional head loss
and the kinetic energy loss in obtaining the fellowing equation for the

total pressure drop:

-r_ZQLTkz 1 1 Q2 11
hy = gorer ( R, ~ ﬁl) TgTY vl e? ( R2 " §12) (3-16)

Maini, working from the same basis derives the following for the

case of fully turbulent radial flow:
Q2=C-4-n2e2[$31-—-:——$-g-](h1-h0) (3-17)

Maitni ignores the kinetic energy term for turbulent flow.
Baker's equation changed to divergent flow conditions can be written

as (R, = rq)

_ k@2 11
thy = pgr (R, - R

_41\'292( Ry Rp
R

2 =
or Q X TR, ) ah

T (3-18)

Equating equations (3-17) and (3-18) gives
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R1 _Rg

2
R 2 3 ..._]........__,Q. = 4 LS
C-4n2e (r,1 - Y_0) Ah k (R1 - Ro) AhT
or Crk=e (3-19)

Baker further realized that convergent flow through a fissure into
a well, at Tow velocity will be streamlined. At higher velocities the
flow will change from streamline to turbulent at some intermediate radius.

Under these conditions the pressure drop will be given by
_6vQ. 3 Q2 1 1
P =7 ges " R1/R * 75 g e (% - §}2)
k Q2 1 Q2 1
TThTe (ﬁz R 891r e (R2 -ﬁz (3-20)

This equation assumes that the flow will change instantly from streamline
to fully turbulent,

Rissler (1978) notes that water pressure tests may be linear or
nonlinear. Both overproportional and underproportional relationships
have been observed where:

1) overproportional relations are generally due to expansion or
cracking of the fracture

2) underproportional relations are generally due to turbulence.
In the literature, researchers have generally attempted to describe these

curves by parabolic formulae such as
=AQ + BQ? (3-21)

where P = the pressure in the borehole at the point of entrance
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flow rate

s
n

]

A & B = coefficients (with differing dimensions)
The coefficients A and B are empirically determined from tests, but
usable conclusions about the causes of these relations (i.e. aperture,
spacing, etc,) have not been made.

Rissler develops formulae for the energy head distribution for
turbulent and transitional conditions. He derives all of these laws
based on the general re]ation.for energy losses in radially symmetrical

f]ow given below:

1
Qo
=<|x
H
>

1§
. v (3-22
D, )

Then using the continuity equation for flow from a borehole into a
fracture and the appropriate frictional coefficient, A, the basic differ-
ential eﬁuation can be set up, For the case of turbulent flow with
completely rough conditions (k/Dh > 0.032) the following formulae can be

derived

2 1 1
H=H_ - - (£ -+) (3-23)

o . a3 . Vo2 1.9 ¢ r r
64 e g ™ (]09 k/Dh) o

describing the head loss in the turbulent flow section,

This equation is applicable to fully turbulent flow conditions and
should therefore be compérab]e to Baker and Maini's formulations given in
equations (3-16) and (3-17) (for n = 2, i,e. fully turbulent). Assuming
that these various formulations describe the same phenomenon, it should

then be possible to investigate Baker's empirical constant k as well as
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Maini's constant 'C'. Hence, omitting the kinetic energy terms,

-1
Kk _ 1.9 |2
q°- (64g(10g E7ﬁh) ]
where Ry = r, Ry = o
and k = " 1 135 )2 (3-24)
16 g (log =% .
k/Dh
Similarly
1 1
C+ 4 1 Z
64 g e (log == )
. k/Dh
- ) 1.9 |2
C=16+g e (log E7ﬁ') (3-25)
h

From equations (3-24) and (3-25) ome concludes again that

Hence,

Baker's constant k

£ (1/(k/D,))
f (e, k/Dh) (3-26)

Maini's constant C

These two constants have been calculated and are plotted on figures 11 and

12,
For the case of full turbulence, but with k/l_)h s 0.032, the friction
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factor is given by equation (2-67)

1 _ k/Dh
J}T—-—PZ]OQ';T.

Hence C and K will vary from equations (3-24) and (3-25) only by a slight
numerical factor, These values are shown graphically on figures 13 and 14.
It should be immediately apparent from figures 10 through 14 that Bakér
and Maini's empirical constants both tend to increase the turbulent head
loss with increasing roughness as would be expected., Furthermore, figures
10 and 12 show the very marked dependenée of Maini's constant C on
fracture aperture.

The previous comparison of turbulent flow laws ignored the kinetic
energy losses since for most problems thesé can be considered negligible.
The reason for this is that the kinetic energy head loss terms deve]oﬁed

by Baker and Maini may be represented as
ah, o 1 (3-27)
K™ R2

Hence as R increases away from the borehole, AhK goes to zero,

Rissler's formulation is based on equation (3-22), the general law
for head losses in conduits of any cross-section, which includes a kinetic
energy term, (52/29).' However, if the assumption that this term is
negiigible is really true, then the difect comparison of equations (3-16),
(3-17) and (3-27) is still valid,

Rissler derives the extent of the turbulent zone for radially divergent
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flow for various roughness conditions. This is shown graphically on
figure 15 as a function of flow rate, with relative roughness as a para-
meter. It is of interest to note the very sharp break in these curves
at a flowrate of 10'2 m3/sec. Up to this flowrate the extent of the
turbulent zone never exceeds seven meters for any roughness, and for
k/Dh < 0,032 does not exceed two meters. Hence'if one wishes to ignore
the kinetic energy term, then observations should be made at large
values of R, However, if this is done,then quite probably any influence
due to turbulent flow will not be observed. For flowrates that might

3 m3/sec or less), and

be expected in normal rock engineering (5 x 10~
especially for a single fracture, the effects of turbulence would most
probably only be observed in measurements from the injection hole proper
since observation wells would be at Teast 5 meters distant. In such
conditions, if nonlinear phenomenon were obsérved in an observation well,
then kinetic energy effects should be cﬁecked prior to attributing the
effect to turbulence.

If we revaluate Baker's empirical coefficient k including the
kinetic energy loss, then the full right-hand side of equation (3-16)
ean be equated to (3-23), or

_ e 1 11 yRe-Rs i
k 29 ( ROZ - RIZ)(RO " Rl) (3 28)

1.9 2 ~
8 (log 5= )
k/D,

It is obvious from this equation that if

R1 >> R
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then

(L

1 Ro = Rj
R02 - ﬁ}Z)( R0 - R ) + 0

1
and equation (3-28) becomes equal to equation (3-24).

Now, if R; is only slightly larger than Ry, then the right-hand side
of the bracketed term in equation (3-28) will be a very small positive
number,

1.3, if Rl

]
nNy
X3
(=)

then the above term

i
+
[22)
5

Hence the effect of the kinetic energy term on the empirical coefficients
€ and k can be practically neglected.

Returning to figure 14 one may conclude that in normal field packer
tests it is very unlikely that turbulent effects will be picked up in
observation wells, If such effects are to be monifored then very sensitive
downhole pressure transducers must be employed to avoid errors involved
in Tine losses, etc. This concept is fundamental to Rissler's thesis and
may be extremely important to the proper interpretation of field permeability
tests as discussed below, ) '

The previous evaluation of the empirical constants C and k was based
on the fully turbulent case, and the case of full turbulence and very rough
walls for Rissler. Analogous ca]cu]ations could be done for the other
fully turbulent cases presented by Rissler (i.e. k/Dh < 0,032 and k/Dh = 0).
Although the absolute values of C and k would change somewhat, the trends
shown in figures 10 through 13 would not change. Rissler also presents

the case with a transitional change from streamline to fully turbulent,
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however, this cannot be directly correlated to Baker and Maini since

the value to assign n in Miesshach's law is unknown.

3.3 Evaluation of Hydraulic Fracture Parameters from Pump Tests

In his thesis, Rissler (1978) stated that standard field paéker tests
can be used to determine béth fracture aperture e and relative roughness
k/Dh, the two most important hydraulic fracture properties necessary to
determine fracture conductivity. The basis of Rissler's theory rests on
being able to determine the fracture aperture from the "critical energy
head", that is, from the energy head at which laminar flow in the fissure
changes to turbulent flow directly at the borehole wall,

In Chapter II of this report, Rissler's derivation for the aperture

calculation were presented, concluding with equation (2-101) given again

below,
3
e=4vB +C
6
where B = o f(k/D, )
g oK h

= 2 * .
C=vZ.r, o (R/r,)

Rissler evaluates the function f(k/Dh) in B (shown in figure 16) and demon-

strates that for the- following range of roughness
0,06 < k/Dh < 0.4

the aperture determined - without consideration of k/Dh - introduces only an
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Figure 16
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8 percent error in the most unfavourable case.

