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ABSTRACT

This report summarizes the state-of-the-art of fluid flow through
fractured media. Various existing technical approaches have been brought
together to study fracture deformation and its effect on fluid conductivity.

Overall, the report comprises three independent entities which could
be considered independently. The first part is a critical literature review
of previous work, in which special emphasis has been placed to explain apparent
discrepancies. The second part outlines the numerical technique which was
selected as well as its limitations. Finally, the third part provides the
reader with an in-depth discussion on the engineering implications.

RESUME

Ce rapport résume le niveau de développement de l'écoulement fluide &
travers les zones fracturées. Plusieurs méthodes techniques ont &té
assemblées afin d'@tudier la déformation de fracture et son effet sur la
conductivité fluide.

Le rapport comprend trois &léments qui peuvent &tre considér&s séparément.
La premiére section est une revue critique de la lité@rature des recherches
ant8rieures dont une concentration spéciale a &t& faite pour expliquer les
désaccords apparents. La deuxi®me section présente une esquisse de la technique
numérique choisi avec un exposé de sa restriction. Finalement, la troisiéme
section présente au lecteur une discussion profonde sur les implications de
1'ingénierie.
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FOREWORD

This report summarizes the state-of-the-art of fluid flow through

fractured media. Various existing technical approaches have been brought

together to study fracture deformation and its effect on fluid conductivity.

Overall, the report comprises three independent entities which
could be considered independently. The first part is a critical
Titerature review of previous work, in which special emphasis has been
placed to explain apparent discrepancies. The second part 6utlines the
numerical technique which was selected as well as its limitations.
Finally, the third part provides the reader with an in-depth discussion
on the engineering imp]icatibns.

Any opinions expressed in this report are those of the authors
and the Earth Physics Branch takes no responsibility neither does it

endorse the findings.

J.-C. Roegiers
J.H. Curran
W.F. Bawden

April, 1979.
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NOMENCLATURE

flow rate
intrinsic equivalent permeability

area

- field pressure head gradient

"smallest" dimension of "specimen"
being studied

order of magnitude of rock mass
heterogeneity

mean fracture aperture
kinematic viscosity
Reynolds number

mean flow velocity
hydraulic diameter

friction factor

fluid density

dynamic viscosity

hydraulic length

fluid pressure

total flow volume

flow per unit width
acceleration due to gravity
fluid acceleration

volume

micro roughness

Dimensions
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macro roughness

fracture conductivity

normal stress

seating load for fracture
maximum fracturé closure

normal fracture displacement

initial external force at a nodal
point

external force at some later increment
half length of joint element
initial normal stiffness

normal stiffness at some later
increment

peak shear strength

proportion of joint area sheared
through the asperities

dilation rate at the peak shear stress

(secant dilatancy rate) Av(tp)/Au(rp)

shear strength of the rock composing
the asperities

ratio of compressive to tensile
strength '

unconfined compressive strength
of the asperities

residual shear strength
fracture shear displacement
peak shear displacement
residual shear displacement

ratio of residual to peak shear
strength
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CHAPTER I
GENERAL INTRODUCTION

Theoretical and laboratory studies over the past twenty years have
pfovided considerable insight into the hydrogeologic properties of
fissured rock. Thé development of fracture-flow models has followed
two distinct approaches:

i) the discrete model
iji) the statistical model.

In the discrete model each discontinuity is modelled individually.
For rock masses with a high fracture density, in order to simplify the
problem, several discontinuities may be incorporated and replaced by a
single equivalent discontinuity. The main advantage of this approach is
that it is then possible to examine the influence of individﬁa] joint
parameters on the flow through jointed rock.

For laminar flow in a fracture, Wilson (1970) found that fracture
aperture is by far the most important parameter governing the flow rate.
Fracture orientation was found to have 1ittle effect upon the seepage
rate beneatﬂ dams, but it did significantly influence the water pressure
distribution and hence the stability of the structure.

In contrast to the discrete model, the statistical approach treats
the heterogeneous fractured rock mass as a continuum-type equivalent
porous medium in which the systems of geologic discontinuities are
assumed to impart an anisotropic permeability character. The properties
of each family are stat%stica11y averaged to develop the equivalent

anisotropic permeability tensor relating flow and hydraulic gradient.



The power of this method resides in the fact that no detailed knowledge
of the fracture geometry is necessary to obtain é quantitative statement
of the seepage characteristics. However, as discussed later, the use of
the statistical approach can, under certain circumstances, lead to
invalid results.

The cﬁoice between these two méde]s mainly depends on the volume

of the rock mass being investigated relative to its degree of heterogeneity,

but also on the relevant geologic information avajlable.



