580426



Energy, Mines and Resources Canada Énergie, Mines et Ressources Canada

Earth Physics Branch

1 Observatory Crescent Ottawa Canada K1A 0Y3 1 Place de l'Observatoire Ottawa Canada K1A 0Y3

Direction de la physique du globe

# Geothermal Service of Canada

# Service géothermique du Canada

B.C. HYDRO AND POWER AUTHORITY AND ENERGY, MINES & RESOURCES CANADA JOINT VENTURE

REPORT ON 1978 FIELD WORK - MEAGER CREEK GEOTHERMAL AREA, UPPER LILLOOET RIVER, BRITISH COLUMBIA

Brian D. Fairbank, P.Eng., G.A. Shore, L.J. Werner, Andrew E. Nevin, P.Eng., and T.L. Sadlier-Brown

Work conducted under B.C. Hydro and Power Authority P.O. 848-731 Energy, Mines & Resources Contract OSB78-00163

Earth Physics Branch Open File Number 79-10

Ottawa, Canada, 1979

82 pp., 22 figures and 3 tables

Price/Prix: \$38.00

NOT FOR REPRODUCTION

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

EPB Open File 79-10



Energy, Mines and Resources Canada Énergie, Mines et Ressources Canada

Earth Physics Branch Direction de la physique du globe

1 Observatory Crescent Ottawa Canada K1A 0Y3 1 Place de l'Observatoire Ottawa Canada K1A 0Y3

# Geothermal Service of Canada

# Service géothermique du Canada

B.C. HYDRO AND POWER AUTHORITY AND ENERGY, MINES & RESOURCES CANADA JOINT VENTURE

REPORT ON 1978 FIELD WORK - MEAGER CREEK GEOTHERMAL AREA, UPPER LILLOOET RIVER, BRITISH COLUMBIA

Brian D. Fairbank, P.Eng., G.A. Shore, L.J. Werner, Andrew E. Nevin, P.Eng., and T.L. Sadlier-Brown

Work conducted under B.C. Hydro and Power Authority P.O. 848-731 Energy, Mines & Resources Contract OSB78-00163

Earth Physics Branch Open File Number 79-10

Ottawa, Canada, 1979

82 pp., 22 figures and 3 tables

Price/Prix: \$38.00

#### NOT FOR REPRODUCTION

#### ABSTRACT

Geothermal exploration at Meager Creek in 1978 provided significant and encouraging new subsurface information. Two wells were drilled and both recorded temperatures in excess of 100°C. One of these confirmed a new target area. Geophysical surveys refined earlier concepts of the boundaries of the three areas of interest and allowed a division into:

- a. the South Reservoir
- b. the North Reservoir
- c. the Lillooet Valley resistivity anomaly. "

The South Reservoir is the best-defined. It has been under specific study since 1974. Seven diamond drill holes have been put down within or near its boundaries. Exploratory work on the North Reservoir and the Lillooet Valley resistivity anomaly is not as advanced as that on the South Reservoir.

#### RESUME

Grâce, en 1978, à l'exploration géothermique de Meager Creek, de l'information nouvelle considérable et encourageante sur le souterrain a été produite. Deux puits furent forés et enregistrèrent plus de 100°C. L'un de ceux-ci confirma un nouvel endroit d'intérêt pour l'exploration future. Des levées géophysiques ont réformées les limites des trois endroits d'intérêt et nous permet les divisions suivantes:

- a. Réservoir sud
- b. Réservoir nord
- c. Anomalie de résistivité de la vallée Lillooet

Le réservoir sud est plus précis puisqu'on l'étudie depuis 1974. On compte sept forage au diamant dans son environ immédiat. Le travail exploratoire sur le réservoir nord et l'anomalie de résistévité de la vallée Lillooet est moins avancé que cel du réservoir sud. B.C. HYDRO AND POWER AUTHORITY

and

ENERGY, MINES AND RESOURCES CANADA

1978 JOINT VENTURE

REPORT ON

1978 FIELD WORK MEAGER CREEK GEOTHERMAL AREA UPPER LILLOOET RIVER, BRITISH COLUMBIA

by

Brian D. Fairbank, P.Eng. G.A. Shore L.J. Werner Andrew E. Nevin, P.Eng. T.L. Sadlier-Brown

MARCH 15, 1979

work conducted under

B.C. HYDRO AND POWER AUTHORITY P.O. 848-731 ENERGY, MINES AND RESOURCES CONTRACT OSB78-00163

# TABLE OF CONTENTS

# 1.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

|     | 1.1<br>1.2<br>1.3<br>1.4               | South Reservoir<br>Possible North Reservoir<br>Lillooet River Resistivity Anomaly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
|-----|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 2.0 | RODUCTION                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |
|     | 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6 | Location and Access<br>Terms of Reference<br>Names and Presentation Maps<br>Previous Work<br>2.4.1 B.C. Hydro and Power Authority<br>2.4.2 Energy, Mines and Resources Canada (EMR)<br>2.4.3 Other Previous Work<br>B.C. Hydro and Power Authority; Energy, Mines<br>and Resources Canada, 1978 Joint Venture<br>2.5.1 Summary of Objectives<br>2.5.2 Work Performed in 1978<br>Other Current Work                                                                                                                                                                                                                                       | 11<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>1             |
| 3.0 | GEOL                                   | JOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
|     | 3.1<br>3.2<br>3.3<br>3.4<br>3.5        | General Geology<br>North-South Zone of Alteration and Volcanic Centres<br>Conceptual Cross Section; Meager Mountain Volcanic<br>Complex and Geothermal Systems<br>Meager Map Area<br>Lillooet Map Area                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23<br>26<br>27<br>28<br>30                                                                  |
| 4.0 | RESI                                   | STIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |
|     | 4.1<br>4.2<br>4.3<br>4.4<br>4.5        | <pre>Introduction<br/>4.1.1 Objectives<br/>4.1.2 Resistivity Measurement Theory<br/>Pole-Pole Array Theory<br/>4.2.1 Geometry and Computations<br/>4.2.2 Presentation Drawings<br/>Dipole-Dipole Array Theory<br/>Areas Surveyed<br/>4.4.1 Pole-Pole Array Coverage<br/>4.4.2 Dipole-Dipole Array Coverage<br/>Interpretation of Results<br/>4.5.1 Pole-Pole Data Interpretation Procedure<br/>4.5.2 South Reservoir, Meager Map Area;<br/>Pole-Pole Survey<br/>4.5.3 Lillooet Valley Resistivity Anomaly,<br/>Lillooet Map Area; Pole-Pole Survey<br/>4.5.4 Possible North Reservoir, Lillooet Map<br/>Area; Dipole-Dipole Survey</pre> | 3558880<br>3558880<br>44225444<br>444444<br>4455<br>5555                                    |
|     | 4.7                                    | Quantitative Interpretation Techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52                                                                                          |

# TABLE OF CONTENTS (Cont'd)

| 5.0 | Diamond Drilling                                                                                                                                               | PAGE                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|     | 5.1 Introduction 5.2 Research Well 78-H-1 5.3 Research Well 78-H-2 5.4 Bedrock Topography - South Reservoir Area                                               | 60<br>61<br>65<br>66       |
| 6.0 | OTHER INDIRECT EXPLORATION METHODS                                                                                                                             |                            |
|     | <ul> <li>6.1 Percussion Drilling</li> <li>6.2 Trace Element Survey</li> <li>6.2.1 General</li> <li>6.2.2 Mercury Survey</li> <li>6.2.3 Radon Survey</li> </ul> | 73<br>76<br>76<br>77<br>80 |

- 6.2.2 Mercury Survey 6.2.3 Radon Survey

# LIST OF FIGURES

| SUMMARY, CON | CLUSIONS AND RECOMMENDATIONS                                                | PAGE |
|--------------|-----------------------------------------------------------------------------|------|
| Figure 1.    | l Summary Plan, Resistivity and Diamond<br>Drill Coverage                   | 9    |
| Figure 1.    | 2 Summary of Recommendations                                                | 10   |
| INTRODUCTION |                                                                             |      |
| Figure 2.    | l Location Map, Meager Creek Geothermal Area                                | 12   |
| GEOLOGY      |                                                                             |      |
| Figure 3.    | l Conceptual Cross Section 463,000E                                         | 32   |
| Figure 3.    | 2 Summary of Geology, Meager Map Area                                       | 33   |
| Figure 3.    | 3 Summary of Geology, Lillooet Map Area                                     | 34   |
| RESISTIVITY  |                                                                             |      |
| Figure 4.    | l Geophysical Data Location and Summary<br>Results, Meager Map Area         | 54   |
| Figure 4.    | 2 Pseudosection, Corridor 625, Pole-Pole Array                              | 55   |
| Figure 4.    | 3 R <sub>(A)</sub> vs Depth Plots, Corridor 625,<br>Pole-Pole Array         | 55   |
| Figure 4.    | 4 Pseudosection, Corridor 630,<br>In-line Pole-Pole Array                   | 56   |
| Figure 4.    | 5 R <sub>(A)</sub> vs Depth Plots, Corridor 630,<br>In-line Pole-Pole Array | 56   |
| Figure 4.    | 6 Geophysical Data Location and Summary<br>Results, Lillooet Map Area       | 57   |
| Figure 4.    | 7 Pseudosection, Corridor 215, Pole-Pole Array                              | 58   |
| Figure 4.    | 8 R <sub>(A)</sub> vs Depth Plot, Corridor 215, Pole-Pole<br>Array          | 58   |
| Figure 4.    | 9 Pseudosection, Dipole-Dipole Line L,<br>Lillooet Map Area                 | 59   |

# LIST OF FIGURES (Cont'd)

#### PAGE DIAMOND DRILLING 68 Figure 5.1 Summary Plan, Diamond and Percussion Drilling 70 Figure 5.2 Temperature Profile and Graphic Log, Research Well 78-H-1 Temperature Profile and Graphic Log, 71 Figure 5.3 Research Well 78-H-2 Figure 5.4 Cross Sections Looking West Through Research 72 Well 75-H-2, Showing Overburden Conditions at the South Reservoir OTHER INDIRECT EXPLORATION METHODS Figure 6.1 Post Drilling Temperature Profiles, 74 Percussion Drill Holes 78 Figure 6.2 Mercury Soil Sample and Radon Cup Location Map Figure 6.3 Radon Survey, Meager Creek Main Springs 79 Area

#### LIST OF TABLES

| Table | 2.1: | Review of Exploration (B.C. Hydro)<br>Meager Geothermal Project | 14 |
|-------|------|-----------------------------------------------------------------|----|
| Table | 3.1: | Table of Formations                                             | 24 |
| Table | 5.1: | Summary of Diamond Drilling                                     | 69 |

# APPENDICES

|          |   |      |                                                                                    | NU. UF PAGES |
|----------|---|------|------------------------------------------------------------------------------------|--------------|
| APPENDIX | A | REFE | RENCES                                                                             | 3            |
| APPENDIX | B | RESI | STIVITY (POLE-POLE)                                                                |              |
|          |   | B-1  | Data Print Outs                                                                    | 7            |
|          |   | B-2  | Pseudosections and $R_{(A)}$ vs. Depth Plots                                       | 13           |
|          |   | B-3  | Plotting Program                                                                   | 2            |
|          |   | B-4  | Resistivity Survey Equipment                                                       | 1            |
| APPENDIX | С | DIAM | OND DRILLING                                                                       |              |
|          |   | C-1  | Geological and Geophysical Log<br>Research Well 78-H-1                             | 4            |
|          |   | C-2  | Geological and Geophysical Log,<br>Research Well 78-H-2                            | l            |
|          |   | C-3  | Graph of Temperature Rebound After<br>Stopped Circulation                          | 2            |
| APPENDIX | D | PERC | USSION DRILLING                                                                    |              |
|          |   | D-1  | Summary of Percussion Drilling                                                     | l            |
| APPENDIX | E | MERC | URY SURVEY                                                                         |              |
|          |   | E-1  | Description and Operating Instructions<br>for Model 301 Gold Film Mercury Detector | 12           |
|          |   | E-2  | Mercury Survey-Table of Results                                                    | 2            |
|          |   | E-3  | Frequency Histograms of Data                                                       | 1            |
| APPENDIX | F | RADO | N SURVEY                                                                           |              |
|          |   | F-1  | Track Etch Terradex Report                                                         | 13           |
|          |   | F-2  | Frequency Histograms of Data                                                       | 1            |

# CONTRACTS

- British Columbia Hydro and Power Authority Purchase Order No. 848 731 Order Date July 10, 1978
- 2) Department of Energy, Mines and Resources
   Contract Serial Number .0SB78 00163
   Commencement Date July 27, 1978

## CLIENTS' MANAGEMENT

British Columbia Hydro and Power Authority Josef Stauder, P. Eng. Project Engineer

| Depar | tmer | nt c | of | Energy, | Mines | and  | Resou | irces     |
|-------|------|------|----|---------|-------|------|-------|-----------|
|       | Dr.  | Α.   | Μ. | Jessop  | Sc    | ient | ific  | Authority |
|       | Dr.  | J.   | G. | Souther | · Sc  | ient | ific  | Advisor   |
|       | Dr.  | т.   | J. | Lewis   | Sc    | ient | ific  | Advisor   |

Department of Supply and Services F. S. Thomas Science Procurement Manager

#### NEVIN SADLIER-BROWN GOODBRAND PROJECT MANAGEMENT

Nevin Sadlier-Brown Goodbrand Ltd.Dr. Andrew E. Nevin, P. Eng.Senior ManagerT.L. Sadlier-BrownSenior ManagerB.D. Fairbank, P. Eng.Project SupervisorL.G. WernerGeologistDeep Grid Analysis (1977) Ltd.Geophysical Con-

sultant

#### 1.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

#### 1.1 General

Geothermal exploration at Meager Creek in 1978 provided significant and encouraging new subsurface information. Two wells were drilled and both recorded temperatures in excess of 100°C. One of these confirmed a new target sub-area. Geophysical surveys refined earlier concepts of the boundaries of the three sub-areas of interest.

The three sub-areas are referred to as:

- a) the South Reservoir
- b) the Possible North Reservoir
- c) the Lillooet Valley resistivity anomaly.

Their locations and boundaries as conceived at the present time are shown in Figure 1.1. Each subarea "name" implies the present degree of confidence in its boundaries and subsurface properties.

The South Reservoir is the best-defined. It has been under specific study since 1974. Seven diamond drill holes have been put down within or near its boundaries.

Exploratory work on the Possible North Reservoir and the Lillooet Valley resistivity anomaly is not as advanced as that on the South Reservoir. Parts of their boundaries are drawn tentatively, based on the most solid of the physical evidence. For example, the narrow neck in the vicinity of Pebble Creek (Figure 1.1) may be shown by future work to widen southward, merging the two sub-areas.

The leading applied exploration methods have been temperature profiling in diamond drill holes and electrical resistivity surveys, with locations indicated in Figure 1.1. Supporting work has included water geochemistry, geological mapping, selfpotential surveys, percussion drilling and trace element studies.

Studies in 1978 have led to a preliminary design for continued work. A summary of recommended diamond drilling and geophysical work is given in Figure 1.2 and is detailed in the following (Sections 1.2 - 1.4). Seven wells are recommended - six of about 600 m and one of about 1500 m. Five sites (and several alternate sites) have been selected. Results of the geophysical surveys and the first wells will determine the course of action to be followed in siting and drilling subsequent wells. Concurrent studies would be short seismic profiles, detailed geologic mapping of the Lillooet Valley resistivity anomaly, ground water hydrology, and continued sampling of trace elements in rocks, soils and waters.

A preliminary environmental survey was conducted at Meager Creek in 1978 by Reid Crowther and Partners Ltd. and VTN Consolidated, Inc., and we understand that more advanced studies are planned for 1979. Of the anticipated 1979 environmental studies the slope stability and water quality aspects will be useful to the exploration team.

## 1.2 South Reservoir

Reservoir margins, presently defined by resistivity anomalies and drill hole information, enclose about nine square kilometres. The eastern part of the reservoir is an outflow plume. The south boundary is inferred to be sharp. The west boundary is probably sharp and related to a deep-seated structure. Other boundaries may be gradational.

Location of the north boundary is uncertain because the reservoir extends under volcanic cover of high electrical conductivity, which masks any response from underlying geothermal waters. Interest in the north boundary is scientific -- an effort to relate the reservoir to its causative volcanic features -- rather than practical. Steep cliffs and glaciers would restrict geothermal field development to the north above 1700 metres elevation.

Geothermal water, heated by sources genetically related to volcanism, occupies fractures in the crystalline basement. Extensive fracturing and faulting accompanied the intrusion, extrusion and subsidence of the initial Meager complex volcanic rocks. Important geological considerations at the South Reservoir are the position of initial volcanic vent areas, porous intrusive breccia bodies, and major fracture watercourses in the subsurface.

Seven holes have been drilled in the South Reservoir area giving information on the thermal and hydrologic regime. Temperature gradients are

- 3 -

permissive of temperatures greater than  $250\circ$ C at 1000 metres depth. The eastward outflow plume is indicated by temperature inversions in some holes. Temperatures and thermal gradients are compatible with major thermal watercourses having surface traces at the west boundary structure and the south margin, parallel to Meager Creek. Temperature gradients increase as well locations approach these features, however, this does not rule out water channelways elsewhere. Research well 78-H-2 failed to reach its bedrock target but yielded high temperatures ( $103.4^{\circ}$ C), with indirect implications toward the bedrock thermal regime. Hot water must flow to bedrock surface north or west of the well.

An objective of the 1978 program was to complete work required to choose the most promising site for a deep exploratory well possibly leading to steam discovery. Although a deep well could presently be sited at the South Reservoir, it would be costeffective to drill two to three moderately deep (500-600 metre) wells prior to deep drilling (2000 metres). This is in view of the success and wealth of information gained in research well 78-H-1 (603 metres). Three additional research wells (Figure 1.2), each with a specific purpose, are recommended:

a) site 1; a well at site 1A would fulfill a three-fold purpose: first, to determine the stratigraphy and temperature conditions near a thick sequence of intrusive basal breccia (postulated vent area); second, to add a significant north-south dimension to temperature information; and third, to aid in interpreting deep resistivity data in an area of conductive volcanic cover. b) site 2; to obtain bedrock temperatures in an area identified as important by data from research well 78-H-2; and to gain structural information near the western resistivity cut-off.

c) site 3; to measure the thermal and hydrologic regimes at a point west of the inferred major geologic structure trending north-south across the region and the western resistivity cut-off. As yet there is no high temperature cut-off to the west.

d) alternate sites; an alternative well to 1A at site 1B would be considerably shallower and cheaper, but at present is viewed as slightly less effective in acquiring information; a non-designated site in the southwest corner of the reservoir (Figure 1.2) is a logical alternate to 2 or 3, subject to results of preceding work.

A small scale geophysical survey (for example, very-low-frequency electromagnetic survey) over the west boundary structure would be useful to pinpoint its surface trace and, with information from drill holes, determine its attitude.

The above program would yield sufficient data to spot the most promising deep well-site for discovery with a high degree of confidence. Siting considerations would be temperature values, contours and gradients, desired intersection depths with major structures, bedrock topography, and access conditions within the South Reservoir.

#### 1.2 Possible North Reservoir

- 6 -

The Possible North Reservoir, on the north flank of Meager Mountain, lies within a broad north-south zone of hydrothermal alteration and relatively young volcanic centres. Only a small amount of definitive data is available; however, results to date are very encouraging. A distinct 1 km-wide anomaly, along a single line of dipole-dipole resistivity, is located at the break in slope adjacent to research well 78-H-1. The well identified high, near-surface temperatures (101.8°C at 556.6 m), high thermal gradients (eg. 210.6°C/km), and, qualitatively, high permeability and fracture porosity. A temperature inversion in the middle portion of the drill hole indicates that the site is off-center from a convection cell, or on the margin of a geothermal reservoir. The gradient obtained would permit temperatures in excess of 250°C at a depth of 1500 metres. No water could be obtained from the well for geochemical analysis, therefore, the possibility of a steam-dominated system in this area cannot be ruled out. The margins of the high temperature zone are not yet identified.

Work recommended (Figure 1.2) includes 20 linekm of dipole-dipole resistivity on both sides of the Lillooet River. The orientation of a cross-line at near right angles to the valley lines should allow interpretation of the lines over deep overburden. The proposed resistivity will determine the shape of the known anomalous zone (pipe-like or tabular), and whether or not further pole-pole surveys to the south should be considered.

At least three drill holes of 500-600 m depth

are recommended. Two sites with alternates are shown (Figure 1.2):

a) site 4; site 4A is below the Affliction Creek gas vent and near the intersection of the north-south zone of alteration and volcanic centers with the Lillooet Valley resistivity anomaly.

b) site 5; designed to test Pebble Creek
hot spring source directions. The Bridge
River ash vent may be located in this vicinity.

c) alternates; sites 4B, 4C, and 5B are shown (Figure 1.2) as alternates to the above; two non-designated sites are shown in deep alluvium.

Research wells at sites 4 and 5, along with existing well 78-H-1, will provide initial three dimensional coverage of the temperature domain. Additional wells in the area should be located using preceding resistivity and drill hole results.

# 1.3 Lillooet Valley Resistivity Anomaly

A large low resistivity zone, 6 km long, up to 2 km wide, and open to depth, extends from the Lillooet Valley bottom near Pebble Creek, northwest up the sidehill of Meager Mountain. The zone may extend further northwest toward the Possible North Reservoir beyond the limits of resistivity coverage. The nature of the anomaly is unclear; it is partially or wholly within a metamorphic unit and is parallel to regional foliation. Pyrite and graphite are present locally within the metamorphic rocks. The north boundary of the anomaly appears to coincide with the contact between metamorphic rocks and other basement units. The above observations suggest that low resistivities may be mapping a graphite or pyriterich sub-facies of the metamorphic complex, although more detailed geological information is needed.

Temperatures obtained from shallow holes in and near the southern portions of the Lillooet Valley resistivity anomaly indicate a thermal gradient of about 50°C/km; however, these wells are not ideally located to test the geothermal potential of the anomaly. Further drilling is required for additional temperature information but this is given a low priority at present. Detailed geological mapping is recommended in 1979 as a pre-requisite to drilling.





Western Resistivity Cut-Off (South Reservoir)

20000

A Proposed Resistivity (Dipole - Dipole)

MEAGER CREEK

3

2

SUMMARY OF RECOMMENDATIONS

## 2.0 INTRODUCTION

# 2.1 Location and Access

The Meager Creek project area is located 160 km north-northwest of Vancouver and 60 km northwest of Pemberton, B.C. (Figure 2.1). Potential geothermal resource areas are on the flanks of the Meager Mountain volcanic complex, south of the Lillooet River and north of Meager Creek in the upper Lillooet River valley.

A good gravel-surface road to the project area, maintained by logging companies, leaves the highway 20 km northwest of Pemberton. Access within the project area is by logging road or helicopter.

# 2.2 Terms of Reference

Exploration for geothermal resources at Meager Creek in 1978 was a continuation of yearly investigations initiated in 1973. The 1978 work was designed to further delineate known reservoirs and geophysical anomalies, to extend exploration coverage to the north side of the volcanic complex, and to obtain deeper temperature measurements for a more complete interpretation of the thermal and hydrologic regime.

Tasks completed include resistivity surveys, diamond drilling, percussion drilling, trace element studies, and scale model construction as outlined in section 2.5.2.



# 2.3 Names and Presentation Maps

In past years work was concentrated in the Meager Creek drainage and the names "Meager Creek Project" and "Meager Creek Geothermal Area" evolved through continued usage to encompass the whole of the Meager Mountain volcanic complex. This broader meaning has been retained. As work has progressed it has become necessary to distinguish the three súb-areas of interest which have been identified, hence the nomenclature "South Reservoir", "Possible North Reservoir", and "Lillooet Valley resistivity anomaly", which are used throughout this report. Each name implies the current degree of confidence in its boundaries and subsurface properties.

Three base maps are used for data presentation. A base map for summary purposes at 1:80,000 scale shows the whole of the project area (Figures 1.1, 5.1). The project area is divided into two map areas for more detailed data presentation: the Meager Map Area at 1:20,000, including the South Reservoir area; and the Lillooet Map Area at 1:40,000, including the Lillooet Valley resistivity anomaly and Possible North Reservoir areas.

## 2.4 Previous Work

# 2.4.1. B.C. Hydro and Power Authority

The geothermal power potential of the Meager area was recognized in 1973 on the basis of separate evaluations by B.C. Hydro and the Department of Energy, Mines and Resources. Geological, geochemical and geophysical surveys by B.C. Hydro in 1974 (Nevin Sadlier-Brown Goodbrand, 1974) provided the initial

|             | Reconnaissance                                                                                                                                   | South Reservoir                                                                                                                                                               | Lillooet Valley<br>Resistivity Anomaly                                                                            | Possible<br>North Reservoir                                                                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <u>1974</u> | <ol> <li>geology</li> <li>infrared<br/>scanning</li> <li>water geo-<br/>chemistry</li> <li>dipole-dipole<br/>resistivity<br/>(McPhar)</li> </ol> | South Reservoir<br>identified                                                                                                                                                 | Lillooet Valley<br>anomaly detected                                                                               |                                                                                                                            |
| <u>1975</u> |                                                                                                                                                  | <ol> <li>dipole-dipole<br/>resistivity (DGA)</li> <li>shallow diamond<br/>drilling</li> <li>self-potential</li> <li>South Reservoir<br/>defined; open to<br/>north</li> </ol> |                                                                                                                   |                                                                                                                            |
| <u>1976</u> | l) self potential                                                                                                                                |                                                                                                                                                                               | anomaly confirmed<br>but ambiguous                                                                                |                                                                                                                            |
| <u>1977</u> |                                                                                                                                                  |                                                                                                                                                                               | <pre>l) pole-pole resis-<br/>tivity<br/>anomaly identified<br/>open to west</pre>                                 |                                                                                                                            |
| <u>1978</u> |                                                                                                                                                  | <ol> <li>pole-pole resis-<br/>tivity</li> <li>moderate depth<br/>diamond drilling</li> </ol>                                                                                  | <ol> <li>pole-pole<br/>resistivity</li> <li>shallow per-<br/>cussion drilling</li> <li>anomaly defined</li> </ol> | <ol> <li>dipole-dipole<br/>resistivity</li> <li>moderate depth<br/>diamond drilling</li> <li>anomaly identified</li> </ol> |

# Table 2.1: Review of Exploration (B.C. Hydro) - Meager Geothermal Project

impetus required for year to year applied exploration for geothermal steam centered on the Meager Mountain volcanic complex.

In 1975, dipole-dipole resistivity surveys, diamond drilling and water geochemistry were leading exploration methods used to delineate what is now referred to as the 'South Reservoir' in the Meager Creek drainage (Nevin Sadlier-Brown Goodbrand Ltd., 1975). The reservoir was identified as a tabular shaped body open to the north under Meager Mountain. Diamond drilling, temperature gradient studies and water geochemistry established that the reservoir is a water-dominated system with potential for steam generation.

In 1976, reconnaissance exploration in the Lillooet Valley on the northeastern and northern side of the volcanic complex using self-potential (SP) geophysical methods was inconclusive. SP anomalies were broadly coincident with an ambiguous 1974 resistivity anomaly (Nevin Sadlier-Brown Goodbrand Ltd., 1977).

The 1977 season was directed at resolving the Lillooet Valley anomalies and field-testing a newlydeveloped pole-pole resistivity method designed to overcome topographic constraints, improve depth of penetration, and enable anisotropy studies from multidirectional resistivity data (Shore, 1978). A strong resistivity low, open to the northwest and southwest, was identified near the confluence of the Lillooet River and Pebble Creek (Nevin Sadlier-Brown Goodbrand Ltd., 1978).

## 2.4.2 Energy, Mines and Resources Canada (EMR)

The Meager Creek main springs area was selected in 1973 by the Department of energy, Mines and Resources as the site of two 50 metre diamond drill holes, part of a broader geothermal resource study of western Canada (Lewis and Souther, 1978). Drilling was completed in Spring 1974.

Since 1974, EMR has conducted various programs in the Meager Creek area emphasizing regional analysis and supporting research. This work includes:

a) microseismicity studies in the winter of 1974-75 by G.C. Rogers of the Victoria Geophysical Observatory.

b) mapping and stratigraphic study of the Meager Mountain volcanic complex and its environs (Read, 1977; 1979).

c) magnetotelluric surveys in the Lillooet Valley between Meager Creek and Pemberton Meadows in 1976-77 by the Mineral exploration Research Institute of Montreal.

d) water geochemistry study of Meager and Pebble Creek hotsprings and surface waters (Hammerstrom and Brown, 1977)

e) seismic profiling in the upper Lillooet Valley in 1976 by Geotronics Ltd. of Vancouver.

f) diamond drilling and temperature gradient studies in 1976 in the Lillooet and Squamish Valleys (Lewis, 1977). g) isotope studies of spring waters, stream waters and snow samples in the Meager area in 1977 by Fred Michael of the University of Waterloo.

# 2.4.3 Other Previous Work

Work by other companies or agencies in the Meager area having a bearing on geothermal development includes:

a) study of the 1975 Devastation Glacier slide by Patton (1976).

b) terrain inventory of Mt. Dalgleish Sheet
92J/12 by the Resource Analysis Branch of the
British Columbia Ministry of the Environment.

c) multiple land use study for the British Columbia Forest Service. The resource folio includes a Terrain Unit Map and legend for the Meager Creek drainage.

# 2.5 <u>B.C.Hydro and Power Authority; Energy, Mines &</u> Resouces Canada: 1978 Joint Venture

## 2.5.1 Summary of Objectives

Objectives of the 1978 program were distinctly different for each of the South Reservoir, Lillooet Valley resistivity anomaly, and Possible North Reservoir. Exploration status at the South Reservoir at the start of the program was more advanced than either the Lillooet Valley resistivity anomaly near Pebble Creek or the Possible North Reservoir in the north Lillooet Valley.

A stated objective for the South Reservoir was to complete all work required to choose the most promising site for a deep exploratory steam well. The program was designed to define the northern boundary of the low resistivity area as related to the geothermal reservoir, and to provide information on the thermal regime at moderate depths within the presently inferred lateral limits of the South Reservoir.

In the Lillooet Valley, the exploration goals were to resolve the boundaries of the pole-pole resistivity anomaly and determine its thermal significance, and to extend applied exploration coverage and geothermal knowledge to the geologically favourable north flank of the Meager Mountain volcanic complex (Possible North Reservoir) where stratigraphic and age-dating data indicate most recent eruptions have taken place.

Secondary objectives were to obtain permeability and pore pressure data from research wells, and to test radon gas and mercury trace element surveys as a detailed or regional exploration tool.

## 2.5.2 Work Performed in 1978

The following tasks were completed in 1978:

a) pole-pole resistivity surveys; areas covered were the northern part of the South Reservoir and both sides of the Lillooet Valley north from Pebble Creek to the Lillooet River falls (Figure 1.1). The polepole resistivity method was refined, which The pole-pole survey included planning of instrumentation and operational modifications based on 1977 work, array design and field layout for optimum coverage and logistical considerations, field work, data reduction, computer programming for display purposes, and interpretation of the data. Sub-consultant for the above work was Greg Shore of Deep Grid Analysis (1977) Ltd.

b) dipole-dipole resistivity surveys; Line L was completed along the break in slope on the south side of the Lillooet Valley in the area of the Possible North Reservoir (Figure 1.1). Sub-consultant was Greg Shore of Deep Grid Analysis (1977) Ltd.

c) diamond drilling; two research wells were drilled 78-H-1 (603 m) at the Possible North Reservoir and 78-H-2 (250 m) at the South Reservoir (Figure 1.1). A change in approach to moderate penetration depths was effected to enable more complete interpretation of the subsurface temperature regime. Drilling contractor was Canadian Longyear using a Longyear 44 diamond drill. All temperature measurements were by probe equipment supplied by the Department of Energy, Mines and Resources.

d) percussion drilling; recent logging operations have provided road access to parts of the project area allowing relatively low cost percussion drilling methods to be used for the first time. Seven exploratory holes were drilled in the Lillooet Valley and five northeast of the Meager Creek main hotsprings. Of these, three holes penetrated bedrock. Piezometers were installed in all holes. Drilling contractor was Josco Mining Co. Ltd.

e) trace element surveys; radon gas and mercury surveys were conducted as a test of the method for geothermal exploration and to obtain additional information on water movement.

f) geological survey; collection of geological information and geological modelling from accumulating data was done on an ongoing basis.

g) relief model; a relief model showing surface exploration information and diagramatical cross section was constructed by Topographics from data compiled and interpreted by Nevin Sadlier-Brown Goodbrand Ltd.

In addition to the above work, supporting functions managed by Nevin Sadlier-Brown Goodbrand Ltd. included camp and equipment mobilization and maintenance, surveying, road building, and drill site preparation.

Resistivity surveys, percussion drilling, and trace element surveys were conducted from a base camp near the end of the road, at Pebble Creek between July 14 and September 5. A contract Hiller 12-E helicopter supplied by Pemberton Helicopter Services was used for field support during this phase of work. Drill camps were established near the diamond drill sites in the north Lillooet Valley and Meager Creek areas. Diamond drilling commenced September 8 and concluded November 10.

Field work was completed with the collection of the last radon cups on November 18.

#### 2.6 Other Current Work

Several other studies affecting the joint venture program at Meager Creek are in progress. The most significant of these are:

> a) an environmental study for B.C. Hydro and Power Authority by Reid Crowther and Partners Ltd. of Vancouver and VTN Consolidated Inc. of Irvine, California, and

b) continuation of mapping, water geochemistry and isotope studies by the Department of Energy, Mines and Resources.

A study is underway by the University of British Columbia Geography Department on land mass creep at the headwaters of Job Creek (northwest corner of Figure 1.1). Survey stations were established in 1978 as part of a continuing study of bedrock movement over an area estimated one kilometre in width and four kilometres in length. No quantitative data on rate of movement is available to date.

Activity by logging companies is important in terms of access. Current developments in the Meager Creek drainage are the extension of the Meager main road to about one kilometre past Angel Creek (in the South Reservoir area) and bridging of Meager Creek at a point just east of the main springs providing access to the south side of the creek. In the Lillooet River Valley, MacMillan Bloedel plans branch roads up the sidehill in the area northwest of Pebble Creek and access roads to the south side of the Lillooet River opposite Pebble Creek (refer to Figure 1.1).

## 3.0 GEOLOGY

#### 3.1 General Geology

(refer to Table 3.1, Figures 3.1, 3.2 and 3.3)

A brief description of the geology of the Meager Mountain volcanic complex is included in this report as background for sections to follow. Information is summarized from Read (1977; 1979), Souther (1976), Woodsworth (1977) and Nevin Sadlier-Brown Goodbrand Ltd. reports to B.C. Hydro.

The Meager area geothermal systems are in fractured basement rocks peripheral, and directly related to, the Meager Mountain volcanic complex. Geologically young, cooling magma chambers and deeper heat sources provide the heating mechanism for geothermal waters.

The oldest rocks in the project area are biotite hornblende quartz diorite and hornblende diorite (Kd) of the Coast Crystalline Belt and roof pendants of upper Triassic to Lower Cretaceous greenstone phyllite and amphibolite (Mmp). This metamorphic unit forms an extensive northwest trending belt in the Lillooet Valley surrounded by intrusive rocks.

Crystalline and metamorphic rocks are intruded by Miocene biotite quartz monzonite (Mqm), which forms the Fall Creek Stock on the northeast flank of Meager Mountain, and other plugs in the area. The Fall Creek Stock is exposed in the Lillooet Valley near the falls and is intersected by research well 78-H-1, indicating that it is up to 5 kilometres in diameter, largely covered by volcanic flows and alluvium. Miocene quartz monzonite plutons in the Meager area and genetically equivalent Miocene vol-

## TABLE 3.1: TABLE OF FORMATIONS



MIOCENE

Mqm

CRETACEOUS (?)

Kd

GARIBALDI GROUP MEAGER MOUNTAIN VOLCANIC COMPLEX

Scoriaceous dacite flow. Bridge River ash eruption

PHASE III Rhydacite flows and breccia

PHASE II Andesite flows and breccia; Subordinate dacite and basalt flows

PHASE I Altered acid tuff, breccia and flows

Basal breccia

BASEMENT COMPLEX

Biotite quartz monzonite

Biotite hornblende quartz diorite and hornblende diorite.

UPPER TRIASSIC to LOWER CRETACEOUS

Mmp

Greenstone, phyllite, amphibolite; minor greywacke volcances outside the area are part of the northwest trending Pemberton Volcanic Belt (Souther 1976).

Pliocene and Pleistocene Garibaldi Group flows, breccias, dykes, and associated pyroclastics cut and unconformably overlie all other rock units in the area, forming the Meager Mountain volcanic complex. They are part of the north-south trending Garibaldi Volcanic Belt (Canadian terminology for the northern extension of the Cascade volcanic terrane in Washington, Oregon, and northern California).