In order to ease the use of equations (2-99) through (2-101), Rissler
evaluates these and presents the results graphically (figure 17). He
assumed a value R = 100 m for these charts. Hense varying kinematic
viscosities and borehole radii can be takem into account to determine
the coefficient C. B iS then determined, with a certain inaccuracy due
to the influence of k/Dh, from the initial energy head HoK' Having B
and C the aperture can then be determined from the lower plot in figure
17.

The most important aspect for the applicability of the method is
the determination of the critical energy head, HoK’ from the values Ho
and Q measured in the field test. It is evident that this can only be
achieved when the fuhction Ho = f(Q) is determined with sufficient accuracy.
Rissler recommends that for evaluation,the test results be represented

either as

= £(H,)

or

S

= f(Ho) (3-29)

In both of these cases a horizontal line for the laminar range and
a clean break on reaching the critical energy head occurs as shown in
figure 18.
Now, with the aperture assumed known, Rissler next determines the actual
relative roughness. This can either be done physically on core samples, or

by substituting any value pair of H0 and Q measured in a test into equations
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(2-87) and (2-94) through (2-96), solving for (k/Dh). A graphical solution
is presented in figures 19, 20 and 21.

Hence using Rissler's assumptions and ensuring that very careful field
measurements are taken, one can determine the two initial hydraulic
parameters, e and k/Dh, from a field pump test. These parameters can then
be used to determine the hydraulic conductivity of the fracture which
can be employed in numerical models for simulation of full-scale engineer-

ing projects,

A

e
HoK
a A ° . Ho
Ho 1
|
|
i
1 :
1 i_ T
Hok Ho
Ho ,
e !
: !
1
i
1
1
1
i
. | -
Hok Ho

Representation of the test results for detsrmination
.of the critical energy head HoK

"~ (After Rissler 1978)
Figure 18
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CHAPTER IV

DISCUSSION AND CONCLUSIONS

Streamline (laminar) radially divergent flow can be analysed

using the following relation:

- T .e3 HO'H .
0= FvIT+8.8 (WD) 31 In v, (4-1)

For the case of perfectly smooth parallel plates the previous equation

reduces to

q=rogced ot

6 v an r/r0

which can be derived from either the Navier-Stokes' equation or the

general law of friction losses in pipes of any cross-sectional area.

In radial flow both kinetic energy and inertial effects may,
under certain conditions, influence the results. For most practical
cases these effects can be 1ignored,

Iwai (1976) claims, however, that results will depart from the
Darcy approximation when the ratio of inertia to head gradient exceeds

0.5. This ratio is given as

- €
"t R - @2

It is of interest to note that Baker and Maini base their develop-

ments on the Navier-Stokes' equation for one-dimensional flow. Then
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substituting ( - %E

) for the gradient and using the continuity equation
for flow from a borehole into a fracture they transpose to radig] flow
and calculate the average velocity in the fracture. Substituting

this into Bernoulli's equation}they derijve the kinetic energy head
loss.,

Iwai, however, begins by writing the Navier-Stokes' equation in
cylindrical coordinates, which include a truly inertial term Vr(avr/écl
and develops his model from there. In order to solve this, however, he
first ignores the inertia term, then having calculated V. he resubsti-
tutes to determine the inertia term. It is not certain what error may
be involved in this. process but he is the only author to deal with
this.,

Rissler develops all of his theory from the basic law for friction
Tosses fn pipes of any cross-section. This formula inherently includes
the kinetic energy term of Bernoulli but does not include any inertia
effects. It further assumes that the basic formula for pipes remains
applicable for essentially an infinite fracture.

As noted in (a), all of the authors derjve the same relation for -
streamline radial flow and hence one may assume that kinetic energy
and inertia effects are of secondary importance. Since both of these
factors are proportional to(%f, then this would seem true as long as

measurements are taken at some distance from the borehole.

Turbulent flow is dismissed by most authors as being insignificant
for practical rock engineering, Although this may be true in the

analysis of most large-scale rock engineering projects where the flow

-
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can generally be modelled as one-dimensional, in packer tests where
radial flow occurs, turbulence near the borehole may have considerable
significance.

In analysing radial turbulent flow both Baker (1955) and Maini
(1971) base their theory on the Miessbach Taw and derive equations of
the form

P=AQ + BQ? (4-3)

which satisfy the parabolic form of the H-Q diagram. However, the
coefficients A and B are empirical and do not supply conclusions as
to the underlying causes of these relations (i.e. apertureyspacing,
etc.), Hence such formulations are of limited use.

Rissler (1978), based on work by Wittke and Louis showing the
velocity profile for one-dimensional and radial flow conditions do not
dtffer significantly, derives turbulent radial flow laws using the one-
dimensional flow laws of Louis et al. Rissler derives, using this
method, the same law for streamline radial flow as previous authors, but
for turbulent flow he derives laws that are not empirically based.

Thus Rissler's laws may be used for numerical parametric studies to
determine the results of various parameters on packer test results, thus

aiding in developing a sound understanding of phenomenon observed in

the field.

Comparison of empirical turbulent laws with those of Rissler, (for

the case of fully turbulent flow), show that the empirical constants
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from Baker and Maini are functions of e and k/Dh, the two most funda-
mental hydraulic fracture parameters. It is then obvious that these

values will be strictly test dependent.

Rissler's thesis is critical in that it allows determination of
both e and k/Dh from standard field packer tests. Accurate deter-
mination of these key in-situ hydraulic parameters has previously
been one of the major stumbling blocks to the advancement of fracture
flow analysis.

One criticism of Rissler's work is that he does not quantify the
effect of possible fracture deformation on his results. Roegiers et al.
(1979) demonstrate that for one-dimensional flow in fine smooth frac-
tures (k/Dh < 0.033) very high gradients are required to develop
turbulence in one-dimensional flow. If similar conditions exist in
rad{al turbulent flow then fracture deformation may be important since
the aperture calculated using Rissler's technique could be largely a
function of the test rather than the truly in-situ case. It is the
author's belief that this phenomenon deserves further experimental

study.

Rissler demonstrates, using a numerical study, that energy losses
in the immediate vicinity of the borehole may be quite considerable,
He shows, for example, that at 25 cm from the borehole wall for a
fracture with k/Dh = 0.4 the energy head is only 20 percent of the head
Ho at the borehole wall. For strictly laminar flow the energy head

would be 66 percent of Ho' These figures are in basic agreement with
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similar results presented in the Titerature.

The importance of these results is to point out that packer tests
are indicative of conditions in the immediate vicinity of the hole and
must not be considered as a large-scale test. Hence a large number
of field tests will be required in order to evaluate the statistical

property bounds for each fracture set of interest.

Finally, there appears to be some discrepancy in the literature
concerning the critical Reynolds' number for the initiation of
turbulence,

Baker (1955) claims that for his experiments this value ranges
from 4,000 to 8,000. Iwai (1976) claimed, however, that his results
varied from theory if Re > 100,

The value quoted in the literature as critical for one-dimensional
flow is Re = 2300 (Louis 1969), Hence both values quoted for radial
flow are vastly different than for one-dimensional flow. For the two
authors in question Baker used an artificial fracture and apertures from
0.127 cm to 1.8 cm. Iwai, however, used tension fractures created in
rock samples with apertures ranging from 0 to 0.025 cm. Thus it is
difficult to discern whether the results from these two authors are
comparable,

The Reynolds' number for fracture flow is defined as
ED——- (4-4)

Y

H

Re

where Dh = hydraulic diameter = 2e
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<
]

average velocity

<
(]

kinematic viscosity

Many authors have commented, however, on the difficulty of defining
a true Reynolds' number for fracture flow since the cross-sectional
flow area may vary so radically from one location to another. Consider-
ing the importance of this factor in radial flow, however, especially
if Rissler's theorems afe to be used, the author believes that further

research should be devoted to this topic.
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APPENDIX A

EFFECT OF INERTIA ON LINEAR FLOW SYSTEM

(after Maini and Baker)
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Consider a free body of length Ax, width Az, and thickness Ay

as shown below.