*

Consider a representative volume of a rock mass subjected to ground-
water flow with a hydraulic potential ¢ and gradient Ji =°¢’i . Due
to anisotropy introduced by the joints the mean velocity vector V}is in
general not parallel to J%*i The general form of the equation relating

Vi and Ji is

9 = Kz - A9 (2.1)
where g, = flow rate in = V. - A L7743

Kij = intrinsic equivalent permeability [L T ']

A = area [1%]

Ji = field pressure head gradient .

Snow (1965) used a statistical interpretation of borehole injection
test results to determine fracture aperture distribution. The remaining
parameters are determined from core logs and down-hole techniqueé. A
basic assumption in Snow's work is that the fracture systems form a
cubic network.

Rocha and Franciss (1977) give a detailed development of the
equivalent porous medium permeébi]ity tensor Kij' They determine all
properties of the fracture system using a technique called integral
sampling. Correction factors are then applied to make the calculated
permeability tensor match field pump tests. The correction factors are
supposed to correct primarily for the assumption of in-plane fracture

continuity.

indicial notation (i = 1,2,3) is used throughout this report and
repeated indicies indicatethe summation convention.



Considerable work in statistical modelling has also been done by
the petroleum industry. However such high pressures are used that the
fluid compressibility leads to unsteady state flow, making the results
of Timited value for civil engineering work. Wilson (1970) provides a

good review of petroleum research.

2.2 Discussion

2.2.1 Scale Effect:

Snow (1968) stated that "{ractured crystalline rocks are a media
whose permeabllity is attrnibutable fo a Large number of Lntanéec;ing
planar conduits with dispersed onientations. Since, in most cases it
{8 Ampossible to measure the onientation 0f every gracture the problem
must be solved statistically by random sampling of the onlentations."

In order to idealize a rock mass as é continuum, fractures whose
properties are important for permeability considerations must be
sufficiently numerous inside volumes which can be deemed small with
respect to the problem concerned. If this holds the discontinuous Fock .
mass can then be replaced by a continuocus medium, the characteristics
-0of which may be nonhomogeneous.

The applicability of the previous idealization depends on what
is generally known as scafe effect. The fundamental question is what
dimensions must a sample have to be representative of the rock mass,
notably as regards its permeability. Thus for a rock mass with a single
family of continuous fractures, assumed to have the same properties

throughout, there must be adequate fractures that the sample permeability

is representative of the permeability of the rock mass. This means



that in samples with increasing volumes, V,, V,, V3, ..., the correspond-
ing permeabilities Kij along the plane of the fracture will initially
fluctuate but will then tend to a constant value (Fig. 2.2). Thus

a sample will be representative if its volume exceeds Vr’ the value

of which will depend on the accuracy with which the permeability is.

to be determined, (Rocha and Franciss, 1977).
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Figure 2.2 Scale effect (adapted from Rocha & Franciss, 1977)

Thus a representative sample must contain a large number of
fractures. For this reason Rocha and Franciss (1977) state that it
often is necessary to accept samples that are poorly representative.

 The concept of scale effect, although intuitively correct, is
site dependent and can only be determined through costly field testing.

Statistical models for one- or two-phase flow developed by various
researchers in the petroleum field are reviewed by Wiison (1970). This
work generally deals with complete reservoirs and hence scale effect
should not pose any difficulty. A comparison of these models with
appropriate preduction and field data confirm that at least some
reservoirs are adequately modelled as equivalent porous media.

Discrepancies between model and field results are more easily appreciated

“if one considers Baker's (1955) calculation that a single fissure of
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2.5 mm aperture is equivalent to 140 metres of unfissured formation
having a uniform permeability of 10 millidarcys. Parsons (1972)
concludes that for regional flow, where the field hydraulic gradient
could not be expected to change abruptly in magnitude or direction,
the behaviour of a fractured rock mass can be approximated as an
equivalent anisotropic porous medium. This depends, however, on the
amount of dispersion present in the aperture population and holds
exactly only wLen the dispersion is zero.
A few authors have attempted to quantify the scale effect factor.
Rats and Chernyashov (1965) used a statistical apprcach to relate
joint parameters and permeability. The author distinguished three
types of heterogeneities: (i) microscopic, (ii) aquifer or hydrostratigraphic
and, (ii1) regional tectonic.
They differentiated homogeneous from heterogeneous structures
(Figure 2.3) based on various statistical distributions. The authors
cond%tiona]iy gave the first approximation to this boundary as Lg/LC = 10,
i.e. an equivalent homogeneous medium may be assumed if Lg/Lc < 10
where Lg is the smallest dimension of structure or volume or rock
being studied and L]

L. is the order of magnitude or rock mass heterogenity (i.e.
fracture spacing). CL]

They Concluded that permeability variation decreased as the fracture

density increased.
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Maini's (1971) results for scale effect in an injection test are
shown in figure 2.4. However there appears to be some question of the

data and assumptions used, as will be discussed in detail in chapter IV.
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Wilson (1970) concludes from numerical tests that in general when
the smallest dimension of the engineering structure is 50 times as long
as the longest dimension of the larger rock matrix blecks, a discrete
approach need not be used.