Three main periods of volcanic activity, and one recent isolated event, are distinguished at Meager Mountain by Read (1977; 1979). The initial explosive eruptions in Pliocene time are marked by a basal breccia (Gbx) comprised mainly of intrusive and some aphanitic volcanic clasts in a tuffaceous matrix. The basal breccia is overlain by altered acid tuff, breccia, and flows (Gva). Phase I volcanics are exposed on the south flank of Meager Mountain. An intermediate period of volcanism produced andesite flows and breccia, with subordinate dacite and basalt flows (TQv-Phase II). This unit is extensive, occurring on all flanks of Meager Mountain. Read (1977) identifies the vicinity of the Devastator west of Pylon Peak (Figure 3.2) as a probable vent area. Other vents are suspected. The youngest major period of volcanic activity is represented by rhydocite flows and breccia (TQv-Phase III) in the northern half of the complex. Vent areas are on Mt. Meager, Plinth Peak, the north ridge of Plinth, and possibly Capricorn Mountain.

A scoriaceous dacite flow (Rvd), originating from the cirque north of Plinth Peak, and extensive Bridge River ash in the northern most part of the project area mark the most recent volcanic events on Meager Mountain. The dacite flows are postulated to cover (and hence postdate) the Bridge River ash vent (Read, 1977). The most reliable ages on the Bridge River ash were obtained by the carbon-14 method at the Geological Survey of Canada Radiocarbon Laboratory on charcoal from specimens collected in 1977. They are 2460±60 years (Nevin Sadlier-Brown Goodbrand Ltd., company files) and 2490±50 years before present (Read, 1979).

Intrusion of the Meager Creek volcanic complex was accompanied by fracturing and faulting of the basement complex. Hot springs issue from fractured intrusive rocks in the Meager Creek drainage and at the Pebble Creek hot springs. Geochemical work on springs has been previously reported by Nevin Sadlierbrown Goodbrand Ltd. (1974), Souther (1976), Hammerstrom and Brown (1977), and Lewis and Souther (1978).

# 3.2 North-South Zone of Alteration and Volcanic Centres

Volcanic centres of the Meager Mountain Complex occur in a broad linear north-south zone on Meager Mountain. The "envelope" enclosing all known volcanic centres is 12 km long and 4 km wide. This zone, with extrapolations to the north and south, is shown in Figure 1.2. Nine vent areas are identified (Read, 1979) within the depicted boundaries. The Bridge River ash vent may be west of the zone (Read, 1979) although its precise location has not been determined.

Several observations suggest that the zone may be of practical importance to the project. Intermittent outcrops within the zone are locally hydro-

- 26 -
thermally altered, i.e. contain iron oxides, clay, micaceous minerals, carbonates, sulfates and other secondary minerals. The South Reservoir and the Possible North Reservoir are located along the zone at its mappable extremities and the western edge of the zone broadly coincides with the west boundary of the South Reservoir as determined by resistivity surveys. It is probable that the north-south linear trend of above features reflects a deep-seated fracture system which served as a conduit for the volcanic rocks, and subsequently as a control for past and present circulation of geothermal fluids.

# 3.3 <u>Conceptual Cross Section; Meager Mountain Volcanic</u> Complex and Geothermal Systems

Figure 3.1 shows a conceptual cross section, oriented north-south, through the centre of the volcanic complex. The cross section is parallel to and contained within the broad zone of alteration and volcanic centres discussed in the previous section. It integrates the following forms of information:

- a) direct observation at surface and in drill holes
- b) projected geological data
- c) interpreted geophysical data
- d) hypothetical representation of geology and geothermal system at depth.

The cross section is intended to put geologic, hydrologic and thermal features into perspective and to summarize concepts affecting current exploration. Important aspects of the Meager geothermal system depicted are:

| a) | heat | sources  | are | related | to | Pleistocene |
|----|------|----------|-----|---------|----|-------------|
|    | and  | Pliocene | vol | canism; |    |             |

- b) heat transfer is by conduction and convection;
- c) fractures and faults provide a porous and permeable medium within basement reservoir rocks;
- d) fractures and faults are associated with forceful intrusion and subsequent collapse at and near volcanic centres;
- e) isotherms warp upward above the centre of convection cells;
- f) fractures, lateral heat flows, and lateral ground water flows distort isotherms;
- g) at the South Reservoir, the basal breccia unit, collapse faults, and the root system of initial volcances may be controls on the geothermal system, in that they provide a large volume of inherently permeable rock material;
- h) volcanic centres progress south to north;
- i) at the Possible North Reservoir, the heat source may be associated with a cooling magma system about 2400 years old.

#### 3.4 Meager Map Area

Figure 3.2 is a detailed geologic map of the Meager Map Area including the South Reservoir. Spatial relationships between important geological features are shown.

Basal breccia (Gbx) marks the base of the oldest volcanic rocks. The breccia is described by Read (1977) as large jumbled clasts of granitic, grey or green aphanitic volcanic, and minor metamorphic blocks in a tuffaceous matrix. Basal breccia is thickest where the underlying basement is lowest at exposures in Angel Creek south of Pylon Peak. These relations suggest that the Angel Creek breccia may be close to, or part of a vent for initial explosive volcanism (Read, 1977). The vent position is considered important since related fracturing, brecciation, collapse faults and root structures may be partial controls on the geothermal system, transmitting both water and heat.

The position of the base of volcanic rocks influences the interpretation of electrical resistivity data. The altered acid tuff (Gva), at or near the base of the volcanic pile, is very conductive due to pyrite, clay and high water content. Other volcanic units, lumped together as TQv, appear less conductive than Gva but more conductive than the crystalline and metamorphic basement (refer to Section 4).

Data on bedrock is sparse in the "bench" area of Meager Creek. Quartz diorite (Kdm) is exposed below the base of volcanics on the south slope of Meager Mountain at elevations down to 900 metres. Well fractured quartz diorite occurs in outcrop almost continuously along the south side of Meager Creek and in research wells 74-H-1, 75-H-1, -2 and -3. Quartz monzonite is cut by a volcanic porphyry dike in the bottom 21 metres of 75-H-3. The crystalline basement is Cretaceous in age. Upper Triassic to Cretaceous greenstone and metasediments are exposed in the bluffs above drill hole 75-H-1 and along the road at Canyon Creek.

#### 3.5 Lillooet Map Area

Figure 3.3 is a geology map of the Lillooet Map area which includes the Lillooet Valley resistivity anomaly and the Possible North Reservoir.

The low resistivity area extends from percussion drill hole 78-3 near the Lillooet bridge, 7 km to the northwest up the south slope of the Lillooet valley (refer to Figure 4.6). In this area, rock exposure is poor and largely unmapped. The resistivity anomaly is associated with the metamorphic unit (Mmp) and is grossly conformable to regional foliation. Rusty outcrops of massive greenstone, chlorite-sericite schist, and grey phyllite with minor greywacke and metasediments are typical.

Disseminated pyrite is present at several locations. Percussion drill hole 78-3 cuts biotitemuscovite gneiss containing 5-10 percent pyrite over 200 feet. Pyrite and graphite in the metamorphic unit may contribute to low resistivity values.

The Possible North Reservoir is located on the north flank of Meager Mountain along the north-south zone of alteration and volcanic vents. Necks and vent areas, associated with the latest major period of volcanism, and extensive rhyodacite lavas (TQv) are shown on Mount Meager, Plinth Peak, the north ridge of Plinth and on Capricorn Mountain. The most recent dacite flow, about 2400 years old, originates from the cirque north of Plinth Peak and is thought to cover the vent of the Bridge River ash (Read, 1977). The flow once dammed the Lillooet River and now forms the Lillooet falls. Other features of the north flank area are the Pebble Creek hot springs and hydrogen sulfide gas emanating from an unknown source under the Affliction Creek glacier.

The heat source and parent reservoir locations for the Pebble Creek hot springs are unclear. There is no resistivity signature or obvious connection with the Lillooet Valley resistivity anomaly (as compared to the connection between the Meager Creek hot springs and the South Reservoir). It is probable, from geological and geophysical inference, that the hot water originates somewhere west of the springs on the south side of the valley.

SEARCH

MEAGER CREEK



# LEGEND

# TERTIARY AND QUATERNARY

#### GARIBALDI GROUP



Undifferentiated; Includes volcanic flows, tuff and breccia



Altered acid tuff, breccia and flows. Appreciable pyrite and secondary minerals



Volcanic breccia with dominantly plutonic and aphanitic volcanic clasts

## CRETACEOUS

#### BASEMENT COMPLEX



-

Undifferentiated; Mainly quartz diorite, includes subordinate metavolcanic pendants

| •••    | Geological boundary; defined, approximate, assumed              |
|--------|-----------------------------------------------------------------|
|        | Limit of outcrop or mapping                                     |
| 0*     | Spring (HS=Hot Spring, WS=Warm Spring, CS=Cold Spring)          |
| ′5-H-2 | Diamond drill hole with designation                             |
| ⊕      | Percussion drill hole (only holes penetrating bedrock are shown |
|        | Camp site                                                       |
|        |                                                                 |

20N Base line

Geology after Read (1977 and in press) and Nevin Sadlier-Brown Goodbrand (company files)

#### CONTOUR INTERVAL 152 METRES



Figure 3.2

# SUMMARY OF GEOLOGY MEAGER MAP AREA



# LEGEND

## TERTIARY AND QUARTERNARY

## GARIBALDI GROUP



Recent scoriaceous porphyritic diacite flow



Undifferentiated; includes volcanic flows, tuff and breccia





BASEMENT COMPLEX

Vent area or hypabyssal intrusion

Biotite quartz monzonite of the Fall Creek Stock

# CRETACEOUS AND EARLIER



Hornblende quartz diorite and diorite of the Coast Crystalline Belt



ру

 Undifferentiated metamorphic rocks including amphibolite, grey and light green phyllite, and minor schist and marble



Foliation(inclined, vertical)

| <br>Geological | boundary, | approximate | onl |
|----------------|-----------|-------------|-----|
|                |           |             |     |

..... Limit of outcrop or mapping

Or Spring (H.S.=Hot Spring, C.S.=Cold Spring)

- 78-H-I Diamond drill hole with designation
- PDH 78-3 Percussion drill hole with designation (only holes penetrating bedrock are shown)

Intense alteration

Disseminated pyrite

Camp Site

Waterfalls

Baseline Note : Line A in Feet Line L in metres

Geology modified from Read (1977, and in press) and Nevin Sadlier-Brown Goodbrand (company files)

CONTOUR INTERVAL 152 METRES



Figure 3.3

SUMMARY OF GEOLOGY LILLOOET MAP AREA

## 4.0 RESISTIVITY

## 4.1 Introduction

#### 4.1.1 Objectives

The 1978 resistivity program was designed to initiate or complete investigations in the South Reservoir area, in the Lower Lillooet River valley (Lillooet Valley resistivity anomaly), and on the north flank of Meager Mountain (Possible North Reservoir). These areas are shown on Figure 1.1 and the surveys are detailed in the following paragraphs.

Dipole-dipole array surveys undertaken in 1974 and 1975 defined a large resistivity anomaly in the Meager Creek valley on the south flank of the complex. The 1978 pole-pole survey work was designed to explore the higher elevations beyond the reach of dipole-dipole survey and to trace any extensions of the valley resistivity anomaly northward within the basement rocks and possibly continuing beneath the cap of volcanic rocks. The possibility of eastward or westward extensions of the resistivity anomaly on the slope was also investigated.

A dipole-dipole resistivity survey along the south-west side of the Lillooet Valley in 1974, and self-potential (SP) and resistivity sounding in 1976, led to the application of pole-pole array survey in 1977. The 1977 survey located anomalous low resistivities in the lower valley, downstream from Pebble Creek. The 1978 survey was designed to resolve previously ambiguous lower valley anomalies, test for lateral extensions, and extend coverage to the unsurveyed Lillooet Valley slopes northwest of Pebble Creek.

A single dipole-dipole survey line was planned as a northwest extension of the Line A dipole-dipole survey in the Lillooet Valley (Nevin Sadlier-Brown Goodbrand Ltd, 1975) to aid in siting research well 78-H-1. The drilling was expected to provide some geologic control for the interpretation of the dipole-dipole resistivity data.

#### 4.1.2 Resistivity Measurement Theory

Measurements of the earth's electrical properties are routinely used to gain insight into the physical makeup of what lies below the surface. In geothermal exploration, the leading approach is "resistivity", an active survey method in which the electrical resistivity characteristics of a selected region are studied. Quantitative estimates of the resistivity value are derived for specific volumes of the subsurface.

Electrical conductivity in rocks (with the exception of metallic or carbonaceous rocks) is principally due to ionic conduction in water-filled, connected pore space. This pore space may be an inherent characteristic of the rock, as in a sandstone, or may derive from interconnected fractures in an otherwise non-porous rock such as the granite basement of the Meager Mountain area.

The resistivity anomaly permitted by the in-

creased fluid communication within a porous or permeable zone may be enhanced in a thermal environment by two factors

- a) elevated fluid temperatures
- b) dissolved solids, which are characteristically high in geothermal waters.

In the predominantly water-saturated Meager Mountain environment, variation of observed resistivity within a single non-metallic non-carbonaceous rock unit (such as the granitic basement) is interpreted as a function of the degree of fracturing of the rock, with possible contribution from elevated fluid temperatures and to a lesser extent, elevated fluid salinity.

A resistivity anomaly in the Meager environment can be defined in two ways:

a) a decrease in resistivity within a single rock unit, where a more resistive background can be identified and the anomaly expressed as a fraction of the apparent local background value for that rock type.

b) in the absence of local background values, an observed resistivity which is known to be low in comparison with typical values for the rock type in other localities.

Under these criteria, a low resistivity value measured in certain rock units is not necessarily an anomalous condition. For example, the volcanic rocks above the South Reservoir are known to be highly altered, pyritic, very porous and water-saturated. A low resistivity value is readily explained, and its cause attributable to the nature of the rock unit itself. The occurrence of a low resistivity area (the South Reservoir) within a rock type (granodiorite) which is not inherently porous, heavily mineralized or substantially altered, and whose background resistivity has been measured in large areas surrounding the low resistivity area, does qualify as anomalous. The conventional explanation for such an anomaly describes a large water-saturated zone of increased fracture density, fissuring, or both.

#### 4.2 Pole-Pole Array Theory

#### 4.2.1 Geometry and Computations

The pole-pole array and its performance and previous application at Meager Creek are described by Shore (1978) and Nevin Sadlier-Brown Goodbrand Ltd. (1978). The pole-pole system used in 1977 was modified in the 1978 surveys. Instead of random electrode positions, a grid was approximated for line and station positions to ensure a regular distribution of data.

With reference to Figure 4.1 (Meager Map area) and Figure 4.6 (Lillooet Map area) showing the locations of current and potential lines, the geometry and operation of the survey are described as follows: two sub-parallel lines are installed, one with an array of current electrodes at controlled intervals, and one with similarly arrayed potential electrodes. These arrays are the active electrodes. Reference or "infinite" electrodes, one for current and one for potential, are installed at positions greater than 5 km from the active electrodes. To obtain each apparent resistivity determination, the operator transmits a current between the "current infinite" and a selected current electrode on the active array and measures the potential between the "potential infinite" and a selected potential electrode on the active array. The procedure is repeated in sequence for every current-potential pair in the active array, producing a corridor of data between the two electrode lines.

The formula for calculation of apparent resistivity for the pole-pole array is:

 $R(A) = 2\pi a V p / Ig$ 

- where R(A) = apparent resistivity in ohm-metres
  - a = distance in metres between the active current and potential electrodes
  - Vp = measured primary voltage in volts
    at potential electrode
  - Ig = current in amperes passed through current electrode

X, Y and Z co-ordinates for the measurement electrodes are used in the calculation of an approximation of the ground surface slope in the vicinity of each pole-pole measurement, permitting estimation of the location of the sampled volume and the XYZ co-ordinates of the data plotting point at depth.

Defining the vector distance between the two reporting electrodes as PC, the effective penetration (Ze) is 0.75 PC (Edwards, 1977). The nominal plot point is located at distance Ze perpendicular to the calculated ground-surface plane, from the midpoint of line PC. The method used for approximating the local slope is described in Appendix B-3.

#### 4.2.2 Presentation Drawings

Apparent resistivity data are standardized and presented on three types of conventional drawings: plan maps, pseudosections, and plots of log apparent resistivity vs. depth.

Plan maps (Figures 4.1 and 4.6) show the location of data corridors and summarize survey results. A data corridor is indicated by a group of lines, each plotted from the midpoint between a pair of measurement electrodes (midpoint of PC), to the corresponding plot point at depth. The length and orientation of these lines in plan view is a function of the tilt of the calculated slope plane, the penetration depth (Ze), and the relative position of the measurement electrodes. Lines which counter gross trends result from special instances, where reporting electrodes are closely spaced and local topography slopes obliquely to the data corridor.

Pseudosections (Figures 4.2, 4.4, and 4.7, and Appendix B-2) for each corridor are constructed from the calculated X, Y, Z co-ordinates of the data points. Triangles at the top of each pseudosection correspond with reference triangles on the plan maps. Pseudosections are a conventional interpretation aid in which raw apparent resistivity is presented in an idealized plot for further study and evaluation. An interpretation of conductive zones and resistivity contacts is included on the pseudosections.

Plots of log apparent resistivity vs. depth (Figures 4.3, 4.5 and 4.9, and Appendix B-2) provide comparison of trends in apparent resistivity with depth, at regular intervals across a data corridor. and on a corridor-to-corridor basis. Plots are constructed by dividing pseudosections into a series of one km wide vertical strips and replotting the data within each strip in graphical form. The scales of the graphs match those of the corresponding pseudosections to enable direct comparison of the two. The general form of the presentation is similar to standard vertical electrical sounding (VES) plots with similar advantages in visual analysis. The addition of a measurement direction symbol on the plots permits evaluation of apparent resistivity anisotropy, and an appreciation of sample direction distribution.

#### 4.3 Dipole-Dipole Array Theory

Dipole-dipole array surveys are used at Meager Creek when terrain and penetration requirements permit. Dipole-dipole is a standard reconnaissance array, with good vertical resolution, good definition of lateral resistivity changes, and proven operating logistics. It is used in the Meager area along valley bottoms where long, straight survey lines can be laid out. Comparative performance characteristics of the pole-pole and dipole-dipole resistivity arrays have been reviewed previously by Shore (1978). A drawing of a dipole-dipole array is included in Figure 4.9. Current is passed into the ground through two current electrodes (current dipole) and the resultant electrical potential measured across two potential electrodes (potential dipole).

The formula for calculation of apparent resistivity is:

 $R(A) = \mathbf{1} a(n)(n+1)(n+2)Vp/Ig$ 

- where R(A) = apparent resistivity in ohm metres
  - a = length in metres of each survey dipole
  - n = integer multiple of distance "a", defining separation distance be-tween the two survey dipoles
  - Vp = measured primary voltage across
    potential dipole, in volts
  - Ig = current in amperes passed through current dipole

Apparent resistivities are presented in a standard pseudosection form (Figure 4.9).

4.4 Areas Surveyed (refer to Figure 1.1)

4.4.1 Pole-Pole Array Coverage

In the Meager Creek Valley, electrode lines installed on the south side of the complex extended from tree-line approximately down the fall line to the valley floor. Lines were placed through and straddling the South Reservoir (Figure 4.1). Seven lines provided six data corridors over an area of 4.5 square kilometres, to an effective probing depth of 0.5 to 2 kilometres.

A special-case "in-line" pole-pole survey line was operated on line 630, to provide shallower resolution over the South Reservoir.

In the Lillooet River Valley, electrode lines extending across the valley from tree-line on the south-west to tree-line on the northeast were installed from Pebble Creek, northwest almost to Salal Creek, providing five corridors of data (Figure 4.6), over an area of 11.5 square kilometres, to an effective probing depth of 1 to 2.5 kilometres. The survey area included the Lillooet Valley resistivity anomaly.

## 4.4.2 Dipole-Dipole Array Coverage

One dipole-dipole survey line (Line L, Figure 4.6) was operated in the north Lillooet Valley, over the proposed site of research well 78-H-1. It extends the coverage of Line A (surveyed in 1974) for a distance of 7.1 km to the northwest, along the break in slope, ending near Job Creek. This line probed to an effective depth of 450 metres.

# 4.5 Interpretation of Results

#### 4.5.1 Pole-Pole Data Interpretation Procedure

Two characteristics of the multi-directional pole-pole array used at Meager Mountain in 1978 contribute to significantly improved interpretation over previously applied linear dipole-dipole arrays:

a) The use of two active measurement electrodes (versus four for dipole-dipole) permits the operation and subsequent analysis of results from groups of readings in which one electrode is stationary, and the second electrode is moved to sample varying volumes and effective depths. With a single variable in the data group, effects due to lateral resistivity variations can frequently be identified and distinguished from effects due to increased penetration. Effective mapping of vertical resistivity boundaries is often possible.

b) While holding the nominal sampled volume of earth constant by maintaining similar measurement electrode separation, the array can be rotated over the same nominal sampled earth and a group of data accumulated with array orientation as the single variable. In essence, a lateral resistivity change within the sampled volume will cause the data set to be anisotropic.

The high density of data yielded by the array configuration lends itself to the reading-by-reading stacking of information to build a structural model. The general interpretation procedure is described below in roughly sequential order:

a) starting at a selected point, each individual reading is examined and the position of its measurement electrodes is identified on a working pseudosection (a template assists in the recovery of electrode positions).

b) groups of readings having one common electrode are analyzed. Within each group, response variations due to lateral resistivity variation are identified, assessed and weighted as to magnitude and sharpness and correlation with other data.

c) groups of readings having similar electrode separations but different orientations are identified. Any apparent near-surface sources of data-group anisotropy (such as a single electrode of one reading lying within the conductive volcanics) are assessed and readings flagged.

d) consideration is given to topographic effects.

e) available geological information is integrated, particularly the extent and known limits of any units of extreme resistivity characteristics.

f) previous geophysical data is considered.

g) lateral resistivity boundaries are identified principally through the weighted values accumulated in steps b) and c).

- 45 -

h) vertical resistivity distribution can be interpreted after modification of values through steps b) and c).

The identified boundaries and low resistivity zones are presented on pseudosection with the measured apparent resistivity data (Figures 4.2, 4.4, 4.7 and Appendix B-2). Possible interpreted models are described in the following sections.

# 4.5.2 <u>South Reservoir, Meager Map Area;</u> Pole-Pole Survey

The east and west limits of the South Reservoir resistivity anomaly were identified in the 1975 dipole-dipole resistivity survey, and the north and south boundaries remained open. The 1978 pole-pole survey confirms northerly up-slope continuation of the anomaly in the quartz diorite basement rocks, up to the lower limit of volcanic rocks (Figure 4.1). At this point, the highly conductive volcanic rocks covering the basement complex effectively mask deeper survey response. It is not possible to determine from the resistivity data whether the anomalously conductive quartz diorite continues northward under the volcanics.

The volcanics covering the north section of the map area (Gva, Figure 3.2) are highly altered acid tuff, breccia and flows. With the exception of the breccia above Angel Creek, they are characterized by low resistivities (100-150 ohm-metres) due to porous, water-saturated, weathered rocks with substantial components of clays and pyrite. The lower limit of the volcanics on the south-facing slope of the complex has been mapped (Figures 3.2 and 4.1), and is identified on each of the data corridor pseudosections (Figures 4.2, 4.4 and Appendix B-2).

A single reference boundary enclosing "low resistivity" zones is marked on each pseudosection. Where it is nearly parallel to the surface, this boundary is generally consistent with a 350 ohm-metre contour interval in the apparent resistivity data. The enclosed low resistivity areas contain interpreted resistivites in the range of 70 to 200 ohmmetres. Any low resistivity zone on the "basement" side of the mapped contact represents anomalous resistivity in quartz diorite basement rocks. The low resistivity zone north of the contact is an area in which known conductive volcanics (as measured in shallow reading on corridor 630, Figure 4.4) overlie basement rocks to an unknown depth and may mask continued anomalous resistivities in the basement rocks.

In comparing corridors 605, 615, 625, 635, 645 and 655, the portions of data at depths shallower than one km (dotted line on pseudosections) and bounded to the north by the indicated limit of volcanics, shows the measurement of low resistivity in the South Reservoir zone on Corridor 625, and of higher background resistivities on all other corridors. This is in agreement with the dipole-dipole coverage of the area (Nevin Sadlier-Brown Goodbrand, 1975), and serves to confirm that there is no significant extension of the South Reservoir anomaly to the east or west, below the limit of volcanics.

The shallow-resolution Corridor 630 (Figure 4.4 and 4.5) through the South Reservoir confirms in de625 and 630 (Figures 4.2, 4.3, 4.4 and 4.5) suggest a resistive cutoff along the south side of the survey area, leaving the anomaly effectively closed on three sides and open only on the north side.

The northern volcanic flows and tuffs are consistently conductive but the breccia at Angel Creek indicates a high resistance, of a magnitude similar to the non-reservoir quartz diorite. Shallow survey resolution in this area is poor; therefore, a small, highly conductive conduit or other structure could be associated with the breccia and not be detected in the large volumetric sample measured by the array. However, the data indicate that the breccia exposure mapped (refer to Figure 3.2) is not likely to represent the position of a low resistivity structure of major physical dimensions.

Background resistivities in the basement quartz diorite are about 350 to 500 ohm-metres. Increased background resistivity of 500 to 700 ohm-metres (Data Corridor 655, Appendix B-2) indicates less fracturing in the area of Canyon Creek, and confirms similar findings of the 1975 dipole-dipole survey.

Pole-dipole array measurements were obtained on in-line corridor 630 concurrent with pole-pole measurement operations for use as a calibration and control for the pole-pole technique. Preliminary evaluation of results indicates good correlation between the two array types in apparent resistivity values.

# 4.5.3 Lillooet Valley Resistivity Anomaly, Lillooet Map Area; Pole-Pole Survey

The large (9sq. km) resistivity anomaly delineated by the 1978 pole-pole survey (Lillooet Valley resistivity anomaly, Figure 4.6) is a westnorthwesterly extension of a low resistivity zone outlined in the 1977 survey in the Lillooet Valley near Pebble Creek. The anomaly is up to 2 km wide, and extends from a low valley position near Pebble Creek obliquely up the southwest valley slope to a point below Plinth Peak. At this point, it may continue beyond the limits of the present survey coverage.

The anomaly appears to be associated with metamorphic rocks mapped in the area (refer to Figure 3.5). Part of the anomaly lies in and beneath the valley floor, where measured resistivities may be lowered by the effects of conductive alluvial deposits. It is probable however, that the anomalous response in this area is in large part due to the southeastward continuation of the conductive rock body detected on the higher slopes. A dotted line in Figure 4.6 divides the eastern part of the anomaly into two categories:

> a) to the southwest, conductive conditions independent of influence from river alluvium.

b) to the northeast, conductive conditions possibly emphasized by the overlying conductive sediments.

- 49 -

The pseudosection view of the anomaly is given in Figures 4.7 and 4.8. The resistivity contacts A and B (Figure 4.6) are distinct, and separate the conductive zone from highly resistive rocks to the southwest and northeast. Background resistivity of 1000 to 2000 ohm-metres is 2 to 3 times that of the quartz diorite on the south side of the complex, which indicates that the bedrock is probably unfractured intrusive or resistive metamorphic rock.

Resistivity contact C (Figure 4.6) marks a northern limit for the main conductive unit as it extends upslope to the west. Some conductive material appears to extend northward beyond this contact toward Pebble Creek hotsprings, beneath a resistive cap layer.

The 1974 dipole-dipole survey identified a conductive zone on line A from 140 to 170 NW (Figure 4.6), under an unspecified thickness of resistive rock. This anomaly lies within the anomaly defined by the 1978 survey, and provides the only near-surface detail presently available.

The Lillooet Valley resistivity anomaly appears to be associated with the metamorphic rocks mapped in the area. Its strike is conformable to regional trends, and invites extrapolation of the anomaly beyond the limit of data toward the rusty, altered metamorphic rocks near Job and Mosaic Creeks. Sulphide mineralization has been observed at several localities within the anomalous area, including up to 10% disseminated pyrite in biotite-muscovite gneiss near the Lillooet River bridge. Minor pyrite also occurs in metamorphic rocks outside the anomalous zone. More detailed geological mapping is required to determine whether the anomaly is due to pyrite and graphite within the metamorphics, or due to dense fracturing or other conditions associated with a geothermal system.

# 4.5.4 <u>Possible North Reservoir; Lillooet Map Area;</u> Dipole-Dipole Survey

The dipole-dipole survey indicates a 1 km wide anomaly along Line L between 351W and 361W in the Possible North Reservoir area (Figure 4.6). The conductive zone is open to depth, with well-defined east and west boundaries and a resistive cap at surface (Figure 4.9). Additional survey lines are required to define the north and south anomaly boundaries.

The resistivity anomaly lies within the quartz monzonite basement. Rhyodacite flows cover the area to a drill-indicated depth of about 260 metres (refer to Figure 5.2), comparable to a thickness estimate of 250 metres for the resistive cap over the anomaly. Possible models include a cylindrical vent structure associated with the last major stage of volcanism or a tabular structure caused by faulting or shearing. Continued thermal activity (convective circulation) in zones of relatively high permeability may have effected a precipitate seal in the overlying rhyodacite as suggested by its high resistivity signature. Further resistivity work in this area is required to define the shape of the anomaly.

# 4.6 Resistivity Anisotropy

Indications of resistivity anisotropy in the data may result from two survey measurement modes:

a) measurements made within a known rock type wherein observed anisotropy is a characteristic of the fabric of that rock, and may be due to parallel fracture sets or fissures (Risk, 1975) which provide preferential current flow along their dominant orientation.

b) measurements made on a large scale reconnaisance survey, as at Meager Mountain, 1978, wherein observed anisotropy is not a rock fabric signature but is principally due to the effects of large scale structural features such as resistivity contacts between rock types or phases, and unevenly distributed near-surface resistivity variations such as conductive overburden or weathered volcanic layers.

Observations of apparent resistivity anisotropy in the current survey data result from b (above) and are incorporated in the interpretation procedure outlined in section 4.5.1. Analysis of anisotropy as an indicator of rock fabric (a, above) requires data from a smaller scale, more detailed survey than was undertaken in 1978.

# 4.7 Quantitative Interpretation Techniques

An investigation was made into the availability of techniques for the interpretation of apparent resistivity data by data inversion, a method of fitting survey results to ideal calculated results for various hypothetical subsurface models. While standard techniques are available for the inversion of certain types of dipole-dipole array data involving layered earths, no off-the-shelf programming is presently available for the treatment of pole-pole data. Development and adaptation of inversion techniques for the existing survey data may be possible within about two years.

Dipole-dipole resistivity inversion was applied to the anomaly on Line L. Results were somewhat ambiguous, but the best computer interpretation tends to confirm the manual interpretation shown on Figure 4.9. Inversion results indicate p1 = 1020 ohm-metres, p2 = 192 ohm-metres and an interface depth of 220 metres, with probable plus-or-minus 20 percent error for all values.

An attempt was made to process the randomly spaced 1977 data into the quasiplanar corridor format used in 1978. The effort was abandoned because of high cost and the anticipation that results would not enhance previous subjective interpretation of the 1977 data. The 1977 and 1978 surveys overlapped (Figure 1.1) sufficiently, and data were consistent with one another, so as to obviate the need for further processing.



| LEGEND                                                                                                                                       |                                                |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|--|
| POLE-POLE RESISTIVITY SURVEY 1978                                                                                                            |                                                |  |  |  |  |
| ▲5                                                                                                                                           | Location of survey current electrode           |  |  |  |  |
| x3                                                                                                                                           | Location of survey potential electrode         |  |  |  |  |
| LINE 650                                                                                                                                     | Survey electrode line                          |  |  |  |  |
| CORRIDOR 655                                                                                                                                 | Survey data grouping for pseudosectional plots |  |  |  |  |
|                                                                                                                                              | Indicates position and limits of x-axis of     |  |  |  |  |
|                                                                                                                                              | corridor pseudosectional plot                  |  |  |  |  |
|                                                                                                                                              | Plan position of measurement plotting point    |  |  |  |  |
|                                                                                                                                              | at depth                                       |  |  |  |  |
| 1                                                                                                                                            | two electrode locations used for the reading   |  |  |  |  |
|                                                                                                                                              |                                                |  |  |  |  |
| 50W                                                                                                                                          | RESISTIVITY SURVEYS                            |  |  |  |  |
| <del></del>                                                                                                                                  | Survey line and station, 1974, 1975            |  |  |  |  |
| NTERPRETATIO                                                                                                                                 | N                                              |  |  |  |  |
| OW RESISTIVITY Z                                                                                                                             | ONES                                           |  |  |  |  |
|                                                                                                                                              | Shallow (< 1000 metres)                        |  |  |  |  |
|                                                                                                                                              | Deep (>1000 metres)                            |  |  |  |  |
|                                                                                                                                              | Resistivity Contact                            |  |  |  |  |
| ٠                                                                                                                                            | Diamond drill hole                             |  |  |  |  |
|                                                                                                                                              |                                                |  |  |  |  |
|                                                                                                                                              |                                                |  |  |  |  |
|                                                                                                                                              |                                                |  |  |  |  |
|                                                                                                                                              |                                                |  |  |  |  |
|                                                                                                                                              |                                                |  |  |  |  |
|                                                                                                                                              |                                                |  |  |  |  |
|                                                                                                                                              |                                                |  |  |  |  |
|                                                                                                                                              |                                                |  |  |  |  |
|                                                                                                                                              | 0 200 400 600 800 1000                         |  |  |  |  |
|                                                                                                                                              | METRES                                         |  |  |  |  |
| 975-78 Geophysical data by Deep Grid Analysis(1977) Ltd., Vancouver, B.C.<br>974 Geophysical data by McPhar Geophysics Ltd., Vancouver, B.C. |                                                |  |  |  |  |
| Figure 4·1                                                                                                                                   |                                                |  |  |  |  |
|                                                                                                                                              | 3                                              |  |  |  |  |

GEOPHYSICAL DATA LOCATION AND SUMMARY RESULTS MEAGER MAP AREA









LEGEND

# POLE-POLE RESISTIVITY SURVEY 1978



LILLOOET MAP AREA





#### 5.0 DIAMOND DRILLING

#### 5.1 Introduction

Two diamond drill holes were completed in 1978; research well 78-H-1 (602.6 m), on the south side of the Lillooet River valley north of Plinth Peak, and research well 78-H-2 (250.2 m), on the bench of Meager Creek valley west of 75-H-2 (Figure 5.1). Both 1978 holes were encouraging in that they encountered temperatures greater than 100°C. A temperature gradient of 210.6°C/km at the bottom of 78-H-1 confirms the geothermal potential of the Possible North Reservoir. Well 78-H-2 failed to reach bedrock but indicates very hot water flowing in deep overburden west of previous drilling at the South Reservoir. Results of the 1978 drilling are summarized with earlier research wells in Table 5.1.

Drilling contractor was Canadian Longyear Limited using a Longyear 44 diamond drill and a mud circulation system in anticipation of deep holes and difficult overburden conditions. Wells were started with HW casing and HQ rods and reduced to NQ at depth. Both wells were lined with 1½ inch steel pipe and capped at surface to allow future access.

Temperatures were measured using thermistor, probe and Wheatstone bridge supplied by Energy, Mines and Resources. Where possible, temperatures were taken at the bottom of the hole between shifts. Twelve hours were allowed after the drilling shift to allow bottom hole temperatures to reach equilibrium (see Appendix C-3 for temperature rebound curve after stopped circulation). The physical limits of the cable and probe were exceeded in 78-H-1 at 573.3 metres depth where the temperature was slightly greater than 102°C.

# 5.2 Research Well 78-H-1

The location of research well 78-H-1 was chosen on geological concepts to test the thermal significance of relatively recent volcanic activity in the northern part of the complex. A single line of dipole-dipole resistivity was completed across the area prior to drilling, and final site selection was made with regard to a deep resistivity anomaly detected. The hole is immediately east of the anomaly (refer to Figure 4.9).

Three main lithologies occur in 78-H-1 (Figure 5.2):

- a) unconsolidated alluvial sediments from 0 to 47 metres,
- b) rhyodacite porphyry volcanics from 47 to 255 metres, the upper 105 metres of which may be boulders with interlayered sand lenses, and the remainder flows,
- c) slightly variable, fractured biotite quartz monzonite from 262 to 603 metres. An 8-metre semiconsolidated alluvial gravel layer at the base of the volcanic flows defines a prevolcanic erosional surface.

The unconsolidated sediments consist mainly of sand and gravel layers, with occasional 5-8 metre zones of up to 1 metre boulders, locally mixed with fine material suggesting glacial till. Underlying volcanics are interspersed with sand layers in the upper 105 metres followed by massive gray-matrix rhyodacite porphyry flows. Porphyry flows are locally flow-banded with variable matrix shade and phenocryst size. Plagioclase feldspar forms phenocrysts up to 1 cm in length; lesser biotite and hornblende occur as euhedral crystals to 5 mm in size, and clear quartz appears as scattered blebs. Volcanic core is often strongly magnetic and contains occasional clasts of dioritic and gneissic material. The volcanic section correlates with Phase III rhyodacites of Plinth Peak.