(1‘3-25; Yaxes
| g
Pt fy [AEEERN
D%
TAJLA-S
‘3 l gz/-':///“‘ A=Y P 7 7 \3= *c/"
X
= ‘3’ - %,

Equilibrium considerations give

PAyAz - (P + %; AX) AyAz - TAXAZ

dt _
+ (1 + Fm Ay) AxAz = 0 A-1

which reduces to

dp . dr -

i AXAYAZ Y AXAYAZ A-2
or,

dP _ dt -

ax - dy A-3

Equation A-3 shows that, in the absence of inertia forces, the
pressure variation in the direction of flow between parallel plates is
equal to the variation in shear in a direction perpendicular to the

flow.
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Now, integrating equation A-3 with respect to y gives
_dp
TSR (y+c) A-4

Now solve for integration constant 'c' using the following boundary

condition, T=0 0@y =20

- dp
T = ax A-5

Now, using Newton's Shear Law T = p g%

dv

%; y A-6

<
=|—=
o

gp (axi +c) A-7

_1d
VELdx V2

1
u

Solving for 'c', knowing the following boundary condition

<
]
(o]
>
<
]

+e/2

(o]
n
]
[0}
nN
~
(0]

or

2 2
velt 8 g A-8

1
u dx

Now, to obtain the mean square of velocities between fissure

-e/2)

faces (i.e. y = e/2, y

+e/2

2
(v2) = & /2 - e7/8) 4y . L. (g

-e/2 H

—

(1]
(%)
o
>
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1 ,dP\2 1 pe/s 202 oo
w2y = 1 4Py 1 wg _ Y2e?: L e
() =2 (&) - < (-t i) o
H J-e/2
L1 g ep, e |7
> Vdx e |20 8T e Y
H -e/2

J___ dp 2 684 _e_“ = l__ (gﬂ)z (256e4)
2 dx 30720

Equation A-9 matches Baker's equation for the mean velocity.
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APPENDIX B

RADIAL FLOW FORMULATION
(after Baker, 1955)



B.1 GENERALITIES

Assumptions

- fissure of uniform size
- horizontal plane
- small aperture compared to width
Baker uses the following equation for steady state flow in self

consistent units;

Lsz
P:-—*m

¢ ()
f T Vm Top

=
>
1]
]
®
o
]

¢ = pressure in psi = hy

p = density in pcf = vy

n=u=vpm

Y =90,

Pp = mass density
T = aperture

- For laminar flow

= =
¢ (-——'3—-‘,m 75 =k (—-ﬂ——vm 75) where k =12

LV .
Pes =7 - 12 (9)
o lztny,

fs

TZ



12 LvV
h.g = m
TZ
hfs _l2wv
T "2 'n
gT

121 LQ
Pes =W T

volume flow rate

where Q
W

\

fracture width

- For Turbulent Flow Baker assumes

n
Pft a Vm
0 M
such that ) (vap) = k (vap)

where k and n are experimental constants.

2 !
i kLp Vm 2-n
ft T

P

B-3

B-4

From analogy with pipeflow, n = 2 for full turbulence and equation

B-5 becomes

2
o kLp Vm
ft T

B-6
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2
o gt Kln
L T
h
ok T B-7

Miessback's Law for turbulence is

<
3
n
o

., Wl
-'sl'o

B.2 CONVERGENT RADIAL FLOW

Baker gives the following initial formula.

_ 12 dr
WPre 2mr T -

But,after Maini (using Polar Coordinates), Darcy's Law applied to

parallel plates is given by

3

©

V = =K,

jar B-9

[+34

Flow from the cavity into the fissure 1is

Q = 2rre V B-10



27

Substituting into equation B-9 leads to:

A=k Lo gp-. 1200 g B-11

J 2mr ge’

r P

1 1

‘ dr 2me
=-|  £E® k..dp
r Q J
o Py

or &n rl/ro = T Kj (PO-PI)
_2mege* (p py.mge’, B-12
=7 12 PP = 5yq PonP)) -

In Maini's case P = h

Knowing that g = Y/pm and u = VP equation B-11 can be written as:

dp:lg_\i_g___ dr = l2pQ dr B-13
2mr /o, el 2mr yel

An equation which can be identified to B-8.

Substituting P hfty and n for p in B-8 dives

ft -

12 v p_ Q
dh =]—2._ﬂ_g-—dr = _.——__m_dr P.' dh =]—2-l_&dr B-14

Y
ft 2rr T3 2rr TG £ o g T?

Equations (B-14) and (B-11) are identical, except that P = h.

Therefore, equation (B-8) should be written

dpft -12nQ dr
2mr T3
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Integrating this last equation between the outer radius and the inner

radius leads to:

=800, R /m, B.15

T T3

Pfs

. he =8v0Q .0 r /R ' B-16
S ngT? e '

Hence ecuations B-16 and B-12 are identical and for Maini, P is the
fluid head not pressure.

For turbulent flow (i.e. assuming n = 2), one obtains.

2
dp,, = XK@ g, B-17
o gp2 2 1
Integrating
2

p =ko0Q° (] = L) B-18

ft ogp2 3 Ry Ry

) k 02 |1 1
or hy, =& (1.1, B-19

ft 47‘_2 T3 RZ R1

It should be pointed out that equations B-16 and B-17 consider friction
losses only. For radial flow into a well kinetic losses also important
due to acceleration at the wellbore wall. Calculation of kinetic energy
losses requires the knowledge of the velocity distribution in the fissure

It can be computed for streamline but not for turbulent conditions.
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Baker assumes this distribution curve to be flat; i.e. at any given
radius the velocity is constant at all points between fissure faces

and equal to the mean flow velocity.

For streamline flow: velocity v at distance t from the axial

plane of the fissure is given by

61
v -n—r - ) B-20

_IE_S »
or 3 (8 5 ) B-21

The mean square of velocities between fissure faces, is given by:

P2 T»
(v2) =I5 B-22
M 920 n? L2

h2 g2 Th
or S B-23

240 v? L2

Head drop due to kinetic energy is, (after Baker)
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However, from Bernouilli's equation,

vi P vi P,
?é * 2, =gyt oo+ 2z, = constant B-25
v2 va o

or ?é +hy =55 +h, = constant

for gas one can neglect the elevation head z

2 . . 2
= v
1 pz 2

| —

% Py v

Hence Baker used the above equaticn which is only valid for gas flow.

For fluid flow

2 L
ks 29 29 450 2 |2
hz g T*
Pks =_f$_____ B-26
240 v? L?

Now substituting for hfs from equation B-3

3v?

- m
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For radial flow conditions, using equation B-10

" a2
vie—0 B-28

M ap2 p2 72

Substituting into equation B-27

2
Pks =3 (.L_ L ) B-29
20 g m* T2 RZ2 R?

. . n .
note PkS is in L units.

For Turbulent Flow, assuming (v2)m = v; we may write

B-30

Hence the total head drop for streamline radial flow is given by

summing the expressions given by equations B-16 and B-29.

’ 2
hS -6vQ n RI/RZ + 3Q° (.1_ - ]_) B-31
Tg T 20 g w2 T2 Rz R?




Also, the total

head
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drop for radial turbulent flow is given by

summing the expressions given by equations B-19 and B-32

hr

.Jilfi_.(l_ -1y, ___Qf____.(l_._ L

4 w2 T3

R,

Ry

8 g.m% T?

RZ

RY

At higher velocities flow changes from streamline to turbulent at

B-32

some radius 'R' intermediate between Rl'and R2 and under these conditions

head

drop 'P' will be given by

=828 onp /R P30 (1
g T 20 g w? T? R2 R§

+ ___Q___ 1. —q + ____Q____ (— - ——)
4 n? T3 R2 8 gm T2 RZ R

B-33
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APPENDIX C

RADIAL FLOW FORMULATION
(after Maini, 1971)
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C.1 DERIVATION
Starting with equation A-9 (see Appendix A)

1_,dP\% e*

> &) 1%

o

2 =
yé =
m

where [P
\»

=

pressure = hey

absolute viscbsity = vep

y2 = _ﬂf_éi.(gﬂgz.
m 20 v2 9

where u kinematic viscosity = v

P,sP, = head *

The mean square of velocities is then obtained by:

e/2

(e?/8 - E2
2

(v )? =
m
-e/2 €

2
/2) . dE-(hl-hz)zogz-

1
v2L2

c-1

* It should be noted that Maini made a mistake by stating that P, and

P, were pressures.
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e/2

2 3 3 5
4 _(h-n)? |&g-.8E LE
oz ) 62" 83 *20.e

-e/2

(h, - h,)* g2 e

120 v2 L?