Barton (1972), used Snow's statistical method to interpret pump
tests in Norway. He relaxed the assumption that all fractures conduct
water. This was confirmed by the packer test results which 'showed
fractured sections with zero water acceptance. Barton found that the
equivalent spacing of water conducting joints was féur to fifteen times
the observed fracture spacing. It would appear that at greater depths
there may be even fewer conductors. Barton states that in such cases

the equivalent porous medium analogy is not valid.

2.2.2 Stress-dependent permeability

For a single smooth fracture the quantity of f]owtﬁ can be shown
to be proportional to the cube of the mean fracture aperture e

(Navier-Stokes equation)

Qo e’
Therefore, correlation with Darcy's Law (i.e. Vi = Kij Jj) shows that
the joint conductivity is porportional to e2?. Hence a small change in
fracture aperture may lead to a major variation in permeability,
especia1]§ for the very small aperture ranges encountered in fractured
rock. Numerous researchers, e.g. Goodman (1976), Gale (1975), Iwai (1977)
have shown that fracture aperture is dependent on existing stress
conditions and previous stress history. Snow (1968) measured surface

strains at up to 100 m from a well for-a drawdown of 10 m. Gale (1975),

using a specially designed apparatus, measured fracture deformqtion in
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one well during injection and withdrawal in a second well. Bernaix
(1961), in studying the Malpasset gneiss, found the permeability of
fractured samples to be much higher for divergent flow where the sample
is submitted to a stress field where tension predominates than for
convergent flow where compression predominates. Therefore, in many
cases it is necessary to account for permeability changes under load.

Most researchers dealing with statistical flow models have neglected
loading effects on permeability. This assumes that fracture apertures
measured either directly in the field or else determined indirectly from
packer tests will remain constant both during construction and after
completion of the engineering structure.

Sarafim and del Campo (1965) developed a mathematical model for
steady state flow in a network of three orthogonal joints including
a term to account for the change in aperture under load. The authors
relate their stress dependent term to fhe sum of the principal stresses,
hence assuming that the deviatoric component does not affect fracture
aperture.. While this may be true of very smooth joints and or rough
joints at very high normal stress levels, for general civil engineering
projects dilatation associated with shear stresses may have considerable
effect on permeability, as discussed in more detail later. Furthermore,
an assumption in the model of Serafim and del Campo is that each fracture
may be considered to operate independently from flow in any other
fracture. Wilson (1970) points out, however, that this type of model
is allowed only in regions where the field hydraulic gradient maintains
a constant orientation in space so that component of gradient is the

same within each portion of each fracture in a given parallel set.
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Snow (1968) developed a permeability tensor including stress
dependent terms. He assumes the fractures deform in a linear elastic
manner to account for the deformability of the fractured intact rock.
As discussed later, experimental evidence indicates that joint closure
in highly non-linear and non-recoverable, especially in the intial
load cycles.

Rocha and Franciss (1977) provide a very detailed methodology for
determining the complete permeability tensor for fractured rock based
on integral sampling. Although the authors do not directly account for
stress dependency, they do use correction factors to make the permeability
resultssbased on integral sampling, correlate with values determined
from packer tests in the boreholes. They claim that these correction
factors are needed to compensate for the assumed continuity of the
fractures plus deviations due to roughness and head losses at joint
intersections. It would seem at least as probable, depending on how
the packer tests are performed, that the correcfion factors may be
needed to account for aperture changes during pressure testing as have
been measured by Gale (1975). If so, the correction factors would only

be applicable for the effective stress conditions during that test.
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CHAPTER III

THE DISCRETE MODEL

3.1 Introduction

The theoretical and experimental basis for the discrete model is
the Hele-Shaw or parallel plate model. In the case of viscous laminar
flow between smooth parallel plates it is possible to obtain a 'closed
form' solution for the flow rate qi as a function of joint aperture,
viscosity and pressure gradient.

| The influence of parameters such as tortuosity, roughness, etc.,

is determined experimentally.