The prevolcanic unconformity is represented by a semi-consolidated polymictic conglomerate layer, approximately half of which is recovered as core, containing pebbles of diorite, gneiss, quartz monzonite and quartz.

The basement rock is highly fractured and weathered with chloritic alteration pervasive from 262 to 268 metres, and biotite quartz monzonite from 268 metres onward. The intrusive section includes gradational changes to granodiorite and minor mafic dykes. Fractures are commonly filled with dark gray, cryptocrystalline layered silica, occasionally accompanied by pyrite and rare molybdenite. Unfractured zones are present up to 10 metres thick. Quartz monzonite in 78-H-1 correlates with that in the Lillooet Valley near the falls and at Fall Creek southwest of the falls, and is probably part of the Fall Creek Stock.

The temperature profile measured in well 78-H-1

is shown on Figure 5.2. All points are bottom-hole temperatures except the section between 60-215 metres (where use of heavy mud prior to casing off the incompetent volcanic section precluded lowering the probe into the hole). The temperature probe and measurement circuitry functioned well at temperatures below 102°C in the upper 560 metres of the hole; results are reliable and reproducible. The probe cable failed during the temperature measurement at 573.3 metres, rendering the 102.8°C result unreliable (and possibly on the low side). Temperature measurements were not possible in the bottom 29 metres of the well with the equipment on-site.

The temperature profile indicates a relatively near-surface heat source with greater than 100°C temperatures present at depths below 550 metres. Maximum reliable temperature recorded is 101.8°C at 556.6 metres. The thermal gradient at the bottom of the well is 210.6°C/km. A lesser gradient of approximately 125°C/km in the top section is due to increased permeability and heat conductivity of the volcanic rocks. Sand layers in the volcanics provide conduits for surface water and heat dissipation.

The temperature bulge and inversion between 225 and 450 metres indicates lateral heat input. Increased temperatures due to lateral heat are overprinted on the "background" temperature gradient. The temperature bulge represents either:

a) A tabular heat channelway or hot water aquifer with discreet boundaries (at about 300 and 380 metres depth). Heat is lost through conduction (and possibly minor convection)
above and below the tabular heat source. The channelway may represent a fracture zone and is not necessarily horizontal. This model is compatible with the data and the concept of a fracture controlled geothermal reservoir.

- 64 -

b) Lateral heat flow through a relatively homogenous medium. The gradational boundaries of the heat flow would be influenced by hydrodynamic parameters and variations in the heat and hydraulic conductivity within the intrusive rocks.

Possible heat transfer mechanisms in both of the above models include convection over a deep heat source or hydraulic flow driven by hydrostatic pressure.

From the data available a convection cell distorted by fracture channelways is a promising working model. A fracture controlled heat channelway is favoured due to the linearity of segments of the temperature buldge and its symmetry when the background component of temperature is subtracted (compare with asymmetric profile in 78-H-2). The axis of symmetry indicates the centre of the heat input or fracture zone. The width of the conductive heat loss zones above and below the possible heat channelway is the same at about 100 metres. Temperatures within the zone of lateral heat input are elevated a constant  $36^{\circ}C$  (Figure 5.2).

# 5.3 Research Well 78-H-2

Research well 78-H-2 was designed to investigate the subsurface in the southwest area of the South Reservoir resistivity anomaly, extending drill hole coverage toward the western limit of low resistivity. Previous drilling has been restricted to the eastern half of the resistivity anomaly and outflow plume area. Research well 78-H-2 was completed to 250 metres in unconsolidated valley-fill sediments. Drilling was suspended before reaching bedrock due to budget considerations and high footage costs in overburden which was found to be deeper than anticipated.

Sediments consist of sand, gravel, clay and interlayered zones of large boulders up to 5 metres, suggesting landslide material and glacial outwash clays. Thin clay horizons are common, occasionally directly under boulders.

Temperatures in the upper 150 metre section were taken at 30 metre intervals 9 hours after last circulation with the hole at 208 metres. Temperatures in the remaining lower section were obtained following completion of the well. All measurements were taken inside drill rods. Bottom-hole temperatures as drilling progressed could not be obtained for several reasons: firstly, the use of heavy mud in 78-H-2 precluded lowering the probe in the hole; secondly, the tricone bit used in the overburden would have to be pulled with the rods, exposing the uncased well to the danger of caving; and thirdly, time was not available between drill shifts to allow the bottom-hole conditions to reach temperature equilibrium following ceased drill fluid circulation.

Post-drilling temperature measurements yield a gradient of approximately  $480^{\circ}$ C/km in the upper threequarters of the hole with a temperature inversion near the bottom. Maximum temperature recorded is 103.7°C at 213 metres and bottom temperature is 95.1°C.

Despite the consistent lack of circulation return, standing water was encountered within 20 metres of surface whenever the probe was lowered. The results indicate very hot water flowing laterally in the overburden at a point west of previous drilling. The hot water probably flows down the inferred hydrological gradient from the west or north.

# 5.4 Bedrock Topography - South Reservoir Area

Bedrock topography is an important consideration in spotting future exploration or production holes in the South Reservoir area. Bedrock in research well 78-H-2 is well below the present level of Meager Creek which, coupled with the lithology of sediments and the temperature inversion at the bottom of the hole, indicates a buried channel. Concepts of the location of the buried channel are shown in Figure 5.4, two north-south cross sections.

The elevation at the bottom of well 78-H-2 (572 metres a.s.l.) represents the maximum possible elevation of the buried channel at the point. One kilometre downstream, in research well 75-H-2, the buried channel is not apparent and is probably located north of the hole. In research well 74-H-1 (downstream from the cross sections), the bedrock intersection at 124 metres depth, or 511 metres a.s.l., probably reflects the buried channel. Clay and water-lain varved clay in the bottom part of 74-H-l may represent a buried lake behind a bedrock high in the Meager Creek main springs area.



Ethes look 500 0 1000 2000 3000 4000 METH

|          | LEGEND                                                                          |           |                                                                                               |                                 |
|----------|---------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------|---------------------------------|
| . DI     | AMOND DRILLING                                                                  | PEF       | RCUSSION DRILLING                                                                             |                                 |
| •        | Location of hole                                                                | 0         | Location of hole                                                                              |                                 |
| 78-H-2   | Designation of hole                                                             | PDH 78-10 | Designation of hole                                                                           |                                 |
|          | (EMR indicates Energy Mines and Resources,<br>Canada)                           | 76m       | Depth in metres                                                                               | Figure 5-1                      |
| 60m      | Depth in metres                                                                 | 1 10.6°C  | Maximum post drilling temperature                                                             |                                 |
| 20.8°C   | Maximum bottom hole temperature                                                 | 56°C/km   | Thermal gradient at bottom                                                                    | SUMMARY PLAN                    |
| 289°C/km | Thermal gradient at bottom<br>(from bottom hole temperatures) na Not applicable | NOTE: D   | apth and temperature information not<br>ofted for holes less than 30m completed<br>overburden | DIAMOND and PERCUSSION DRILLING |

#### TABLE 1: SUMMARY OF DIAMOND DRILLING

| RESEARCH<br>WELL | LOCATION                         | COORDINATES              | DATE COLLARED<br>(Drilled by) | COLLAR<br>ELEVATION (m) | DEPTH ( | DEPTH OF<br>OVERBURDEN( | MAXIMUM<br>) TEMPERATURE (m) | BHT GRADIENT AT<br>BOTTOM (°C/km) | COMMENT                                                                                                           |
|------------------|----------------------------------|--------------------------|-------------------------------|-------------------------|---------|-------------------------|------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 301-1            | Meager Creek<br>hot springs      | 5,602,540N<br>467,160E   | March 74 (EMR)                | 587                     | 45      | 18                      | 60                           | n.a.                              | - hole inclined at -70 <sup>0</sup><br>- making water at 6 1/s<br>- temperature inversion, -ve gradient at bottom |
| 301-2            | Meager Creek<br>hot springs      | 5,602,640N<br>467,200E   | March 74 (EMR)                | 583                     | 118     | 0                       | 33                           | 44                                | - making water at 1.7 1/s                                                                                         |
| 303-1            | Lillooet valley                  | 7 5,608,510N<br>471,970E | Sept 77 (EMR)                 | 580                     | 213     | 0                       | 15.5                         | 48                                | - making water at less than 1 1/s                                                                                 |
| 74-H-1           | South Reservoir<br>Outflow Plume | 5,601,440N<br>466,350E   | Nov 74<br>(B.C. Hydro)        | 635                     | 347     | 124                     | 68.9                         | 27.7                              | - making water at 3 1/s<br>- temperature inversion in overburden section                                          |
| 75-H-1           | ,<br>South Reservoir             | 5,601,610N<br>465,200E   | Sept 75<br>(B.C Hydro)        | 774                     | 91      | 11                      | 15.4                         | 112                               | - making water at 0.3 1/s                                                                                         |
| 75-A-2           | South Reservoir                  | 5,601,200N<br>464,015E   | Sept 75<br>(B.C. Hydro)       | 770                     | 87      | 65                      | 35.0                         | 365                               |                                                                                                                   |
| 75-8-3           | South Reservoir                  | r 5,601,770N<br>463,000E | Sept 75<br>(B.C. Hydro)       | 808                     | 60      | 12                      | 20.8                         | 289                               | - inclined at -70 <sup>0</sup>                                                                                    |
| 78-H-1           | North Lillooet<br>Valley         | 5,614,630N<br>463,090E   | Sept 78<br>(Joint Venture)    | 760                     | 603     | 47                      | 102.8                        | 211                               | - temperature inversion between 387 and 450 m                                                                     |
| 78-H-2           | South Reservoir                  | 5,601,310N<br>463,160E   | Oct 78<br>(Joint Venture)     | 822                     | >250    | 250                     | 103.7                        | n.a.                              | - temperature inversion in bottom section                                                                         |



Figure 5.2

TEMPERATURE PROFILE AND GRAPHIC LOG RESEARCH WELL 78-H-I

ť.,





TEMPERATURE PROFILE AND GRAPHIC LOG RESEARCH WELL 78-H-2



For location of sections, see Figure 5-1

SHOWING OVERBURDEN CONDITIONS AT SOUTH RESERVOIR MEAGER MAP AREA

## 6.0 OTHER INDIRECT EXPLORATION METHODS

# 6.1 Percussion Drilling

(refer to Figure 5.1 for location map)

Percussion drilling was meant to test the thermal nature of the Lillooet Valley resistivity anomaly, and to confirm the eastern cut-off of the South Reservoir. The method was limited to areas with road access. It was used in the vicinity of previous self-potential anomalies, which possibly implied near-surface thermal water movement. Twelve holes were drilled and of these, three were completed in bedrock. Holes were lined with plastic pipe (2.2 cm I.D.) and post drilling temperatures obtained with thermistor probe and Wheatstone bridge equipment supplied by EMR. Drill cuttings were dried and bagged to determine lithologies of rock penetrated.

Experience indicates that post-drilling temperature gradients approximate corresponding bottomhole temperature gradients where no water is flowing from or in the hole (Nevin Sadlier-Brown Goodbrand Ltd., 1975; Lewis, 1977; Lewis and Souther, 1978). Where water flows occur post-drilling temperatures measured in a well are biased towards the temperature of the water flow at its point of entry into the well; hence measured post-drilling temperature gradients may be lower than a representative value.

Temperature measurements in percussion holes are shown on Figure 6.1. The most meaningful temperature profiles are derived from the three holes penetrating bedrock. No water flows are discernible



in PDH 78-1C in the Lillooet River valley and the measured gradient of 57°C/km is representative of an abnormally high near-surface heat flow comparable with EMR diamond drilling results at sites 303-1 and 303-2 to the southeast in the Lillooet Valley (Lewis, 1977). None of these holes pinpoints a particular heat source but collectively they show the Lillooet Valley to be a region of elevated heat flow. At the Lillooet River bridge, a slight artesian water flow from near the bottom of PDH 78-3 has caused off-bottom temperatures to be elevated. The measured post-drilling temperature gradient (16°C/km) is, therefore, lower than the actual gradient. In PDH 78-7, the non-linearity of the temperature profile probably indicates water flows in the hole although no water comes to surface. Two sets of temperature measurements were obtained to confirm results in view of the unstable nature of the temperature profile. An averaged measured gradient of 18°C/km from 20 metres to bottom may be representative of the near surface gradient which in this area is affected by ground water flows. The low gradient at PDH 78-7 is consistent with the hypothesis that the South Reservoir outflow plume ends at the Meager Creek hot springs.

Temperature measurements in overburden are almost certainly affected by surface conditions and groundwater flows and therefore, are of limited use in determining geothermal potential. Two features of the temperature-depth graphs are notable however. Firstly, overburden temperatures in PDH 78-6, within the South Reservoir outflow plume, are slightly elevated. Secondly, the temperature spike in PDH 78-5 near Capricorn Creek may be caused by relatively warm water in a restricted aquifer. In both of the foregoing cases, no definite conclusions can be reached regarding the cause of elevated temperatures.

Negative slopes of temperature-depth plots in the top sections of all the holes are a surface effect caused by relatively warm summer groundwater. Some initial readings may be above the groundwater table.

# 6.2 Trace Element Survey

# 6.2.1 General

Measurement of mercury (Matlick and Buseck, 1976) and radon gas (Kruger, 1978) concentrations in soils has been applied to geothermal prospects with some success. Anomalously high concentrations may indicate deep geothermal features or outline the network of passageways by which the volatile elements rise to the surface.

The tests at Meager Creek had several purposes: to see if either method could reproduce known or inferred information from other sources; to seek new data on concealed or subtle geothermal vents; and to determine whether or not either of the methods could be used in the future in such an area -- with highly variable microclimates (northern alpine to coastal rain forest), ground cover (dense vegetation to glacier ice), soil conditions (fine organic to boulder talus) and relief (350 m to 2650 m elevation).

Radon gas and mercury soil surveys both detected anomalous results. The mercury survey indicated that the project area as a whole contains elevated soil mercury and that the presence of organic soil is a prerequisite for the concentration of anomalous amounts of mercury in soil. Results of the radon survey had some correlation with geothermal waters. Both radon and mercury could be used as regional reconnaissance survey tools although further orientation work would be required to verify preliminary conclusions and establish more definite exploration guidelines.

# 6.2.2 Mercury Survey

One hundred and eleven soil samples were collected for mercury analysis from the Meager Creek main springs area, the bench area and mountain slopes of the South Reservoir, the Lillooet River valley, the Pebble Creek springs area, and Railroad Pass, 30 km east of the geothermal area (Figure 6.2). Samples were dried for 2-3 hours under an infra-red lamp (soil temperature kept below 40°C), sieved to minus 80 mesh, and accepted or rejected on the basis of fines content and composition (silt or organic material). Fifty-one samples were analyzed with suitable results using a Jerome Instrument Corporation "Gold Foil Mercury Detector".

Frequency histograms of all data show the results to be log-normally distributed, with no apparent populations of anomalous values. However, partitioning data into domains by collection locality reveals that most of the low values are from areas of poor soil development (Meager Creek main springs area), or from the Lillooet Valley away from the geothermal area. All other domains show anomalous content to as high as 298 ppb (parts per billion). Background is established by samples away from the geothermal



LILLOOET VALLEY RECONNAISSANCE AREA



area, at approximately 32 ppb.

The Meager Creek main springs area, with a major surface expression of underlying geothermal activity, is barren of both soil and soil mercury. The springs vent on a bench of boulders, gravel, sand and silt, flooded occasionally by Meager Creek. Excluding the main springs area, 49 percent of the samples analyzed are above the postulated background of 32 ppb, and 27 percent have a peak-to-background ratio greater than 2:1. The highest ratio is 9-to-1. Anomalous mercury concentration occurs only in organic-rich soils. Thus, the geothermal system may be generating mercury, but the highly variable soil development does not permit its accumulation in a detectable, systematic pattern reflective of the source.

# 6.2.3 Radon Survey

Radon is a radioactive gaseous element (the important isotope is 222 Rn with a half life of 3.8 days) occuring as a result of the natural decay of radium. Radium in turn is produced by the in-series decay of parent uranium and thorium. In geothermal applications, the extent of radon emanations has been tied to the spacial distribution of radium in the formation matrix, rock porosity, and geothermal fluids present in pore spaces (Kruger, 1978).

For the Meager Creek survey, "Track Etch radondetector cups", marketed by Terradex Corporation, were used to detect radon. The cups resemble plastic drinking glasses with a film strip sensitive to alpha particle radiation from radon gas in the base. Detector cups are buried inverted in the ground for a measured exposure period. Thoron filters are applied to eliminate detection of radiation from thoron due to thorium.

A total of 117 Track-Etch radon-detector cups were installed concurrent with mercury soil sampling. Of these, 91 were recovered and analyzed for radon. Cups with thoron filters were placed in a regular grid over the Meager Creek main springs area (Figure 6.3), and in random locations or lines in remaining areas (Figure 6.2), buried to a depth of 30-40 cm. The results and accompanying report from Terradex Corporation are included in Appendix G. Data are expressed in tracks per square millimetre of detector area normalized to the equivalent of a 30 day exposure, and for several variables arising from the analytical technique. Terradex reports a background mean of 2.6T/sq mm, standard deviation of 1.6T/sg mm, and range of 0.3 to 32.2T/sq mm. Readings are log-normally distributed and breaking the data into several domains on the basis of collection locality shows all areas to present the same distribution.

A contour map of radon data from the Meager Creek main springs area (Figure 6.3) shows anomalous areas, with no distinct pattern attributable to inferred subsurface structures. However, there is high coincidence of elevated radon results with spring vents and hot watercourses. Also evident is a concentration of radon at the break in slope below the springs in the south corner of the grid. The above results show an association of radon gas with geothermal waters. Two detectors, placed within hot spring vents as an experiment, yielded extremely high values; llOT/sq mm (079324) in the Meager Creek main springs area, and 193T/sq mm (079399) at the Pebble Creek hot springs. These values confirm that the geothermal waters carry significant radon.

No high values were obtained from Lillooet Valley or Railroad Pass away from the geothermal area, suggesting that radon is detectable in erratic anomalous quantities only over the Meager geothermal area.

At two localities, detectors were installed both with and without thoron filters. These showed a higher (1 to  $3\frac{1}{2}$  times) contribution of "tracks" on detector film from thoron than from radon. This is expected from thorium concentrations of the basement Coast Intrusion rocks of the area. Thus thoron must be considered as a natural contaminant to future radon surveys in the Meager Creek area.

Respectfully submitted

NEVIN SADLIER-BROWN GOODBRAND LTD.

Brian D. Fairbank, P.Eng.

G. A. Shore

L. J. Werner

Andrew E. Nevin, P.Eng.

T. L. Sadlier-Brown

APPENDICES - A to F

.

### APPENDIX A - REFERENCES

- Edwards, L.S., 1977, A modified pseudosection for resistivity and I.P: Geophysics, V. 42, pp. 1020-1036.
- Hammerstrom, L.T., and Brown, T.H., 1977, The geochemistry of thermal waters from the Mount Meager hot springs area, B.C.: Geol. Surv. of Canada, Open File Report, 34 pp.
- Kruger, Paul, 1978, Radon in geothermal Reservoir Engineering: Transactions, Geothermal Resources Council, Annual Meeting. 25-27 July, 1978, Vol. 2, Sec. 2, pp 383-385.
- Lewis, John F., 1977, Preliminary field report of drilling near Mt. Meager and Mt. Cayley volcanic centres: EMR, Earth Physics Branch, Open File Report 1977. 12 pp.
- Lewis, T.J., and Souther, J.G., 1978, Meager Mt., B.C. possible geothermal energy resource: EMR, Earth Physics Branch, Geothermal Series No. 9, Ottawa, 17 pp.
- McNitt, J.R., 1976, Summary of united nations geothermal exploration experience, 1965 to 1975: Proceedings of the Second United Nations Symposium on the Development and Utilization of Geothermal Resources, San Francisco, May 1975, pp. 1127-1134.
- Hatlick, J.D., and Buseck, P.R., 1976, Exploration for geothermal Areas using mercury: A new geochemical technique: Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, May 1975, pp. 785-792.
- Meidav, T. and Tonani, F., 1976, A critique of geothermal exploration techniques: Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, May 1975, pp. 1143-1154.
- Nevin, Andrew E., and Stauder, J., 1976, Canada, early stages of geothermal investigation in British Columbia: Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, May 1975, pp. 1161-1165.

### APPENDIX A - REFERENCES (Cont'd)

- Nevin, Andrew E., Crandall, J.T., Souther, J.G., and Stauder, J., 1978, Meager Creek geothermal system, British Columbia, Part I: Exploration and research program: Transactions, Geothermal Resources Council, Annual Meeting, 25-27 July, 1978, Vol. 2.
- Nevin Sadlier-Brown Goodbrand Ltd., 1974, Report on investigation of geothermal resources in southwestern British Columbia: (unpublished) to B.C. Hydro and Power Authority. 24 pp.
- Nevin Sadlier-Brown Goodbrand Ltd., 1975, Report on detailed geothermal investigation at Meager Creek: (unpublished) to B.C. Hydro and Power Authority, 18 pp.
- Nevin Sadlier-Brown Goodbrand Ltd., 1977, Report on 1976 geothermal investigation at Meager Creek, north and northeast flanks of the volcanic complex (unpublished) to B.C. Hydro and Power Authority, 10 pp.
- Nevin Sadlier-Brown Goodbrand Ltd., 1978, Progress report for 1977 Meager Creek geothermal project, investigations for 1977-1978: (unpublished) to B.C. Hydro and Power Authority, 15 pp.
- Palmason, G., 1976, Geophysical methods in geothermal exploration: Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, May 1975, pp 1175-1184.
- Patton, F.D., 1976, The Devastation glacier slide, Pemberton, B.C.: in "Geomorphology of the Canadian Cordillera and its Bearing on Mineral Deposits": Geol. Assoc. Can., Cord, Sect., Programme and Abstracts, pp 26-27.
- Read, P.B., 1977, Meager Creek volcanic complex, southwestern British Columbia: in Report of Activities, Part A G.S.C. Paper 77-1A, pp 277-281.
- Read, P.B., 1979, Geology, Meager Creek geothermal area, British Columbia: G.S.C. open file 603, map, legend and descriptive notes.

APPENDIX A - REFERENCES (Cont'd)

- Shore, G., 1975, Report on deep resistivity surveys and supplementary geophysics at Meager Creek selected area, Pemberton, B.C.: (unpublished) to Nevin Sadlier-Brown Goodbrand Ltd., 15 pp.
- Shore, G., 1978, Meager Creek geothermal system, British Columbia, Part III: resistivity methods and results: Geothermal Resources Council, Transactions, Vol. 2, July 1978, pp 593-596.
- Souther, J.G., 1976, Geothermal potential of western Canada: Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, May 1975, pp 259-267.

Woodsworth, G.J., 1977, Geology, Pemberton (92J) Map Area: G.S.C. open file 482, map and legend.

### APPENDIX B-1

### DATA PRINT OUTS

The print outs contain apparent resistivity (R(A)) data for each corridor, listed in ascending order of magnitude to facilitate cross-reference from the pseudosection plots. Each R(A) value is listed with the plot location co-ordinates, measurement direction, and electrode numbers, providing all of the information used for the construction of the pseudosections and R(A) vs. depth plots.

The corridor number is the principal identification for the body of data. The P Line number and C Line number are numbers assigned to the potential electrode line and the current electrode line, respectively. These lines are plotted in Figure 4.1 (Meager Map Area) and Figure 4.6 (Lillooet Map Area).

The columns of data provided are:

- R(A): Apparent resistivity in ohm-metres.
- Dir: Direction of reading; compass orientation of a line between the potential and current electrodes. North = 0.
- C#: Number assigned to the current electrode responsible for the reading.
- P#: Number assigned to the potential electrode responsible for the reading.
- Ze: Effective depth of penetration or search, after Edwards (1977), in metres.
- Xd: X coordinate (northing) of plot point at depth Ze below the estimated surface plane (Universal Transverse Mercator Grid)
- Yd: Y coordinate (easting) of plot point; as above.
- Zd: Z coordinate of the plot point; metres of elevation above (below) mean sea level.
- Vhor: Relative horizontal distance in metres of the plot point Xd, Yd, Zd along the data corridor (This value is used with Zd to plot pseudo sections).

| POLE-POLE | RESIST  | IVITY DA | ATA: 1978 |   |      |     |
|-----------|---------|----------|-----------|---|------|-----|
| CORRIDOR  | 605     | P LINE   | 600       | С | LINE | 610 |
| MEAGER CR | EEK MAP | AREA     |           |   |      |     |
|           |         |          |           |   |      |     |

| R (a | ) Di: | r Ci | P | # Ze | хđ       | Уđ         | zð   | Vhor | R(a)  | ) Di | r Cŧ | P | Ze   | xd     | Yđ      | Zđ    | Vhor |
|------|-------|------|---|------|----------|------------|------|------|-------|------|------|---|------|--------|---------|-------|------|
| 220  | 59    | 2    | 1 | 202  | 462038   | 5603400    | 1500 | 2512 | 391   | 149  | 2    | 2 | 209  | 461986 | 5603220 | 1408  | 2325 |
| 232  | 2 37  | 8    | 1 | 1384 | 46 168 9 | 5603380    | 120  | 2458 | 398   | 151  | 3    | 3 | 528  | 461919 | 5603070 | 923   | 2169 |
| 262  | 2 49  | 4    | 1 | 595  | 461936   | 5603340    | 1040 | 2442 | 398   | 173  | 2    | 4 | 1050 | 462028 | 5603150 | 370   | 2264 |
| 270  | 52    | 3    | 1 | 404  | 462001   | 5603370    | 1262 | 2478 | 401   | 131  | 7    | 5 | 959  | 461528 | 5602130 | -9    | 1198 |
| 272  | 48    | 5    | 1 | 813  | 461817   | 5603440    | 797  | 2526 | 410   | 110  | 9    | 5 | 753  | 461531 | 5601830 | 131   | 898  |
| 28   | 5 53  | 9    | 3 | 908  | 461587   | 5602520    | 236  | 1589 | 410   | 168  | 3    | 5 | 1336 | 461937 | 5602830 | -53   | 1938 |
| 288  | 32    | 9    | 1 | 1527 | 461728   | 56 0 32 50 | ~57  | 2326 | 413   | 129  | 4    | 3 | 493  | 461805 | 5602990 | 926   | 2075 |
| 288  | 37    | 9    | 2 | 1252 | 461696   | 5602950    | 114  | 2023 | 419   | 121  | 8    | 5 | 834  | 461540 | 5601950 | 63    | 1017 |
| 289  | 58    | 6    | 2 | 786  | 461715   | 5603170    | 693  | 2242 | 435   | 95   | 25   | 5 | 709  | 461503 | 5601610 | 146   | 684  |
| 295  | 27    | 24   | 1 | 1762 | 461767   | 5603070    | -329 | 2150 | 438   | 141  | 7    | 6 | 1309 | 461606 | 5601900 | - 387 | 973  |
| 295  | 101   | 3    | 2 | 252  | 461907   | 5603140    | 1316 | 2238 | 443   | 88   | 24   | 5 | 705  | 461505 | 5601550 | 143   | 626  |
| 299  | 52    | 7    | 2 | 974  | 461684   | 5603150    | 464  | 2227 | 450   | 1    | 1    | 4 | 1194 | 462117 | 5603300 | 301   | 2434 |
| 306  | 43    | 7    | 1 | 1220 | 461726   | 5603430    | 314  | 2510 | 464   | 163  | 3    | 4 | 923  | 461947 | 5603010 | 436   | 2113 |
| 308  | 45    | 6    | 1 | 1022 | 461753   | 5603440    | 554  | 2522 | 470   | 151  | 5    | 5 | 1124 | 461689 | 5602510 | 1     | 1588 |
| 30 9 | 108   | 5    | 3 | 525  | 461727   | 5602910    | 320  | 1988 | 473   | 162  | 4    | 6 | 1616 | 462142 | 5602550 | - 363 | 1720 |
| 309  | 30    | 24   | 2 | 1478 | 461727   | 5602770    | -148 | 1845 | 481   | 168  | 3    | 6 | 1722 | 462405 | 5602670 | - 381 | 1933 |
| 313  | 32    | 25   | 2 | 1402 | 461632   | 56 0 28 70 | -51  | 1945 | 482   | 142  | 6    | 5 | 1029 | 461637 | 5602350 | 22    | 1427 |
| 314  | 3     | 1    | 2 | 321  | 462092   | 5603340    | 1361 | 2466 | 489   | 160  | 4    | 5 | 1229 | 461831 | 5602710 | 8     | 1798 |
| 317  | 44    | 25   | 3 | 1033 | 461549   | 5602420    | 94   | 1489 | 496   | 128  | 9    | 6 | 1031 | 461544 | 5601500 | -136  | 572  |
| 323  | 63    | 8    | 3 | 811  | 461590   | 5602670    | 372  | 1742 | 500   | 175  | 2    | 5 | 1469 | 462012 | 5602980 | -121  | 2099 |
| 328  | 44    | 8    | 2 | 1120 | 461666   | 5603090    | 282  | 2159 | 505   | 155  | 5    | 6 | 1508 | 461307 | 5602310 | -411  | 1401 |
| 329  | 28    | 25   | 1 | 1684 | 461614   | 5603200    | -222 | 2266 | 507   | 135  | 8    | 6 | 1154 | 461654 | 5601750 | -277  | 824  |
| 331  | 66    | 5    | 2 | 593  | 461768   | 5603130    | 926  | 2262 | 516   | 148  | 6    | 6 | 1400 | 461811 | 5602180 | - 362 | 1272 |
| 331  | 169   | 2    | 3 | 633  | 462015   | 5603190    | 874  | 2306 | 518   | 180  | 1    | 5 | 1613 | 462062 | 5603140 | -189  | 2266 |
| 345  | 1     | 1    | 3 | 773  | 462116   | 5603340    | 807  | 2471 | 541   | 119  | 25   | 6 | 923  | 461556 | 5601370 | - 94  | 438  |
| 345  | 41    | 24   | 3 | 1100 | 461589   | 5602330    | 7    | 1396 | 542   | 173  | 2    | 6 | 1850 | 462625 | 5602790 | -415  | 2138 |
| 347  | 78    | 7    | 3 | 732  | 461607   | 5502780    | 499  | 1854 | 553   | 114  | 24   | 6 | 881  | 461561 | 5601300 | -60   | 375  |
| 348  | 90    | 6    | 3 | 611  | 461651   | 5602820    | 669  | 1897 | · 582 | 177  | 1    | 6 | 1996 | 463342 | 5602810 | -158  | 2584 |
| 383  | 77    | 4    | 2 | 397  | 461814   | 5603180    | 1166 | 2259 |       |      |      |   |      |        |         |       |      |

POLE-POLE RESISTIVITY DATA: 1978 CORRIDOR 615 P LINE 620 C LINE 610 MEAGER CREEK MAP AREA

| R(a) I  | Dir C | # F | # Ze   | ЪХ     | Yð         | Zđ   | Vhor | R(a) | Dir | : C# | PI | Ze   | ЪХ     | ЪХ      | Zđ,   | Vhor |
|---------|-------|-----|--------|--------|------------|------|------|------|-----|------|----|------|--------|---------|-------|------|
| 245     | 75 1  | 1   | 675    | 462457 | 5603810    | 1163 | 2854 | 415  | 110 | 6    | 3  | 863  | 462550 | 5602730 | 399   | 1771 |
| 263 1   | 81 2  | 2   | 785    | 462465 | 5603430    | 865  | 2474 | 423  | 30  | 1    | 4  | 1516 | 462439 | 5603540 | 46    | 2589 |
| 270 8   | 88 3  | 2   | 806    | 462486 | 5603470    | 873  | 2520 | 424  | 84  | 6    | 4  | 810  | 462559 | 5602490 | 330   | 1539 |
| 281 1   | 56 10 | 1 3 | 1917   | 462415 | 5603010    | -501 | 2063 | 428  | 146 | 7    | 1  | 1462 | 462602 | 5603380 | 71    | 2421 |
| 282 !   | 57 1  | 1   | 844    | 462418 | 5603680    | 925  | 2731 | 430  | 53  | 8    | 6  | 857  | 462584 | 5601460 | -11   | 506  |
| 283 10  | 01 2  | 1   | 752    | 462498 | 55 0 36 10 | 979  | 2651 | 430  | 147 | 11   | 3  | 1467 | 462544 | 5602210 | - 394 | 1259 |
| 238 9   | 97 5  | 1   | 8 810  | 462543 | 5602830    | 507  | 1877 | 442  | 130 | 6    | 2  | 1111 | 462513 | 5603120 | 358   | 2163 |
| 304 (   | 67 7  | 5   | 855    | 462544 | 5601890    | 54   | 939  | 455  | 119 | 7    | 3  | 944  | 462534 | 5602660 | 262   | 1709 |
| 311 9   | 92 11 | . 6 | 656    | 462540 | 5601140    | 123  | 184  | 469  | 31  | 2    | 5  | 1601 | 462500 | 5603000 | -253  | 2048 |
| 318 9   | 96 7  | 4   | 800    | 462534 | 5602270    | 218  | 1320 | 472  | 41  | 2    | 4  | 1254 | 462483 | 5603220 | 181   | 2268 |
| 338 10  | 07 3  | 1   | 809    | 462520 | 5603570    | 902  | 2611 | 475  | 60  | 9    | 6  | 757  | 462568 | 5601360 | 77    | 4 04 |
| 339     | 58 6  | 5   | 952    | 462586 | 5602080    | 45   | 1130 | 476  | 46  | 3    | 4  | 1196 | 462514 | 5603140 | 211   | 2185 |
| 340     | 74 10 |     | 5 676  | 462559 | 5601210    | 126  | 250  | 479  | 38  | 6    | 6  | 1144 | 462622 | 5601830 | -181  | 878  |
| 342     | 71 5  | 4   | 861    | 462549 | 5602630    | 3 36 | 1675 | 496  | 81  | 8    | 5  | 790  | 462541 | 5601750 | 91    | 796  |
| 345 9   | 91 9  | 5   | 750    | 462534 | 5601570    | 104  | 612  | 502  | 44  | 7    | 6  | 1000 | 462569 | 5601650 | -119  | 692  |
| 350 12  | 29 10 | 4   | 985    | 462546 | 5601880    | -56  | 923  | 517  | 22  | 2    | 6  | 1901 | 462495 | 5602770 | - 594 | 1815 |
| 352 1.  | 10 8  | 4   | 842    | 462557 | 5602130    | 142  | 1172 | 522  | 33  | 5    | 6  | 1311 | 462572 | 5602080 | -263  | 1121 |
| 355. 12 | 29 8  | 3   | 1061   | 462537 | 5602510    | 97   | 1556 | 523  | 136 | 7    | 2  | 1249 | 462496 | 5603090 | 172   | 2125 |
| 356 4   | 40 1  | 3   | 3 1160 | 462441 | 5603610    | 493  | 2660 | 525  | 135 | 5    | 1  | 1140 | 462588 | 5603450 | 479   | 2499 |
| 356 8   | 84 4  | 3   | 809    | 462542 | 5603020    | 612  | 2062 | 529  | 23  | 1    | 5  | 1895 | 462468 | 5603340 | -413  | 2389 |
| 362 6   | 60 4  | -   | 960    | 462554 | 5602800    | 321  | 1950 | 546  | 154 | 11   | 2  | 1862 | 462416 | 5602650 | -578  | 1706 |
| 365 1.  | 10 4  | -   | 872    | 462509 | 5603250    | 698  | 2300 | 557  | 16  | 1    | 6  | 2218 | 462456 | 5603120 | -774  | 2168 |
| 305 1.  | 19 9  | 4   | 5/3    | 462560 | 5602020    | 95   | 1069 | 562  | 129 | 11   | 1  | 2118 | 4624/1 | 5602950 | -129  | 1999 |
| 3/3 10  | 05 10 |     | 061    | 402317 | 5601460    | 534  | 2271 | 203  | 29  | 4    | 0  | 1494 | 452515 | 5602280 | - 300 | 1328 |
| 304 1   | 2/ 2  |     | 901    | 40248/ | 5603320    | 5/4  | 23/1 | 201  | 150 | 8    | 1  | 1033 | 462534 | 5603230 | -155  | 2270 |
| 384 1.  | 19 11 |     | 1225   | 402501 | 56025300   | -0/  | 410  | 582  | 154 | 9    | 1  | 1/3/ | 462611 | 5603180 | -200  | 1272 |
| 200 4   | 42 4  |     | 1233   | 402000 | 5602350    | -38  | 13/3 | 200  | 49  | 2    | 2  | 1050 | 402000 | 5602040 | - 21  | 1007 |
| 390 0   | 22 12 | -   | 1136   | 402010 | 5603200    | 282  | 2304 | 288  | 143 | 8    | 2  | 1404 | 402405 | 5602940 | - 31  | 1957 |
| 390 13  | 3/ 11 | 4   | 1130   | 402001 | 5602430    | -242 | 1475 | 230  | 14/ | 9    | 4  | 149/ | 402403 | 5602370 | -130  | 1910 |
| 403 13  | 30 9  | 3   | 1134   | 402000 | 5602430    | 102  | 14/5 | 608  | 33  | 3    | 2  | 1528 | 402020 | 5602910 | -211  | 1300 |
| 404 14  | 41 6  | -   | 1200   | 402025 | 5602300    | -183 | 1342 | 629  | 101 | 10   | 4  | 1008 | 462400 | 5602730 | - 353 | 1782 |
| 409 14  | 21 0  | 1   | 1303   | 402010 | 5603410    | 218  | 2403 | 035  | 24  | 5    | 0  | 1918 | 452519 | 5002680 | -541  | 1/22 |
| 410 11  | 41 3  | 4   | 9/9    | 402500 | 2003130    | 531  | 2231 |      |     |      |    |      |        |         |       |      |