Now, from Bernoulli's equation, the pressure drop due to the change in
kinetic energy is given by:
- (v?)

= m -

: (h, - h,)% g e*
or h, = C-5
240 v? L2

From Poiseuillie's law for streamline flow,

or (%%)2 = 14:uv:2v; C-6
Substituting into equation C-5 gives:
. 3 v; .
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In the case of radial flow, we can write that

- ~ 2
or vi = ‘-459—7-—2

4 ¢ rc e

C-8

c-9

Substituting this last equation into C-7 gives:

he = 3 Q% 11
K 20 . g7°e® {r?

r

1

0

”‘i‘] - c-10

where {ro radius of hole

1

radius where head has dropped to a minimum

This equation gives the energy loss due to the sudden acceleration at

the joint entrance.

Generalizing the case to ‘n' fractures,

2
) 30 1

Kn = 20'g T™ e n® | r*

which may also be expressed as

FoZ C-11

c-12
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where c = constant

Then for a given discharge Q, as the fracture aperture decreases, the
energy loss increases drastically,

The final relation between flow and energy loss is then

- Q2n (ry/rg) 3 Q? 1 1 }
h 2m Ky ne ) g m efnz'(rl2 - rOZ) C-13
2
or h = %%Z" (ri/ro) + 75 g 1r§ SY nZ °
1 1 :
(f7 -7 e
or h=AQ+BQ? : c-15

For the turbulent flow case Maini bases his development on Miessbach's

Taw

N
(Vm) =C i C-16

where [n degree of non-linearity, 1 <n <2, n =2 - assumes
fully turbulent

.

constant - depends on v, mediumydetermined experimentally
in field

Now assume Vm = mean-velocity

For flow from cavity into single fissure
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O
1]

2rre Vm c-17

radius at any point

=

=3

®

=

™

\.\

-

i

effective aperture

p—
(1]
]

J dr _ c(27e)" f i
Po ’ Qn ho
1 1 T c(2me)”
r o Q
n
- .%_1 - i-l = C(2:g) (hy - hg)(1 - n) C-18
Ty ry Q -
1 1 C(2me)"
- AT TheT T Ql,’e (ho - hy)(1 - n) c-19

Maini writes as C-18, Therefore one must assume that he takes the nega-

tive sign on the R.H.S. into the constant C.

n-1 n-1
e Q1 = c(eme) | B0l (hg - hy)(1 - n) c-20
") =Ty
We may rewrite C<20 as
E-Q = (hy - hy) c-21

and ‘n log Q + log E = log (hy - hy) c-22
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For non-linear flow if one plots 1og(ho - h1) vs log Q, a straight Tine

results

slope of line = n

C_. "non-linear permeability function"

Intercept on P axis s
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APPENDIX D

RADIAL FLOW FORMULATION

(after Iwai)
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D.1 BASIC EQUATIONS

For viscous flow of incompressible fluid (i.e. Navier-Stokes'

equation)

=F -

O |+~

D -
Ot VP + v(V2v) D-1

Assumptions

a) Flow governed only by mechanical and thermal energy within the
system

b) Flow is isothermal

c) Flow is Newtonian and homogeneous

d) Stokes' equation is valid.
Equation of continuity can be written as:

V.v=0 | D-2
fhe above equations include 4 unknowns: Vys vy, v, and P.
Therefore, it should theoretically be possible to solve for appropriate
initial boundary conditions. Experimental results generally show good
agreement with the proposed equation (D-1).

The empirical equation for viscous flow in porous media is given by

Q=KA—A[“— D-3

Darcy's Law can be derived from Navier-Stokes' equation by taking an
average flow velocity rather than velocities for each fluid particle,
provided inertia forces are negligible and steady state conditions prevail.
However, one must note that the assumptions in Navier-Stokes' derivation

are also inherent in Darcy's approach. Therefore, fracture flow can be
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investigated using Dafcy's law as long as basic assumptions of Navier-
Stokes' are met.

Terminology

Fracture permeability - Kf

System permeability - KS

D.2 APPLICATION OF BASIC FRACTURE EQUATIONS TO VISCOUS FLOW

Consider a fracture with variable opening b and walls which may be
assumed smooth and parallel in a global sense. The fracture opening
has arbitrary axes 0x and Oy in the fracture plane, and Oz.is taken
perpendicular to this plane.

If gravity is introduced as a body force,

F=g= -gVz D-4
where vz represents the unit vector in the z- direction,
then, the equation for flow @ point 'A' can be written as

Dv

Dv _ _ P 25 -
Bt gv(z + = ) + wWiv D-5
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where (z + 5-) is called potential energy, piézometric head or velocity
potential and is denoted by 'h'

-Vh = hydraulic gradient
Equation (D-5) can also be rewritten as:

.Di= - 2y ' =
5t g(-vh) + w2y D-6
Now assuming the following -

1) steady state flow conditions

2) variation in 'b' so small that vy = 0

3) change in velocities in x- and y- directions are negligibly small
compared to the velocity change in the z- direction.

Equation (D-6) then becomes

0= - _d_b, . v dZVx
( 9 dx dz?
dn v 947

\ 0= -9 dy Y&

dh '
-9 dz. D-7

\ O

Hence h is independent of z.

Integrating, Vy becomes:

v, =%g€-%zz+clz tc,

where c, and c, are integration constants.
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Boundary conditions

v. =0 @z=4+Db/2 gives

=
—
N
[ ]
]
(=
[
~—

g dn -
z D-8

dx

<
It
N

and the average velocity over the fracture aperture is given by:

+ b/2
.1 - _Yb? dh i
Ve T b Yy 92 % - T30 W« D-3
- b/2
i _ 2 dn )
Similarly vy * 1w dy D-10
Therefore, the average velocity vector is given by:
- Yp2
v Té-ﬁ (-Vh) D-11
and the flow rate per unit width in direction v for a single
fracture is:
_ Yb?
q-= -i—z-ﬁ- (-Vh) D-12
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By analogy with Darcy's approach let's define fracture permeability

- b2
If the fracture spacing is s, then the system permeability is
- b N R |
Ks= 5 K¢ = 12u s D-14

This last equation implicitly assumes that the flow of the system

is equal to the sum of flows within each individual fracture.

FRACTURES WITH SMOOTH WALLS - AXISYMMETRIC COORDINATE SYSTEM

coord

Navier-Stokes' equation for incompressible fluid in a cylindrical

inate system is:
’ 2
P_v—r- _&):’F_lﬁ{- Vv vzv_vr __2_ dve
Dt r r p dr r rZ " r2 d8
Dv V.V dv v
&l r o) 1 1 dP 2 2 r _ 9 _
(Dt ' r)' oo T e+"(v"e+F2El'é— FT) b-15
Dv
z . -1 dP 2
Dt Fz p dz WY
D =d ,v.d , Yoed v d
(T)‘f &« F "t @t R
d 1 d 1 d2 - d?
2 = = _ —
lv ety T Ger Y oa
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The equation of continuity for an incompressible fluid in this

system is given by

1 9 dv,
W)+ v @ @ tO -16

oo
=3

1
r

Assuming that axisymmetric steady state conditions prevail the previous

equations reduce to:

dv d3v dv
v ro_ dh r 1 7r
”d—r"?‘w*“(w—*rm—
d?v v
r r
“a‘z*f'?f) D-17
_ dh
0 9 4z
]
.S_F(rvr)=o . D‘18

dv
It should be noted that equation(D-17) contains a nonlinear term, V. 75?

which is dependent of the variation of Vi in r-direction -- one of the
important characteristics of radial flow.
The previous set of equations is difficult to solve analytically.
Assuming that the inertial term in equation(D-17) may be ignored

and recognizing that:

v = ﬂ_z_)_ D~19

r r
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equation (D-17) becomes
. Lo b, L dF(z) | | _
0= -94 *Vvy 4 D-20