3.2 Experimental Investigations

The first systematic studies on flow through fracturea media were
conducted in the Soviet Union. The studies by Lomize (1951) are
especially important in that he was the first to systematically examine
the influence of parameters such as spatial distribution and aperture
as well as shape and structure of the wall roughness. He conducted
laboratory experiments using a relatively small (about 20 cm long)
joint model. The roughness was varied by gluing individual sand grains
on both surfaces. In addition, Lomize conducted a number of experiments
changing the wall shape (Figure 3.1). Both laminar and turbulent regimes

were investigated.
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Figure 3.1 Different shapes of the joint
walls investigated by Lomize

Louis (1969) independently developed similar ideas and performed
similar tests using a substantially larger model (70 x 200 cm) formed
from two slabs of washed concrete. He studied parallel as well as
non-paraliel flow through both the laminar and turbulent regimes.

The parallel flow studies were carried out, mainly to verify the
applicability of the pipe flow laws of non-circular cross sections to
flow in rock discontinuities.

Louis differentiated between a micro-roughness "k" and macro-

roughness "K" as shown in Figure 3.2.

s\'\\\\\\ \4{\\\\\\ \\\
. \\\\ T L) T
N

K Macro-roughness
k Micro—roughness

Figure 3.2 TIllustration of a fracture surface in rock
(After C. Louis, 1969)
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If the centre line of the fracture is approximated by the straight
Tine 'x - x' then the 'macro-roughness', or waviness can be described
mathematically by the angle ei. The deviation of the joint wall from
this 'substituting line', is then defined by
tan 6, = I;%? (3.1)
where K is the macro-roughness of the fracture.

As K increases, the flow path length increases, introducing curvature
losses which result in a decrease in the hydraulic gradient in the joint.
The author concludéd that macro-roughness can be ignored unless K is
nearly equal to the fracture aperture. The local joint wall roughness is
described- in terms of the micro-roughness.

Defining Vm as the mean f]ow velocity and v as the kinetic viscosity,

Louis defined a Reynolds number similar to pipe flow:

D, V '
__h m
re - L | (3.2)
. where Dh = the hydraulic diameter and is equal to 2e. [L]
{ By, = mean fluid velocity. [LT™!]
v = kinematic viscosity. [L*T7!]

Sharp (19’0), Béséd on laboratory é]ow experiments on a single
_patura] rock fracture, questioned the cubic.re1ationship between flow
rate anﬁ aperture. The author noted that although Darcy's law held

for most porous media, it could not necessarily be assumed for fissured
rocks where much higher velocities may exist. In addition, he suggested
that inertial forces due to irregularities are the reason for the
existence of a considerable transitional period occurring between

Tinear and fully turbulent regimes.

Turbulent flow is influenced by the following parameters:
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(a) roughness,

(b) channel curvature: sharp changes initiate turbulence,
(c) change in cross-section: divergence induces instability,
(d) contact points and surrounding deadwater areas which lead

to non-linear flowlines. -

The flow boundaries between laminar and turbulent regimes for
both parallel and non-parallel flows are defined on the basis of friction
factor A and a Reynolds number "Re" with the relative roughness "k/Dh"
as a parameter. A compilation of the different flow laws and their

range are shown in Figure 3.3
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Figure 3.3 Compilation of the different flow laws and their range
‘ of validity. (After C. Louis 1969).
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Figure 3.4 shows the same laws plotted on a graph of the friction

factor "A" versus Re for various values of k/Dh.
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Figure 3.4 Diagram of the proposed laws of resistance
for flow in a joint. (After Louis, 1969)

Finally Figure 3.5 summarizes the laws governing friction factor

and flow rate developed by various authors.
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i Figure 3.5 Compilation of the different laws of
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The major criticisms of.both Lomize's and Louis' work are:

{ (1) It is very difficult if not impossible to obtain a meaningful
value of the fracture aperture in the field.

{_ (ii) It is very difficult to define a Reynolds number for very

l . rough discontinuities since the true cross-sectional area
cannot readily be'mgasured.

L (i11) The models are for constant aperture with no contact points
between the fracture walls. |

[ (iv) Both models neglect the effect of stress on aperture and

l hence on permeability.
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Sharp stated that representing fracture flow by a Reynolds
number/friction factor criterion was not realistic. His expressions

for the Reynolds number and friction factor are given respectively by:

1"

py ¢
Re = I | =25 gradh (3.3)
H V2 p -
- m
: where , p = density of fluid, CML™ 3]
u = dynamic viscosity of fluid, )T |
) z = the hydraulic length of the system, [LJ]
V_ = average velocity of fluid, CLT™1]
grad P = gradient of pressure = %;
P = fluid pressure. CIMLTTT2]

For small values of roughness, ¢ is simply proportional to the
discontinuity openings (¢ = 2e). In rough discontinuities, however, the
very irregular nature of the fracture walls plus the existence of dead
water areas surrounding points of contact where no flow occurs, make the
measurement of the true cross-sectional area of flow impossible. Hence
the (;, Re) flow criterion may be impractical. Also the hydraulic radius
does not account for channel curvature, transitional flow or high velocity
flow. .