POLE-POLE RESISTIVITY DATA: 1978 CORRIDOR 625 P LINE 620 C LINE 630 MEAGER CREEK MAP AREA

| R(a) | Dir | Cŧ | P# | Ze   | xđ     | Уđ      | Zđ   | Vhor | R(a) | Di  | C# | P | Ze   | хđ     | Уđ      | Zđ    | Vhor |
|------|-----|----|----|------|--------|---------|------|------|------|-----|----|---|------|--------|---------|-------|------|
| 136  | 86  | 1  | 1  | 214  | 462998 | 5603720 | 1567 | 2924 | 380  | 119 | 7  | 6 | 841  | 463515 | 5601860 | 51    | 1015 |
| 162  | 77  | 2  | 2  | 303  | 463119 | 5603350 | 1263 | 2535 | 387  | 95  | 9  | 6 | 770  | 463454 | 5601530 | 64    | 684  |
| 188  | 20  | 2  | 1  | 368  | 462991 | 5603560 | 1327 | 2767 | 388  | 14  | 7  | 2 | 1129 | 462986 | 5603050 | 205   | 2278 |
| 188  | 58  | 3  | 2  | 304  | 463137 | 5603260 | 1231 | 2451 | 396  | 128 | 6  | 6 | 946  | 463464 | 5602020 | 28    | 1179 |
| 203  | 125 | 1  | 2  | 505  | 462996 | 5603630 | 1194 | 2837 | 403  | 4   | 7  | 1 | 1418 | 462908 | 5603360 | 53    | 2596 |
| 206  | 13  | 3  | 1  | 457  | 462965 | 5603520 | 1228 | 2733 | 405  | 32  | 10 | 4 | 1038 | 463245 | 5602090 | - 36  | 1280 |
| 227  | 74  | 8  | 5  | 627  | 463301 | 5602010 | 284  | 1190 | 405  | 51  | 10 | 5 | 806  | 463331 | 5601630 | 6     | 813  |
| 235  | 122 | 2  | 3  | 563  | 463165 | 5603230 | 923  | 2410 | 407  | 4   | 8  | 1 | 1620 | 462764 | 5603270 | -153  | 2547 |
| 242  | 92  | 5  | 4  | 499  | 463318 | 5602570 | 692  | 1740 | 420  | 66  | 11 | 6 | 836  | 463448 | 5601390 | -45   | 551  |
| 243  | 114 | 3  | 3  | 484  | 463196 | 5603140 | 973  | 2317 | 424  | 147 | 3  | 5 | 1206 | 463101 | 5602910 | 96    | 2111 |
| 247  | 70  | 4  | 3  | 435  | 463212 | 5602900 | 915  | 2080 | 428  | 105 | 8  | 6 | 766  | 463473 | 5601620 | 79    | 771  |
| 247  | 113 | 4  | 4  | 567  | 463289 | 5602730 | 708  | 1903 | 430  | 12  | 9  | 2 | 1467 | 462791 | 5602910 | -133  | 2193 |
| 251  | 71  | 6  | 4  | 518  | 463323 | 5602450 | 613  | 1619 | 435  | 23  | 9  | 3 | 1155 | 462985 | 5602580 | 41    | 1827 |
| 255  | 50  | 5  | 3  | 526  | 463219 | 5602310 | 757  | 1989 | 435  | 80  | 10 | 6 | 779  | 463472 | 5601380 | 23    | 535  |
| 264  | 56  | 7  | 4  | 607  | 463300 | 5602430 | 493  | 1604 | 439  | 136 | 5  | 6 | 1091 | 463427 | 5602210 | -44   | 1366 |
| 270  | 7   | 4  | 1  | 808  | 462913 | 5603430 | 804  | 2663 | 443  | 142 | 4  | 6 | 1260 | 463356 | 5602400 | -122  | 1562 |
| 271  | 28  | 4  | 2  | 558  | 463072 | 5603150 | 910  | 2352 | 449  | 41  | 11 | 5 | 947  | 463335 | 5601540 | -1/1  | 720  |
| 273  | 93  | 7  | 5  | 604  | 463349 | 5602110 | 313  | 1280 | 460  | 148 | 2  | 5 | 1307 | 463066 | 5603010 | 20    | 2213 |
| 284  | 64  | 9  | 5  | 701  | 463331 | 5601730 | 137  | 904  | 462  | 26  | 11 | 4 | 1225 | 463223 | 5602010 | -200  | 1203 |
| 285  | 108 | 6  | 5  | 655  | 463316 | 5502260 | 349  | 1431 | 468  | 20  | 10 | 3 | 1343 | 463071 | 5602450 | -210  | 10/3 |
| 293  | 37  | 6  | 3  | 673  | 463195 | 5602750 | 566  | 1931 | 483  | 12  | 8  | 2 | 1330 | 462882 | 5602970 | 270   | 2622 |
| 295  | 123 | 5  | 5  | 765  | 463271 | 5602410 | 307  | 1586 | 489  | 5   | 9  | 1 | 1754 | 462646 | 5603200 | -2/0  | 2023 |
| 301  | 21  | 5  | 2  | 748  | 463072 | 5603110 | 659  | 2309 | 498  | 148 | 1  | 4 | 1240 | 463134 | 5603500 | 328   | 2007 |
| 303  | 43  | 8  | 4  | 749  | 463238 | 5602320 | 326  | 1506 | 517  | 4   | 10 | 1 | 1951 | 462931 | 5603110 | - 201 | 4341 |
| 308  | 139 | 1  | 3  | 878  | 463042 | 5603570 | 751  | 2770 | 518  | 17  | 11 | 3 | 1546 | 463026 | 5602370 | -440  | 1013 |
| 321  | 31  | 7  | 3  | 834  | 463161 | 5602730 | 366  | 1921 | 523  | 9   | 11 | 2 | 1574 | 462899 | 5602720 | -044  | 2220 |
| 323  | 134 | 4  | 5  | 918  | 463207 | 5602600 | 252  | 1784 | 544  | 4   | 11 | Ţ | 2165 | 4028/4 | 5603030 | -2001 | 1002 |
| 324  | 6   | 5  | 1  | 1019 | 462995 | 5603410 | 525  | 2622 | 550  | 150 | 3  | 0 | 1004 | 463288 | 5602730 | -270  | 2027 |
| 334  | 137 | 3  | 4  | 797  | 463243 | 5603030 | 595  | 2206 | 557  | 11  | 10 | 2 | 1002 | 462947 | 5602790 | -407  | 2037 |
| 342  | 25  | 8  | 3  | 1020 | 463070 | 5602640 | 172  | 1358 | 572  | 151 | 2  | 0 | 1000 | 463253 | 5602830 | - 370 | 2002 |
| 348  | 16  | 0  | 2  | 944  | 463042 | 5603060 | 424  | 2272 | 585  | 152 | 1  | 5 | 1003 | 402930 | 5603360 | - 103 | 2386 |
| 359  | 140 | 2  | 4  | 894  | 463218 | 5603130 | 529  | 2308 | 712  | 154 | 1  | 0 | 2024 | 403108 | 5003200 | - 204 | 2300 |
| 309  | 2   | 0  | 1  | 1225 | 462975 | 5003370 | 278  | 2587 |      |     |    |   |      |        |         |       |      |

POLE-POLE RESISTIVITY DATA: 1978 CORRIDOR 630 P LINE 630 C LINE 630 MEAGER CREEK MAP AREA

| R(a) | Dir  | C# | P# | Ze   | ЪХ       | Yd        | zð   | Vhor | R ( ) | a)  | Dir  | Cŧ | P# | Ze   | Хđ     | Уd       | Zđ    | Vhor |
|------|------|----|----|------|----------|-----------|------|------|-------|-----|------|----|----|------|--------|----------|-------|------|
| 100  | 67   | 2  | 1  | 0.0  | 463130   | 5603660   | 1630 | 2706 | 31    | 5 1 | 39   | 1  | 3  | 884  | 462879 | 5603430  | 756   | 2591 |
| 1102 | 2    | 11 | Ē  | 169  | 463770   | 5601770   | 635  | 707  | 32    | 0 1 | 46   | 2  | 3  | 765  | 463016 | 5603390  | 813   | 2493 |
| 110  | 124  | 11 | 2  | 175  | 463764   | 5603400   | 1377 | 2414 | 32    | 0 1 | 55   | 10 | 6  | 413  | 463718 | 5601570  | 436   | 559  |
| 114  | 124  | 2  | 1  | 221  | 40 3 204 | 5603790   | 1596 | 2863 | 32    | 1   | 28   | 4  | 2  | 111  | 463334 | 5603250  | 1371  | 2248 |
| 115  | 151  | 1  | E  | 154  | 463689   | 5601970   | 751  | 927  | 32    | 4 1 | 16   | 12 | 6  | 117  | 463952 | 5601420  | 665   | 315  |
| 166  | 170  | 2  | 1  | 207  | 463155   | 5603600   | 1467 | 2639 | 33    | 4 1 | 58   | 6  | 5  | 798  | 463080 | 5602400  | 532   | 1605 |
| 100  | 124  | 2  | 2  | 270  | 46 31 41 | 5603580   | 1254 | 2622 | 34    | 1 1 | 69   | 11 | 3  | 971  | 463229 | 5602470  | 215   | 1581 |
| 1 70 | 120  | 7  | Å  | 135  | 463607   | 5602460   | 1014 | 1408 | 34    | 4 1 | 55   | 3  | 4  | 935  | 463391 | 5603250  | 482   | 2230 |
| 170  | 1 70 | 2  | 2  | 272  | 463497   | 5602710   | 073  | 1687 | 34    | 7 1 | 56   | 8  | 6  | 722  | 463820 | 5602020  | 225   | 925  |
| 174  | 117  | 5  | 2  | 204  | 463416   | 5602930   | 1130 | 1918 | 34    | 7 1 | 66   | 8  | 2  | 872  | 463263 | 5603010  | 473   | 2050 |
| 170  | 157  | é  | 5  | 357  | 463523   | 56 021 30 | 655  | 1138 | 35    | 5 1 | 60   | 7  | 1  | 1009 | 462947 | .5603300 | 574   | 2441 |
| 193  | 171  | 10 | 4  | 416  | 463642   | 56 02 300 | 596  | 1253 | 35    | 7 1 | 62   | 8  | 1  | 1218 | 463183 | 5603380  | 268   | 2417 |
| 184  | 140  | A  | 3  | 34.6 | 463302   | 5603050   | 1066 | 2066 | 38    | 1 1 | 64   | 9  | 2  | 1070 | 463004 | 5602880  | 325   | 2044 |
| 197  | 172  | 9  | A  | 288  | 46 36 18 | 56 02 300 | 762  | 1253 | 39    | 3 1 | 56   | 5  | 5  | 978  | 463121 | 5602640  | 267   | 1784 |
| 100  | 43   | 6  | 3  | 119  | 463480   | 5602790   | 1198 | 1764 | 41    | 2 1 | 65   | 11 | 2  | 1366 | 462821 | 5602710  | 51    | 2013 |
| 103  | 125  | 1  | 2  | 513  | 462992   | 5603630   | 1186 | 2729 | 41    | 6 1 | 60   | 9  | 1  | 1419 | 462257 | 5602760  | 595   | 2430 |
| 203  | 165  | 5  | 2  | 263  | 463308   | 5603200   | 1188 | 2206 | 41    | 7 ] | 48   | 1  | 4  | 1246 | 462973 | 5603410  | 319   | 2531 |
| 203  | 174  | 12 | 5  | 320  | 463699   | 5601650   | 511  | 639  | 41    | 9 1 | 159  | 7  | 6  | 928  | 463259 | 5601990  | 239   | 1174 |
| 205  | 164  | 4  | ĩ  | 423  | 463087   | 5603530   | 1226 | 2593 | 42    | 2 1 | 158  | 4  | 5  | 1146 | 462891 | 5602710  | 240   | 1966 |
| 207  | 149  | 6  | â  | 367  | 463422   | 5602630   | 903  | 1640 | 42    | 6 ] | 164  | 10 | 2  | 1197 | 463149 | 5602950  | 99    | 2039 |
| 218  | 24   | 8  | 4  | 111  | 463548   | 5602340   | 975  | 1285 | 44    | 3 1 | 48   | 1  | 4  | 1246 | 462973 | 5603410  | 319   | 2531 |
| 222  | 174  | 8  | 3  | 482  | 463505   | 5602580   | 712  | 1649 | 46    | 1 ] | 158  | 6  | 6  | 1159 | 463050 | 5602150  | 143   | 1435 |
| 226  | 159  | 7  | 5  | 563  | 463339   | 5602280   | 588  | 1362 | 46    | 8 1 | 168  | 12 | 3  | 1118 | 463587 | 5602480  | -35   | 1434 |
| 231  | 150  | 5  | 4  | 551  | 463407   | 5602820   | 723  | 1817 | 47    | 7 ] | 153  | 2  | 4  | 1139 | 463213 | 5603400  | 356   | 2432 |
| 233  | 147  | 3  | 3  | 558  | 463170   | 5603240   | 939  | 2293 | 48    | 0 ] | 158  | 3  | 5  | 1365 | 462724 | 5602870  | 121   | 2197 |
| 246  | 170  | 6  | 2  | 435  | 463218   | 5603060   | 1040 | 2115 | 48    | 9 ] | 152  | 1  | 5  | 1669 | 462617 | 5603170  | -129  | 2502 |
| 258  | 165  | 5  | 1  | 594  | 463136   | 5603510   | 1009 | 2564 | 49    | 8 1 | 162  | 12 | 1  | 1858 | 463946 | 5603360  | - 378 | 2241 |
| 260  | 161  | 6  | 1  | 776  | 462860   | 5603270   | 922  | 2461 | 50    | 6 1 | 165  | 12 | 2  | 1512 | 463418 | 5602840  | -289  | 1837 |
| 264  | 170  | 11 | 4  | 584  | 463372   | 5602110   | 528  | 1203 | 51    | 6 1 | 162  | 11 | 1  | 1713 | 462138 | 5602730  | 168   | 2459 |
| 268  | 168  | 10 | 3  | 802  | 463463   | 5602640   | 326  | 1632 | 51    | 8 1 | 157  | 5  | 6  | 1346 | 463219 | 5602430  | -152  | 1552 |
| 282  | 168  | 9  | 3  | 674  | 463395   | 5602620   | 507  | 1636 | 51    | 8 1 | 161  | 10 | 1  | 1545 | 462874 | 5603230  | -75   | 2415 |
| 293  | 169  | 12 | 4  | 730  | 463721   | 5602120   | 242  | 1057 | 53    | 9 ] | 157  | 2  | 6  | 1933 | 463321 | 5603140  | - 561 | 2151 |
| 298  | 144  | 11 | 6  | 247  | 463923   | 5601520   | 538  | 420  | 58    | 0 1 | 158  | 3  | 6  | 1732 | 464259 | 5603190  | -218  | 2082 |
| 298  | 157  | 9  | 6  | 527  | 463405   | 5501530   | 737  | 761  | 61    | 3 ] | 1 56 | 2  | 5  | 1568 | 462704 | 5603110  | -71   | 2399 |
| 299  | 165  | 7  | 2  | 661  | 463212   | 5603020   | 751  | 2077 | 68    | 0 1 | 153  | 1  | 6  | 2030 | 462848 | 5603040  | - 567 | 2267 |
| 300  | 154  | 4  | 4  | 716  | 463334   | 5502980   | 621  | 1990 | 68    | 0 ] | 153  | 1  | 6  | 2030 | 462848 | 5603040  | -567  | 2267 |

POLE-POLE RESISTIVITY DATA: 1978 CORRIDOR 635 P LINE 640 C LINE 630 MEAGER CREEK MAP AREA

|   | R(a) | Dir | C# | Pŧ | Ze   | Xđ     | Хg      | zđ   | Vhor | R(a) | Di  | C C | P | Ze     | Xđ     | Yd      | Zđ    | Vhor  |
|---|------|-----|----|----|------|--------|---------|------|------|------|-----|-----|---|--------|--------|---------|-------|-------|
|   | 287  | 67  | 1  | 1  | 857  | 463631 | 5604300 | 1035 | 3103 | 472  | 107 | 6   | 1 | 1505   | 464015 | 5603960 | 124   | 2690  |
| 1 | 306  | 50  | 3  | 3  | 975  | 464031 | 5603640 | 526  | 2370 | 474  | 127 | 11  | 3 | 1259   | 464168 | 5602760 | -141  | 1486  |
| 1 | 313  | 82  | 4  | 2  | 997  | 464028 | 5603770 | 569  | 2500 | 484  | 42  | 4   | 4 | 1156   | 464167 | 5603350 | 220   | 2057  |
| - | 342  | 46  | 1  | 2  | 907  | 463750 | 5604120 | 862  | 2904 | 484  | 70  | 7   | 4 | 1157   | 464328 | 5603150 | 122   | 1843  |
| - | 343  | 80  | 2  | 1  | 936  | 463714 | 5604220 | 886  | 3006 | 485  | 64  | 8   | 5 | 1103   | 464488 | 5602650 | -62   | 1337  |
|   | 345  | 60  | 2  | 2  | 891  | 463840 | 5603990 | 793  | 2755 | 487  | 114 | 8   | 2 | 1454   | 464247 | 5603490 | -48   | 2189  |
| - | 345  | 73  | 3  | 2  | 915  | 463942 | 5603840 | 687  | 2586 | 487  | 121 | 9   | 2 | 1454   | 464230 | 5603380 | -67   | 2076  |
|   | 368  | 114 | 11 | 4  | 977  | 464230 | 5602420 | 34   | 1133 | 489  | 103 | 7   | 2 | 1373   | 464215 | 5603610 | 69    | 2308  |
|   | 369  | 93  | 9  | 4  | 980  | 464363 | 5602700 | 165  | 1393 | 504  | 129 | 10  | 2 | 1504   | 464188 | 5603280 | -159  | 1983  |
|   | 379  | 52  | 10 | 6  | 848  | 464588 | 5601780 | 35   | 470  | 506  | 45  | 8   | 6 | 1209   | 464794 | 5602040 | -253  | 781   |
|   | 380  | 27  | 1  | 3  | 1136 | 463837 | 5603970 | 533  | 2731 | 512  | 61  | 4   | 3 | 979    | 464109 | 5603570 | 493   | 2285  |
|   | 389  | 104 | 10 | 4  | 929  | 464314 | 5602560 | 166  | 1258 | 513  | 111 | 7   | 1 | 1635   | 464059 | 5603920 | - 39  | 2642  |
|   | 890  | 90  | 3  | 1  | 1036 | 463797 | 5604170 | 746  | 2936 | 518  | 22  | 3   | 5 | 1546   | 464217 | 5603370 | -240  | 2076  |
|   | 391  | 80  | 10 | 5  | 823  | 464486 | 5602070 | 69   | 753  | 519  | 47  | 9   | 6 | 1034   | 464711 | 5601930 | - 95  | 642   |
|   | 391  | 101 | 5  | 1  | 1336 | 463956 | 5604070 | 357  | 2809 | 529  | 37  | 5   | 5 | 1403   | 464390 | 5603110 | -213  | 1798  |
| • | 394  | 70  | 5  | 3  | 1047 | 464207 | 5603460 | 354  | 2166 | 535  | 70  | 9   | 5 | 958    | 464612 | 5602150 | -16   | 841   |
|   | 395  | 88  | 7  | 3  | 1178 | 464329 | 5603300 | 138  | 1990 | 543  | 134 | 11  | 2 | 1621   | 464031 | 5603130 | - 366 | 1871  |
| ; | 398  | 61  | 11 | 6  | 732  | 464473 | 5601630 | 71   | 318  | 556  | 46  | 6   | 5 | 1329   | 464449 | 5602980 | -190  | 1661  |
| 4 | 102  | 89  | 5  | 2  | 1130 | 464097 | 5603760 | 400  | 2473 | 562  | 53  | 7   | 5 | 1278   | 464499 | 5602850 | -191  | 1537  |
| 4 | 103  | 97  | 4  | 1  | 1168 | 463883 | 5604080 | 560  | 2831 | 565  | 16  | 2   | 5 | 1688   | 464153 | 5603550 | -309  | 2260  |
| 4 | 104  | 84  | 8  | 4  | 1073 | 464380 | 5602980 | 112  | 1569 | 573  | 37  | 7   | 6 | 1441   | 464549 | 5602540 | - 393 | 1222  |
| 4 | 112  | 38  | 2  | 3  | 1037 | 463955 | 5603780 | 527  | 2521 | 577  | 18  | 4   | 6 | 1724   | 464404 | 5602960 | -501  | 1647  |
|   | 129  | 25  | 2  | 4  | 1322 | 464000 | 5603620 | 166  | 2360 | 578  | 13  | 3   | 6 | 1841   | 464245 | 5603120 | - 562 | 1824  |
| 4 | 41   | 91  | 11 | 5  | 780  | 464388 | 5602030 | 48   | 725  | 605  | 120 | 8   | 1 | 1753   | 464136 | 5603870 | -168  | 2576  |
| 4 | 48   | 17  | 1  | 4  | 1460 | 463875 | 5603830 | 134  | 2585 | 608  | 29  | 4   | 5 | 1453   | 464309 | 5603240 | -195  | 1928  |
| 4 | 48   | 102 | 8  | 3  | 1189 | 464351 | 5603160 | 87   | 1844 | 608  | 32  | 6   | 6 | 1529   | 464522 | 5602670 | -430  | 1349  |
| 4 | 50   | 97  | 6  | 2  | 1265 | 464172 | 5603660 | 212  | 2365 | 615  | 132 | 10  | 1 | 1838   | 464165 | 5603720 | -278  | 2430  |
| 4 | 150  | 110 | 9  | 3  | 1151 | 464329 | 5603020 | 99   | 1708 | 667  | 126 | 9   | 1 | 1771   | 464163 | 5603800 | -185  | 2501  |
| 4 | 155  | 120 | 10 | 3  | 1165 | 464283 | 5602900 | 40   | 1599 | 688  | 25  | 5   | 6 | 1644   | 464435 | 5602840 | -483  | 1524  |
| 4 | 156  | 33  | 3  | 4  | 1210 | 464076 | 5603460 | 209  | 2186 | 724  | 10  | 1   | 5 | 1853   | 464030 | 5603770 | - 364 | 2496  |
| 4 | 58   | 62  | 6  | 4  | 1151 | 464337 | 5603110 | 108  | 1803 | 733  | 9   | 2   | 6 | 2001   | 464216 | 5603300 | -652  | 2004  |
| 4 | 61   | 52  | 5  | 4  | 1159 | 464260 | 5603240 | 152  | 1935 | 791  | 4   | 1   | 6 | 2178   | 464042 | 5603520 | -721  | 22 55 |
| 1 | 66   | 81  | 6  | 3  | 1114 | 454286 | 5603370 | 240  | 2062 | 1234 | 137 | 11  | 1 | 1 96 4 | 463778 | 5603400 | - 568 | 2203  |

POLE-POLE RESISTIVITY DATA: 1978 CORRIDOR 645 P LINE 640 C LINE 650 MEAGER CREEK MAP AREA

| R(a | ) Dir | C# | P # | Ze   | Xđ       | Уð         | 23   | Vnor | R(a) | Dir | C# | P# | Ze   | Xđ     | Yđ      | Zđ     | Vhor  |
|-----|-------|----|-----|------|----------|------------|------|------|------|-----|----|----|------|--------|---------|--------|-------|
| 249 | 35    | 2  | 1   | 595  | 464549   | 56 04 35 0 | 1167 | 2674 | 471  | 41  | 8  | 4  | 899  | 465317 | 5603210 | 288    | 1309  |
| 272 | 74    | 2  | 2   | 618  | 464709   | 5604150    | 1051 | 2421 | 472  | 6   | 9  | 2  | 1408 | 461801 | 5603610 | 14     | 1917  |
| 273 | 21    | 5  | 2   | 653  | 464915   | 5603900    | 885  | 2103 | 482  | 68  | 10 | 6  | 1438 | 465568 | 5602720 | -491   | 756   |
| 277 | 37    | 4  | 2   | 603  | 464834   | 5603960    | 984  | 2197 | 493  | 63  | 3  | 5  | 982  | 465475 | 5603110 | 127    | 1145  |
| 281 | 71    | 4  | 3   | 640  | 464961   | 5603780    | 830  | 1975 | 500  | 80  | 8  | 6  | 1194 | 465687 | 5602850 | -198   | \$ 32 |
| 294 | 55    | 3  | 2   | 585  | 464802   | 5604030    | 1022 | 2270 | 508  | 98  | 5  | 5  | 1104 | 465356 | 5603510 | 143    | 1567  |
| 311 | 8     | 4  | 1   | 826  | 464595   | 5604220    | 873  | 2540 | 509  | 103 | 4  | 5  | 1280 | 465225 | 5603670 | 46     | 1761  |
| 321 | 56    | 1  | 1   | 575  | 464435   | 5604430    | 1263 | 2803 | 513  | 116 | 1  | 5  | 1838 | 464839 | 5604140 | -299   | 2350  |
| 324 | 20    | 3  | 1   | 705  | 464613   | 5604280    | 1008 | 2581 | 525  | 9   | 11 | 2  | 1792 | 464725 | 5603570 | -449   | 1932  |
| 324 | 85    | 3  | 3   | 737  | 464879   | 5603900    | 774  | 2124 | 536  | 176 | 9  | 1  | 1747 | 464532 | 5603900 | -203   | 2311  |
| 327 | 55    | 5  | 3   | 559  | 455073   | 5603670    | 851  | 1930 | 538  | 8   | 10 | 2  | 1605 | 464713 | 5603580 | -207   | 1943  |
| 328 | 83    | 5  | 4   | 783  | 465241   | 5603550    | 537  | 1648 | 539  | 179 | 10 | 1  | 1932 | 464465 | 5603870 | -417   | 2327  |
| 339 | 100   | 3  | 4   | 1075 | 465015   | 5603850    | 367  | 2016 | 548  | 109 | 4  | 6  | 1637 | 465374 | 5603610 | - 367  | 1648  |
| 341 | 2     | 7  | 2   | 958  | 464931   | 5603770    | 502  | 1957 | 565  | 49  | 11 | 5  | 1420 | 465298 | 5602950 | -409   | 1033  |
| 360 | 173   | 5  | 1   | 955  | 464655   | 5604190    | 701  | 2474 | 572  | 39  | 9  | 4  | 1079 | 455213 | 5603160 | 106    | 1311  |
| 364 | 97    | 2  | 3   | 869  | 464774   | 5604050    | 709  | 2307 | 579  | 19  | 9  | 3  | 1152 | 464995 | 5603320 | 126    | 1568  |
| 364 | 112   | 1  | 4   | 1449 | 464725   | 5604160    | 156  | 2421 | 605  | 63  | 11 | 6  | 1521 | 465589 | 5602690 | -634   | 717   |
| 365 | 2     | 8  | 2   | 1245 | 464901   | 5603670    | 182  | 1913 | 608  | 106 | 5  | 5  | 1451 | 465479 | 5603370 | -269   | 1395  |
| 379 | 54    | 7  | 4   | 697  | 465381   | 5603340    | 530  | 1392 | 610  | 112 | 2  | 5  | 1619 | 465015 | 5603980 | -170   | 2131  |
| 391 | 92    | 4  | 4   | 933  | 465108   | 5603710    | 463  | 1349 | 618  | 118 | 1  | 6  | 2215 | 464927 | 5603990 | - 14 3 | 21/1  |
| 398 | 0     | 1  | 2   | 750  | 464561   | 5604300    | 1013 | 2626 | 621  | 0   | 11 | 1  | 2119 | 464528 | 5603880 | -656   | 2294  |
| 414 | 170   | 1  | 1   | 1319 | 464709   | 5604070    | 263  | 2349 | 630  | 33  | 11 | 4  | 1432 | 465121 | 5603100 | - 330  | 1313  |
| 416 | 106   | 1  | 3   | 1064 | 464604   | 5604200    | 606  | 2515 | 633  | 58  | 9  | 5  | 1134 | 465361 | 5603060 | -19    | 1100  |
| 416 | 112   | 3  | 6   | 1807 | 465291   | 5603780    | -482 | 1342 | 642  | 19  | 11 | 3  | 1534 | 464903 | 5603270 | - 337  | 1589  |
| 422 | 108   | 3  | 5   | 1441 | 465129   | 5603810    | -68  | 1933 | 643  | 20  | 10 | 3  | 1355 | 454900 | 5603290 | -100   | 1602  |
| 424 | 23    | 1  | 3   | 698  | 465181   | 5603480    | 616  | 1604 | 659  | 74  | 9  | 0  | 1311 | 465612 | 5602770 | - 326  | /30   |
| 427 | 17    | 8  | 3   | 973  | 46 50 99 | 5603390    | 308  | 1557 | 676  | 37  | 10 | 4  | 1274 | 465112 | 5603130 | -103   | 134/  |
| 435 | 172   | 8  | 1   | 1599 | 464632   | 5603970    | -51  | 2307 | 639  | 53  | 10 | 5  | 1299 | 465349 | 5602920 | -260   | 1040  |
| 464 | 79    | 7  | 5   | 836  | 465524   | 5603250    | 264  | 1265 | 709  | 116 | 2  | 6  | 1992 | 465171 | 5603940 | - 599  | 2032  |
| 467 | 107   | 2  | 4   | 1239 | 464903   | 5604010    | 273  | 2210 | 834  | 116 | 2  | 6  | 1992 | 465171 | 5503940 | -599   | 2032  |

#### POLE-POLE RESISTIVITY DATA: 1978 CORRIDOR 655 P LINE 660 C LINE 650 MEAGER CREEK MAP AREA

| R(a) | Dir   | C# | Pi | Ze   | хđ       | ЪY           | zð   | Vnor | R( | a) | Di  | C# | P | ze   | хđ       | Yđ      | Zđ    | Vhor |
|------|-------|----|----|------|----------|--------------|------|------|----|----|-----|----|---|------|----------|---------|-------|------|
| 345  | 67    | 3  | 1  | 1100 | 465291   | 5605040      | 640  | 2988 | 64 | 5  | 67  | 9  | 4 | 1215 | 466396   | 5604110 | - 32  | 1545 |
| 362  | 73    | 6  | 2  | 1332 | 465778   | 5604700      | 217  | 2399 | 65 | 2  | 180 | 5  | 6 | 1556 | 466290   | 5604170 | - 333 | 1665 |
| 371  | 35    | 2  | 2  | 1071 | 46 53 76 | 5604930      | 628  | 2847 | 66 | 3  | 11  | 1  | 3 | 1320 | 465398   | 5604910 | 306   | 2818 |
| 372  | 74    | 4  | 1  | 1186 | 465353   | 5604990      | 523  | 2911 | 66 | 3  | 99  | 11 | 2 | 2058 | 46 59 14 | 5604380 | -771  | 2080 |
| 418  | 48    | 1  | 1  | 998  | 465137   | 5605180      | 819  | 3195 | 66 | 8  | 30  | 5  | 4 | 1182 | 466105   | 5604400 | 160   | 1955 |
| 418  | 57    | 2  | 1  | 1035 | 465229   | 5605120      | 753  | 3088 | 67 | 1  | 75  | 10 | 4 | 1322 | 466418   | 5604000 | -228  | 1458 |
| 420  | 45    | 3  | 2  | 1055 | 465472   | 5604820      | 583  | 2702 | 67 | 8  | 29  | 9  | 6 | 1103 | 466738   | 5603720 | - 91  | 1027 |
| 430  | 54    | 4  | 2  | 1082 | 46 55 01 | 5604820      | 555  | 2685 | 67 | 8  | 165 | 2  | 6 | 2024 | 465796   | 5604490 | -625  | 2245 |
| 439  | 65    | 5  | 2  | 1233 | 465660   | 5604770      | 350  | 2535 | 68 | 2  | 57  | 8  | 4 | 1163 | 466320   | 5604190 | 76    | 1661 |
| 442  | 82    | 5  | 1  | 1407 | 465468   | 5605070      | 294  | 2882 | 69 | 2  | 80  | 9  | 3 | 1458 | 466166   | 5604280 | -190  | 1828 |
| 463  | 18    | 2  | 3  | 1235 | 465487   | 5604830      | 367  | 2700 | 69 | 7  | 13  | 5  | 5 | 1332 | 466226   | 5604300 | -63   | 1805 |
| 463  | 26    | 1  | 2  | 1106 | 465285   | 5604990      | 619  | 2958 | 70 | 0  | 39  | 6  | 4 | 1152 | 466192   | 5604340 | 179   | 1858 |
| 468  | 35    | 4  | 3  | 1119 | 465679   | 5604650      | 390  | 2437 | 70 | 2  | 49  | 7  | 4 | 1142 | 466268   | 5604260 | 142   | 1744 |
| 476  | 91    | 9  | 2  | 1706 | 465915   | 5604530      | -291 | 2184 | 71 | 6  | 6   | 6  | 6 | 1425 | 466409   | 5604090 | -222  | 1519 |
| 484  | 80    | 7  | 2  | 1445 | 465836   | 5604640      | 60   | 2315 | 71 | 6  | 73  | 8  | 3 | 1350 | 456111   | 5604350 | - 31  | 1920 |
| 507  | 27    | 3  | 3  | 1153 | 465597   | 5604710      | 387  | 2541 | 71 | 8  | 172 | 4  | 6 | 1715 | 466053   | 5604270 | -427  | 1903 |
| 510  | 58    | 6  | 3  | 1219 | 466021   | 5604460      | 182  | 2050 | 71 | 8  | 177 | 3  | 5 | 1558 | 465900   | 5604500 | -186  | 2173 |
| 519  | 48    | 5  | 3  | 1180 | 46 58 91 | 5504550      | 256  | 2215 | 72 | 9  | 162 | 1  | 6 | 2178 | 465670   | 5604590 | -745  | 2402 |
| 519  | 38    | 6  | 1  | 1550 | 465574   | 5605030      | 128  | 2792 | 73 | 6  | 91  | 11 | 3 | 1757 | 455190   | 5604130 | -621  | 1711 |
| 522  | 92    | 7  | 1  | 1701 | 46 56 31 | 5604990      | -65  | 2711 | 73 | 7  | 68  | 11 | 5 | 1204 | 466700   | 5603720 | -274  | 1059 |
| 535  | 15    | 4  | 4  | 1218 | 46 53 92 | 5604500      | 190  | 2177 | 74 | 4  | 82  | 11 | 4 | 1445 | 466458   | 5603960 | - 399 | 1395 |
| 545  | 95 1  | LO | 2  | 1989 | 465895   | 56 0 4 4 3 0 | -555 | 2128 | 75 | 2  | 40  | 10 | 6 | 1058 | 466873   | 5603520 | -179  | 793  |
| 575  | 173   | 2  | 5  | 1717 | 465775   | 5604640      | -279 | 2359 | 75 | 4  | 21  | 6  | 5 | 1241 | 466325   | 5604230 | 13    | 1682 |
| 600  | 3     | 2  | 4  | 1433 | 465677   | 5604720      | 79   | 2486 | 75 | 6  | 50  | 11 | 6 | 1067 | 466856   | 5603520 | -191  | 309  |
| 600  | 10    | 3  | 4  | 1302 | 465794   | 5604580      | 145  | 2309 | 76 | 0  | 13  | 7  | 6 | 1296 | 466534   | 5603960 | -156  | 1342 |
| 608  | 85    | 8  | 2  | 1557 | 465869   | 5604590      | -93  | 2262 | 77 | 4  | 168 | 3  | 6 | 1849 | 465932   | 5604360 | -519  | 2054 |
| 612  | 86 1  | .0 | 3  | 1608 | 466162   | 5604180      | -423 | 1766 | 77 | 8  | 30  | 7  | 5 | 1161 | 466432   | 5604110 | 34    | 1525 |
| 616  | 96    | 8  | 1  | 1839 | 465661   | 5604940      | -248 | 2654 | 78 | 1  | 178 | 1  | 4 | 1554 | 465567   | 5604810 | -11   | 2630 |
| 634  | 2     | 4  | 5  | 1442 | 466008   | 5604400      | -112 | 2030 | 80 | 2  | 59  | 10 | 5 | 1129 | 466649   | 5603780 | -149  | 1136 |
| 640  | 103 ] | 0  | 1  | 2218 | 465637   | 5604670      | -776 | 2481 | 80 | 5  | 20  | 8  | 6 | 1202 | 466621   | 5603850 | -120  | 1203 |
| 641  | 49    | 9  | 5  | 1093 | 466662   | 5603840      | -52  | 1167 | 81 | 2  | 38  | 8  | 5 | 1119 | 436523   | 5604010 | 13    | 1385 |
| 642  | 66    | 7  | 3  | 1277 | 466080   | 5604390      | 79   | 1967 | 85 | 6  | 169 | 1  | 5 | 1859 | 465661   | 5604740 | -388  | 2510 |