It can easily be seen from équation (D-17) that h is independent of z,

and therefore,

d?F(z) _
az = constant
or,
F(z) = %- c,2> + ¢,z + c,

Substituting for the boundary conditions, i.e. Ve = 0 @z= £b/2,

one obtains
f2cs= c, (b/2)?
l C, = 0

and, therefore,

Flz) =% ¢, [22- 022 - D-21
Now substituting into equation (D-20) leads to

gb. = .l"_l. ° .c_i.
Y

dr

or,

= M
h = Y c, nr+ C,
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Boundary conditions:

‘h = hi @ r
lh=ho @ r,
thus,

= E
{hi Y c, n r; + c,

o) + 2c6

lho = %- c, n ro * ¢
or
hi + ho = %- ci(zn ry + &n r
c, = %-[hi + ho - wy ca(zn ;i + %n ro)]
Similarly,

hi - h0 = uw/y c, (SLn ri/ro)

c =_x(h1"ho)
3 U Zn(ro/ri)

which leads to:

hi n Py = ho n r;

c =
6 n rO/ri

Also, from equation (D-21)

h; - h)
F(z) = L ( L 9
2u  2n rO/ri

[22 - (b/2)2]

D-22
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and finally, equation (D-19) becomes

(h; - h))
= - X 1 0 2 _ 2 _
vr 2ur in ro/ri [z (b/2) ] .D 23
v = Y (h'l B hO) b2
r,max Sur gnr_ /r.
o i
gh _* ¢ 1 (hy-h)) .
dr -y r 2n ro/ri : . D-24
- H
h= = <, iney + Ce
) 1 "o r
= In ro/ri (hi n = + ho n > ) D-25

The average velocity over the fracture aperture is

+b/2

-b/2

vb? (hi - ho)

D-26
12ur n ro/ri
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and the flow rate is given by:

(h, - h)
" _ mybd i 0
Q = 2nrb v, 6 T T IT | D-27

This last equation may be rewritten in terms of (%%) and (2wrb) as

Z

Q = 13- (2mrb) (- 3 D-28

therefore, when the inertial force is negligible, the analogy with

Darcy's approach gives the fracture permeability as

Kf 3 ¥%§ | D-29

Impprtant Remark
In cases where both velocity and (or), its gradient are significant
the effect of the inertia term must be considered. This effect may be

inferred by writing equation D-17 as:

A=B+¢C

and therefore vrk(avr/ar)is always negative, tending to zero for the
limit: of Darcy's case.

If one assumes that B and C are always opposite in sign, then:
For Divergent Flow B is positive and %2 <0
Consequently, C must be negative and |C| > |B]|

For Convergent Flow B is negative and %2 >0

Consequently, C must be positive and |C| < |B]
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Therefore, for divergent flow conditions — apparent larger K

for convergent flow conditions —sapparent smaller K

It should be pointed out that, since variations in velocity and its

gradients are greatestat the inner boundary one can avoid these

erroneous values of K due to inertia effects by measuring 3h/3r at an

appropriate distance from the inner boundary.

Iwai in his work determined the upper limit of applicability of

Darcy's Law such that inertial effects could be neglected. This was

accomplished by assuming that, as a first approximation, Ve and avrlar

can be determined from Darcy's law using equation D-23.

[N

[}

Nl Il;.ﬁfilfgl_.l (2% _ 42
ar ar l 2u &n rO/ri r 2

=y 4 (: l_) [(902_ 22
2u 2n ro/ri r3 2

and, therefore,

ov 2
r| . AL 1
Vr 5F—\ N (é% 2n rO/ri) {r';E) [(b/2)2 - 22]

a

Now taking the average over the fracture aperture

b/2

v v
r =1 _r
Ve or b Ve 31 dz

a -b/2

2
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Letting

2
l_—A.b___ = A and (_ L) =B
(au n rO/ri) NE

av b/2
el Ll [(b/z)“ -2 (b/2)® 2% + z“:} d
Yr or a b z
-b/2
canfedt b\ [y AL NP 1\ /b
A-B (7@5" ?ﬁ)- (?u n ro/ri) (' ;3) 30 D-30

and the ratio between the inertia term and the head gradient term is

given by:
v avr
"ar 4
N. = 2 -l ol (8h__ (EL_)
i -q %ﬂ g ‘2u 2 n rO/ri 0
r
But (Eq. D-27)
Ah

and, consequently,
N. -_p Qb n-31
i 2

20 nmr,

This inertia factor may be useful in determining effects of inertia

on radial flow.
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D.4 FURTHER CONSIDERATIONS ON FRACTURE FLOW

Two dimensionless parameters

Re - Reynolds Number
¥ - Friction factor

may be used to generalize the flow law.

Define
] ' -
Re = 3 D-32
- p LW D-33
v©/2g
A *
where ‘ D=24 Rh =4 T

cross-sectional area

P e s
o p
] n

wetted perimeter

The physical meaning of the Reynold's number is that it represents
the ratio of inertia forces to viscous forces present in the flow system.
As the Reynold's number increases, the inertia becomes more significant
to the point where turbulence may occur. However, turbulence is also

promoted by eddy currents due to surface roughness. Therefore, the

* In the particular case of a fracture of aperture 'b' and width 'w',
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governing flow laws must be established for different values of Re and
the relative roughness.
For example, the analytical solution of equation (D-12) can be

written as:

y = D (-VH) _ 2b (-vh) __ 48 96

: = = (D-35)
2 2 pb Re
vé/2g ]¥2 (-Vh) gg s v

It should be pointed out that this dimensionless expression represents
the flow law only for cases where the Reynold's number and the relative
roughness are negligible. When these conditions are not met, the flow

law can only be established experimentally (see Louis, 1969).

In the case of radial flow, an additional problem occurs due to
the fact that the Reynold's number cannot be uniquely defined for the
complete flow region due to continuous changes in the cross-sectional
area. Baker (1955) used the Reynolds number computed at a certain
radius within which turbulent flow conditions were assumed to take

place to describe the overall flow character, i.e.

- V(2b) & Q-2b _ pQ
Re v v-2mRb ~ muR (D-36)
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Following Baker's idea, the Reynolds' number may be computed
at the inner boundary if viscous forces predominate the inertial terms.

Similarly,

y = p LT (D-37)
Vr,'i/Zg
Baker found that the critical Reynolds' number under radial flow -

conditions, varied from 4,000 to 8,000, values which are very high when

compared to data generated in the case of linear flow.

Few workers have suggested approaches for radial, turbulent flow

conditions.
Maini (1971) started from Missbach's law for flow between parallel
plates.

" = ¢ %E (D-38)

where n is the degree of nonlinearity which varies from 1 to 2
(n = 2 corresponding to fully turbulent'conditions), and ¢ is a constant
depending both on the medium and the viscosity of the fluid.

Maini derived the following expression:

=1 N=1
AR

Q" = c(2mb)" { —=—Leg | (P,-P,) (1-n) (D-39)
r

0 i
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Effect of Kinetic Energy on Flow

Nonlinear flow rate characteristics have been noted prior to onset
of turbulence. Maini suggested that the main cause was the presence of
"dead spaces". He also presented corrections for both T1inear and

radial flow conditions.