[ Sharp assumed that the fracture was closed when three or more

: contact points were present even though a measurable flow rate was stii]

L present. He referred to this condition by introducing the concept of

[ "eéffective zerc” aperture. Based on this analysis Sharp obtained the
following empirical equation relating the quantity of flow per unit

L width Q to the joint aperture e:
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Q=Ac¢gn (3.4)

where( A is a constant depending on the gradient, and

ln is a parameter dependent on the flow domain

Flow Domain n
Linear Laminar 2
Transitional 1.2 togz

Fully turbulent 1.2

Sharb concluded that 1inear flow was restricted to very small gradients
and that a long transitional zone usually occurred between the linear

énd the fully turbulent regimes.

However, Gale (1975) reviewed Sharp's experimental data and suggested

that the cubic relation between Q and e was still valid, provided one

took the flow rate corresponding to Sharp's effective zero opening into

account. He suggested that the reduced flow rates obtained in discontinuities

with significant.wall roughness can be accounted for by either altering
the aperture size or adding a compatible term to compensate for the
deviation.

Maini (1971), also rejected the use of a Reynolds number/friction
factor criterion for fracture flow and stressed the importance of non-
linear pressure flow rate relations and large transition zones. Using
a transparent model he was able to clearly demonstrate the discontinuous
nature of the flow field within the fracture. He fourd this to be
primarily attributable to dead_water areas due to contact points and

surrounding boundary layers and/or tortucsity of streamlines.
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Maini suggested that one of the main differences between the
continuum and discrete models resulted from head losses at joint
intersections due to mixing of several flow paths, these losses being
minimum when the discharges are equal. However he found that the
intersection losses are negligible for small values (<100) of the
Reynolds number.

Maini derived.the following flow equations for radial flow between

paralle]l plates:

P = A*Q,+ B*Q* - (3.5)
wheres Q = quantity of flow per unit width (L33
&n (r/ro) ,
* = -
A 2nk; n e ’ L213  (3.8)

kj = hydraulic conducitivity of the fracture [LT !]

i

| — [L™°72] (3.7)

2 2 2
20m e?2g \r ne./
ro is the well radius and (L]
P is the pressure at a radial distance r from the CML™IT™2]

centre of the well.
n .is the number of fractures
The last term in equation (3.5) accounts for kinetic energy
losses at joint intersections.
From field tests he found this term to be generally negligible
but maintajngd that if the pressure flow cﬁrve is non-linear the kinetic

energy term should be evaluated before proceeding to a non-linear law.
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Using the laws of Miesbach, Maini obtained the following law for

non-linear radial flow:

f rn-l pn=1
Q"= [Z’FP (e)] ;H:Tif%E:T (Py - P) (n-1) (3.8)
or EQ"= (P -P) | (3.9)

where the subscript 'o' refers to the wellbore.

The intercept of this equation (i.e. for Q = 0) gives what is referred

to as the pewmeability function.

-1 n-1
: 1 P! . r
C = T — (3.]0)
e n-1 n-1
c [err(Ze)] r = Ty

The author also stated that the kinetic energy term is negligible in the
case of non-linear flow.

Using the equation for linear radial flow developed above, a 58.5%
pressure drop occurred at r = 2r0, whereas the continuum model would
predict virtually no pressure drop at that distance. Based on this,Maini
concluded that,in the case of radial flow, the permeability characteristics
near the borehole mainly control the pressure/flow relationship. “

He also suggested that equation {3.5) could be used to determine
whether the fracture opens or closes. A negative slope in the diagram
(%) versus Q indicates decreasing kinetic energy losses and hence

increasing aperture.
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Maini noted that the form of the pressure-flow rate relation
implies that additional observation wells are necessary to evaluate
borehole injection tests. The standard Lugeon test using the radius of
ingluence concept ignores the effect of barrier and/or recharge boundaries
making it a nonsteady state problem. He concluded that one observation
well is necessary if a discontinuity is suspected while two wells are
necessary if anisotropic conditions prevail.

Jouanna (1972) performed both laboratory and field tests on flow
through a finefy fissured micaschist. However, due to the very intensely
fissured nature of this particular rock, measurement of individual
parameters was impossible and the author had to choose a global approach.