POLE-POLE RESISTIVITY DATA: 1978 CORRIDOR 205 P LINE 210 C LINE 200 LILLODET RIVER MAP AREA

| R(a | ) Dir | CI | P  | ł Ze | Xd      | Yd          | Zđ    | Vhor | 1  | R(a) | Dir | CI | P  | Ze   | Xđ       | Yd      | 23    | Vhor |
|-----|-------|----|----|------|---------|-------------|-------|------|----|------|-----|----|----|------|----------|---------|-------|------|
| 132 | 21    | 3  | 26 | 1582 | 471122  | 5610150     | -841  | 3709 | 3  | 361  | 169 | 24 | 23 | 1079 | 469112   | 5608230 | - 46  | 934  |
| 170 | 74    | 21 | 6  | 2331 | 468 970 | 5608350     | -1218 | 911  | 3  | 367  | 19  | 24 | 21 | 1350 | 468586   | 5608100 | -155  | 486  |
| 196 | 143   | 25 | 25 | 782  | 469690  | 5608980     | -243  | 1964 | 3  | 368  | 6   | 5  | 26 | 879  | 470754   | 5609490 | - 379 | 3007 |
| 214 | 165   | 25 | 24 | 961  | 469438  | 5508660     | -210  | 1459 | 3  | 373  | 30  | 5  | 23 | 1782 | 469887   | 5608640 | -874  | 1905 |
| 217 | 81    | 22 | 25 | 1245 | 469026  | 5608180     | -232  | 836  | 3  | 385  | 112 | 25 | 6  | 1234 | 470352   | 5609290 | - 932 | 2562 |
| 219 | 80    | 22 | 6  | 1961 | 469413  | 56 08 3 9 0 | -1054 | 1272 | 4  | 103  | 85  | 25 | 3  | 2890 | 471774   | 5610480 | -2067 | 4420 |
| 219 | 91    | 22 | 26 | 1572 | 469099  | 5608510     | -664  | 1121 | 4  | 109  | 3   | 24 | 22 | 1302 | 468845   | 5608030 | -132  | 603  |
| 225 | 136   | 3  | 4  | 1344 | 472144  | 5610510     | -428  | 4729 | 4  | 120  | 106 | 5  | 4  | 1433 | 471888   | 5610100 | -726  | 4280 |
| 223 | 32    | 2  | 25 | 2178 | 471035  | 5610490     | -1232 | 3987 | 4  | 29   | 149 | 24 | 24 | 819  | 469322   | 5608540 | 22    | 1294 |
| 239 | 72    | 21 | 25 | 1632 | 468672  | 5607930     | -413  | 400  | 4  | 134  | 162 | 3  | 5  | 1595 | 471904   | 5610080 | -754  | 4283 |
| 242 | 109   | 25 | 5  | 1930 | 470955  | 5609330     | -1377 | 3074 | 4  | 155  | 18  | 1  | 6  | 2174 | 471786   | 5610970 | -1067 | 4756 |
| 251 | 6     | 3  | 6  | 1412 | 471376  | 5610210     | -657  | 3940 | ł  | 181  | 158 | 5  | 6  | 850  | 471036   | 5609590 | - 337 | 3289 |
| 252 | 179   | 25 | 23 | 1291 | 469207  | 5608300     | -333  | 1054 | 5  | 554  | 135 | 5  | 5  | 1324 | 471722   | 5609670 | -653  | 3905 |
| 253 | 28    | 4  | 25 | 1343 | 470643  | 5609700     | -697  | 3051 | e  | 519  | 152 | 2  | 4  | 1477 | 472344   | 5610920 | - 393 | 5078 |
| 255 | 87    | 24 | 4  | 2437 | 470995  | 5610040     | -1683 | 3539 | 6  | 564  | 148 | 4  | 5  | 1379 | 471700   | 5609760 | -665  | 3933 |
| 259 | 28    | 5  | 24 | 1378 | 470147  | 5609040     | -667  | 2250 | e  | 574  | 100 | 4  | 3  | 1790 | 472455   | 5610620 | -842  | 5044 |
| 259 | 32    | 4  | 23 | 2068 | 469969  | 5609020     | -1090 | 2096 | 6  | 589  | 119 | 4  | 4  | 1316 | 471970   | 5610230 | - 527 | 4420 |
| 266 | 92    | 23 | 26 | 1324 | 459372  | 5608710     | -567  | 1453 | 7  | 770  | 127 | 2  | 3  | 1599 | 472748   | 5611110 | - 375 | 5574 |
| 269 | 96    | 23 | 25 | 1003 | 469217  | 5608440     | -129  | 1152 | 7  | 795  | 190 | 1  | 5  | 2171 | 472339   | 5610770 | -997  | 5038 |
| 272 | 23    | 25 | 21 | 1627 | 468666  | 5608130     | -495  | 556  | ×  | 322  | 172 | 2  | 5  | 1969 | 472128   | 5610430 | - 860 | 4663 |
| 276 | 123   | 24 | 25 | 776  | 469496  | 56 08 76 0  | -107  | 1573 | 9  | 351  | 164 | 1  | 4  | 1694 | 472547   | 5611130 | -444  | 5427 |
| 277 | 113   | 3  | 3  | 1657 | 472628  | 5610940     | -553  | 5375 | 6  | 365  | 80  | 21 | 24 | 1271 | 468693   | 5607830 | 57    | 353  |
| 281 | 10    | 25 | 22 | 1551 | 468 926 | 5608090     | -448  | 701  | 10 | 034  | 140 | 1  | 3  | 1647 | 472145   | 5610740 | - 336 | 4370 |
| 281 | 31    | 4  | 24 | 1681 | 470270  | 5609390     | -883  | 2567 | 10 | 049  | 96  | 22 | 24 | 939  | 468990   | 5608100 | 189   | 757  |
| 283 | 125   | 25 | 26 | 966  | 470073  | 5609230     | -521  | 2317 | 12 | 255  | 117 | 23 | 24 | 805  | 469135   | 5603320 | 201   | 1010 |
| 293 | 92    | 5  | 3  | 1998 | 472372  | 5610520     | -1130 | 4917 | 15 | 513  | 6   | 23 | 21 | 894  | 463558   | 5608040 | 405   | 422  |
| 296 | 16    | 4  | 26 | 1178 | 470963  | 5609770     | -563  | 3344 | 16 | 586  | 96  | 21 | 23 | 976  | 468653   | 5607740 | 163   | 297  |
| 299 | 24    | 5  | 25 | 1020 | 470462  | 5509390     | -479  | 2714 | 16 | 588  | 164 | 23 | 22 | 932  | 469776   | 5607960 | 352   | 502  |
| 300 | 35    | 4  | 22 | 2393 | 469594  | 56 08 8 50  | -1273 | 1707 | 19 | 907  | 143 | 23 | 23 | 837  | 4 68 997 | 5608110 | 326   | 771  |
| 301 | 88    | 23 | 6  | 1713 | 469665  | 5608630     | -952  | 1619 | 22 | 241  | 119 | 22 | 23 | 783  | 468 91 7 | 5607970 | 471   | 627  |
| 304 | 110   | 24 | 26 | 1039 | 469844  | 5609150     | - 508 | 2095 | 25 | 559  | 113 | 21 | 22 | 740  | 463529   | 5607640 | 913   | 160  |
| 334 | 24    | 2  | 26 | 1998 | 471351  | 5610540     | -1082 | 4145 | 2  | 774  | 126 | 21 | 21 | 434  | 458484   | 5607990 | 1039  | 346  |
| 352 | 101   | 24 | 6  | 1403 | 470120  | 5609210     | -869  | 2334 | 31 | 174  | 144 | 22 | 22 | 726  | 468726   | 5607850 | 647   | 401  |
| 354 | 34    | 5  | 22 | 2114 | 469552  | 56 094 30   | -1065 | 1416 | 32 | 244  | 170 | 22 | 21 | 580  | 468548   | 5607970 | 791   | 353  |

#### POLE-POLE RESISTIVITY DATA: 1978 CORRIDOR 215 P LINE 210 C LINE 220 LILLOOET RIVER MAP AREA

| R(a) | Dir | C  | P  | 2e   | хđ       | Уđ         | Zđ    | Vhor  | R(a) | Dir  | : C# | P  | Ze   | хđ      | Yđ      | Zđ     | Vhor  |
|------|-----|----|----|------|----------|------------|-------|-------|------|------|------|----|------|---------|---------|--------|-------|
| 58   | 3   | 24 | 5  | 704  | 469313   | 5609680    | -161  | 2326  | 514  | 10   | 23   | 25 | 1022 | 468937  | 5609200 | -247   | 1731  |
| 124  | 22  | 22 | 5  | 1490 | 468848   | 5608880    | -575  | 1482  | 518  | 64   | 1    | 5  | 2321 | 471295  | 5611380 | -1216  | 4936  |
| 151  | 18  | 23 | 5  | 1132 | 469041   | 5609220    | -371  | 1829  | 526  | 100  | 5    | 5  | 1047 | 470156  | 5610320 | - 520  | 3386  |
| 180  | 85  | 4  | 25 | 1438 | 470248   | 5610520    | -787  | 3582  | 539  | 164  | 22   | 23 | 965  | 468171  | 5608820 | 160    | 908   |
| 181  | 178 | 5  | 2  | 1547 | 471011   | 5611450    | -582  | 4774  | 546  | 95   | 5    | 25 | 1207 | 470005  | 5610310 | -664   | 3263  |
| 186  | 67  | A  | 21 | 2787 | 468865   | 5609370    | -1632 | 1788  | 547  | 96   | 25   | 23 | 979  | 468619  | 5609400 | -234   | 1640  |
| 190  | 14  | 21 | 24 | 1504 | 468024   | 5609570    | -244  | 500   | 554  | 83   | 25   | 22 | 1324 | 468308  | 5609130 | -418   | 1231  |
| 103  | 14  | 21 | 29 | 2214 | 400024   | 5600000    | -1117 | 1200  | ECE  | 70   | 25   | 21 | 1696 | 467000  | 5609760 | -520   | 740   |
| 193  | 25  | 41 | 4  | 2314 | 400400   | 5609090    | -111/ | 1233  | 505  | 10   | 23   | 61 | 1000 | 40/990  | 5611040 | - 1015 | 44.02 |
| 199  | 25  | 25 | 4  | 2045 | 470535   | 5611180    | -1148 | 4247  | 570  | 00   | 24   | 22 | 1944 | 4/1003  | 5611040 | -1015  | 14976 |
| 215  | 19  | 24 | 3  | 1713 | 469851   | 5610560    | -952  | 3325  | 606  | 112  | 24   | 23 | 827  | 408532  | 5609280 | 0      | 148/  |
| 219  | 7   | 5  | 1  | 1873 | 471276   | 5611790    | -701  | 5203  | 609  | 167  | 24   | 25 | 647  | 469200  | 5609650 | -90    | 2221  |
| 230  | 68  | 3  | 22 | 2750 | 469473   | 5610180    | -1720 | 2788  | 665  | 27   | 24   | 2  | 2271 | 470316  | 5610960 | -1334  | 3938  |
| 245  | 73  | 4  | 22 | 2442 | 469233   | 5609750    | -1508 | 2312  | 697  | 168  | 4    | 2  | 1300 | 471191  | 5611530 | -239   | 4958  |
| 248  | 24  | 23 | 3  | 2114 | 469595   | 5610090    | -1196 | 2809  | 721  | 110  | 4    | 4  | 1133 | 470438  | 5610810 | - 384  | 3916  |
| 259  | 63  | 3  | 21 | 3099 | 469066   | 5609850    | -1363 | 2271  | 751  | 140  | 4    | 3  | 1120 | 470727  | 5611170 | -260   | 4375  |
| 259  | 79  | 4  | 24 | 1723 | 469941   | 5610320    | -1019 | 3224  | 759  | 30   | 23   | 2  | 2665 | 470074  | 5610480 | -1591  | 3424  |
| 276  | 71  | 5  | 21 | 2536 | 468631   | 5609020    | -1426 | 1378  | 761  | 74   | 1    | 4  | 1946 | 471287  | 5611620 | -746   | 5089  |
| 281  | 22  | 21 | 25 | 1789 | 468499   | 5608440    | -624  | 982   | 765  | 93   | 3    | 4  | 1305 | 470675  | 5611090 | -432   | 4281  |
| 291  | 0   | 4  | 1  | 1582 | 471472   | 5611840    | -315  | 5376  | 775  | 81   | 2    | 4  | 1608 | 470989  | 5611300 | - 582  | 4659  |
| 303  | 137 | 24 | 24 | 602  | 468847   | 5609470    | 76    | 1845  | 777  | 144  | 23   | 23 | 772  | 468360  | 5609070 | 216    | 1216  |
| 326  | 4   | 22 | 24 | 1112 | 468362   | 5608870    | -86   | 1080  | 798  | 169  | 3    | 1  | 1243 | 471529  | 5611970 | 104    | 5506  |
| 329  | 76  | 24 | 21 | 1429 | 467960   | 56 08 66 0 | -206  | 647   | 891  | 30   | 24   | 1  | 2660 | 470601  | 5611330 | -1530  | 4398  |
| 334  | 16  | 22 | 25 | 1370 | 468752   | 5608860    | -439  | 1387  | 912  | 75   | 3    | 25 | 1742 | 470484  | 5610850 | -960   | 3980  |
| 340  | 29  | 25 | 1  | 2441 | 470827   | 5611540    | -1342 | 4705  | 926  | 88   | 1    | 3  | 1508 | 471449  | 5612000 | -179   | 5469  |
| 341  | 25  | 22 | 3  | 2448 | 469357   | 5609770    | -1408 | 2417  | 938  | 101  | 2    | 3  | 1245 | 471192  | 5611670 | - 95   | 5061  |
| 348  | 77  | 4  | 23 | 2080 | 469592   | 5610020    | -1281 | 2760  | 955  | 91   | 23   | 21 | 1018 | 467910  | 5608560 | 327    | 538   |
| 354  | 24  | 23 | 3  | 2114 | 469595   | 5610090    | -1196 | 2809  | 999  | 119  | 3    | 3  | 1084 | 470941  | 5611420 | - 94   | 4705  |
| 364  | 172 | 22 | 24 | 20.9 | 469579   | 56 09160   | 74    | 1433  | 1042 | 30   | 22   | 2  | 2087 | 469810  | 5610180 | -1809  | 3028  |
| 367  | 79  | 5  | 22 | 2104 | 468 970  | 5609420    | -1321 | 1996  | 1058 | 32   | 21   | 2  | 3360 | 469440  | 5609820 | -2021  | 2514  |
| 272  | 02  | 24 | 22 | 1110 | 460370   | 5600020    | -1321 | 1112  | 1050 | 152  | 21   | 2  | 1042 | 471 200 | 5611690 | 106    | 5124  |
| 374  | 33  | 24 | 22 | 1025 | 400230   | 5609020    | 1115  | 2254  | 1003 | 1172 | 22   | 22 | 1042 | 4/1200  | 5600000 | 265    | 011   |
| 304  | 03  | 2  | 23 | 1033 | 409313   | 5609720    | -1115 | 20055 | 1124 | 111  | 43   | 44 | 040  | 400100  | 5600000 | 205    | 5447  |
| 395  | 87  | C  | 24 | 14/0 | 469681   | 5610060    | -876  | 2800  | 1302 | 129  | 4    | 25 | 920  | 471509  | 5611900 | 107    | 4034  |
| 402  | 2   | 25 | 4  | 900  | 40 90 41 | 5610410    | -364  | 3008  | 1390 | 04   | +    | 20 | 2459 | 471100  | 5610930 | -13/2  | 9039  |
| 411  | 155 | 5  | 3  | 1229 | 470597   | 5611080    | -446  | 4221  | 1425 | 32   | 23   | +  | 3038 | 4/038/  | 5610520 | -1/90  | 3007  |
| 416  | 15  | 25 | 3  | 1492 | 470052   | 5610800    | -780  | 3635  | 1460 | 151  | 2    | 1  | 996  | 471695  | 5612100 | 490    | 5/1/  |
| 416  | 71  | 3  | 23 | 2385 | 469848   | 5610410    | -1477 | 3218  | 1550 | 68   | 2    | 25 | 2115 | 470829  | 5611070 | -1177  | 4385  |
| 431  | 163 | 25 | 5  | 515  | 469481   | 5609930    | -59   | 2621  | 1601 | 162  | 21   | 22 | 1033 | 467747  | 5608390 | 424    | 305   |
| 437  | 75  | 3  | 5  | 1567 | 470649   | 5610820    | -802  | 4081  | 1628 | 109  | 1    | 2  | 1060 | 471694  | 5612120 | 402    | 5733  |
| 437  | 112 | 25 | 24 | 652  | 468964   | 5609630    | -60   | 2037  | 1729 | 32   | 22   | 1  | 3348 | 470113  | 5610530 | -2003  | 3489  |
| 445  | 143 | 25 | 25 | 531  | 469320   | 5609890    | -60   | 2477  | 1789 | 33   | 21   | 1  | 3715 | 469730  | 5610190 | -2222  | 2974  |
| 462  | 127 | 5  | 4  | 1060 | 470209   | 5610650    | -410  | 3644  | 1797 | 139  | 22   | 22 | 864  | 467977  | 5608650 | 400    | 652   |
| 468  | 89  | 21 | 23 | 1277 | 467861   | 56 09 50 0 | 76    | 460   | 1875 | 111  | 22   | 21 | 839  | 467827  | 5608410 | 621    | 372   |
| 476  | 28  | 21 | 3  | 2842 | 469022   | 5609390    | -1612 | 1914  | 2086 | 139  | 21   | 21 | 766  | 467672  | 5608250 | 853    | 150   |
| 509  | 87  | 4  | 5  | 1267 | 470400   | 5610510    | -632  | 3694  | 2104 | 129  | 1    | 1  | 918  | 471801  | 5512240 | 670    | 5891  |

#### POLE-POLE RESISTIVITY DATA: 1978 CORRIDOR 225 P LINE 230 C LINE 220 LILLODET RIVER MAP AREA

| R(a) | Dir | C# | P  | Ze   | хð     | Yd      | zð    | Vhor | R(a) | Dir | Cł | PI | Ze   | хđ     | £З      | Zđ    | vnor |
|------|-----|----|----|------|--------|---------|-------|------|------|-----|----|----|------|--------|---------|-------|------|
| 114  | 69  | 25 | 2  | 2019 | 469623 | 5512100 | -996  | 4037 | 341  | 117 | 24 | 25 | 1047 | 463162 | 5510390 | -279  | 1799 |
| 129  | 92  | 23 | 5  | 1488 | 467950 | 5610160 | -632  | 1489 | 342  | 65  | 24 | 2  | 2252 | 469288 | 5611960 | -1135 | 3712 |
| 170  | 15  | 25 | 21 | 1722 | 467442 | 5609510 | -516  | 693  | 353  | 90  | 21 | 24 | 1688 | 457139 | 5609490 | - 556 | 472  |
| 174  | 9   | 24 | 21 | 1459 | 467357 | 5609520 | -167  | 627  | 377  | 133 | 25 | 25 | 946  | 468345 | 5610420 | -239  | 1960 |
| 187  | 90  | 22 | 25 | 1610 | 467625 | 5609960 | -705  | 1112 | 388  | 109 | 22 | 23 | 1001 | 467434 | 5609820 | 44    | 831  |
| 194  | 160 | 24 | 23 | 828  | 467848 | 5610190 | 102   | 1435 | 391  | 154 | 23 | 22 | 753  | 467481 | 5609760 | 370   | 875  |
| 200  | 72  | 24 | 3  | 1678 | 469913 | 5611390 | -763  | 3039 | 394  | 112 | 21 | 22 | 1061 | 457029 | 5609550 | 195   | 423  |
| 201  | 1   | 24 | 22 | 1031 | 467616 | 5609960 | 27    | 1110 | 419  | 96  | 25 | 4  | 1050 | 469953 | 5611020 | - 360 | 2312 |
| 219  | 175 | 25 | 23 | 972  | 467931 | 5610230 | -135  | 1519 | 421  | 134 | 21 | 21 | 1093 | 465777 | 5609970 | 502   | 223  |
| 230  | 96  | 23 | 25 | 1322 | 467851 | 5510140 | -449  | 1401 | 427  | 66  | 22 | 3  | 2451 | 469380 | 5610900 | -1429 | 2243 |
| 248  | 10  | 25 | 22 | 1262 | 467692 | 5609980 | -295  | 1174 | 463  | 97  | 21 | 23 | 1328 | 457033 | 5609530 | -133  | 433  |
| 268  | 110 | 24 | 5  | 1179 | 469279 | 5610440 | -436  | 1913 | 435  | 155 | 22 | 21 | 1042 | 467061 | 5609170 | 383   | 232  |
| 273  | 87  | 24 | 4  | 1253 | 468533 | 5510840 | -450  | 2448 | 496  | 66  | 21 | 3  | 2345 | 453124 | 5510390 | -1707 | 1769 |
| 275  | 125 | 23 | 23 | 790  | 467627 | 5609940 | 236   | 1100 | 618  | 132 | 22 | 22 | 839  | 457256 | 5609570 | 352   | 574  |
| 278  | 65  | 23 | 3  | 2126 | 463531 | 5611110 | -1117 | 2571 | 631  | 65  | 25 | 1  | 2405 | 469930 | 5512450 | -1177 | 4505 |
| 279  | 103 | 23 | 24 | 1067 | 467734 | 5609960 | -115  | 1195 | 953  | 63  | 23 | 2  | 2639 | 468859 | 5611760 | -1489 | 3280 |
| 286  | 153 | 25 | 24 | 920  | 468203 | 5610350 | -209  | 1303 | 269  | 63  | 24 | 1  | 2627 | 159573 | 5612360 | -1305 | 4196 |
| 296  | 123 | 25 | 5  | 1042 | 463558 | 5610570 | -448  | 2216 | 995  | 63  | 22 | 2  | 3020 | 458731 | 5611450 | -1332 | 2960 |
| 303  | 136 | 24 | 24 | 912  | 463046 | 5610310 | -36   | 1659 | 1539 | 61  | 23 | 1  | 3067 | 469105 | 5512220 | -1644 | 3793 |
| 330  | 75  | 25 | 3  | 1439 | 469236 | 5611560 | -623  | 3337 | 1721 | 51  | 22 | 1  | 3383 | 469186 | 5611560 | -2053 | 3349 |
| 334  | 173 | 23 | 21 | 1094 | 467245 | 5609330 | 275   | 442  | 1836 | 52  | 21 | ĩ  | 3757 | 469077 | 5610910 | -2333 | 2835 |

POLE-POLE RESISTIVITY DATA: 1978 CORRIDOR 235 P LINE 230 C LINE 240 LILLOOET RIVER MAP AREA

| R(a  | ) Din | : C | • P# | Ze   | хđ       | ¥д            | Zđ    | Vhor  | R(a) | Di  | C CI | P# | 2e   | Xð     | ¥д      | Zð    | Vhor |
|------|-------|-----|------|------|----------|---------------|-------|-------|------|-----|------|----|------|--------|---------|-------|------|
| 120  | 72    | 2   | 21   | 129  | 467609   | 5611740       | -1820 | 2370  | 519  | 8   | 22   | 25 | 519  | 466838 | 5610910 | -630  | 1266 |
| 230  | 103   | 24  | 21   | 239  | 466 398  | 5610610       | -445  | 738   | 522  | 92  | 1    | 24 | 522  | 468990 | 5612510 | -1448 | 3943 |
| 252  | 106   | 25  | 22   | 252  | 466737   | 5610960       | -656  | 1205  | 522  | 176 | 21   | 23 | 522  | 466154 | 5610660 | - 327 | 568  |
| 253  | 10    | 24  | 4    | 253  | 468324   | 5611910       | -930  | 3054  | 524  | 89  | 4    | 23 | 524  | 467543 | 5611740 | -1098 | 2319 |
| 259  | 18    | 23  | 5    | 259  | 467605   | 5611270       | -948  | 2109  | 557  | 167 | 5    | 4  | 557  | 468943 | 5612750 | -335  | 4043 |
| 269  | 11    | 25  | 3    | 269  | 468889   | 5612460       | -1017 | 3931  | 558  | 134 | 3    | 4  | 553  | 469342 | 5612990 | -56   | 4507 |
| 270  | 82    | 5   | 21   | 270  | 466510   | 5611340       | -1249 | 1372  | 575  | 99  | 1    | 4  | 575  | 469710 | 5613390 | -100  | 5044 |
| 288  | 1 70  | 23  | 26   | 288  | 467075   | 5610820       | -330  | 1440  | 595  | 76  | 1    | 25 | 585  | 469286 | 5612800 | -1031 | 4349 |
| 312  | 147   | 21  | 21   | 312  | 465821   | 5610430       | 255   | 174   | 585  | 124 | 5    | 24 | 585  | 467605 | 5611710 | -767  | 2350 |
| 313  | 81    | 3   | 22   | 313  | 467684   | 5611670       | -1444 | 2394  | 594  | 134 | 2    | 3  | 594  | 469529 | 5613240 | 112   | 4808 |
| 314  | 114   | 24  | 22   | 314  | 465697   | 5610940       | -401  | 1106  | 600  | 148 | 24   | 26 | 600  | 467425 | 5611110 | -237  | 1877 |
| 326  | 72    | 1   | 22   | 326  | 468368   | 5612190       | -1834 | 3253  | 611  | 4   | 21   | 24 | 611  | 466255 | 5610580 | -448  | 598  |
| 326  | 82    | 4   | 22   | 326  | 467252   | 5611560       | -1303 | 1987  | 619  | 27  | 24   | 1  | 619  | 469428 | 5612590 | -1481 | 4350 |
| 330  | 88    | 5   | 22   | 3 30 | 466992   | 5511510       | -1085 | 1749  | 623  | 175 | 22   | 24 | 623  | 466544 | 5610730 | - 365 | 923  |
| 336  | 22    | 5   | 1    | 336  | 469796   | 5513390       | - 905 | 5113  | 624  | 152 | 3    | 3  | 624  | 469471 | 5613090 | -79   | 4670 |
| 341  | 25    | 25  | ī    | 341  | 469395   | 5613010       | -1372 | 4555  | 632  | 13  | 5    | 2  | 632  | 469563 | 5613140 | -672  | 4775 |
| 344  | 19    | 25  | 2    | 344  | 469198   | 5612700       | -1236 | 4222  | 634  | 166 | 23   | 24 | 634  | 466777 | 5610760 | - 322 | 1140 |
| 347  | 75    | 2   | 22   | 347  | 467972   | 5611970       | -1624 | 2802  | 639  | 0   | 5    | 3  | 639  | 469195 | 5512960 | -495  | 4374 |
| 352  | 75    | 1   | 23   | 352  | 459674   | 5612380       | -1599 | 3607  | 639  | 149 | 4    | 4  | 639  | 469105 | 5612960 | -111  | 4305 |
| 359  | 80    | 2   | 23   | 359  | 469272   | 5612160       | -1392 | 3158  | 542  | 93  | 3    | 25 | 542  | 468549 | 5612290 | -707  | 3533 |
| 367  | 177   | 23  | 25   | 367  | 457133   | 5610970       | -518  | 1552  | 645  | 114 | 4    | 24 | 645  | 467882 | 5611810 | -953  | 2634 |
| 369  | 97    | 5   | 23   | 369  | 457253   | 5611670       | -911  | 2061  | 654  | 167 | 4    | 3  | 654  | 469280 | 5613130 | -233  | 4544 |
| 385  | 3     | 22  | 26   | 395  | 466300   | 5610770       | -417  | 1165  | 562  | 5   | 4    | 2  | 552  | 459625 | 5513290 | - 351 | 4913 |
| 394  | 18    | 21  | 25   | 394  | 456 54 3 | 5610730       | -787  | 918   | 652  | 156 | 5    | 5  | 5 62 | 459501 | 5512300 | -181  | 3420 |
| 400  | 163   | 21  | 22   | 400  | 465014   | 5610520       | 3     | 367   | 667  | 114 | 1    | 3  | 667  | 469818 | 5613430 | 149   | 5156 |
| 406  | 26    | 23  | 2    | 406  | 469557   | 5512110       | -1739 | 3361  | 671  | 82  | 2    | 25 | 571  | 458908 | 5612590 | - 835 | 3914 |
| 414  | 119   | 23  | 21   | 414  | 466211   | 5610520       | -150  | 523   | 687  | 145 | 25   | 24 | 687  | 467275 | 5611210 | - 500 | 1795 |
| 419  | 146   | 22  | 22   | 413  | 465255   | 5610550       | -85   | 634   | 692  | 159 | 24   | 25 | 692  | 457517 | 5611260 | - 365 | 2030 |
| 427  | 133   | 23  | 22   | 427  | 466556   | 5510760       | -240  | 945   | 730  | 130 | 4    | 5  | 730  | 463797 | 5612520 | -67   | 3788 |
| 431  | 162   | 22  | 23   | 4 31 | 466418   | 5610820       | -318  | 866   | 759  | 173 | 3    | 2  | 759  | 469764 | 5613230 | - 90  | 4989 |
| 4 35 | 15    | 21  | 26   | 435  | 465 510  | 5610580       | -555  | 926   | 762  | 114 | 3    | 5  | 762  | 469195 | 5612660 | -61   | 4194 |
| 441  | 133   | 25  | 26   | 441  | 467459   | 5611250       | -310  | 1972  | 763  | 9   | 24   | 5  | 763  | 468056 | 5611550 | -643  | 2643 |
| 456  | 119   | 25  | 23   | 455  | 466 908  | 5511100       | -556  | 1425  | 908  | 83  | 1    | 5  | 809  | 459707 | 5613100 | - 306 | 4867 |
| 460  | 87    | 3   | 23   | 460  | 457973   | 5511870       | -1233 | 2744  | 810  | 94  | 2    | 5  | 910  | 469365 | 5612890 | -128  | 4465 |
| 460  | 146   | 25  | 25   | 450  | 467684   | 5611530       | -423  | 2312  | 837  | 1   | 25   | 5  | 887  | 469224 | 5611940 | - 556 | 2933 |
| 461  | 130   | 22  | 21   | 461  | 46 5958  | 5610440       | 86    | 274   | 934  | 153 | 24   | 24 | 934  | 465917 | 5510820 | -167  | 1292 |
| 463  | 15    | A   | 1    | 463  | 469770   | 5613550       | -453  | 5200  | 937  | 99  | 4    | 25 | 337  | 459217 | 5612120 | - 594 | 3037 |
| 174  | 120   | 24  | 23   | 474  | 456217   | 5510950       | - 360 | 1271  | 1072 | 153 | 2    | 2  | 1072 | 459815 | 5513390 | 253   | 5124 |
| 402  | A     | 25  | A    | 492  | 458491   | 5512210       | -837  | 3363  | 1075 | 30  | 23   | ĩ  | 1075 | 463738 | 5512450 | -1834 | 3706 |
| 105  | 114   | 2   | A    | 405  | 469429   | 5613200       | 0     | 4704  | 1209 | 177 | 2    | ī  | 1209 | 170075 | 5613550 | 314   | 5434 |
| 504  | 140   | 23  | 23   | 504  | 455573   | 5610970       | - 350 | 1107  | 1217 | 135 | 1    | 2  | 1217 | 470080 | 5613530 | 494   | 5453 |
| 506  | 199   | 23  | 24   | 504  | 453505   | 5612290       | -1247 | 3493  | 1229 | 33  | 22   | 1  | 1229 | 463133 | 5512590 | -2089 | 3330 |
| 500  | 23    | 21  | 5    | 508  | 466970   | 5611010       | -1357 | 1433  | 1755 | 159 | 1    | 1  | 1755 | 470231 | 5613670 | 693   | 5670 |
| 516  | 100   | 21  | 24   | 516  | 469710   | 5611020       | -1097 | 300.9 |      | 200 | -    | -  |      |        |         |       |      |
| 272  | 104   | 2   | 63   | 273  | 400 310  | 2.7 7 7 2 3 1 | 1423  | 2020  |      |     |      |    |      |        |         |       |      |

### POLE-POLE RESISTIVITY DATA: 1978 CORRIDOR 245 P LINE 250 C LINE 240 LILLOOET RIVER MAP AREA

| R(a) | ) Di | C C I | P# | Ze  | ЪХ        | ¥đ      | 23    | Vhor | R(a) | Dir  | : 21 | PI | Ze   | Xð     | ¥З      | 2.3   | vhor  |
|------|------|-------|----|-----|-----------|---------|-------|------|------|------|------|----|------|--------|---------|-------|-------|
| 122  | 1 27 | 21    | 21 | 122 | 465097    | 5611450 | 337   | 341  | 741  | 157  | 1    | 3  | 741  | 463722 | 5614230 | 337   | 4370  |
| 193  | 131  | 2     | 4  | 194 | 469050    | 5613910 | -179  | 4144 | 745  | 131  | 4    | 5  | 745  | 457582 | 5613480 | -745  | 3509  |
| 249  | 109  | 21    | 22 | 249 | 455138    | 5511530 | 113   | 398  | 747  | 103  | 4    | 3  | 747  | 458035 | 5614120 | -499  | 4263  |
| 249  | 109  | 21    | 22 | 249 | 465138    | 5611530 | 113   | 398  | 755  | 1.33 | 2    | 3  | 755  | 463519 | 5514150 | 182   | 4662  |
| 370  | 89   | 4     | 1  | 370 | 458744    | 5514740 | -859  | 5201 | 759  | 169  | 4    | 26 | 759  | 465977 | 5613020 | -772  | 2671  |
| 406  | 112  | 23    | 26 | 496 | 45 59 35  | 5512120 | - 684 | 1297 | 760  | 100  | 2    | 1  | 760  | 469205 | 5614610 | -19   | 54.93 |
| 411  | 15   | 4     | 22 | 411 | 465207    | 5612590 | -855  | 1990 | 752  | 1.27 | 1    | 2  | 752  | 469984 | 5611380 | 395   | 5174  |
| 413  | 94   | 21    | 23 | 413 | 465298    | 5611710 | -200  | 517  | 782  | 178  | 4    | 24 | 732  | 465550 | 5613010 | -707  | 2487  |
| 429  | 116  | 23    | 24 | 429 | 46 56 51  | 5612110 | - 396 | 1153 | 783  | 111  | 2    | 2  | 783  | 469824 | 5614340 | 79    | 5022  |
| 463  | 93   | 3     | 1  | 463 | 469 96 8  | 5514560 | -470. | 5329 | 799  | 179  | 25   | 22 | 739  | 455814 | 5512350 | -496  | 1423  |
| 470  | 122  | 23    | 23 | 470 | 46 55 54  | 5512190 | -89   | 1203 | 818  | 113  | 3    | 3  | 318  | 453252 | 5514110 | -153  | 4425  |
| 512  | 125  | 22    | 22 | 512 | 465162    | 5611710 | 41    | 513  | 820  | 146  | 25   | 25 | 820  | 465541 | 5512790 | -715  | 2263  |
| 513  | 136  | 24    | 24 | 513 | 455060    | 5512540 | - 393 | 1735 | 827  | 155  | 25   | 24 | 927  | 456250 | 5612730 | -537  | 1998  |
| 515  | 160  | 23    | 21 | 515 | 455239    | 5511690 | 75    | 557  | 323  | 175  | 1    | 4  | 829  | 468577 | 5614100 | 22    | 4580  |
| 530  | 35   | 1     | 22 | 530 | 467252    | 5613110 | -1556 | 3024 | 544  | 111  | 1    | 1  | 344  | 459399 | 5614710 | 419   | 5595  |
| 570  | 93   | 4     | 2  | 570 | 453381    | 5614450 | -713  | 4738 | 852  | 155  | 2    | 4  | 852  | 159314 | 5613970 | -7    | 4337  |
| 582  | 2.4  | 3     | 22 | 592 | 466545    | 5612750 | -1059 | 2242 | 8 91 | 104  | 23   | 25 | 991  | 465995 | 5612370 | -315  | 1574  |
| 5R 5 | 142  | 23    | 22 | 585 | 465457    | 5511950 | 23    | 890  | 903  | 145  | 3    | 5  | 903  | 155011 | 5613730 | -512  | 4001  |
| 588  | 35   | 1     | 23 | 588 | 467496    | 5613420 | -1263 | 3393 | 904  | 2    | 3    | 25 | 904  | 467220 | 5613210 | -833  | 3059  |
| 591  | 147  | 24    | 23 | 591 | 46 58 13  | 5612350 | -57   | 1422 | 911  | 29   | 2    | 23 | 911  | 467164 | 5613230 | -1056 | 3022  |
| 600  | 109  | 22    | 23 | 600 | 465393    | 5612020 | -222  | 993  | 929  | 29   | 1    | 24 | 928  | 467595 | 5613640 | -1223 | 3620  |
| 611  | 20   | 4     | 21 | 611 | 45 5 96 3 | 5612260 | -1043 | 1491 | 947  | 21   | 1    | 25 | 947  | 467968 | 5613770 | -919  | 3991  |
| 514  | 27   | 3     | 21 | 614 | 466326    | 5612390 | -1277 | 1853 | 1011 | 11   | 3    | 24 | 1011 | 456960 | 5613200 | -332  | 2847  |
| 670  | 3    | 4     | 23 | 670 | 456465    | 5512970 | -617  | 2258 | 1024 | 23   | 2    | 24 | 1024 | 457299 | 5613420 | -1042 | 3249  |
| 671  | 20   | 3     | 23 | 671 | 466798    | 5613040 | -800  | 2619 | 1033 | 15   | 2    | 26 | 1033 | 467534 | 5613410 | -936  | 3470  |
| 674  | 31   | 2     | 22 | 674 | 466 918   | 5612930 | -1343 | 2648 | 1044 | 165  | 2    | 5  | 1044 | 453309 | 5613920 | -433  | 4293  |
| 674  | 143  | 22    | 21 | 674 | 465023    | 5611540 | 185   | 300  | 1059 | 23   | 1    | 25 | 1059 | 467897 | 5613610 | -1137 | 3841  |
| 577  | 167  | 25    | 23 | 577 | 456060    | 5612600 | -336  | 1777 | 1059 | 130  | 1    | 5  | 1059 | 468580 | 5613970 | -449  | 4506  |
| 581  | 165  | 24    | 22 | 681 | 46 55 14  | 5612150 | -131  | 1140 | 1829 | 11   | 2    | 25 | 1829 | 467572 | 5613560 | -731  | 3627  |
| 682  | 8    | 25    | 21 | 582 | 46 556 3  | 5512050 | -533  | 1034 | 2167 | 176  | 3    | 25 | 2167 | 467324 | 5613350 | -550  | 3226  |
| 705  | 116  | 4     | 4  | 705 | 457806    | 5513370 | -456  | 3926 | 3035 | 119  | 24   | 25 | 3035 | 456331 | 5612740 | - 554 | 2107  |
| 732  | 99   | 3     | 2  | 732 | 469597    | 5614390 | -336  | 4355 | 3807 | 135  | 25   | 25 | 3807 | 465647 | 5612920 | -675  | 2428  |

# APPENDIX B-2

# PSEUDOSECTION DATA PLOTS AND R(A) Vs. DEPTH PLOTS

The apparent resistivity R(A) data are plotted on topographic sections located through each data corridor. The position of each pseudosection and accompanying R(A) vs. Depth Plot is shown on plan maps of Figures 4.1 and 4.6 by two triangles



marking the horizontal limits of the section. Triangles on the plan maps correspond with those at the top of the section plots.