Linear Flow:

h, = % v2 = 5329 q? (D-40)
Ah:.ﬁli':.q+—-3—— q2 (D-41)
yb3 5b2g
Radial Flow:
ho o= L (D-42)

. .
ah = 2 g (-3\) g+ 0 1 (D-43)

Baker (1955) incorporated equation (D-43) in a semi-empirical flow

rate equation.

p:gwm,(r_o},mz__ Loy,

m? v Rl gop2pz lgz  p2
pla (l._ - l) + 00 (i ) _1_) (D-44)
an2ps Vi RN grzpe bz pe

1

where a is an experimental constant, and R is radius to turbulent-

laminar transition.
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APPENDIX E

RADIAL FLOW FORMULATION
(after Rissler, 1978)
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APPENDIX E

Tab]g of Contents

One-Dimensional Laminar Flow in a Fissure with Smooth Walls
Flow Laws for Cne-Dimensional Flow in a Fissure
Energy Losses During Water Pressure Tests

E.3.1 Energy Losses Due to Bending and Contraction at the
Joint Entrance - hy,

£.3.2 Energy Losses for Laminar Flow
E.3.3 Energy Losses for Turbulent Flow

E.3.4 Summary
Steady Radial Symmetrical Flow in Horizontal Joints

Turbulent Flow Near the Borehole - Smooth and Completely Rough and
Nonparallel Walls

Distribution of Energy Head in Section of Turbulent Flow and
Transition Conditions

Relationship Between the Energy Head Effective at the Joint Entrance
and the Flow Rate q

Turbulent Flow Near the Borehole-Transition Zone

Determination of the Aperture from Critical Energy Head
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E.1 ONE-DIMENSIONAL LAMINAR FLOW IN A FISSURE WITH SMOOTH WALLS

Under those conditions, the Navier-Stokes equation can be written as:

dv 1 v
a - P - 5 grad p + v (Av) + 3
. {grad div (v{} E-1
where v = flow velocity
' P = mass force

p = density

p = pressure

v = kinematic viscosity, dependent on water temperature.

Integrating this expression twice shows that the mean flow velcity v

is proportional to the gradient I, in vector form:

{} LaZ) I}=E'fI} E-2

where !@ acceleration of gravity

\E

E.2 FLOW LAWS FOR ONE-DIMENSIONAL FLOW IN A FISSURE

permeability coefficient of single fracture

Energy losses in pipes of any cross-sectional area are given by

N

E-3

—
]
>
I
=
N|<
©
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friction coefficient

=
=
@
3
o
o
> >
! I

= hydraulic diameter of pipe

2
1-‘%— = kinetic energy relative to the unit weight

For a fissure aperture = Zai

Dh =2 - (Zai)'= 4ai, E-4
Dh TV
Reynold's number can be written as Re = 5 E-5
= 96 -
or A= Re E-6

This last equation is valid for roughnesses 0 < k/Dh < 0.032.
In the case of one-dimensional flow between non-parallel walls (i.e.
k/Dh > 0.032), this equation is slightly transformed and becomes:

%1488 (kD) E
)\"Ii"e*[ . (/h) ] "7

In the turbulent range

a) hydraulically smooth (k/Dh = 0)
A = 0,316-Re % E-8

b} completely rough

k/Dh

. 1 _
i) k/Dh < 0,032 AT 2 log 3T

E-9
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k/D

L - -21%0g ;g E-10

i) k/Dh > 0.032 A

In the laminar~turbulent transition for k/Dh < 0.032

- use flow Taw from Colebrook-White
A =0.316 R79°25

A can also be abproximated using (E-9) and (E-10).
Louis, 1969, suggested the existence of a critical Reynold's number for

parallel flow and k/Dh < 0,0168

Re, = 2300 E-11

k

as characterizing the laminar to turbulent transition. For k/Dh > 0.0168,
Rek = f(k/Dh). On a A versus Re diagram, this can be approximated as a
straight line (ref. Rissler, Figure 4). Eliminating A between the equation

of this line and (E-9) and (E-10) leads to

1) For 0.0168 < k/Dy, < 0.032
e

_ 1 3.7 y2
lTog Re, = 1773-[E}g 142000 (log E7ﬁ;) E-12

2) For k/Dh > 0.032

- 1.9 2
log Rek * 176 &g 142000 (log k—/TJ; E-13
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Transition from hydraulically smooth (Blasius (E-8)) to completely rough
(Nikuradse (E-9)) depends on Re and K/Dh. If designate Re at transition

as Rekl’ eliminating A from (E-8) and (E-9) gives:

3.7 8

Re = 2.552 (109 F/—D;) E-14

k1
It should be pointed out that all of the previous flow laws have been

determined experimentally on artificial joints.

Wittke and Louis showed that the velocity profile in the case of laminar,
divergent radial flow varies only slightly from that corresponding to one-
dimensional flow conditions. They concluded that flow laws valid for

this last case can also be used as a good approximation for divergent

radial flow and can be handled by potential theory.

Water pressure tests, using both linear and non-linear relationships,

have resulted in the observation of over-proportional and under-proportional
relationships (over-proportional corresponding to an increase in flow

with pressure due to either expansion or cracking of joint; under-propor-
tional corresponding to turbulent conditions). In the literature, attempts

have been made to describe curves by parabolic formulae such as:
p:A-Q{-B.Q2 E"15

pressure in B.H. at point of entrance

=

=

M

-3

1]

O o
n 1]

flow rate

\ A,B = coefficients (with differing dimensions)
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A and B - empirically determined from tests therefore usable conclusions
about causes of these relations (i.e. aperture, spacing, etc.) not made.

E.3 ENERGY LOSSES DURING WATER PRESSURE TESTS

The knowledge of the water head at joint entrance is required for
reliable evaluation of water pressure tests. If the pressure is measured
at the bottom of the hole, energy 10sses existing between the gauge and the

entrance to the joint must be calculated,

“— Borehole wall

=4

=
| NAWN/

le—————— Packer

_ i !

_ Fig. E-1 Pump Test Setup - Typical (after Rissler 1978).
If gravity is the only acting mass force, then the total energy head of a

fluid element is given by Bernoulli's equation:
Ho= z+2+ 1 E-16
where z - geometric head

p - static pressure

vy - density of the fluid (yw for H,0)
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v - mean flow velocity

g - acceleration of gravity

In practical rock engineering, the kinematic term is often very small;

hence, the velocity head may be neglected.

The energy losses will be illustrated using Figure 1. Selecting the mid-.
plane of the fracture as a reference, z = 0. The energy head effective

in the .test section, neglecting energy losses, is given by:
H=h, + h. - hw E-17

If the water table is situated below the joint, hw = 0 and the total loss

of energy between the gauge and the joint consists of:

hy: Tlosses due to bends in tube
h,: friction losses in pressure tube (h, ! ) and packer rod (h, 2)
hy: Tlosses due to enlargement in cross-sectional area below packer

h,: Tlosses due to bending and contracting at entrance

Then, the energy head acting at the joint is

Ho = hA + hG - hW - h1 - hz - h3 - hq. E-18
S 1 4.9°
hy =S¢ 29 S 2g ‘qugl E-19



-115-

For bends at 90°, Truckenbrodt gives values for loss coefficient
(SK) with respect to bend radius and pipe diameter (rK/D). Bend losses
(h;) can then be calculated. ‘
Friction losses (h,) are important at high flow rates, and can be calculated
using equation (E-3). They are also given in nomograph form on Fig. 14,
Page 44 of Rissler.

Losses due to cross-sectional changes below the packer are given by
- D;2 1 4
ha= l-fr 3 g | | E-20

where fDl
12

This is given in nomograph form on Fig. 15, Page 46 of Rissler.

packer rod diameter

borehole diameter

£.3.1 Energy Losses due to Bending and Cohtraction at the Joint Entrance: h,

These losses must be calculated for all pressure tests:
Assuming (i) a vertical borehole, (ii) a horizontal joint and
(iii) a sharp-edged entrance (i.e. no special investigation

required for bending and contraction at entrance, Since the hole

radius ry >> Zai the problem is reduced to a one-dimensional case:)

Borehole rs
wall

-

' I‘ Boundar

—" streaml tne

Figure E-2

Statement of
Problem for

streamline

Determining

Energy Losses

(hy)

(after Rissler
1978)

Sharp edged
entrance

IDEALIZED 1-D PROBLEM

RADIALLY SYMMETRICAL PROBLEM
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The one-dimensional problem was studied by Hahremann and Ehret for
steady-state conditions, constant temperature and smooth walls (i.e.
k/Dh = 0). This same approach will be used here for rough joints and
non-parallel walls, ’

At the joint entrance, the water is deflected 90° which leads first
to a contraction., The fracture walls will be approached after a finite
length, a function of the energy losses. Further losses are also incurred

in forming the velocity profile corresponding to the Reynolds number.

E.3.2 Energy Losses for Laminar Flow.