The study concentrated largely on the effect of stress on permeability.
Laboratory samples were subjected to biaxial loading while field data was
obtained for various ]oadfng conditjons. In both situations, irreversible
changes in flow rate occurred when cycling the applied stress, the most
profound variation being associated with the first cycle.

These laboratory studies indicated that linear flow did not exist
for this rock type except at very low gradients near unity. The study
was extended to very high gradients by using air as the fluid. The
results indicated that some rocks have a unique flow- law relating
velocity and gradient which is independent of the viscosity.

The field testing on the same rock lead to a pressure-flow rate
relationship which remained nearly linear throughout the test range.

It should be noted however that in the laboratory test planar flow

prevailed while in the field the flow was radial.



~23-

For analytical purposes Jouanna idealized the fissured medium as an
equiva]ent,.homogeneous continuum. He also assumed linear elastic
behaviour and laminar flow conditions. The in-situ results show that
this jdealization is far from reality.

Rayneau (1972), studied radial flow in a single artificial fracture
made of duraluminum, subjected to various Toading conditions. This
author also used a Reynolds number/relative roughness criterion to
separate the different flow domains. In his numerical approach he
assumed an elastic, isotropic, impermeable matrix with rock bridges to
carry the stress transfer across the discontinuity.

In the case of radial flow, Rayneau showed that for constant flow
rate the Reynolds number is independent of the aperture. In addition,
for a relative roughness less than 0.033 the onset of turbulence becomes
independent of the roughness. As the relative roughness increases
however, the onset of turbulence occurs at lower flow rates.

Finally, Rayneau's study indicated that several different flow
domaiﬁs may océur within one single discontinuity especially within
the vicinity of a borehole.

Goodman et al (1972) performed fundamental experimental research
on the strength - deformability - water pressure relationships for
fractures subjected to direct shear. Both rough and smooth fractures
were investigated.

In his textbook, Goodman (1976) gave a comprehensive review of the
factors affecting the mechanical behaviour of geological discontinuities
based on field and laboratory tests on natural and artificial joints.

Empirical laws developed by several investigators to describe joint
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behaviour are critically reviewed. The author also described in detail
his 'joint element' which can be used to model the behaviour of fractured
rock masses.

In performing in-situ tests, Gale (1975) found that aperture changes
were indicated by changes in the shape of the fluid pressure profile.
Using a fracture peformation gage he concluded that aperture changes
constitute a significant percentage of the initial aperture. He also fqund
that when a number of fractures intersect a well, perferential opening of
certain fractures occurs.

Although there seemed to be good agreement between field and
numerical data, the author found that the assumed linear joint stiffness
did not accurately model the non-linear behaviour of the fracture
deformation, especially when the change in effective stress was a.
significant pereentage of the initial effective stress.

His laboratory studies on large cores showed that the fluid pressure
profile within the fracture plane is very sensitive to changes in
aperture and thus may provide an indirect means of detecting fracture
deformation in field situations. |

Iwai (1976) studied the fundamental hydraulic characteristics of
laminar flow through natural fractures and the effect of inheren;
geometric characteristics, i.e. small scale roughness and contact
areas.

Laboratory permeability tests were done to examine how actual
flow characteristics are influenced by aperture changes (up to

2.5-107% cm), stress changes and geometry.
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From measurement of the flow rate, pressure gradient and vertical
displacement, Iwai was able to confirm the applicability of the cubic
law to flow in rock discontinuities. Most tests utilized radial flow
although one linear flow test was performed.

The author concluded that small scale relative roughness does not
greatly influence the flow characteristics provided the aperture is
larger than about 20 x 10" cm. He also found that nonuniform apertures
may be treated as equivalent uniform apertures without inordinate error
if a wedge. shaped fracture is assumed. The study also indicated that
the contact areas significantly influence the flow rate. This conclusion
was reached from numerical data using & model based on randomly distributed
contact points but was not substantiated in the laboratory tests.

A rather interesting feature was that the stress-deformation
behaviour of the laboratory models was non-linear throughout the testing
range, (up to 20 MPa), and cyclic loading produced hysteresis and
permanent deformation. Moreover, small residual flow persisted even
at very high normal stress (30 Mpa).

Under cyclic loading the flow rate was analogous to the deformation
behaviour. The dependency of flow on stress history can however be
avoided if the flow rates are taken as a function of the fracture
aperture.