The pseudosection plots are not true sections of resistivity values - they are a conventional means of graphically presenting data for purposes of analysis and interpretation. The vertical coordinate is plotted according to a method described by Edwards (1977).

R(A) vs. Depth plots are constructed to facilitate observation of trends of apparent resistivity with depth over the width of the pseudosection and to improve resolution of anisotropic conditions if any. These also follow standard geophysical convention. Two steps are taken in the construction:

- a) The pseudosection is divided into 1 km wide slices, defined by the vertical dotted lines on the plots. Data located within each slice are grouped and designated as representative of conditions within the area represented by the slice.
- b) The areas defined for each slice are reformatted as individual graphs plotting the log of apparent resistivity on the X axis and the elevation of the plotting point (Zd) on the Y axis. The orientation of each resistivity reading is indicated by the angle of rotation (from the perpendicular) of the plot symbol. North is 0°, East is 90°, as indicated on the legend.


































#### APPENDIX B-3

## PLOTTING PROGRAM

The survey grid installed at Meager Creek is irregular in all three dimensions, due to the variable topography. Calculation of a nominal, conventional plotting point for each measurement required a computer program to estimate the local slope characteristics for each reading, and to compute the position of the plot point relative to the slope.

All electrode coordinates (X, Y, Z) and measurement data are stored on magnetic tape. In the example pictured below, current electrode "A" and potential electrode "B" are measurement electrodes. Positions "C" and "D", on the operative lines, are inactive electrode stations providing topographic reference points opposite each of the measurement electrodes. The effective ground slope for the measurement is approximated by the plane defined by vectors AB and CD. The plot point is perpendicular to this plane from the midpoint between the measurement electrodes at penetration depth Ze.

The computer uses the stored coordinates of A,B,C and D to perform the following calculation steps:



point

# B-3(11)

- 1) compute distance AB
- compute coordinates of bisectrix of AB (point "M") 2)
- identify vector CD
- 3) 4) compute the cross product of  $\overrightarrow{CD}$  and  $\overrightarrow{AB}$  ( $\overrightarrow{CD}$  x  $\overrightarrow{AB}$ ), a vector perpendicular to the estimated effective surface plane.
- identify directed line segment MN parallel to  $CD \times AB$  and length equal to Ze = 0.75(AB) into 5) the earth.
- 6) compute and record the coordinates of plot point "N" (Xd, Yd, Zd).

#### APPENDIX B-4

#### RESISTIVITY SURVEY EQUIPMENT

#### SURVEY EQUIPMENT

All field potential measurements were taken in analog form on a Hewlett Packard chart recorder model 7155B, using self-potential offset circuitry at the input terminals. The full waveform was recorded.

Transmitter equipment for the pole-pole survey consisted of a Phoenix Geophysics IPT-1 transmitter and 3 kilowatt generator, and a Huntec Mark III LOPO transmitter.

Dipole-dipole survey used the Phoenix transmitter exclusively.

Operating frequency for the two transmitters was 0.25 Hertz, reversing square wave.

#### DATA PROCESSING EQUIPMENT

All data was entered by keyboard into a Hewlett Packard (HP) 9825A computer, and stored on magnetic tape cassettes in ASC11 form. Processing and graphics peripherals used were:

> HP 9885 flexible disk system HP 9827A four colour X-Y plotter HP 9871A printing/plotting impact printer

# APPENDIX C-I

### NEVIN SADLIER-BROWN GOODBRAND LTD. - GEOTHERMAL TEST HOLE LOC SHEET.

| Protect location MEAGER CREEK (LILLOOET) | Co-ordinates 5 614 630N 463 090 E | Sheet 1 of 7                           |
|------------------------------------------|-----------------------------------|----------------------------------------|
| Date Started 78-9-10 Date Completed      | 78-10-21 Total Depth 602.6 m Typ  | e/Size of Bits HQ/NQ IMPREGNATED & SET |
| Drilling ContractorCANADIAN LONGYEAR     | Geologic Log By WERNER G          | Seophysical Log By L.J WERNER          |
| General Summary Comments                 |                                   |                                        |

|              | DR                                                                       | ILLING 1 | LOG                                                             | GEOLOGICAL LOG                                                                                                                   | GEOPHYSICAL LOG |     |                                                         |  |  |
|--------------|--------------------------------------------------------------------------|----------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|---------------------------------------------------------|--|--|
| Dept<br>From | Depth (m) % sample recovery,<br>general hole<br>rom To Metres conditions |          |                                                                 | Rock type, description, alteration, precipitated minerals, fracture density.                                                     | Depth           | T°c | Comments, hole bottom, elapsed hours since circulation. |  |  |
| 0            | 11                                                                       | 11       | Competent                                                       | Fine to coarse sand, fairly competent, does not slump<br>in between shifts or runs.                                              |                 |     |                                                         |  |  |
| 11           | 18                                                                       | 7        | Competent                                                       | Coarse sand, gravel, some boulders; all mixed, could be till.                                                                    |                 |     |                                                         |  |  |
| 18           | 24                                                                       | 6        | Loose, lost circu-<br>lation, sealed                            | Large boulders up to 1 m; mixed with gravel, possible<br>boulder till. Some boulders very hard, probably<br>granite (mud white). |                 |     |                                                         |  |  |
| 24           | 33                                                                       | 9        | Loose, lost circu-<br>lation @ 30 m, pos-<br>sibly making water | Coarse to fine gravel, minor interspersed hard bould-<br>ers up to 1 m, making water (no artesian head) at<br>30 m.              |                 |     |                                                         |  |  |
| 33           | 34                                                                       | 1        | **                                                              | Sand                                                                                                                             |                 |     |                                                         |  |  |
| 34           | 37                                                                       | 3        |                                                                 | Small boulders mixed with gravel.                                                                                                |                 | 1   |                                                         |  |  |
| 37           | 38                                                                       | 1        |                                                                 | Sand                                                                                                                             |                 |     |                                                         |  |  |
| 38           | 39                                                                       | 1        |                                                                 | Medium to fine gravel.                                                                                                           |                 |     |                                                         |  |  |
|              |                                                                          |          |                                                                 |                                                                                                                                  |                 |     |                                                         |  |  |

## NEVIN SADLIER-BROWN GOODBRAND LTD. - GEOTHERMAL TEST HOLE LOG SHEET (Cont.)

Hole No. 78-H-1

| % sample recovery,<br>general hole<br>conditions<br>Hard drilling<br> | Rock type, description, alteration, precipitated<br>minerals, fracture density.<br>Boulder layer.<br>Medium to fine gravel.<br>Boulders & heavy sand, changing to very hard boulders<br>with breaks at heavy sand.<br>Solid rock. Began coring @ 46m                                                                                                                                                 | Depth                                                                                                                                                                                                                                                                                                                                                                                                  | T°C                                                                                                                                                                                                                                                                                                                                                                                                    | Comments, hole bottom, elapsed<br>hours since circulation.                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Herd drilling<br><br>                                                 | Boulder layer.<br>Medium to fine gravel.<br>Boulders & heavy sand, changing to very hard boulders<br>with breaks at heavy sand.<br>Solid rock. Began coring @ 46m                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                       | Medium to fine gravel.<br>Boulders & heavy sand, changing to very hard boulders<br>with breaks at heavy sand.<br>Solid rock. Began coring @ 46m                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                       | Boulders & heavy sand, changing to very hard boulders<br>with breaks at heavy sand.<br>Solid rock. Began coring @ 46m                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                       | Solid rock. Began coring @ 46m                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |
| 79%, good to 55 m;<br>poor 55 - 56 m (20%)<br>49 - 50 m (20%)         | Dacite-rhyodacite porphyry, 5 mm. phenocrysts &<br>quartz blebs, fine-grained semi-translucent dark grey<br>matrix. No vesicles. Feldspar phenocrysts euhedral,<br>clear to white. Occasional euhedral biotite books<br>2-3 mm; pseudo haxagonal. Rare if any hornblende.<br>15% white (K spar) euhedral<br>5-10% quartz clear, glassy<br>2% biotite, 1-3mm books<br>Belance - matrix, fine grained. | 51 m                                                                                                                                                                                                                                                                                                                                                                                                   | 6.964                                                                                                                                                                                                                                                                                                                                                                                                  | ll hrs. Solid bottom, bottom of<br>hole, 20' below drill string.                                                                                                                                                                                                                                                                                                                                       |
| Very poor recovery-<br>all looks like pieces<br>of rocks & cobbles    | Dacite-rhyodacite porphyry , highly fractured, proba-<br>bly breccia. Interspersed flowing sand layers or<br>sand-filled fractures, sand mostly quartz.                                                                                                                                                                                                                                              | 59 m                                                                                                                                                                                                                                                                                                                                                                                                   | 7.333                                                                                                                                                                                                                                                                                                                                                                                                  | 11 hrs. Soft bottom, 5 m from<br>bottom at hole, 6m below drill<br>string.                                                                                                                                                                                                                                                                                                                             |
|                                                                       | Very poor recovery-<br>all looks like pieces<br>of rocks & cobbles                                                                                                                                                                                                                                                                                                                                   | 2-3 mm; pseudo hexagonal. Rare if any hornblende.   15% white (K spar) euhedral   5-10% quartz clear, glassy   2% biotite, 1-3mm books   Balance - matrix, fine grained.   Very poor recovery-<br>all looks like pieces<br>of rocks & cobbles   Decite-rhyodacite porphyry, highly fractured, proba-<br>bly breccia. Interspersed flowing sand layers or<br>sand-filled fractures, sand mostly quartz. | 2-3 mm; pseudo hexagonal. Rare if any hornblende.   15% white (K spar) euhedral   5-10% quartz clear, glassy   2% biotite, 1-3mm books   Balance - matrix, fine grained.   Very poor recovery-<br>all looks like pieces<br>of rocks & cobbles   Decite-rhyodacite porphyry, highly fractured, proba-<br>bly breccia. Interspersed flowing sand layers or<br>sand-filled fractures, sand mostly quartz. | 2-3 mm; pseudo hexagonal. Rare if any hornblende.   15% white (K spar) euhedral   5-10% quartz clear, glassy   2% biotite, 1-3mm books   Balance - matrix, fine grained.   Very poor recovery-<br>all looks like pieces<br>of rocks & cobbles   Dacite-rhyodacite porphyry, highly fractured, proba-<br>bly breccia. Interspersed flowing sand layers or<br>sand-filled fractures, sand mostly quartz. |

# NEVIN SADLIER-BROWN GOODBRAND LTD. - GEOTHERMAL TEST HOLE LOG SHEET (Cont.) Hole No. 78-H-1 Sheet \_3\_ of \_7\_

|      |             | DRILLING | LOG                                                             | GEOLOGICAL LOG                                                                                                                                                                                                               | -     |     | GEOPHYSICAL LOG                                         |
|------|-------------|----------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|---------------------------------------------------------|
| Dept | h (m)<br>To | Metres   | % sample recovery,<br>general hole<br>conditions                | Rock type, description, alteration, precipitated minerals, fracture density.                                                                                                                                                 | Depth | T°C | Comments, hole bottom, elapsed hours since circulation. |
| 64   | 74          | 10       | 10% recovery, lost<br>circulation, change<br>to tricone at 74 m | Chunks of dacius porphyry, one rock of vesicular dacite<br>endesite, 5mm vesicles. Sand flows in to seal rods<br>between runs, have to pull back 12 m                                                                        |       |     |                                                         |
| 74   | 103         | 29       | Triconed                                                        | Incompetent volcanics mixed with layers or filled fract<br>ures of sand. Possibly agglomerate, breccia.                                                                                                                      | -     |     |                                                         |
| 103  | 108         | 5        | Triconed                                                        | Slow indistinct transition to harder material. More<br>biotite, hornblende & magnotite in cuttings. Change to<br>coring bit at 108 m                                                                                         |       |     |                                                         |
| 108  | 120         | 12       | 76%                                                             | Homogeneous rhyodacite porphyry, crumbly zones. Open fracture at 120 m; possible flow boundary.                                                                                                                              |       |     |                                                         |
| 120  | 134         | 14       | Open cavity, lost<br>circulation at<br>120 m.Minor caving       | Homogeneous rhyodacite porphyry, biotite to 5 mm pheno-<br>crysts. Some flow banding, generally light grey. Oc-<br>casional greenish mineral along fractures. Rock fairly<br>incompetent, crumbly to 30 cm fracture spacing. |       |     |                                                         |
|      |             |          |                                                                 |                                                                                                                                                                                                                              |       |     |                                                         |
|      |             |          |                                                                 |                                                                                                                                                                                                                              |       |     |                                                         |

# NEVIN SADLIER-BROWN GOODBRAND LTD. - GEOTHERMAL TEST HOLE LOG SHEET (Cont.) Hole No. 78-H-J Sheet \_\_\_\_\_\_ of \_\_\_\_\_

|              |             | DRILLING | G LOG                                                                                                                                     | GEOLOGICAL LOG                                                                                                                                                                                                                |       |      | CRANNETALL 100                                                                   |
|--------------|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|----------------------------------------------------------------------------------|
| Dept<br>From | h (m)<br>To | Metres   | % sample recovery,<br>general hole<br>conditions                                                                                          | Rock type, description, alteration, precipitated minerals, fracture density.                                                                                                                                                  | Depth | TOC  | GEOPHYSICAL LOG<br>Comments, hole bottom, elapsed                                |
| 134          | 149         | 15       | 92% minor caving, se<br>veral periods of lost<br>circulation, regained<br>with quick seal.<br>Generally blocky                            | Rhyodacite porphyry, flow boundary 134 m, light grey<br>to dark grey matrix. Several shear zones, generally<br>highly fractured, spacing 2-10 cm. Feldspar pheno-<br>crysts 6-10 mm. Clay fills open fractures.               |       |      |                                                                                  |
| 149          | 187         | 38       | 100% after 151 m. More<br>competent rock, still<br>occssionally blocky                                                                    | Rhyodacite porphyry, less crumbly & more massive, with<br>appearance of included clasts of diorite and pumice.<br>Minor open cavities to 1 cm, some with zeolite (cha-<br>bazite) nodules. Both hornblende & biotite present. |       |      |                                                                                  |
| 187          | 226         | 39       | 100% fsirly compe-<br>tent, no caving,<br>continual 40-60% cir<br>culation loss. HQ<br>coring stopped, HQ<br>string cemented at<br>226 m. | Rhyodacite porphyry, reasonably massive with some mi-<br>nor matrix shade changes indicating flow boundaries.<br>Occasionally very jumbled appearance indicating mixing<br>between flows and agglomerate horizons.            | 225   | 29.8 | 12 hrs. since circulation.<br>(hole cleaned & flushed<br>after cementing casing) |
|              |             |          |                                                                                                                                           |                                                                                                                                                                                                                               |       |      |                                                                                  |

Hole No. 78-H-1 Sheet \_5 of \_7 \_

|      |              | DRILLIN | G LOG                                                                                                                            | GEOLOGICAL LOG                                                                                                                                               | GEOPHYSICAL LOG |      |                                                         |  |
|------|--------------|---------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|---------------------------------------------------------|--|
| Dept | th (m)<br>To | Metres  | % sample recovery,<br>general hole<br>conditions                                                                                 | Rock type, description, alteration, precipitated minerals, fracture density.                                                                                 | Depth           | T°C  | Comments, hole bottom, elapsed hours since circulation. |  |
| 226  | 225          | 29      | 100% little caving,<br>fairly competent<br>even when highly<br>fractured, probably<br>due to drilling mud.<br>40-60% circ, loss. | Rhyodacite porphyry, flow banded, very rusty fractures<br>toward bottom. Variable fracturing, spacing 10-40 cm.<br>Pumice or vesicular fragments increasing. |                 |      |                                                         |  |
| 255  | 262          | 7       | 50% Remarkably com-<br>petent for semi-lithi<br>fied material.                                                                   | Semi-lithified polymict conglomerate, some sandy layers<br>-contributing to lost core. Cemented & triconed.                                                  | 258             | 54.9 | 12 hrs.                                                 |  |
| 262  | 271          | 9       | 95% (100% after 269).                                                                                                            | Greenish, altered intrusive probably epidotized quartz<br>monzonite, Pyrite along fractures. Highly fractured<br>to 269 m, then competent.                   |                 |      |                                                         |  |
| 271  | 294          | 23      | 100% competent. Core<br>in 5' lengths in<br>places.                                                                              | Massive quartz monzonite, occasionally sltered (ksoli-<br>nized) in fractures, partially epidotized. Pyrite<br>occurs disseminated and in fractures.         | 279             | 66.9 | 12 hrs.                                                 |  |
| 294  | 327          | 33      | 100% competent, no<br>caving, some loss at<br>circulation.                                                                       | Quartz monzonite, more fractured to crumbly in places.<br>Feldspars mostly kaolinized, mafics chloritized. Si-<br>lica cemented in fractures.                | 301             | 86.7 | 12 hrs.                                                 |  |
|      |              |         |                                                                                                                                  |                                                                                                                                                              |                 |      |                                                         |  |

#### NEVIN SADLIER-BROWN GOODBRAND LTD. - GEOTHERMAL TEST HOLE LOG SHEET (Cont.) Hole No.

.

| Dept | Depth (m) % sample recovery,<br>general hole |    |                             | Rock type, description, alteration, precipitated                                                                                                                                                                                                      | Deeth             | <b>T</b> <sup>0</sup> 0 | Comments, hole bottom, elapsed |  |
|------|----------------------------------------------|----|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|--------------------------------|--|
| 327  | 332                                          | 5  | 100%                        | Massive fine-grained, green matrix, feldspar porphyry<br>dyke, chill margins on both contacts. Fracture spacing<br>10-50 cm to crumbly.                                                                                                               | 331               | 88.8                    | 12 hrs.                        |  |
| 332  | 370                                          | 38 | 100% competent              | Altered quartz monzonite, kaolinized feldspar, conside-<br>rable pyrita. Fracturing highly variable, most fract-<br>ures contain precipitated silica, veins to 4 cm thick.                                                                            | 360               | 93.9                    | 12 hrs.                        |  |
| 370  | 370.3                                        | .3 | 100%. Competent.            | Fine-grained mafic dyke, green matrix.                                                                                                                                                                                                                |                   |                         |                                |  |
| 370  | 431                                          | 61 | 100% competent, some caving | Altered quartz monzonite, kaolinized feldspars, consi-<br>derable pyrite. Fracturing highly variable, spacing<br>50 cm to crumbly in 1 cm chunks. Silica veins, com-<br>mon, considerable pyrite disseminated in veins and<br>cavities. Some epidote. | 387<br>410<br>426 | 95.5<br>91.3<br>89.8    | 12 hrs.<br>12 hrs.<br>12 hrs.  |  |
| 431  | 450                                          | 19 | 100%                        | Relatively unaltered quartz monzonite to granodiorite,<br>rare silica veins. Fracture spacing 40-80 cm, with<br>occasional crumbly zones.                                                                                                             | 447               | 84.2                    | 12 hrs.                        |  |
|      |                                              |    |                             |                                                                                                                                                                                                                                                       |                   |                         |                                |  |
|      |                                              |    |                             |                                                                                                                                                                                                                                                       |                   |                         |                                |  |

NEVIN SADLIER-BROWN GOODBRAND LTD. - GEOTHERMAL TEST HOLE LOG SHEET (Cont.)

Hole No. 78-Sheet \_

| Projec | 50 |
|--------|----|
| Date S |    |
| Drilli |    |

| -   |   |             |   |     |    |     |
|-----|---|-------------|---|-----|----|-----|
| r : | - | -           | - | -   |    |     |
|     | - | <b>C</b> 11 |   | E 4 | в. | - 6 |

| Date S              |      |             | DRILLIN | IG LOG                                                                                                                                           | GEOLOGICAL LOG                                                                                                                                                                                                                             |                          |                              | GEOPHYSICAL LOG                                                   |
|---------------------|------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|-------------------------------------------------------------------|
| Drilli<br>Geners Su | Dept | h (m)<br>To | Metres  | % sample recovery,<br>general hole<br>conditions                                                                                                 | Rock type, description, alteration, precipitated minerals, fracture density.                                                                                                                                                               | Depth                    | T°C                          | Comments, hole botto<br>hours since circulat                      |
|                     | 450  | 461         | 11      | 80%. 2 runs lost due<br>to core tube not<br>locking                                                                                              | Altered quartz monzonite, kaolinized feldspar. Fract-<br>ure spacing 3-30 cm. Still few silica veins, rare<br>pyrite.                                                                                                                      |                          |                              |                                                                   |
| De th               | 461  | 481         | 20      | 100% competent.                                                                                                                                  | Altered quartz monzonite, kaolinized feldspars, in-<br>crease in silica veins and pyrite. Fracture spacing<br>20-120 cm, highly variable.                                                                                                  | 473                      | 84.1                         | 12 hrs. Possible re<br>problems with probe                        |
| 47.                 | 481  | 483         | 2       | 100% competent.                                                                                                                                  | Fine-grained green mafic dyke, cut by silics veins.                                                                                                                                                                                        |                          |                              |                                                                   |
| 71.<br>76. h.       | 483  | 556         | 73      | 100% competent, in-<br>creasing lost circu-<br>lation to no return.                                                                              | Altered quartz monzonite, kaolinized feldspars, ex-<br>tensive silica/pyrite veins. Fracturing extremely<br>variable, 1 to 50 cm.                                                                                                          | 491<br>517<br>534<br>544 | 88.5<br>93.0<br>97.5<br>99,4 | 12 hrs.<br>12 hrs, soft bottom<br>12 hrs. rebuilt prob<br>12 hrs. |
| 121. μ              | 556  | 572         | 16      | 85% caving, loss of<br><u>h</u> ead pressure                                                                                                     | Coarse-grained porphyritic granodiorite-quartz diorite<br>massive to 561 m, then into highly sheared material.<br>All distinctly free of silica weins.                                                                                     | 577                      | 101.8                        | 12 hrs.                                                           |
|                     | 572  | 603         | 31      | 90% lost core due to<br>some open cavities &<br>extremely crumbly ma-<br>terial. Minor periods<br>of circulation return,<br>Some caving problems | Altered quartz monzonite, kaolinized feldspars, some<br>sericite-talc alteration along fractures. Layered<br>silica and drusy quartz veins. Fault/shear zone to<br>585m, then to more massive with fractures variable,<br>spacing 1-60 cm. | 573                      | 102.8                        | 12 hrs. Probe cabl<br>by heat, pressure, t<br>blems.              |

De ith From 176 31. 182 1 2

#### APPENDIX C-3

### GRAPH OF TEMPERATURE REBOUND AFTER STOPPED CIRCULATION

Temperature measurements in research wells are taken at the bottom of the hole after each drill shift as drilling progresses. Undisturbed temperatures (pre-drilling) at depth are affected by drilling operations including (1) heat input from friction (2) heat dissipation by relatively cold circulation fluid in the hole (3) heat dissipation by conduction through drill bits and drill rods. To cover the above effects, standard practice is to lift the rods and drill bit 6 - 10 metres off bottom and cease drilling operations for 12 hours before making the temperature determination. This allows the "bottom-hole temperature" to equilibrate with the natural ambient temperature.

The graph on the following page is a specific case documenting the temperature rebound after ceasing drill operations. It shows that at least 10 hours are required to reach representative equilibrium temperatures following stopped circulation. The curve and rebound time is dependent on a number of parameters including (1) "true" bottomhole temperature (2) temperature of circulating drill fluid (3) temperature, rate and location of natural water flows into the hole (4) structure and heat conductivity of the surrounding rock.



#### APPENDIX D-1: SUMMARY OF PERCUSSION DRILLING

| HOLE NO.              | (m)<br>NORTHING                         | (m)<br>EASTING              | (m)<br>DEPTH OF<br>PENETRATION | (m)<br>DEPTH OF<br>OVERBURDEN | (m)<br>DEPTH OF<br>PVC PIPE | ( <sup>O</sup> C/m)<br>MAX. TEMP.<br>(DEPTH) | ( <sup>O</sup> C/km)<br>TEMP.<br>GRADIENT | . ROCK TYPE/OVERBURDEN                                                       |
|-----------------------|-----------------------------------------|-----------------------------|--------------------------------|-------------------------------|-----------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|
| PDH 78-1C             | 5610290                                 | 469320                      | 76.2                           | 15.2                          | 75.6                        | 10.56/73.1                                   | 56.9 <sup>0</sup> C/km                    | -light green banded metasediments                                            |
| PDH 78-2              | 5605010                                 | 468990                      | 22.9                           | -                             | 15.2                        | 5.71/7.3                                     | -                                         | -colluvium with large blocky slide boulders                                  |
| PDH 78-3              | 5607570                                 | 471510                      | 61.0                           | 0.0                           | 60.4                        | 7.71/58.8                                    | -                                         | -biotite muscovite schist and gneiss<br>disseminated pyrite up to 10 percent |
| PDH 78-4              | 5605320                                 | 469260                      | 39.6                           | -                             | 25.9                        | 5.34/14.0                                    | -                                         | -colluvium                                                                   |
| PDH 78-5              | 5605530                                 | 469360                      | 51.8                           | -                             | 42.7                        | 10.16/30.5                                   | -                                         | -soft, clay rich, volcanic derived colluvium                                 |
| PDH 78-6              | 5602160                                 | 466390                      | 30.5                           | -                             | ?                           | 7.73/21.9                                    | -                                         | -overburden, adjacent to road cut<br>exposure of foliated quartz diorite     |
| PDH 78-7              | 5603290                                 | 467650                      | 61.0                           | 0.0                           | 61.0                        | 6.81/27.7                                    | 18.7°C/km                                 | -hornblende quartz diorite (82 my)                                           |
| PDH 78-8              | 5608410                                 | 470920                      | 18.3                           | -                             | -                           | -                                            | -                                         | -river gravel, sandy with round boulders                                     |
| PDH 78-9              | 5608320                                 | 471000                      | 30.5                           | -                             | 24.4                        | 4.91/15.5                                    | -                                         | -river gravel                                                                |
| PDH 78-10             | 5608420                                 | 470860                      | 24.4                           | -                             | 24.4                        | 6.27/11.3                                    | -                                         | -river gravel                                                                |
| PDH 78-11             | 5608440                                 | 470880                      | 18.3                           | -                             | 12.2                        | -                                            | -                                         | -river gravel                                                                |
| PDH 78-12             | 5609430                                 | 470980                      | 24.4                           | -                             | 22.9                        | 4.63/11.3                                    | -                                         | -colluvium, alluvium                                                         |
| NOTES: Dr<br>Hc<br>PV | rill Contra<br>ble diamete<br>/C Lining | actor: Jo<br>er : 5<br>: I. | cm.<br>D. = 2.2 cm,            | 0.D. = 2.5 c                  | em                          |                                              |                                           |                                                                              |

# APPENDIX E-1



# JEROME INSTRUMENT CORPORATION

DESCRIPTION AND OPERATING INSTRUCTIONS

FOR

MODEL 301 GOLD FILM MERCURY DETECTOR

#### INTRODUCTION

The following method is for the determination of total mercury in soils and rocks in the 1 - 5000 ppb range using the Model 301 Gold Film Mercury Detector. The precision of this method is  $\pm 5$ % of the amount present at the 95% confidence limit in soils and rocks at 100 ppb. The method is based on the resistivity change in a thin gold film upon the adsorption of elemental mercury.

#### Principal of Operation:

The following is an overview of the instruments operation.' Please read the section on procedures before attempting to operate the instrument.

When a sample is heated in the combustion assembly (see Fig. 1) gaseous combustion products including mercury from the sample enter the air stream and pass over a gold-plated collector coil contained within the plug-in module on the panel face. The mercury is adsorbed on the gold collector and the remaining combustion products pass into the atmosphere at point (6) in Fig. 1. A timed cycle is then activated during which the gold collector coil is heat d for 9-10 seconds to volatilize the mercury back into the air stream. The sample mercury and any H<sub>2</sub>S that may be present pass into the mallcosorb where H<sub>a</sub>S is selectively adsorbed. The air stream is then split and mercury is removed from the reference stream by palladium black on pyrex wool (Filter A) before passing over the reference gold film. The other stream passes over an equal quantity of clean pyrex wool (Filter B) and over the sensor gold film; the mercury in the air stream causing the resistance of the sensor film to increase. The reference and sensor films are two legs of a wheatstone bridge. The resistance bias between them is measured and displayed on a digital galvanometer. Any mercury not adsorbed by the film or mercury released by the films when they are heated and cleaned is exhausted through Filter C, which contains activated charcoal to adsorb the mercury and prevent contamination of the work area.

An auto-zero circuit continually compensates for any drift in the resistance of the films. When mercury adsorbs on the sensor film the rate of change in resistance of the sensor film over-rides the auto-zero and a readout is obtained on the digital meter. The peak reading will be displayed for a few seconds, then the auto-zero circuit will begin automatically re-zeroing the bridge.

A timer circuit controls the heating of the gold collector coil and the gold films. The timer cycle is approximately 10 seconds for the collector and 10 minutes for the films. The small lights will turn on when either of these cycles are activated. The films need to be heated after 100 - 150 samples have been analyzed, the exact number dependent on the quantity of mercury present in the samples.



FIGURE 1: Flow system and tubing schematic of the Model 301 Gold Film Mercury Detector.

.

- 1. Palladium black on pyrex wool
- 2. Pyrex wool
- 3. Charcoal filters
- 4. Ring stand and clamp

- 5. Combustion assembly
- 6. Quick disconnect
- 7. Mallcosorb
- 8. Standard septum

#### Procedure:

Referring to Fig. 1, the tubing, filters and combustion assembly are connected as shown. The six yellow valves marked A, B, C, D and IN and OUT on the panel face are sealed to air flow unless the steel inserts on the end of the tubing are pushed in and firmly seated. (To remove these inserts press in on the spring clip and pull up on the inserts.) Once all of the tubing and filters are connected as shown in Fig. 1, the instrument is ready to turn on. DO NOT TURN THE INSTRUMENT ON UNTIL ALL TUBING IS CONNECTED. THE INTERNAL AIR PUMP MAY BE DAMAGED AS THE FLOW SYSTEM IS SEALED UNLESS THE STEEL INSERTS ARE PLUGGED INTO THE VALVES.

Turn the power switch on and allow the instrument to warm up for 5 - 10 minutes. This allows the gold films to stabilize in the air flow.

Note: If the meter registers all zeros, turn the power switch off and on until a number appears on the meter.

With power to the system the internal air pump will always be running. After the warm up period the instrument is ready to be balanced. <u>Check the</u> <u>following</u>: the switch marked "films" and "collector" should be turned to "collector"; the gain adjust should be in the first or second position and the pump speed at the first or second setting for routine soil or rock analysis. Turn the bridge balance pot either clockwise or counterclockwise until the needle on the small meter above the bridge balance pot is roughly centered. Now push and release the reset button. The digital panel meter should now indicate a stable reading between + .002 to .010. The auto-zero circuit will continually compensate for any small drift and maintain this zero or near zero reading.

> Note: The meter will never read exactly zero, but will show some slight offset around the zero point which will vary slightly with the gain adjustment.

The instrument is now ready to be calibrated using the syringe, calibration vessel and chart. (See Appendix I for details on the calibration vessel and syringe technique.)

Note: Be sure that a combustion bulb is inserted. If the bulb is not in place the air flow through the instrument will change and the standard values obtained will be incorrect.

Before injecting a standard into the septum (#8, Fig. 1) check to insure there is no residual mercury contamination on the gold collector coil, mounted within the plug-in module on the panel face. To do this push the timer button down and release. This activates a timed heating cycle which will automatically

heat the collector coil for 10 seconds and volatilize any residual mercury. If a reading is noticed on the digital panel meter (greater than 5 - 7 digits) repeat the above procedure after re-zeroing the instrument by pushing the reset button. TO PREVENT OVERHEATING OF THE COLLECTOR COIL, ALLOW A TWO MINUTE COOLING PERIOD BEFORE ACTIVATING THIS CYCLE A SECOND TIME.

Once it has been determined that the collector coil is free of mercury a standard can be injected and the instrument calibrated. Using the syringe,  $\frac{1}{2}$  to 1 cm3 of mercury saturated air is withdrawn from the calibration vessel and injected into the standard septum. (See Appendix I for additional details on this procedure.) After the standard has been injected, press the timer button. After approximately 9 - 10 seconds the highest reading on the panel meter is recorded (minus the offset around the zero point). This procedure should be practiced until it can be done with reproducible results.

The mercury value may now be calculated by dividing the number of nanograms in the standard by the peak reading minus the offset on the meter. Example: If 10 nanograms of mercury were injected and a reading of 200 was recorded the value per digit would be .05 nanograms. This value may be increased or decreased by adjusting the gain under the digital panel meter. For most routine soil and rock analysis the first gain position is adequate. Turning this knob clockwise increases the gain. If you re-adjust the gain a new mercury standard will have to be injected as the number of nanograms/digit will change.

#### Sample Analysis:

Using the calibrated scoops measure a level cup of -80 mesh soil and place in a combustion bulb. As most soils run between 25 - 100 ppb the .1 gm scoop is adequate. Use the .25 gm scoop if greater precision is desired as a larger sample size will increase reproducibility. In very high mercury samples the .01 scoop should be used. Reproducibility can be improved by weighing the samples on an analytical balance.

Place the combustion bulb back into the holder and <u>disconnect the quick</u> <u>connect</u>. (#6, Fig. 1) By disconnecting the quick connect the gaseous combustion products from the soils are vented to the atmosphere. Heat the soil for 1 minute using a low flame on a propane torch. The bulb and soil should glow a dull red after the 1 minute heating period.

> Note: The combustion assembly glassware is often contaminated with mercury if it has not been heated for some time. To insure the glassware is not contaminated, heat the combustion bulbs with the torch before using.

After the 1 minute heating period remove the bulb containing the combusted soil and replace with a bulb containing the next sample or a clean bulb. Wait 1 minute before reconnecting the quick connect. This above procedure helps insure that residual organics from the soil combustion will not interfere with analysis. If Filters A and B are packed correctly, i.e. equal densities, the air stream will split exactly in half before entering the sample chamber containing the gold films. Any residual organic "smoke" will pass over the sensor and reference film in equal concentration and balance out any possible interferences. This is extremely important to insure reproducible results.

After the quick connect has been reconnected check to see that the instrument is zeroed and then press the timer switch. Record the peak value minus the offset and press the reset button. Periodically check to see that the bridge balance meter is not off scale. If this meter is off scale the auto-zero will not function properly, and the digital meter will not zero.