The length Xy of disturbed flow at the joint entrance is given by
%a = 0,00923 - Dh + Re E-21

Along this length, energy reduction is constant due to:
(i) Tlosses at the entrance
(i) normal laminar radial flow friction losses.
The energy loss at any cross-section within the distrubed zone is aAh from

which a mean friction coefficient AX 1 results

Ah _ S S

ks AX,I Dh 'z-g— E-22
_ Ah 2

1 % 0 Dy Vg' e

but the unknowns, AX 1 and Ah, are functions of x.

2
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The relationship Ay 17 F(x) is determined experimentally and can

be written in a dimensionless form as:

‘X L - ———-X—-—— -
Re My | Re ALl F( D, - Re ) E-24

sharp-edged entrance

1200 contraction of water jet

1000 :Fuwm?z
(O |

600 - 1 T T
length of the disturbed

flow to a sharp-edged entrance ]

W n
e L)
-r_
]
i
0 X__.103
0t 2 3 4 5 6 1 8 ilO b'D,.Rcm

Fig. E-3  mean friction coefficient Ax 1= f {x) of the lami-
nar, parallel, hydraulically smooth flou in a fis-
sure with a sharp-edged entrence (After Rissler,: -1978)
The mean friction coefficient between the entrance and the end of the

disturbed flow area is given by:

_ 13

Axa,l Re

E-25

Reducing equation (E-25) by X for friction losses in hydraulically smooth

= 96
channels () = Re)’

xa,]”*~ Re "Re " Re E-26
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where A is the friction coefficient decisive for bending and contraction

at the entrance
hy = A gﬁ-- v E-27
using the value for Xq given from (E-21), this last equation reduces to:
hy = 0,711 . 3= : E-28

or introducing the loss coefficient

S1

u
(e
~
—
—

then hy E-29

[}
w
[
N
[{a]

E.3.3 Energy Losses for Turbu]ent Flow

Losses for entrance into a joint with turbulent, hydraulically smooth
conditions and sharp edges are determined in a similar manner.
Length of disturbed flow:
rxv - laminar foresection

l}a - following section necessary to develop turbulence

v _ 1250 2/3 £-30
D, ~ (Re - 30001

for 4000 < Re < 18,000, but
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x =0.33 + Re? - D, E-31
a

and therefore, the Tength of the disturbed flow at the entrance is given

by

X, *+X
v

a _ _ 1250

A
+0.33 - Re® E-32
h (Re - 3000)%/3

The mean friction coefficient between the entrance and a random cross-
section is:
Dy

Ax,t =X

(B, - Cy + Ay + 25— ) = F(Re) - E-33

XY
where {Bl & C; = F(Re, x)
lAl & 2P = F(Re)
Gxv
A1l four parameters were determined experimentally. Now substituting the
length of the disturbed flow for (xv + xa) from equation (E-32), one

obtains the mean friction coefficient between the entrance and the end. of

the length where disturbed flow conditicns prevail (Axva t}‘ Multiplying by
X, + X
(—!ﬁ~——94, one finally obtains the loss coefficient (SG) for total energy

h

loss between entrance and the point where disturbed flow ends:

Sg (Re) = a4 (Re) [x, (Re) + x, (Re)] - }J—h ah - 29

E-34
This expression is composed of a term related to the energy loss during

entrance [St (Re)] and a term expressing the friction losses along the
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length of disturbed flow [SR (Re)]
E-35

ie. Sg (Re) = St (Re) + Sp (Re) .
If hydraulically smooth conditions were to be assumed, SR (Re) could be

expressed by Blasius' law
E-36

_ . pa"% ,
SR (Re) = 0.31€ * Re Dh

Equations (E-35) and (E-36) combined with Figure 20 of Rissler can be

used to determine S, (Re); and consequently, S, is found to be almost

constant, i.e.
' : E-37

St = 0.415

E.3.4 Summary

Using two loss coefficients S; and St for Taminar and turbulent regimes,

the corresponding head losses can be determined from the following:

e =S, « L= 0.711 - 1.1 9% taminar

Y 179 . 8- g - 12 Try2 zai ( £1ow ) E-38
_ L V2 1 .1 . q,%2 ,turbulent

h = Sy * g = 0415 - gy C T (Zai) (burbulent) | g3

For further details concerning the friction loss calculations

refer to Rissler (1978).
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E.4 STEADY RADIAL SYMMETRICAL FLOW IN HORIZONTAL JOINTS

When performing water pressure tests, the following parameters are

usually determined or known:

flow rate

= L0
1 1

energy head at the joint entrance

o
1

water temperature

fluid viscosity

<
1

borehole radius

-
1

o]

The purpose of such tests is to evaluate fracture aperture (Zai) and

relative roughness (k/Dh).

[7:j’,,— Borehole

Figure #-4  Radial Flow in a Horizontal Joint (After Rissler 1978)

Considering a circular cut of radius r and laminar flow conditions,

the continuity equation can be written as:

q=v «F=v .2 .2a; E-40
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or

Vs gt E-41

1
Introducing Louis' flow law

A= 2ol 1+8.8 (k)] £-42

into equation (E-3) and replacing I by ( - g%-), Rissler states that the

follewing relation can be derived:

- g (2a1.2) dH
Ve s Ty IT 73838 (k/D, 175 * dr

E-43

This derivation is checked below.*

By equating equation (E-41) and (E-43), the following expression

Substitute (E-42) into (E-3)

1. 5 1 v2
[l+88(k/D) ﬁh 77
dH _ 9% 1.5, 1 2
or - T 'ﬁ'—[l + 8.8 (k/D )77 Dh %3 E-44
D, -
but, Re = =-¥ and D, = 4a,
. v h i
,. o (23 )2 ‘ dH

Therefore, 12 v [1 ¥ 8 3 (k/D )1 5] 'a"YT E-45
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results
12 v [1+8.8 (k/D,)!5]
di _ _ : i h . .9
r g.- (2a1)‘ 2wr(2ai)
Integrating
6 v [1+8.8 (kD)1 .
H(r)- g CAE g fnr+C
Using the following boundary conditions:
t(ry) = Hy
1.5
6 v [1+88 (k)1
C=HO+ v <-g" (-2-ai)3 "n' . ln ro
and,
6 v [l+8.8 (k/D,) 5]
H=H - ~——— h R .
Y B (2&i)3 u o

This last equation describes the energy head H in the joint as f(Ho, r

9, V» Zai, k/Dh) which are constants for each test.

As can eas{ly be seen, H decreases with r, tending to zero as r tends

to infinity.

E-46

E-47

E-48

E-49

E-50

09

Generally it is sufficient to introduce H=0at r =R as a

boundary condition if R is very large.

Using this, a linear relation

between the energy head at the joint entrance (Ho) and flowrate (q) can be

obtained.
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6
9'17'

Ho =9~ r

o)

”(2a1)3 [1+8.8 (kD)1 an & E-51

This last equation contains measurable values v and ry as well as those
parameters sought, 2ai and (k/Dh) which are decisive to the fracture
permeability. A similar function has been derived by Baker and Wittke

and Louis.,

E.5 TURBULENT FLOW NEAR THE BOREHOLE - SMOOTH AND COMPLETELY ROUGH AND
NONPARALLEL WALLS

The following is valid for
k/Dh =0 and k/Dh > 0.0168,

For 0 < k/Dh < 0.0168, further considerations are necessary as discussed

later,

a) Extent of turbulent.zone

From the continuity equation (E-41) it can easily be seen that the
mean flow velocity decreases as r increases. Therefore, the Reynolds number
also decreases with r. If flow adjacent to the borehole wall is turbulent,
Re decreases with r until it reaches a critical value re when a change

from turbulent to laminar flow conditions occurs.

’ "k 7 "o
Figure E-5
ro ; REK > Reo
Definition for r, turbulent _ laminar

|

Re‘o XXXy KRR

Re
NAER] : =
3 r /
& k & joint
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To compute res the following substitutions are required

to finally obtain

or r, =

Substituting into equations (E-11) through (E-18) leads to:

o for k/D, < 0,0168

'k ST eV . 230

e for 0.0168 s k/D, < 0.032

1
N 3.7 \2 -~ 1.76
re = ;—3—? [142,000 (1og mh) ]

e for k/Dh > 0.032

1
o - THwx

) 1.9 1.7
re = —— [142,000 (log ?/—Dh) ]

E-52

E-53

E-54

E-55
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These three equations show that the extent of the turbulent zone r for
given parameters g and v is not a constant, but is dependent on the

relative roughness (k/Dh).