Iwai found that with the exception of highly non-uniform fractures
the cubic law is applicable provided that the Reynolds number is less
than 100 and a correction is introduced to take care of the residual

flow.
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The author suggested the following expressions:

For radial flow

where r = well radius Ll
ry = distance remote from well [L]
Ah = change in head between ry and r, CL]
vy = specific weight of water [ML™2T 2]
u = dynamic-viscosity of fluid [ML™'T %]
a = flow rate reduction factor
- oa. =0 for bd =0,
bd = Vm - AV CLd
Ab_ =

fracture aperture at bd = (0, expressed as

CL]

= maximum closure

(3.11)

(3.12)
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(b) For planar flow

. | 3 Ah
Q=q T%E (by + &b )° =F (3.13)

where ; Ah = head difference over length L [L]
( L = flow distance , [L] ‘

14
]

]
@ = 1.0 for by > 15 x 107" cm

@< 1.0 for b, <15 x 107" cm

d

A]thouﬁh Gale (1975) and Wilson (1970) stated that turbulent flow
was not important for practical considerations Iwai (1977) recommended
" extension of the tests to include the turbulent regime in order to see
if the proposed flow equations remain valid. It is interesting to note

that his test data began to deviate significantly (about 20%) from the
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cubic law for Reynolds numbers greater than 100, even though the

apertures tested are very small (<250 x 10" cm).

3.3 Numerical Investigations

The previous section of this report reviewed the experimental
models using either an artificial or a natural joint. In order to
study problems of practical interest the aforementioned data has to be
applied to a roEk mass containing a large number of intersecting
fractures, necessitating the use of a numerical technique.

Louis (1969) examined the effect of flow on the stability of rock
slopes by numerically solving a system of linear equations. The
numerical model of Sharp (1970) and Maini (1971) was based on the
finite difference technique.

The relatively recent and rapid advancements in the finite
element method have provided a further powerfu] and versatile tool
for the solution of complex boundary value problems.

Wilson and Witherspoon (1970), developed a finite element program
to analyse steady state flow in jointed rock, assuming the rock mass
to be rigid. They were able to simulate flow from a porous matrix
into the fractures along with the effect of varying aperture and
interference at fracture intersections.

Noorishad (1971), investigated two-dimensional, steady state flow
behaviour within a fractured rock mass subject to fluid forces, body
forces and boundary loads. The analysis was performed by coupling
two finite element programs, oné for stress.analysis and the other

for fluid flow. In compgring this technique with the rigid fractures
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app%oach the author found that the interaction between fluid pressures
and rock stresses is rather important. For example, Tess discharge and
higher uplift pressures are encountered.

Witherspoon et al (1974), devised a numerical technique to analyse
stress flow problems in complex rock systems containing deformable
features. The method again couples two finite element programmes in
a manne} similar to Norrisﬁad. Their analysis showed that fracture
orientation strongly affects the extent of pressurization for both
injection and withdrawal tests. Also an increase in the fracture
stiffness causes the pressure to affect a larger region around the
injection point. The authors concluded that the assumption of rigid
fractures cannot be used to predict the behaviour of a fractured rock
mass. |

Gale (1975) preseﬁted a thorough study of flow in deformable
fractured systems. He extended the work of Noorishad to include
axi-symmetric conditions. The rock matrix was idealized as a linear
elastic continuum while the fracture deformability was modelled using
the "joint element" of Goodman (1976).

Gale found considerable difference in the pressure - flow rate
distribution for injection versus withdrawal. The greater the
deformability of the fracture the larger the difference. His numerical
study indicated the existence of a considerable difference in the
pressure - flow rate distribution when non-uniform versus uniform

fractures were considered.
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CHAPTER IV

COUPLED DEFORMABLE FRACTURE FLOW

4.1 Introductioh

The previous chapter has shown that prior to the recent work by
Witherspoon, Horrishad, Gale and Iwai, researchers in fracture flow had
regarded fractures as rigid networks. However recent work has demonstrated
that the effect of fracturedeformation on flow behaviour as well as the
role of fluid pressures as deformation agents must be taken into account.
These effects may alter the hydrologic response of thé entire system.

In order to solve this problem any mathematical model should account
for: _

(i) the deformability of the fractures,

(ii) the coup]ing between fluid pressures and stresses in the

intact rock.
With respect to the latter factor, the pressure distribution through the
fractured rock mass must be compatible with the state of stress of the
system.

Several assumptions concerning rock and fracture behaviour are
necessary to make the method tractable yet realistic:

(i) the geometry of the system is known (i.e. fracture density,

aperture distribution, etc.)

(ii1) the permeability of the fractured rock mass is essentially

due to flow through the fractures, j.e. the primary permeability
is negligible.

(i11) the intact rock blocks behave elastically.