To calculate the mercury value of the soil in ppb:

| ng Hg in         | standard | x | Sample reading   | = ppb Hg |
|------------------|----------|---|------------------|----------|
| Standard         | reading  |   | Sample weight    |          |
| Example:         |          |   |                  |          |
| <u>10</u><br>200 |          | x | <u>158</u><br>.1 | = 79 ppb |

Note: If a high reading (greater than 300 ppb) is obtained, check that the collector coil is free of any residual mercury. If a reading is obtained add this to the value obtained from the first heating cycle. Sometimes a sample high in mercury will cause the instrument to go off scale, i.e., <u>+</u> 1.999. If this happens reduce the sample size and repeat the analysis. If an extremely high sample is run, i.e., 1 ppm, it may be necessary to allow a few minutes for the instrument to stabilize.

Standards should be run after every five to seven samples. The films will gradually lose their sensitivity and the standard value will correspondingly decrease. A typical group of analyses is shown in Table I illustrating this decrease in sensitivity.

| Sample # |      | Sample     | Size  | Meter Readout | Standard Value | ppb Hg |
|----------|------|------------|-------|---------------|----------------|--------|
| Standard | 22°C | 1 cm3 = 16 | ng Hg | 167           | .096           |        |
| JR-8     |      | .1         | gm    | 62            | .096           | 60     |
| JR-9     |      | .1         | gm    | 313           | .096           | 300    |
| JR-10    |      | .1         | gm    | 371           | .096           | 356    |
| JR-11    |      | .1         | gm    | 422           | .096           | 405    |
| Standard | 22°C | 1 cm3 = 16 | ng Hg | 159           | .101           |        |
| JR-12    |      | .1         | gm    | 59            | .101           | 59     |
| JR-13.   |      | .1         | gm    | 181           | .101           | 181    |
| JR-14    |      | .1         | gm    | 62            | .101           | 62     |
| JR-15    |      | .1         | gm    | 667           | .101           | 667    |
| Standard | 22°C | 1cm3 = 16  | ng Hg | 148           | .108           |        |

Typical Analysis Showing Decrease in Standard Values

After approximately 2000 nanograms have collected on the films the filters marked A and B should be switched. There are two gold films in the sensing unit and when one becomes saturated with mercury the second film may be used. Move filter A to B and B to A and calibrate the instrument as previously explained.

When both films become saturated the films should be heated to volatilize the accumulated mercury. Turn the switch marked "collector" and "films" to "films" and press the timer button. The films will heat automatically for 10 minutes, volatilizing the accumulated mercury and restoring sensitivity. IT IS IMPORTANT TO KEEP THE FLOW SYSTEM INTACT DURING THIS HEATING CYCLE. This allows the mercury volatilizing from the fims to exhaust from the system and prevents the films from overheating. After this heating cycle is complete it will take another 20 minutes until the instrument is ready to operate once again. This period of time is necessary to allow the films and film chamber to cool after the heating cycle.

#### OPERATIONAL OUTLINE

- 1. Connect tubing, filters and the combustion assembly as shown in Figure 1.
- 2. Check that the collector coil is free of any residual mercury.

3. Calibrate using saturated vapor.

- 4. Place sample to be combusted in the combustion assembly.
- 5. DISCONNECT quick connect.
- 6. Combust sample for one minute.
- 7. Replace combustion bulb with clean bulb containing the next sample.
- 8. Reconnect quick disconnect, wait 10 seconds.
- 9. Activate collector cycle and record highest reading.
- 10. Calculate result in ppb as outlined in manual.

#### APPENDIX I

The mercury concentration in the samples is determined from the ratio of the instrument readings of the sample and a standard; this standard usually being a measured quantity of mercury saturated air. A drop or two of clean mercury is placed in a closed container with a septum or small hole for withdrawing the standard (Fig. 2). The container should not be so tight that the interior cannot reach equilibrium with atmospheric pressure. It should be insulated to minimize temperature change, which is monitored with a thermometer, as the mercury content of the air only slowly reaches equilibrium. The standard is withdrawn in a 2.5 cm3 calibrated gas-tight syringe, care being taken that the needle does not come in contact with metallic mercury. Syringing the standard takes some practice. When withdrawing the standard the plunger is brought back slowly past the calibration mark, then back to it. The needle is allowed to remain in the container for a few seconds until the pressure in the syringe equals the pressure in the container. The needle is inserted into the standard septum (which should be replaced periodically) and the mercury vapor injected slowly into the system. This procedure should be practiced until it can be done with reproducible results. (+ 5%). Table II lists the weight of mercury contained in a cm3 of saturated air at various temperatures.

| Temp. Degrees C | Nanograms/cm3 | Temp. Degrees C | Nanograms/cm3 |
|-----------------|---------------|-----------------|---------------|
| 10              | 5.5           | 21              | 14.5          |
| 11              | 6.0           | 22              | 15.8          |
| 12              | 6.5           | 23              | 17.2          |
| 13              | 7.2           | 24              | 18.8          |
| 14              | 7.8           | 25              | 20.5          |
| 15              | 8.5           | 26              | 22.3          |
| 16              | 9.3           | 27              | 24.5          |
| 17              | 10.2          | 28              | 26.7          |
| 18              | 11.1          | 29              | 29.2          |
| 19              | 12.1 .        |                 |               |
| 20              | 13.2          |                 |               |

#### TABLE II

Temperature/concentration Values of Mercury



FIGURE 2: Mercury Standard Set-up.

#### APPENDIX II

#### TROUBLE SHOOTING

#### 1. DECREASE IN FILM SENSITIVITY

- (A) PdCl<sub>2</sub> filter is saturated with mercury. This condition may be checked by placing the septum assembly before the PdCl<sub>2</sub> filter and injecting a mercury standard. If a signal is seen on the digital readout, the filter is allowing mercury to pass and should be cleaned. This is done by unpacking the pyrex wool saturated with PdCl<sub>2</sub> and heating to 400°C for 1 - 2 hours. This will volatilize the accumulated mercury and restore the filters efficiency. When repacking the filter, it is important that both the PdCl<sub>2</sub> filter and the pyrex wool filter offer equal impedance to air flow. This can be checked by using a flow meter in each side of the line, i.e. before Filter A and Filter B, Figure 1. The filter packing can then be adjusted until both filters are flow balanced. Alternatively a replacement set of filters may be purchased.
- (B) Leak in the flow system:

Check tubing connectors and filters for leaks. Also make sure that the mallcosorb is not packed too tightly or saturated with moisture.

- 2. COLLECTOR WILL NOT BLANK
  - (A) If a persistent signal is noticed of approximated 20 30 digits even after 3 - 4 consecutive blank cycles on the collector, replace the mallcosorb. The mallcosorb should be replaced periodically, generally after 200 - 300 samples.
  - (B) System contaminated with mercury due to excessively high mercury sample, i.e. > 20 ppm. Discard tubing and standard septum before the intake into the collector box. Heat the top of the combustion assemble to remove any residual mercury.
  - (C) When operating the instrument in a laboratory where high mercury levels are present in the atmosphere, Filter D should be replaced periodically, otherwise mercury from the atmosphere will contaminate the collector coil.

#### GENERAL MAINTENANCE

The combustion bulbs should be cleaned after each analysis. Discard the combusted sample and clean the inside of the bulb of any excess soil particles using a stiff bristle brush. (Nipple brushes, available at any drug store are ideal for this purpose). The combustion top should be cleaned periodically and the tubing replaced from the outlet of the combustion assembly to the <u>intake</u> of the collector coil, normally after every 200 - 300 samples.

The mallcosorb needs replacement generally after 200 - 300 samples. To check the condition of the mallcosorb run 2 heating cycles (allowing for the 2 minute cooling period) on the collector coil. If a persistent signal of approximately 15 - 25 digits is noticed, replacing the mallcosorb will normally correct this high blank level.

#### EQUIPMENT LIST

- (1) Gold film mercury detector
- (2) Activated charcoal filter (Filters C and D)
- (3) Pyrex wool filter (Filter A or B)
- (4) Palladium black on pyrex wool filter (Filter A or B)
- (5) Mallcosorb filter (Filter E)
- (6) Tygon tubing
- (7) Combustion assembly (1 top and 5 bulbs)
- (8) Propane torch
- (9) Sample scoops (1 gm, .25 gm, .1 gm and .01 gm)
- (10) 2<sup>1</sup>/<sub>2</sub> cc syringe
- (11) Standard septum
- (12) 0-100°C thermometer
- (13) Accessory carrying case
- (14) Ring stand
- (15) 3-prong clamp

# APPENDIX E-2

MERCURY SURVEY - TABLE OF RESULTS

| SAMPLE      | PPB Hg     | LN PPB Hg             | REMARKS PEAK                      | TO BACKGROUN<br>RATIO |
|-------------|------------|-----------------------|-----------------------------------|-----------------------|
| MAIN SPRIN  | GS AREA:   | N = 14                |                                   |                       |
| 80E 100S    | 0          | 0.01                  | Brown forest soil, dry birch      | 0                     |
| 80E 120S    | 9.5        | 2.25                  | Grey sandy silt, near swamp       | .3                    |
| 100E 100S   | 0          | 0.01                  | Black muck, cold seepage          | 0                     |
| 120E 120S   | 6.3        | 1.84                  | Dry sandy clay                    | .2                    |
| 140E 60S    | 0          | 0.01                  | Sand under moss                   | 0                     |
| 140E 80S    | 9.3        | 2.23                  | Dry coarse sand                   | .3                    |
| 140E 120S   | 21.6       | 3.07                  | Brown forest soil                 | .7                    |
| 140E 140S   | 15.4       | 2.73                  | Brown forest soil                 | .5                    |
| 140E 160S   | 24.7       | 3.21                  | Coarse brown sand, rock fragments | .8                    |
| 180E 100S   | 2.0        | 0.69                  | Black muck, warm seepage          | .1                    |
| 200E 40S    | 3.2        | 1.16                  | Dry, grey sand                    | .1                    |
| 200E 100S   | 0          | 0.01                  | Dry, grey silt                    | 0                     |
| 220E 100S   | 9.5        | 2.25                  | Dry, grey sand                    | .3                    |
| 240E 100S   | 0          | 0.01                  | Dry, grey sand                    | 0                     |
| SOUTH RESE  | RVOIR, RE  | SISTIVITY L630C (NORT | H-SOUTH)                          |                       |
| allA        | 7.7        | 2.04                  | Brown soil under moss & grass     | . 2                   |
| allB        | 7.7        | 2.04                  | Black soil, organic               | . 2                   |
| a11C        | 21.3       | 3.06                  | Brown soil in zone of slow creep  | .7                    |
| allD        | 13.5       | 2.60                  | Light brown soil, avalanche slope | .4                    |
| a12A        | .32.9      | 3.49                  | Black soil, small bog             | 1.0                   |
| a12B        | 15.5       | 2.74                  | Scarce soil under moss, base of   |                       |
|             | = / 0      | 0.00                  | tree                              | .5                    |
| a12C        | 54.2       | 3.99                  | Scarce soil under moss, base of   |                       |
|             |            |                       | tree                              | 1./                   |
| al2D        | 116.0      | 4.75                  | Brown thin soil                   | 3.6                   |
| alle        | 19.3       | 2.96                  | Scarce soll base of tree          | .0                    |
| a13A        | 85.1       | 4.44                  | Brown forest soll                 | 2.1                   |
| SOUTH RESER | RVOIR, RES | SISTIVITY (EAST-WEST) |                                   |                       |
| al4A        | 35.6       | 3.57                  | Thin grey soil over boulders      | 1.1                   |
| al4B        | 13.0       | 2.56                  | Brown soil over cobbles           | .4                    |
| a14C        | 116.6      | 4.76                  | Brown forest soil near travertine | 3.6                   |
| 2154        | 97         | 2 27                  | Thin soil over decaying wood      | 3.0                   |
| a15R        | 13.0       | 2.27                  | Silt or ash under moss            | .5                    |
| a150        | 61 6       | 4 12                  | Thin brown soil over decaying woo | 0 1 b                 |
| a15D        | 19 4       | 2 97                  | Thin brown soil over decaying woo | d 6                   |
| a15E        | 22.7       | 3.12                  | Thin brown soil                   | .7                    |
| a16A        | 184.7      | 5.22                  | Black organic soil                | 5.8                   |
| a16B        | 32.4       | 3.48                  | Thin brown soil                   | 1.0                   |
| a16C        | 77.8       | 4.35                  | Fine silty soil                   | 2.4                   |
| a16D        | 298.1      | 5.70                  | Brown organic soil                | 9.3                   |
|             |            | 5.70                  | vegenee over                      |                       |

.

# APPENDIX E-2 (Cont'd)

| MERCURY SURVEY - TABLE OF RESULTS     |                 |                    |                                               |                          |  |
|---------------------------------------|-----------------|--------------------|-----------------------------------------------|--------------------------|--|
| SAMPLE                                | PPB Hg          | LN PPB Hg          | REMARKS                                       | K TO BACKGROUND<br>RATIO |  |
| LILLOOET                              | VALLEY, MEAGER  | CREEK TO NORTH CR  | $\underline{\text{EEK}}$ : N = 6              |                          |  |
| al7B                                  | 31.8            | 3.46               | Thick brown organic soil over<br>river gravel | 1.0                      |  |
| a17C                                  | 33.8            | 3.52               | Thin brown organic soil over                  |                          |  |
|                                       |                 |                    | talus                                         | 1.1                      |  |
| al7D                                  | 31.8            | 3.46               | Grey silt over till                           | 1.0                      |  |
| a18A                                  | 29.9            | 3.40               | Dark grey silt with organic material          | .9                       |  |
| a3A                                   | 12.3            | 2.51               | Grey sandy soil                               | .4                       |  |
| a3B                                   | 3.1             | 1.13               | Flood silt under decaying wood                | .1                       |  |
| LILLOOET                              | VALLEY, ABOVE 1 | PEBBLE CREEK SPRIN | $\underline{GS}: N = 4$                       |                          |  |
| a19A                                  | 81.6            | 4.40               | Organic soil over ash                         | 2.6                      |  |
| a19B                                  | 159.2           | 5.07               | Organic soil over ash                         | 5.0                      |  |
| a19C                                  | 33.8            | 3.52               | Grey soil with organic material               | 1.1                      |  |
| a20D                                  | 53.7            | 3.98               | Thin grey soil with organic                   |                          |  |
|                                       |                 |                    | material over boulders                        | 1.7                      |  |
| LILLOOET                              | VALLEY, ABOVE   | PEBBLE CREEK CAMP: | N = 2                                         |                          |  |
| a22B                                  | 69.0            | 4.23               | Organic soil                                  | 2.2                      |  |
| a22C                                  | 75.0            | 4.32               | Organic soil, mixed decaying woo              | od 2.3                   |  |
| MEAGER MASSIF, ABOVE 5600 FEET: N = 3 |                 |                    |                                               |                          |  |
| a21A                                  | 15.0            | 2.71               | Fine brown soil                               | .5                       |  |
| a21D                                  | 12.0            | 2.48               | Brown soil in swampy meadow                   | .4                       |  |
| a21E                                  | 45.0            | 3.81               | Coarse brown soil                             | 1.4                      |  |
|                                       |                 |                    |                                               |                          |  |



For each area, Histograms of PPB Hg and LN PPB Hg(in soil) are plotted

APPENDIX E-4 MERCURY SURVEY FREQUENCY HISTOGRAMS OF DATA

# APPENDIX F-1

TRACK ETCH® SERVICE PROGRAM

FOR

MEAGER GEOTHERMAL AREA

Terradex Corporation 1900 Olympic Boulevard Walnut Creek, California 94596 Phone: (415) 938-2545 Telex: 33-7793

December 14, 1978

Mr. L. J. Werner Nevin, Sadlier-Brown Goodbrand Ltd. Suite 504 134 Abbott St. Vancouver, B. C. Canada

Dear Mr. Werner,

I am enclosing two sets of final tabulated data from your recent Track Etch survey of the Meager Geothermal Area. The Track Etch readings are reported in units of tracks per square millimeter (T/sq.mm) and they are normalized to equivalent 30 day exposures. The data have been tabulated in two different ways for easy use; firstly by ascending Track Etch readings and seconly, by ascending serial numbers. The readings ranged from 0.3 to 193.5 T/sq.mm and the mean of the background distribution for the area was 2.6 T/sq.mm. The standard deviation of the background mean was 1.6 T/sq.mm or 61.0%. All statistics on the program are also included on the attached statistics sheet.

The background mean and its standard deviation are related to shallow mineralization of uranium in the survey area. For this survey the background mean is substantially lower than the Canadian average of 11 T/sq.mm.

High ranking points may be expressed in terms of "Z", the number of standard deviations above background. Rudimentary statistics imply that values with Z greater than three have a very low probability of belonging to the background distribution and hence are anomalous. The range of "Z" for the high ranking points in your survey are shown below together with the more conventional ratio to background.

| Range of Z | <pre># of Points</pre> | Range of T/sq.mm | Range of Ratio to Background |
|------------|------------------------|------------------|------------------------------|
| 2 - 3      | 5                      | 5.9 - 7.2        | 2.2 - 2.7                    |
| 3 - 4      | 2                      | 7.6 - 7.8        | 2.9 - 2.9                    |
| 4 - 5      | 3                      | 9.2 - 10.5       | 3.5 - 4.0                    |
| over 5     | 11                     | 12.0 -193.5      | 4.5 - 73.2                   |

It is highly improbable that points with Z greater than 3 are part of the background distribution; hence they are almost certainly anomalous. In this survey 16 points have a Z greater than 3, or 17.6% of the total. This, in our experience, is a fairly high percentage of anomalous values but of course it may be due to the sampling pattern you used on this survey. NEVIN, SADLIER, BROWN GOODBRAND 12-13-78

TRACK ETCH SURVEY RESULTS AND STATISTICS VALUES GIVEN IN T/SQ. MM. NORMALIZED TO 30 DAY EXPOSURE

NO. USEFUL PTS. : 91 HIGH (T/SQ. MM.): 193.5 LOW (T/SQ. MM.): 0.3

BACKGROUND MEAN (T/SQ. MM.): 2.6 STD. DEVIATION OF BKG. MEAN (T/SQ. MM.): 1.6 RELATIVE STD. DEVIATION (PERCENT): 61.0

## HIGH RANKING POINTS

| RANGE OF Z | NO. OF PTS. | RANGE OF T     | TO BACKGROUND |
|------------|-------------|----------------|---------------|
|            |             |                |               |
| 2 - 3      | 5           | 5.9 - 7.2      | 2.2 - 2.7     |
| 3 - 4      | 2 '         | 7.6 - 7.8      | 2.9 - 2.9     |
| 4 - 5      | 3           | 9.2 - 10.5     | 3.5 - 4.0     |
| OVER 5     | 11          | . 12.0 - 193.5 | 4.5 - 73.2    |
|            |             |                |               |

NO. OF PTS. ABOVE Z = 3: 16 PERCENT OF TOTAL PTS. : 17.6 (Z IS THE NUMBER OF STD. DEVIATIONS ABOVE BKG. MEAN)

| NEVIN, SADI  | LIER, BROM | AN GOOD | BRAND 12-13-78            |    |
|--------------|------------|---------|---------------------------|----|
| READING      | SERIAL     |         |                           |    |
| (T/SQ. MM. ) | NUMBER     | FIELD   | NOTES AND DATA            |    |
|              |            |         |                           |    |
|              | 79740      | LOST    | ODEU COTI                 |    |
|              | 79342.     | LOST    | SAND                      |    |
|              | 79404.     |         | DUG OUT                   | NR |
|              | 79337.     | LOST    |                           |    |
|              | 79410.     | LOST    | 6200 NOT FOUND            |    |
| 0.3          | 79365.     |         | FHUMUS SAND               |    |
| 0.3          | 79389.     |         | FSAND                     |    |
| 0.6          | 79346.     |         | F                         |    |
| 0.6          | 79388.     |         | FBOULDER PILE             |    |
| 0.6          | 79392.     |         | ADDO                      |    |
| 10.8<br>19.0 | 79434.     |         | 4300                      |    |
| 0.0          | 79762      |         | FSAND STIT                |    |
| 0.0<br>0.8   | 79382      |         | ESAND ROCKS               |    |
| 0.8          | 79384.     |         | FSAND GRASS               |    |
| 0.8          | 79355.     |         | FSAND&BOULDERS            |    |
| 0.8          | 79357.     |         | FBOULDERS GRAVEL          |    |
| 1.1          | 79325.     | CRACK   | 140E1205 IN FOREST        |    |
| 1. 1         | 79327.     |         | 140E160S IN FOREST        |    |
| 1.1          | 79328.     |         | CHECK STA 1FOREST         |    |
| 1.1          | 79348.     |         | F CORDICORN OF COLLEGE CO |    |
| 1.1          | 79406.     |         | CHPRICORN GLHUIER 60      | 80 |
| 1.4          | 73382.     |         | FOILI                     |    |
| 1 6          | 79477      |         | 4550                      |    |
| 1.7          | 79345      |         | F                         |    |
| 1.7          | 79402.     |         | DISTURBED                 |    |
| 1.7          | 79440.     |         |                           |    |
| 1.7          | 79435.     |         |                           |    |
| 1.7          | 79376.     |         | FBROWN SOIL               |    |
| 1.7          | 79439.     |         |                           |    |
| 1.7          | 79387.     |         | FSHND RUCKS               |    |
| 1.7          | 79301.     |         | FOROWN BUIL               |    |
| 1 7          | 79366      |         | FBOULDERS                 |    |
| 1.9          | 79326.     |         | 140E1405 IN FOREST        |    |
| 1.9          | 79344.     |         | F                         |    |
| 1.9          | 79367.     |         | FIN WATER                 |    |
| 1.9          | 79353.     |         | F ·                       |    |
| 2.0          | 79394.     |         | FBLACK MUCK               |    |
| 2.0          | 79431.     |         | 2950                      |    |
| 2.2          | 79391.     |         | FBOULDERS SILT            |    |
| 2. 2         | 79364.     |         | FBUULDERS GRAVEL          |    |
| 2.3          | 79412.     |         | DULAN DEAK CHINF          |    |
| 2.3          | 79403.     |         | CAND CINTED               |    |
| 2.4          | 79361      |         | FEINE SAND                |    |
| 2.8          | 79401      |         | IT ATTLE, STITLE          |    |
| 3.0          | 79329.     |         | CHECK STA 2SANDFLAT       |    |
| 3. 1         | 79354.     |         | F                         |    |
| (T/S0. M1.)   NUMBER   FIELD NOTES AND DATA     3.1   79350.   F     3.1   79363.   FSAND BOULDERS     3.3   79334.   HOT MUCK     3.3   79336.   ROKY     3.5   79326.   140E805 CREEK SAND     3.5   79326.   ROKY     3.6   79360.   FBLACK MUCK     3.6   79360.   FBLACK MUCK     3.6   79360.   FBLACK MUCK     3.6   79360.   FBND     3.7   79432.   3600     3.9   79360.   FBND CLAY     3.9   79400.   BTUN VENTS     3.9   79386.   FMVD     4.0   79411.   5760     4.2   79351.   CRACK SAND     4.4   79438.   FBOWN SOIL     4.9   79331.   WATER SAND. IN WATER     5.0   79403.   NO FILTER PYLON PEAK     5.1   79407.   NO FILTER PYLON PEAK     5.1   79408.   NO FILTER PYLON PEAK     5.7   79322.   GRAVEL     5.9   <                                                                                                                                                   | NEVIN, SADU<br>DETECTOR<br>READING | LIER, BRO<br>CUP<br>SERIAL | WN GOOD | )BRAND 12-13-78                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------|---------|---------------------------------------|
| 3.1     79350.     F       3.1     79363.     FSAND BOULDERS       3.3     79333.     HOT MUCK       3.3     79333.     140E805 CREEK SAND       3.5     79323.     140E805 CREEK SAND       3.6     79360.     FBLACK MUCK       3.6     79360.     FBLACK MUCK       3.6     79360.     FBOULDERS GRAVEL       3.7     79432.     3600       3.9     79371.     FSAND CLAY       3.9     79366.     FMVD       4.0     79411.     5760       4.2     79351.     CRACK F       4.3     79329.     CRACK SAND       4.4     79438.     FSAND       4.5     79329.     CRACK SAND       4.4     79438.     FSAND       5.0     79407.     NO FILTER       5.1     79408.     NO FILTER       5.9     79372.     FAND       5.1     79408.     NO FILTER       5.9     79377.     FIN WATER SINTER       6.4                                                                                       | (T/SQ. MM. )                       | NUMBER                     | FIELD   | NOTES AND DATA                        |
| 3.1   79350.   F     3.1   79363.   FSAND BOULDERS     3.3   79333.     3.3   79333.     3.3   79333.     3.5   79323.   140E805 CREEK SAND     3.5   79360.   FSAND     3.6   79360.   FBUACK MUCK     3.6   79360.   FBUNULDERS GRAVEL     3.7   79432.   3600     3.9   79371.   FSAND CLAY     3.9   79386.   FMVD     4.0   79411.   5760     4.2   79339.   CRACK SAND     4.4   79438.   FEROWN SOIL     4.5   79380.   FBROWN SOIL     4.9   79331.   WATER SAND. IN WATER     5.0   79407.   NO FILTER     5.1   79408.   SAND&ROCKS     5.9   79373.   FSAND     6.5   79340. <t< td=""><td></td><td></td><td></td><td></td></t<>                                                                                                                                  |                                    |                            |         |                                       |
| 3.1   79363.   FAND BOULDERS     3.3   79334.   HOT MUCK     3.5   79323.   140E80S CREEK SAND     3.5   79360.   FSIND     3.6   79360.   FBLACK MUCK     3.6   79360.   FBND     3.7   79432.   3600     3.9   79371.   FSRND CLAY     3.9   79430.   BTINN VENTS     3.9   79432.   3600     3.9   79371.   FSRND CLAY     4.0   79411.   S760     4.2   79351.   CRACK F     4.3   79339.   CRACK F     4.3   79339.   CRACK F     4.4   79438.   F     5.0   79407.   NO FILTER     5.1   79407.   NO FILTER     5.1   79408.   NO FILTER     5.1   79408.   F     6.3 <td></td> <td></td> <td></td> <td></td>                                                                                                                                                              |                                    |                            |         |                                       |
| 3.1   79334.   HOT MUCK     3.3   79333.     3.3   79336.     3.5   79323.   140E805 CREEK SAND     3.5   79360.   FSLACK MUCK     3.6   79360.   FBLACK MUCK     3.6   79360.   FBULDERS GRAVEL     3.7   79432.   3600     3.6   79360.   FBULDERS GRAVEL     3.7   79432.   3600     3.9   79371.   FSAND CLAY     3.9   79380.   FBUN VENTS     3.9   79381. CRACK F   14.3     4.0   79411.   5760     4.2   79331. CRACK SAND   14.4     4.3   79339.   CRACK SAND     4.4   79438.   5760     5.0   79379.   FSAND     5.1   79407.   NO FILTER     5.0   79378.   FSAND     5.1   79408.   NO FILTER     5.1   79407.   NO FILTER     5.1   79408.   FSAND     6.5   79379.   FSAND     7.2   79374.                                                                                                                                                                                     | 3.1                                | 79350.                     |         | F FOUR FOR                            |
| 3.3   79333.     3.3   79436.     3.5   79323.     1.5   79360.     3.6   79369.     3.6   79360.     3.6   79360.     3.6   79360.     3.6   79360.     3.7   79432.     3.6   79360.     3.9   79432.     3.9   79432.     3.9   79432.     3.9   79432.     3.9   79436.     3.9   79371.     FSRND CLAY     3.9   79400.     BUNN VENTS     3.9   79339. CRACK SAND     4.2   79331. CRACK F     4.3   79339. CRACK SAND     4.4   79438.     5.0   79339. CRACK SAND     4.4   79438.     5.0   79339. CRACK SAND     5.1   79407.     5.2   79332. GRAVEL     5.3   79407.     5.4   79408.     5.7   79332. GRAVEL     5.9   79377. <td< td=""><td>2. 1</td><td>79363.</td><td></td><td>FSHND BUULDERS</td></td<>                                                                                                                                                                         | 2. 1                               | 79363.                     |         | FSHND BUULDERS                        |
| 3.3   79436.     3.5   79323.   140E805 CREEK SAND     3.5   79326.   ROCKY     3.6   79360.   FBLACK MUCK     3.6   79360.   FBLACK MUCK     3.6   79360.   FBUDLDERS GRAVEL     3.7   79432.   3600     3.9   79371.   FSRND CLAY     3.9   79486.   BTWN VENTS     3.9   79386.   FMVD     4.0   79411.   5760     4.2   79351.   CRACK F     4.3   79339.   CRACK SAND     4.4   79438.   FBROWN SOIL     4.5   79380.   FBROWN SOIL     4.9   7931.   WATER SAND     5.0   79403.   FSAND     5.1   79407.   NO FILTER     5.0   79379.   FSAND     5.1   79408.   NO FILTER SINTER     5.1   79488.   FSOND ROCKS     5.9   79378.   FSAND ROCKS     7.2   79374.   F     9.2   79321.   140E40SINSPRING WATER <t< td=""><td>3. 3</td><td>79334.</td><td></td><td>HOT MUCK</td></t<>                                                                                                       | 3. 3                               | 79334.                     |         | HOT MUCK                              |
| 3.3   79436.     3.5   79323.   140E80S CREEK SAND     3.5   7936.   ROCKY     3.6   79369.   FSAND     3.6   79360.   FBLACK MUCK     3.6   79360.   FBULACK MUCK     3.7   79432.   3600     3.9   79371.   FSAND CLAY     3.9   79386.   FMVD     4.0   79440.   BTUN VENTS     3.9   79386.   FBROWN SOIL     4.0   79438.   FBROWN SOIL     4.1   79339.   CRACK SAND     4.2   79331.   WATER SAND. IN WATER     5.0   79403.   FSAND     5.0   79403.   FSAND     5.1   79408.   NO FILTER     5.1   79408.   NO FILTER     5.1   79408.   NO FILTER     5.1   79408.   NO FILTER     5.3   79372.   FSAND     6.4   79386.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     <                                                                                                                                                                                 | 3.3                                | 79333.                     |         |                                       |
| 3.5   79323.   140E805 CREEK SAND     3.5   79336.   ROCKY     3.6   79369.   FSAND     3.6   79369.   FBLACK MUCK     3.6   79360.   FBULDERS GRAVEL     3.7   79432.   3600     3.9   79470.   FSAND CLAY     3.9   79400.   BTWN VENTS     3.9   79386.   FMVD     4.0   79411.   5760     4.2   79351.   CRACK F     4.3   79339.   CRACK F     4.3   79339.   CRACK F     4.3   79339.   CRACK SAND     4.4   79483.   ST560     4.5   79380.   FBROWN SOIL     4.9   79331.   WATER SAND. IN WATER     5.0   79403.   NO FILTER PYLON PEAK     5.1   79407.   NO FILTER PYLON PEAK     5.7   79328.   GRAVEL     5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374. <td>3.3</td> <td>79436.</td> <td></td> <td></td>                                                                                                         | 3.3                                | 79436.                     |         |                                       |
| 3.5   79336.   ROCKY     3.6   79369.   FSAND     3.6   79360.   FBULCK MUCK     3.6   79360.   FBUULDERS GRAVEL     3.7   79432.   3600     3.9   79371.   FSAND CLAY     3.9   79386.   FWVD     4.0   79411.   5760     4.2   79351.   CRACK F     4.3   79339.   CRACK SAND     4.4   79438.   FBROWN SOIL     4.5   79380.   FBROWN SOIL     4.9   79331.   WATER SAND, IN WATER     5.0   79403.   FSAND     5.1   79407.   NO FILTER PYLON PEAK     5.7   79332.   GRAVEL     5.9   79378.   FSAND     5.1   79407.   NO FILTER PYLON PEAK     5.7   79332.   GRAVEL     5.9   79373.   FSAND     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     6.3   79347.   F <                                                                                                                                                                             | 3.5                                | 79323.                     |         | 140E80S CREEK SAND                    |
| 3.6   79369.   FSRND     3.6   79360.   FBLACK MUCK     3.6   79360.   FBOULDERS GRAVEL     3.7   79432.   3600     3.9   79371.   FSAND CLAY     3.9   79386.   FMVD     4.0   79411.   5760     4.2   79330.   CRACK F     4.3   79339.   CRACK F     4.3   79339.   CRACK SAND     4.4   79438.   FBROWN SOIL     4.5   79380.   FBROWN SOIL     4.9   79331.   WATER SAND. IN WATER     5.0   79403.   FSAND     5.1   79408.   NO FILTER     5.1   79408.   NO FILTER PYLON PEAK     5.7   79322.   GRAVEL     5.9   79377.   FIN WATER SINTER     6.4   79368.   FSOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     6.5   79347.   F     9.2   79321.   140E40SINSPRING WATER     7.8   79373. <td< td=""><td>3.5</td><td>79336.</td><td></td><td>ROCKY</td></td<>                                                                                                  | 3.5                                | 79336.                     |         | ROCKY                                 |
| 3.6   79360.   FBLACK MUCK     3.6   79360.   FBOULDERS GRAVEL     3.7   79432.   3600     3.9   79371.   FSAND CLAY     3.9   79386.   FMVD     4.0   79411.   5760     4.2   79351.   CRACK F     4.3   79339.   CRACK SAND     4.4   79438.   FBROWN SOIL     4.5   79380.   FBROWN SOIL     4.9   79331.   WATER SAND. IN WATER     5.0   79403.   FSAND     5.1   79408.   NO FILTER PYLON PEAK     5.1   79407.   NO FILTER PYLON PEAK     5.1   79408.   NO FILTER PYLON PEAK     5.1   79408.   NO FILTER PYLON PEAK     5.7   79322.   GRAVEL     5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79375.   FSAND ROCKS     10.6   79437.   F     9.2                                                                                                                                                 | 3.6                                | 79369.                     |         | FSAND                                 |
| 3.6   79360.   FBOULDERS GRAVEL     3.7   79432.   3600     3.9   79371.   FSRND CLAY     3.9   79400.   BTWN VENTS     3.9   79386.   FMVD     4.0   79411.   5760     4.2   79351.   CRACK F     4.3   79339.   CRACK SAND     4.4   79438.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.6                                | 79390.                     |         | FBLACK MUCK                           |
| 3.7   79432.   3600     3.9   79371.   FSAND CLAY     3.9   79386.   FMVD     4.0   79411.   5760     4.2   79351.   CRACK F     4.3   79339.   CRACK SAND     4.4   79438.   FBROWN SOIL     4.5   79380.   FBROWN SOIL     4.9   79331.   WATER SAND. IN WATER     5.0   79379.   FSAND     5.1   79407.   NO FILTER     5.0   79372.   GRAVEL     5.9   79378.   FSAND ROCKS     5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND, IN WATER     7.8   79373.   FSAND ROCKS     7.2   79374.   FSAND     7.4   79378.   FAM SOUTH     7.5   7947.   F     9.2   79321.   140640SINSPRING WATER     18.0   79373.   FSAND R                                                                                                                                                                    | 3.6                                | 79360.                     |         | FBOULDERS GRAVEL                      |
| 3. 9   79371.   FSAND CLAY     3. 9   79386.   FMVD     4.0   79411.   5760     4.2   79351.   CRACK F     4.3   79339.   CRACK SAND     4.4   79438.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7                                | 79432.                     |         | 3600                                  |
| 3.9   79400.   BTWN VENTS     3.9   79386.   FMVD     4.0   79411.   5760     4.2   79351.   CRACK F     4.3   79339.   CRACK SAND     4.4   79438.   FBROWN SOIL     4.5   79380.   FBROWN SOIL     4.9   79331.   WATER SAND. IN WATER     5.0   79403.   FSAND     5.1   79407.   NO FILTER     5.1   79407.   NO FILTER PYLON PEAK     5.7   79322.   GRAVEL     5.9   79378.   FSAND ROCKS     5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND ROCKS     7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.   FSAND ROCKS     11.5   79374.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.                                                                                                                                                       | 3. 9                               | 79371.                     |         | FSAND CLAY                            |
| 3.9   79386.   FMVD     4.0   79411.   5760     4.2   79351.   CRACK F     4.3   79339.   CRACK SAND     4.4   79438.   FBROWN SOIL     4.5   79380.   FBROWN SOIL     4.9   79331.   WATER SAND. IN WATER     5.0   79403.   50     5.1   79407.   NO FILTER     5.1   79407.   NO FILTER PYLON PEAK     5.7   79320.   GRAVEL     5.9   79378.   FSAND ROCKS     5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND, IN WATER     7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.6   79373.   FSAND ROCKS     11.5   79370.   FWET SAND CLAY     12.0   79328.   MUCK     12.2   79370.   FWET SAND CLAY     13.7   793                                                                                                                                                       | 3. 9                               | 79400.                     |         | BTWN VENTS                            |
| 4.0   79411.   5760     4.2   79351.   CRACK     4.3   79339.   CRACK SAND     4.4   79438.   FBROWN SOIL     4.5   79380.   FBROWN SOIL     4.9   79433.   WATER SAND. IN WATER     5.0   79403.   FSAND     5.0   79403.   NO FILTER     5.0   79379.   FSAND     5.1   79407.   NO FILTER     5.1   79408.   NO FILTER PYLON PEAK     5.7   79322.   GRAVEL     5.9   79378.   FSAND ROCKS     5.9   79378.   FSAND ROCKS     5.9   79374.   FSAND     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.8   79323.   FSAND ROCKS     7.9   2   79321.   140E40SINSPRING WATER     18.0   79373.   FSAND ROCKS     19.2   79321.   140E40SINSPRING WATER     18.0   79373.   FSAND ROCKS     1                                                                                                                                                       | 3. 9                               | 79386.                     |         | FMVD                                  |
| 4. 2   79351. CRACK F     4. 3   79339. CRACK SAND     4. 4   79438.     4. 5   79380. FBROWN SOIL     4. 9   79331. WATER SAND. IN WATER     5. 0   79403.     5. 0   79379. FSAND     5. 1   79407. NO FILTER     5. 1   79408. NO FILTER PYLON PEAK     5. 7   79322. GRAVEL     5. 9   79377. FIN WATER SINTER     6. 4   79368. FBOULDERS SAND     6. 5   79340. SAND&ROCKS     7. 2   79374. FSAND     6. 5   79340. SAND&ROCKS     7. 2   79374. FSAND     7. 6   79356. FSAND, IN WATER     7. 8   79347. F     9. 2   79371. FIN WATER     10. 6   7947. F     9. 2   79321. 140E40SINSPRING WATER     10. 6   79437. F     12. 0   79338. MUCK     12. 2   79379. FSAND ROCKS     13. 7   79358. F4 M.SOUTH     13. 9   79349. F     15. 3   79370. FWET SAND CLAY     16. 3   79322. 140E60S CREEK SAND     19. 9 <td< td=""><td>4. 0</td><td>79411.</td><td></td><td>5760</td></td<> | 4. 0                               | 79411.                     |         | 5760                                  |
| 4.3   79339.   CRHCK SAND     4.4   79438.   FBROWN SOIL     4.5   79380.   FBROWN SOIL     4.9   79331.   WATER SAND, IN WATER     5.0   79403.   Sand, IN WATER     5.1   79407.   NO FILTER     5.1   79408.   NO FILTER PYLON PEAK     5.7   7932.   GRAVEL     5.9   79378.   FSAND ROCKS     5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND, IN WATER     7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.   FSAND ROCKS     10.15   7947.   F     9.2   79321.   140E40SINSPRING WATER     10.8   79378.   FSAND ROCKS     10.5   7947.   F     9.2   79378.   FA M. SOUTH     13.9   79349.   F     15.3                                                                                                                                                   | 4.2                                | 79351.                     | CRACK   | F                                     |
| 4.4   79438.     4.5   79380.   FBROWN SOIL     4.9   79331.   WATER SAND, IN WATER     5.0   79403.     5.0   79379.   FSAND     5.1   79407.   NO FILTER     5.1   79408.   NO FILTER PYLON PEAK     5.7   7932.   GRAVEL     5.9   79378.   FSAND ROCKS     5.9   79378.   FSAND ROCKS     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND, IN WATER     7.8   79347.   F     9.2   79373.   FSAND ROCKS     10.0   79373.   FSAND ROCKS     10.5   79437.   F     9.2   79338.   MUCK     12.2   79378.   F4 M.SOUTH     13.9   79349.   F     15.3   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140660S CREEK SAND     19.9 <td>4.3</td> <td>79339.</td> <td>CRHCK</td> <td>SAND</td>                                                                                                                  | 4.3                                | 79339.                     | CRHCK   | SAND                                  |
| 4.5   79380.   FBROWN SOIL     4.9   79331.   WATER SAND, IN WATER     5.0   79403.     5.0   79407.   NO FILTER     5.1   79407.   NO FILTER     5.1   79408.   NO FILTER PYLON PEAK     5.7   79332.   GRAVEL     5.9   79378.   FSAND ROCKS     5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     6.5   79347.   F     9.2   79373.   FSAND ROCKS     7.8   79374.   FSAND     10.0   79373.   FSAND ROCKS     11.5   7947.   F     9.2   79321.   140E40SINSPRING WATER     10.6   79437.   F     9.2   79378.   FSAND ROCKS     12.2   79378.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY <td>4.4</td> <td>79438.</td> <td></td> <td></td>                                                                                                          | 4.4                                | 79438.                     |         |                                       |
| 4.9   79331. WATER SAND, IN WATER     5.0   79403.     5.0   79379.   FSAND     5.1   79407.   NO FILTER     5.1   79408.   NO FILTER PYLON PEAK     5.7   7932.   GRAVEL     5.9   79378.   FSAND ROCKS     5.9   79377.   FIN WATER SINTER     6.4   7968.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND, IN WATER     7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.   FSAND ROCKS     10.5   79437.   F     9.2   79321.   140E40SINSPRING WATER     10.6   79378.   F4 M. SOUTH     13.9   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.                                                                                                                                       | 4. 5                               | 79380.                     |         | FBROWN SOIL                           |
| 5.0   79403.     5.0   79379.   FSAND     5.1   79407.   NO FILTER     5.1   79408.   NO FILTER PYLON PEAK     5.7   7932.   GRAVEL     5.9   79378.   FSAND ROCKS     5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND, IN WATER     7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.   FSAND ROCKS     11.2   79374.   F     12.0   79378.   MUCK     12.2   79372.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUC                                                                                                                                                       | 4. 9                               | 79331.                     | WATER   | SAND, IN WATER                        |
| 5.0   79379.   FSAND     5.1   79407.   NO FILTER     5.1   79408.   NO FILTER PYLON PEAK     5.7   79332.   GRAVEL     5.9   79378.   FSAND ROCKS     5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND NATER     7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.   FSAND ROCKS     11.1   140E40SINSPRING WATER   10.5     12.0   79338.   MUCK     12.2   79378.   FA M. SOUTH     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     1                                                                                                                                          | 5.0                                | 79403.                     |         |                                       |
| 5. 1   79407.   NU FILTER     5. 1   79408.   NO FILTER PYLON PEAK     5. 7   79332.   GRAVEL     5. 9   79378.   FSAND ROCKS     5. 9   79377.   FIN WATER SINTER     6. 4   79368.   FBOULDERS SAND     6. 5   79340.   SAND&ROCKS     7. 2   79374.   FSAND     7. 6   79356.   FSAND, IN WATER     7. 8   79347.   F     9. 2   79321.   140E40SINSPRING WATER     10. 0   79373.   FSAND ROCKS     10. 5   79437.   F     11. 0   79373.   FSAND ROCKS     10. 5   79437.   F     11. 0   79378.   FA M. SOUTH     12. 0   79338.   MUCK     12. 2   79370.   FWET SAND CLAY     13. 7   79358.   F4 M. SOUTH     13. 9   79349.   F     15. 3   79370.   FWET SAND CLAY     16. 3   79322.   140E608 CREEK SAND     19. 9   79359.   FSILTY IN REEDS                                                                                                                                       | 5.0                                | 79379.                     |         | FSAND                                 |
| 5.1     79408.     NU FILTER PYLON PEHK       5.7     7932.     GRAVEL       5.9     79378.     FSAND ROCKS       5.9     79377.     FIN WATER SINTER       6.4     79368.     FBOULDERS SAND       6.5     79340.     SAND&ROCKS       7.2     79374.     FSAND       7.6     79356.     FSAND, IN WATER       7.8     79347.     F       9.2     79373.     FSAND ROCKS       10.0     79373.     FSAND ROCKS       10.1     79373.     FSAND ROCKS       10.2     79373.     FSAND ROCKS       10.5     79437.     F       12.0     79378.     FGAN EQUKS       13.7     79358.     F4 M. SOUTH       13.9     79349.     F       15.3     79370.     FWET SAND CLAY       16.3     79322.     140E60S CREEK SAND       19.9     79359.     FSILTY IN REEDS       23.6     79343.     F       32.2     79375.     FBLACK MUCK, IN WATER <                                                     | 5.1                                | 79407.                     |         | NO FILTER                             |
| 5.7   79332.   GRHVEL     5.9   79378.   FSAND ROCKS     5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND, IN WATER     7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.   FSAND ROCKS     10.5   79437.   F     12.0   79378.   FSAND ROCKS     13.7   79378.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     140.9   79324.   140E100S HOT CREEK FORK     193.5   7939.   ON RIVER                                                                                                                                                                         | 5, 1                               | 79468.                     |         | NU FILTER PYLON PEHK                  |
| 5.9   79378.   FSHND ROCKS     5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND, IN WATER     7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.   FSAND ROCKS     10.5   79437.   F     12.0   79338.   MUCK     12.2   79372.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     10.9   79324.   140E100S HOT CREEK FORK     193.5   79399.   ON RIVER                                                                                                                                                                                                          | 5.7                                | 79332.                     |         | GRHVEL                                |
| 5.9   79377.   FIN WATER SINTER     6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND, IN WATER     7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.   FSAND ROCKS     10.1   79437.   F     12.0   79338.   MUCK     12.2   79372.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     10.9   79324.   140E100S HOT CREEK FORK     193.5   79399.   ON RIVER                                                                                                                                                                                                                                         | 5.9                                | 79378.                     |         | FSHND ROCKS                           |
| 6.4   79368.   FBOULDERS SAND     6.5   79340.   SAND&ROCKS     7.2   79374.   FSAND     7.6   79356.   FSAND, IN WATER     7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.   FSAND ROCKS     10.5   79437.   F     12.0   79338.   MUCK     12.2   79372.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     10.9   79324.   140E100S HOT CREEK FORK     193.5   79399.   ON RIVER                                                                                                                                                                                                                                                                             | 5. 9                               | 79377.                     |         | FIN WHTER SINTER                      |
| 6. 5   79340.   SHND&ROCKS     7. 2   79374.   FSAND     7. 6   79356.   FSAND, IN WATER     7. 8   79347.   F     9. 2   79321.   140E40SINSPRING WATER     10. 0   79373.   FSAND ROCKS     10. 5   79437.   F     12. 0   79338.   MUCK     12. 2   79372.   FGRAVEL ROCKS     13. 7   79358.   F4 M. SOUTH     13. 9   79349.   F     15. 3   79370.   FWET SAND CLAY     16. 3   79322.   140E60S CREEK SAND     19. 9   79359.   FSILTY IN REEDS     23. 6   79343.   F     32. 2   79375.   FBLACK MUCK, IN WATER     10. 9   79324.   140E100S HOT CREEK FORK     193. 5   79399.   ON RIVER                                                                                                                                                                                                                                                                                             | 6.4                                | 79368.                     |         | FBOULDERS SAND                        |
| 7. 2   79374.   FSHND     7. 6   79356.   FSAND, IN WATER     7. 8   79347.   F     9. 2   79321.   140E40SINSPRING WATER     10. 0   79373.   FSAND ROCKS     10. 5   79437.   F     12. 0   79338.   MUCK     12. 2   79372.   FGRAVEL ROCKS     13. 7   79358.   F4 M. SOUTH     13. 9   79349.   F     15. 3   79370.   FWET SAND CLAY     16. 3   79322.   140E60S CREEK SAND     19. 9   79359.   FSILTY IN REEDS     23. 6   79343.   F     32. 2   79375.   FBLACK MUCK, IN WATER     110. 9   79324.   140E100S HOT CREEK FORK     193. 5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                           | 6.5                                | 79340.                     |         | SAND&ROCKS                            |
| 7.6   79356.   FSHND, IN WHTER     7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.   FSAND ROCKS     10.5   79437.   -     12.0   79338.   MUCK     12.2   79372.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     140.9   79324.   140E100S HOT CREEK FORK     193.5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                                                                     | 7. Z                               | 79374.                     |         | FSHND                                 |
| 7.8   79347.   F     9.2   79321.   140E40SINSPRING WATER     10.0   79373.   FSAND ROCKS     10.5   79437.   .     12.0   79338.   MUCK     12.2   79372.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     110.9   79324.   140E100S HOT CREEK FORK     193.5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                        | 7.6                                | 79356.                     |         | FSHND, IN WHIER                       |
| 9.2   79321.   140E40SINSPRING WHTER     10.0   79373.   FSAND ROCKS     10.5   79437.   .     12.0   79338.   MUCK     12.2   79372.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     110.9   79324.   140E100S HOT CREEK FORK     193.5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.8                                | 79347.                     |         |                                       |
| 10.0   79373.   FSHND RUCKS     10.5   79437.     12.0   79338.   MUCK     12.2   79372.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     110.9   79324.   140E100S HOT CREEK FORK     193.5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7. 2                               | 79321.                     |         | 140E405INBFRING WHIER                 |
| 10.5   79437.     12.0   79338.   MUCK     12.2   79372.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     110.9   79324.   140E100S HOT CREEK FORK     193.5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0                               | 79575.                     | •       | FSHND RUCKS                           |
| 12.0   79338.   HOCK     12.2   79372.   FGRAVEL ROCKS     13.7   79358.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     110.9   79324.   140E100S HOT CREEK FORK     193.5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10. 5                              | 79437.                     |         |                                       |
| 12. 2   79372.   FGRHVEL ROCKS     13. 7   79358.   F4 M. SOUTH     13. 9   79349.   F     15. 3   79370.   FWET SAND CLAY     16. 3   79322.   140E60S CREEK SAND     19. 9   79359.   FSILTY IN REEDS     23. 6   79343.   F     32. 2   79375.   FBLACK MUCK, IN WATER     110. 9   79324.   140E100S HOT CREEK FORK     193. 5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.0                               | 79338.                     |         | FORMEL DOCKE                          |
| 13.7   79308.   F4 M. SOUTH     13.9   79349.   F     15.3   79370.   FWET SAND CLAY     16.3   79322.   140E60S CREEK SAND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     110.9   79324.   140E100S HOT CREEK FORK     193.5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.2                               | 70250                      |         | FA M COUTU                            |
| 13. 9   79349.   F     15. 3   79370.   FWET SAND CLAY     16. 3   79322.   140E60S CREEK SAND     19. 9   79359.   FSILTY IN REEDS     23. 6   79343.   F     32. 2   79375.   FBLACK MUCK, IN WATER     110. 9   79324.   140E100S HOT CREEK FORK     193. 5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13. (                              | 79300.                     |         | F4 M. SOUTH                           |
| 15. 3   79370.   FWET SHND CLHY     16. 3   79322.   140E60S CREEK SAND     19. 9   79359.   FSILTY IN REEDS     23. 6   79343.   F     32. 2   79375.   FBLACK MUCK, IN WATER     110. 9   79324.   140E100S HOT CREEK FORK     193. 5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13. 3                              | 70220                      |         | FUET COND. CLOU                       |
| 16.3   79322.   1406605 CREEK SHND     19.9   79359.   FSILTY IN REEDS     23.6   79343.   F     32.2   79375.   FBLACK MUCK, IN WATER     110.9   79324.   140E100S HOT CREEK FORK     193.5   79399.   ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.5                               | 79370.                     |         |                                       |
| 19.9     79339.     FBILIT IN REEDS       23.6     79343.     F       32.2     79375.     FBLACK MUCK, IN WATER       110.9     79324.     140E100S HOT CREEK FORK       193.5     79399.     ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.3                               | 17322.                     |         | THOEODD UREEN SHND                    |
| 23.0 79343. F<br>32.2 79375. FBLACK MUCK, IN WATER<br>110.9 79324. 140E100S HOT CREEK FORK<br>193.5 79399. ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15. 5                              | 79232.                     |         | E E E E E E E E E E E E E E E E E E E |
| 110. 9 79324. 140E1005 HOT CREEK FORK<br>193. 5 79399. ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.0                               | 79275                      |         | FRIACK MUCK, IN WATER                 |
| 193. 5 79399. ON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110 9                              | 79704                      |         | 140F1005 HOT OPEEK FORM               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 193. 5                             | 79399.                     |         | ON RIVER                              |