E.6 .DISTRIBUTION OF ENERGY HEAD IN SECTION OF TURBULENT FLOW AND TRANSITION

CONDITIONS

For case k/Dh > 0,032
The general relation for energy losses in radially symmetrical flow

can be written:

dd _ 1 y2
& A Bh " 73 E-5€6

From the continuity equation

o €-57

and the coefficient A can be replaced by

] k/Dp
/;\== = 2 109 ‘f'g'— E-58

dH q? 1
an. _ : . E-59
dr 3, . 2 1.9 \¢ r2 .
64 (Zai) g » 72 (log E7ﬁh)
* a1 1.9 1
==2Tlog35s, A=
/A k/Dy, 4 (log :2)
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Integrating gives

2 1
H = . q V3 . -——+ C E'GO
64 (2a.)3 + g - 72 (log 22 )" T
i 75,

The constant C is determined from the boundary conditions

Hir,) = H,
2 1
or C=H - —-——— q
0 2.)3 . q . 12 1.9y " r
64 (Zai) g‘ 72 (log k/Dh) 0
and, therefore,
2 1 1
H=H - — g (= -3 E-61
0 3.4 . g2 1.9\ ro v
64 (Zai) g (Tog k/Dh) 0

Hence
H= f(r).

In order to extend this approach into the laminar zone, it will be necessary
to determine first the energy head H = HK prevailing at the outer boundary
of the turbulent zone using equations (E-55) and (E-61). This will then be
applied as the inner boundary conditions for the Taminar flow region. The

energy head at the turbulent boundary may be written as

2
Mo T e . 2 (tog :2)° | %o
i 9 9 k/D,
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e

1

v o 1.9 2
- =3 (142,000 (log k/Dh) ]

E.7 RELATIONSHIP BETWEEN THE ENERGY HEAD EFFECTIVE AT THE JOINT ENTRANCE
AND THE FLOW RATE g

The function H = f(r) for laminar flow was derived previously. It

is now necessary to substitute the right-hand side of equation (E-62) into

equation (E-50),

6 v [1+8.8 (kD)%
H=H== - - h T
) g (2a,)° T r
i 0
H, - Original Pressure Head Hy Z Head effective of
- turbulent laminar boundary

| turbulent . laminar

"k

Figure #-6 Energy Head Effective at turbulent-laminar boundary (After Rissler, 1978)

Note: Hk becomes effective Ho for laminar zone and e becomes effective o

Performing the required substitutions then gives:

H= f(r) = H ¢’
) T 0 T ea (2403 - q . 12 1977 Jr ~
64 (Zai) g+ 7% (log k/Dh) 0

1
v eT 1,9 1.7
3 (142,000 (log E/—D-h)ﬁ .}
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- S L+ 8.8 (/50
. zn, r 1 \ E-63

| 5% 142,000 (Tog k/D Y1 L 7%}

If this equation is considered to be a function Ho = f(q), then constant
numerical values must be assigned to H and r.

Substituting the following boundary conditions

1ead§ to

_ q2 1
% 64 (2a.)3 - g « 72 (1 “)r
a5 g %9 D, k/D 0

1
v kg ———-—
ST [142,000 (log {75 k/D )T, 6}

' 3—1—2—;:7-33 [1+8.8 (k/p)%%

1
v.rm:+R 1.9 \%5 1,76
. zn{————q—— (142,000 (log W-D—h) ] E-64

Analogous considerations can be made for completely rough (0.0168 < k/Dh
< 0.032) and smooth (k/Dh = 0) conditions. The corresponding flow laws

must, of course, be introduced.
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o for 0.0168 g k/D < 0,032

2
H 9 1

= . 7
° 64 (22,) - g - 12 (log —E-/%h) "o

1
Ve m 3.7 %4 1.7
3 (142,000 (log E7ﬁh) ] } +

v+ @Q 1.5
6 g - T o (231)5 [1 + 8.8 (k/Dh) ]

1
Reven 3.7 2, 1.76
+ 2n {————a————-[142,000 (log E7ﬁh) ] E-65
e for k/Dh =0
- (R Q2 -3/4 g -3/
Ho 0.0263 q ' g- n? (2a1)’ Fro (v-n-2300) él )

6 v o . 2300 v « m . R
feE e )

i

E-66

These Tast three equations represent, for the given roughness ranges, a

relationship between the data H0 and q resulting from the test and Zai and

(k/Dh) decisive for the fracture permeability.

E.8 TURBULENT FLOW NEAR THE BOREHOLE - TRANSITION ZONE

Up until now, an abrupt change from hydraulically smooth to rough

(turbulent) conditions have been assumed.

However, a gradual change may

well be the general case, and the following situation then prevails:

turbulence (Nikuradse)

-+ transition (Blasius)

+ laminar (Louis, Pouiseuille)
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L ! "k .
Ok
L k1
X x> Pt et
AR KRR

| Nikuradse Blasuia Louis-Poiseuille

4

b

v

turbulent Taminar

Figure E-7 Transitional Turbulent Zone Near the Borehole
(After Rissler 1978)

The radius at which transition from completely rough to hydraulically

smooth conditions occur can be determined in a similar manner as re = rKl

(refer to equation E-14), i.e,

= ‘?‘\) N 1 3 7 ;3 E'67
2,552 1log m
h
Rissler states that for apertures 0.13 > Zai >
0.40 mm, a numerical evaluation of the theoretical relation revealed that

for certain apertures, the laminar turbulent switchover was nearly independent

of (k/Dh)(for nearly constant energy head conditions), i.e. see Figure E 8:
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k/Dy=0
q i .oh 0.3 mm £2q; < 0.L0mm
transition 2aj = const.
w0ne
' WOy: 0.5
“transition from laminar to turbulent .flow
1§ 1 -
Hox - 150 m Ho
Hinm non linear

Figure E-8 Characteristic Curve g="f (Ho)

This allows the determination of the aperture from critical energy
head considerattons without knowing the relative roughness. It is necessary,
however, to represent the relationship found between HoK and Zai using

equations (E-51) and (E-64) through (E-66).

E.9 DETERMINATION OF THE: APERTURE FROM CRITICAL ENERGY HEAD

If HOK represents the critical energy head at which laminar flow in
the fissure immediately becComes turbulent at the entrance, th4s condition
can be obtained using equation (E-51) by replacing the flow rate q by the

critical Re,

ReK = f(k/Dh)

Therefore
o 1.5 R
Hok = g (2T Rey (k/Dp) - [1+ 8.8 (k/D,)""°] + an .

E-68
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It should be noted that this equation has been obtained from a numerical

evaluation without any explanation.

(A

2400
N
: \ range of variation of { for
2000 S the roughness conditions
\ occurring in natural joints
: Y Z
7 177 A
it
1200
800
5 -—
f(k/Dn) = [1+48.8(k/0n) " } - Reylk /on)
00 with Re, (k/On) according to equationsii2) and (13} |
- R—
0 Q000 Q06  0X0 Q4 020 030 040,
. k/oy(1]
Figure E-9 ¢(k/D,) plotted versus k/D, for 0 % k/D, s 0.4

Solving (E-68) for Zai, leads to

VAR 1.5 R.
2a1‘ = P“Tﬁrl—(v- . ReK (k/Dh) + [1+ 8.8 (k/Dh) ] an F E-69

9’
o] 0

Introducing the values

6 6

B = E—T—H;E-' Rey (k/Dh) » [1+8.8 (k/Dh)l'S] = §“1'7ﬂ;: - f(k/Dy)

v . p 'Zn(B-
0 Y‘O

(]
1]

and
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one obtains

Zai =3B .C E-70

Rissler has shown that the influence of (k/Dh) on the relation between

H_ ., and 2ai is 1imited - if one evaluates f(k/Dh) for roughness between’

oK
.06 and 0.4 it is found to vary from 1400 to 1800. Hence, the error is

given by

< w
]
olo
o6
"
co
a2

Determination of Re]ative\Roughness

Since 2ai is now assumed known, we can calculate k/Dh. Substituting
any given Ho, q pair from a test plus 2a1 previously calculated, and solve
the equations given previously,

Rissler presents diagrams to simplffy these calculations, These are

shown in figure 17 in the text of this report.