| NEVIN,<br>CUP | SADLIER, BROU<br>DETECTOR | AN GOOD | BRAND 12-13-78          |
|---------------|---------------------------|---------|-------------------------|
| SERIAL        | READING                   |         |                         |
| NUMBER        | (T/SQ. MM. )              | FIELD   | NOTES AND DATA          |
|               |                           |         |                         |
| 79724         | 9.2                       |         | 140E40SINSPRING WATER   |
| 79322         | 16 3                      |         | 140E60S CREEK SAND      |
| 79323.        | 3.5                       |         | 140E805 CREEK SAND      |
| 79324.        | 110.9                     |         | 140E1005 HOT CREEK FORK |
| 79325.        | 1.1                       | CRACK   | 140E1205 IN FOREST      |
| 79326.        | 1.9                       |         | 140E140S IN FOREST      |
| 79327.        | 1.1                       |         | 140E160S IN FOREST      |
| 79328.        | 1. 1                      |         | CHECK STA 1FOREST       |
| 79329.        | 3.0                       |         | CHECK STH 2SANDFLHT     |
| 79331.        | 4.9                       | WHIER   | SHND, IN WHIEK          |
| 79332.        | 3.7                       |         | GRAVEL                  |
| 79774         | 2.2                       |         | HOT MUCK                |
| 79775         | 24                        |         | SAND SINTER             |
| 79336.        | 3.5                       |         | ROCKY                   |
| 79337.        |                           | LOST    |                         |
| 79338.        | 12.0                      |         | MUCK                    |
| 79339.        | 4.3                       | CRACK   | SAND                    |
| 79340.        | 6. 5                      |         | SAND&ROCKS              |
| 79341.        |                           | LOST    | SAND                    |
| 79342.        |                           | LUSI    | GREY SUIL               |
| 79343.        | 23.6                      |         | F                       |
| 79245         | 1.3                       |         | F                       |
| 79346         | 0.6                       |         | F                       |
| 79347.        | 7.8                       |         | F                       |
| 79348.        | 1.1                       |         | F                       |
| 79349.        | 13.9                      |         | F                       |
| 79350.        | 3. 1                      |         | F                       |
| 79351.        | 4.2                       | CRACK   | F                       |
| 79352.        | 0.8                       |         | F                       |
| 79353.        | 1.9                       |         |                         |
| 79334.        | 3.1                       |         | F<br>ESAND&ROUILDERS    |
| 79356         | 7.6                       |         | FSAND, IN WATER         |
| 79357.        | 0.8                       |         | FBOULDERS GRAVEL        |
| 79358.        | 13.7                      |         | F4 M. SOUTH             |
| 79359.        | 19.9                      |         | FSILTY IN REEDS         |
| 79360.        | 3. 6                      |         | FBOULDERS GRAVEL        |
| 79361.        | 2.5                       |         | FFINE SAND              |
| 79362.        | 0.8                       |         | FSAND SILT              |
| 79363.        | 3.1                       |         | FSHND BUULDERS          |
| 79364.        | 2.2                       |         | FOULDERS GRAVEL         |
| 79365         | 0.5                       |         | FROM DERS               |
| 79367         | 1.9                       |         | FIN WATER               |
| 79368.        | 6.4                       |         | FBOULDERS SAND          |
| 79369.        | 3.6                       |         | FSAND                   |
| 79370.        | 15.3                      |         | FWET SAND CLAY          |
| 79371.        | 3. 9                      |         | FSAND CLAY              |

| NEVIN,<br>CUP | SADLIER, BROW<br>DETECTOR | IN GOODBRAND 12-13-78  |
|---------------|---------------------------|------------------------|
| SERIAL        | READING                   |                        |
| NUMBER        | (T/SQ. MM. )              | FIELD NOTES AND DATA   |
|               |                           |                        |
|               | *                         |                        |
| 79372.        | 12.2                      | FGRAVEL ROCKS          |
| 79373.        | 10.0                      | FSAND ROCKS            |
| 79374.        | 7.2                       | FSAND                  |
| 79375.        | 32. 2                     | FBLACK MUCK, IN WATER  |
| 79376.        | 1.7                       | FBROWN SOIL            |
| 79377.        | 5. 9                      | FIN WATER SINTER       |
| 79378.        | 5. 9                      | FSAND ROCKS            |
| 79379.        | 5.0                       | FSAND                  |
| 79380.        | 4. 5                      | FBROWN SOIL            |
| 79381.        | . 1.7                     | FBROWN SOIL            |
| 79382.        | 1.4                       | FSILT                  |
| 79383.        | 0.8                       | FSAND ROCKS            |
| 79384.        | 0.8                       | FSAND GRASS            |
| 79385.        | 1.4                       | FSAND                  |
| 79386.        | 3. 9                      | FMVD                   |
| 79387.        | 1.7                       | FSAND ROCKS            |
| 79388.        | 0.6                       | FBOULDER PILE          |
| 79389.        | 0.3                       | FSAND                  |
| 79390.        | 3.6                       | FBLACK MUCK            |
| 79391.        | 2.2                       | FBOULDERS SILT         |
| 79392.        | 0.6                       | FBOULDER PILE          |
| 79393.        | 1.7                       | FBOULDER PILE          |
| 79394.        | 2.0                       | FBLACK MUCK            |
| 79399.        | 193. 5                    | ON RIVER               |
| 79400.        | 3. 9                      | BTWN VENTS             |
| 79401.        | 2.8                       |                        |
| 79402.        | 1.7                       | DISTURBED              |
| 79403.        | 5. 0                      |                        |
| 79404.        |                           | DUG OUT NR             |
| 79406.        | 1.1                       | CAPRICORN GLACIER 6080 |
| 79407.        | 5. 1                      | NO FILTER              |
| 79408.        | 5. 1                      | NO FILTER PYLON PEAK   |
| 79409.        | 2.3                       | PYLON PEAK 5640        |
| 79410.        |                           | LOST 6200 NOT FOUND    |
| 79411.        | 4.0                       | 5760                   |
| 79412.        | 2.3                       | 6130 PBR CHMP          |
| 79431.        | 2.0                       | 2950                   |
| 79432.        | 3. 7                      | 3600                   |
| 79433.        | 1.6                       | 4550                   |
| 79434.        | 0.8                       | 4300                   |
| 79435.        | 1.7                       |                        |
| 79436.        | 3.3                       |                        |
| 79437.        | 10.5                      |                        |
| 79438.        | 4.4                       |                        |
| 79439.        | 1.7                       |                        |
| 79440.        | 1.7                       |                        |

NEVIN, SADLIER, BROWN GOODBRAND 12-13-78

TRACK ETCH SURVEY RESULTS AND STATISTICS VALUES GIVEN IN T/SQ. MM. NORMALIZED TO 30 DAY EXPOSURE

NO. USEFUL PTS. : 91 HIGH (T/SQ. MM. ): 193. 5 LOW (T/SQ. MM. ): 0.3

BACKGROUND MEAN (T/SQ. MM.): 2.6 STD. DEVIATION OF BKG. MEAN (T/SQ. MM.): 1.6 RELATIVE STD. DEVIATION (PERCENT): 61.0

## HIGH RANKING POINTS

| RANGE OF Z | NO. OF PTS. | RANGE OF T   | TO BACKGROUND |
|------------|-------------|--------------|---------------|
|            |             |              |               |
| 2 - 3      | 5           | 5.9 - 7.2    | 2.2 - 2.7     |
| 3 - 4      | 2 .         | 7.6 - 7.8    | 2.9 - 2.9     |
| 4 - 5      | 3           | 9.2 - 10.5   | 3.5 - 4.0     |
| OVER 5     | 11          | 12.0 - 193.5 | 4.5 - 73.2    |
|            |             |              |               |

| NO. OF PTS. ABOVE Z = 3: | 16                          |
|--------------------------|-----------------------------|
| PERCENT OF TOTAL PTS. :  | 17. 6                       |
| (Z IS THE NUMBER OF STD. | DEVIATIONS ABOVE BKG. MEAN: |

| NEVIN,<br>CUP | SADLIER, BRO<br>DETECTOR | WN GOOD | )BRAND 12-13-78         |
|---------------|--------------------------|---------|-------------------------|
| NUMBER        | (T/SQ. MM. )             | FIELD   | NOTES AND DATA          |
|               |                          |         |                         |
| 79321.        | 9. 2                     |         | 140E40SINSPRING WATER   |
| 79322.        | 16.3                     |         | 140E60S CREEK SAND      |
| 79323.        | 3.5                      |         | 140E80S CREEK SAND      |
| 79324.        | 110.9                    |         | 140E100S HOT CREEK FORK |
| 79325.        | 1.1                      | CRACK   | 140E1205 IN FOREST      |
| 79326.        | 1.9                      |         | 140E140S IN FOREST      |
| 79327.        | 1.1                      |         | 140E160S IN FOREST      |
| 79328.        | 1. 1                     |         | CHECK STA 1FOREST       |
| 79329.        | 3.0                      |         | CHECK STA 2SANDFLAT     |
| 79331.        | 4. 9                     | WATER   | SAND, IN WATER          |
| 79332.        | 5.7                      |         | GRAVEL                  |
| 79333.        | 3.3                      |         |                         |
| 79334.        | 3.3                      |         | HOT MUCK                |
| 79335.        | 2.4                      |         | SAND SINTER             |
| 79336.        | 3.5                      |         | ROCKY                   |
| 79337.        |                          | LOST    |                         |
| 79338.        | 12.0                     |         | MUCK                    |
| 79339.        | 4.3                      | CRACK   | SAND                    |
| 79340.        | 6. 5                     |         | SAND&ROCKS              |
| 79341.        |                          | LOST    | SAND                    |
| 79342.        |                          | LOST    | GREY SOIL               |
| 79343.        | 23. 6                    |         | F                       |
| 79344.        | 1.9                      |         | F                       |
| 79345.        | 1.7                      |         | F                       |
| 79346.        | 0.6                      |         | F                       |
| 79347.        | 7.8                      |         | F                       |
| 79348.        | 1.1                      |         | F                       |
| 79349.        | 13.9                     |         | F                       |
| 79350.        | 3.1                      |         | F                       |
| 79351.        | 4. 2                     | CRACK   | F                       |
| 79352.        | 0.8                      |         | F                       |
| 79353.        | 1.9                      |         | F                       |
| 79354.        | 3. 1                     |         | F                       |
| 79355.        | 0.8                      |         | FSAND&BOULDERS          |
| 79356.        | 7.6                      |         | FSHND, IN WHIER         |
| 79357.        | 0.8                      |         | FBOULDERS GRHVEL        |
| 79358.        | 13.7                     |         | F4 M. SOUTH             |
| 79359.        | 19.9                     |         | FSILTY IN REEDS         |
| 79360.        | 3.6                      |         | FBUULDERS GRHVEL        |
| 79361.        | 2.5                      |         | FFINE SHND              |
| 79362.        | 0.8                      |         | FSAND SILT              |
| 79363.        | 3.1                      |         | FSHND BUULDERS          |
| 79364.        | 2.2                      |         | FBUULDERS GRHVEL        |
| 79365.        | 0.3                      |         | FHUMUS SHND             |
| 79366.        | 1.7                      |         | FBOULDERS               |
| 79367.        | 1.9                      |         | FIN WHIER               |
| 79368.        | 6.4                      |         | FEUULDERS SAND          |
| 79369.        | 3. 6                     |         | FSHND                   |
| 79370.        | 15.3                     |         | FWET SAND CLAY          |
| 79371.        | 3. 9                     |         | FSAND CLAY              |

| NEVIN,<br>CUP | SADLIER, BROWN | GOOD | BRAND 12-13-78        |
|---------------|----------------|------|-----------------------|
| SERTAL        | READING        |      |                       |
| MIMDED        | (TZSO MM ) E   | TELD | NOTES AND DATA        |
| NUMBER        | (1/3@. MH. / F | IELD |                       |
|               |                |      |                       |
| 79772         | 12.2           |      | EGRAVEL ROCKS         |
| 79777         | 10 0           |      | ESAND ROCKS           |
| 79774         | 7 2            |      | ESAND                 |
| 79775         | 72.2           |      | EDLOCK MUCK, IN LATER |
| 70775         | 32.2           |      | EDDOUN COTI           |
| 79370.        | 50             |      | ETM NOTED CINTED      |
| 70770         | 5.0            |      | FOND DOOVS            |
| 70270         | J. 3<br>E G    |      | ECOND                 |
| 79373.        | J. 0<br>4 E    |      |                       |
| 79300.        | 4.5            |      | EDDOLM COT            |
| 79381.        | 4.4            |      | FOROMA SOIL           |
| 79302.        | 1.4            |      | FOILT DOCKE           |
| 79383.        | 0.0            |      | FORD RUCKS            |
| 79384.        | 0.0            |      | FORMU UKROD           |
| 79305         | 2.4            |      |                       |
| 79300.        | 3. 2           |      | ECOND DOCKE           |
| 79700         | 1. r<br>0. c   |      | EDONI NED PTI E       |
| 79300.        | 0.0            |      | FCAND                 |
| 79209.        | 2.5            |      | EDLACK MUCK           |
| 79330.        | 2.0            |      | EDONI DEDS STIT       |
| 79391.        | 2.2            |      | FROM DEP PILE         |
| 79292.        | 4 7            |      | EDOLINED DILE         |
| 79393.        | . 20           |      | EDIOCUER FILE         |
| 70700         | 497 5          |      | AN DIVED              |
| 79499         | 123. 3         |      | DTUM UENTE            |
| 79400.        | 3.7            |      | BINN VENIS            |
| 79401.        | 2.0            |      | NICTURDEN             |
| 79402.        | 1.7            |      | DISTORDED             |
| 79403.        | 5. 0           |      | NUC OUT : NP          |
| 70404.        | 4 4            |      | CODOTODN CLOCIED 2000 |
| 79400.        | 1. 1<br>E 4    |      | NO ETI TER            |
| 79407.        | 5.4            |      | NO ETITED DUION DEAV  |
| 79400.        | 2.2            |      | DVI ON PERK 5640      |
| 79403.        | 2. 3           | LOST | SOG NOT FOUND         |
| 79410.        | 4 0            | LUSI | 5760                  |
| 79412         | 2 2            |      | 6170 PBP CAMP         |
| 79474         | 2.2            |      | 2950                  |
| 79431.        | 2.0            |      | 2600                  |
| 79477         | 4 6            |      | 4550                  |
| 79433.        | 2.0            |      | 4200                  |
| 79434.        | 0.0            |      | 4200                  |
| 79430.        | 1.1            |      |                       |
| 70422         | 10 5           |      |                       |
| 79437.        | 10.0           |      |                       |
| 79420.        | 4 7            |      |                       |
| 79435.        | 1.7            |      |                       |
| 7.5440.       | 1. 1           |      |                       |

| NEVIN, SADLIE   | R, BROWN GOO                                 | DBRAND 12-13-78       |    |
|-----------------|----------------------------------------------|-----------------------|----|
| PERECIUR C      | UP<br>IDTAI                                  |                       |    |
| (TZSQ. MM. ) NU | MBER FIELD                                   | NOTES AND DATA        |    |
|                 |                                              |                       |    |
|                 |                                              |                       |    |
|                 | 79342. LOST                                  | GREY SOIL             |    |
|                 | 79341. LOST                                  | SAND                  |    |
|                 | 79404.<br>20222 LOCT                         |                       | NK |
|                 | 79337. LUST<br>79440 LOST                    | 5200 NOT FOUND        |    |
| 9.2             | 79765                                        | FHUMUS SAND           |    |
| 0.3             | 79389                                        | ESAND                 |    |
| 0.6             | 79346.                                       | F                     |    |
| 0.6             | 79388.                                       | FBOULDER PILE         |    |
| 0.6             | 79392.                                       | FBOULDER PILE         |    |
| 0.8             | 79434.                                       | 4300                  |    |
| 0.8             | 79352.                                       | F                     |    |
| 0.8             | 79362.                                       | FSAND SILT            |    |
| 0.8             | 79383.                                       | FSHND ROCKS           |    |
| 0.8             | 79384.<br>70755                              | FSHNU UKHSS           |    |
| 0.0             | 79300.                                       | FORNU&BUULVERD        |    |
| 0.0             | 79307.<br>79325 CRACK                        | 140F1205 IN FOREST    |    |
| 1.1             | 79327.                                       | 140E1605 IN FOREST    |    |
| 1.1             | 79328.                                       | CHECK STA 1FOREST     |    |
| 1. 1            | 79348.                                       | F                     |    |
| 1. 1            | 79406.                                       | CAPRICORN GLACIER 608 | 30 |
| 1.4             | 79382.                                       | FSILT                 |    |
| 1.4             | 79385.                                       | FSAND                 |    |
| 1.6             | 79433.                                       | 4550                  |    |
| 1.7             | 79340.                                       | r<br>Nistuppen        |    |
| 1.7             | 79440                                        | DIDTORDED             |    |
| 1. 7            | 79435.                                       |                       |    |
| 1.7             | 79376.                                       | FBROWN SOIL           |    |
| 1.7             | 79439.                                       |                       |    |
| 1.7             | 79387.                                       | FSAND ROCKS           |    |
| 1.7             | 79381.                                       | FBROWN SOIL           |    |
| 1.7             | (9393. · · · · · · · · · · · · · · · · · · · | FBUULDER FILE         |    |
| 1 9             | 79306.                                       | 140F140S IN FOREST    |    |
| 1.9             | 79344                                        | F                     |    |
| 1.9             | 79367.                                       | FIN WATER             |    |
| . 1.9           | 79353.                                       | F ·                   |    |
| 2.0             | 79394.                                       | FBLACK MUCK           |    |
| 2.0             | 79431.                                       | 2950                  |    |
| 2. 2            | 79391.                                       | FBOULDERS SILT        |    |
| 2.2             | 79364.                                       | FBUULDERS GRAVEL      |    |
| 2.5             | 79412.                                       | DULON DEGN 5240       |    |
| 2.3             | 79775                                        | SAND SINTER           |    |
| 2.5             | 79361                                        | FFINE SAND            |    |
| 2.8             | 79401.                                       |                       |    |
| 3. 0            | 79329.                                       | CHECK STA 2SANDFLAT   |    |
| 3.1             | 79354.                                       | F                     |    |

| NEVIN, SADL  | IER, BROU | AN GOOD | BRAND 12-13-78          |
|--------------|-----------|---------|-------------------------|
| DETECTOR     | COP       |         |                         |
| KERVING      | DERIAL    | FILL    | NOTEC AND DATA          |
| C1750, mm. 7 | NUMBER    | FIELD   | NOTES AND DATA          |
|              |           |         |                         |
| 7 1          | 79750     |         | F                       |
| 3.1          | 79363     |         | ESAND BOLILDERS         |
| 2.2          | 79774     |         | HOT MUCK                |
| 2.2          | 79777     |         | nor nook                |
| 2 2          | 79436     |         |                         |
| 3.5          | 79727     |         | 140E805 CREEK SAND      |
| 3.5          | 79336     |         | ROCKY                   |
| 3.6          | 79369     |         | ESEND                   |
| 3.6          | 79390     |         | FBLACK MUCK             |
| 3.6          | 79360     |         | FBOULDERS GRAVEL        |
| 3.7          | 79432.    |         | 3600                    |
| 3.9          | 79371.    |         | ESAND CLAY              |
| 3.9          | 79400.    |         | BTWN VENTS              |
| 3.9          | 79386.    |         | FMVD                    |
| 4.0          | 79411.    |         | 5760                    |
| 4.2          | 79351.    | CRACK   | F                       |
| 4.3          | 79339.    | CRACK   | SAND                    |
| 4.4          | 79438.    |         |                         |
| 4. 5         | 79380.    |         | FBROWN SOIL             |
| 4.9          | 79331.    | WATER   | SAND, IN WATER          |
| 5.0          | 79403.    |         |                         |
| . 5. 0       | 79379.    |         | FSAND                   |
| 5. 1         | 79407.    |         | NO FILTER               |
| 5. 1         | 79408.    |         | NO FILTER PYLON PEAK    |
| 5. 7         | 79332.    |         | GRAVEL                  |
| 5. 9         | 79378.    |         | FSAND ROCKS             |
| 5.9          | 79377.    |         | FIN WATER SINTER        |
| 6.4          | 79368.    |         | FBOULDERS SAND          |
| 6.5          | 79340.    |         | SHND&RUCKS              |
| 1.2          | 79374.    |         | FSHND                   |
| 7.6          | 79306.    |         | FSHND, IN WHIEK         |
| (. 8         | 79347.    |         | F 440E40GINGPDING HOTED |
| J. Z         | 73321.    |         | ECOND DOCKE             |
| 10.0         | 79477     | · · ·   | FSHND ROURS             |
| 12.0         | 79779     |         | MUCK                    |
| 12.0         | 79372     |         | EGRAVEL ROCKS           |
| 13.7         | 79358     |         | F4' M SOUTH             |
| 13.9         | 79349     |         | F                       |
| 15.3         | 79370     |         | FWET SAND CLAY          |
| 16 3         | 79322     |         | 140E60S CREEK SAND      |
| 19.9         | 79359     |         | FSILTY IN REEDS         |
| 23.6         | 79343     |         | F                       |
| 32. 2        | 79375.    |         | FBLACK MUCK, IN WATER   |
| 110.9        | 79324.    |         | 140E1005 HOT CREEK FORK |
| 193. 5       | 79399.    |         | ON RIVER                |



APPENDIX F-2 RADON SURVEY FREQUENCY HISTOGRAMS OF DATA