(iv) the fracture deformations are non-elastic.
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The finite element technique was used to model coupled deformable
fracture flow. The linear fracture flow element developed by Wilson
(1970) was coupled using an iterative process with Goodman's (1976) joint
element model. The model was then used for parametric studies of the
principal factors controlling fracture flow. The results of these

studies are discussed in the remainder of this section.

4.2 Fracture Deformation

4.2.1 Generalities

Goodman (1976) describes a discontinuity- as a 'special 1ink'
between block faces - one that parts in response to tensile forces,
slides in response to shear forces, and transmits any force in response
to compression forces. Each of these modes of deformation contributes
primarly non-elastic displacements to the rock mass. The Goodman joint
element is an elastic linkage element constrained through an iterative
solution procedure to obey the non-elastic, non-linear deformation Taws
observed experimentally with rock fractures.

Figure 4-1 shows a four nodal point joint element as an jdealization
of an actual discontinuity. It has a small aperture 'e' to simulate the
irregular and variable region between the joint wa]];. For simplicity
it will be considered as a linear feature.

The finite element model is based on the displacement method. In
order to solve for the displacements and stresses resulting from an
imposed load, the rock mass is divided into two parts.

(1) a homogeneous continuum idealized as a linear elastic solid

represented by orthotropic constant strain triangular elements.
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/— Actual discantinuity

"Elastic' Intact Rock

s,n~Local ‘Co_o'rdiriates
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Finite E1 ement Mode1
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{

Figure 4.1 Actual and Idealized Discontinuity (after Goodman, 1976)

(ii) Jjoints behaving elasto-plastically and represented by linear
Tinkage elements.
Details of the formulations for the above elements are given by Goodman

(1976).

4.2.2 Fracture Behaviour Under Normal Load

An empirical relation between normal deformations and increasing
normal load on a fracture as developed by Goodman (1974) was used
in the present model. Two conditions must be satisfied:

(i) an open fracture exhibits no tensile strength,

(ii) there is a 1imit to the maximum allowable compression,

defined by the maximum closure, (V__), which must be less

mc
than or equal to the mean joint aperture (See Fig. 4-2).
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Figure 4.2 Fracture behaviour in compression (after Goodman, 1976)
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A relation between normal stress (o) and normal displacement (Av)

which accounts for the above constraints is represented by the hyperbolic

equation:
- t
L z5-n (-—-——VmCAX =) (%) (v <) (4.1)
where{ £ is the seating pressure A

(A and t are empirical coefficients.

The highly non-linear load deformation character evidenced in
Figure 4.2 leads to similar non-linearities in other parameters related
to fracture aperture (e.g. fluid permeability).

Following the example of Goodman (1976) the parameters A and t have
been taken as 1 and O respectively for all examples in the present

research. Furthermore, if one substitutes: .

£ = Fn’o/l' and E = Fn/z'

where‘ F. o = initial external force at a nodal point CMLT™ 2]
Fow = external force at some later increment [MLT'zj
l %' = half-length of the joint cuyd

* tensile forces are taken as positive.
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in equation 4.1 it can be shown that:

Av
F o= (g—=2—+1) F (4.2)
n Vm Av n,0

Using this last equation, the normal load-deformation curve can be
drawn for any fracture, the initial normal stiffness being obtained by

differentiating the equation with respect to Av, i.e.

KN, = 20 (4.3)

This expression is used to initiate the iterative computation process.

Two examp]es,of normal closure behaviour are presented on figures
4-3 and 4-4. The first exampie' is from Goodman (1976) and was used to
test the program. In this case a block under an initial stress of 5 MPa
compression is next to a fracture with an initial compression of 1 MPa,
held by a constraint. Removal of the constraint distresses the block
and compresses the joint to restore equilibrium. Goodman uses this
example to show that the rate of convergence is dependent on the initial
stress in the fracture and that very low initial stresses may lead to
excessively slow rates of convergence.

The very large maximum closure (5 cm) used in this example leads to
a very low ncrmal stiffness for the fracture. éimilar1y a low stiffness
was used for the rock. Although this is instructive for observing how
the Toad transfer method reaches convergence it has very 1little meaning
from the viewpoint of practical rock engineering. Hence a second more
realistic example, shown on Figure 4-4, was used. The rock matrix was

assigned typical properties for an average granite while the fracture
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Figure 4-3 Normal load versus deformation diagram for soft fracture.
¢ (Goodman, 1976)
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aperture was set at 1 mm. In this and all remaining examples the
following assumptions were made:

(i)  the maximum closure (V__) was set equal to the initial

mc
aperture (eo)
(ii) The initial stress in both the matrix and fractures was set

at -1 and the seating load for the fracture at 0.1.

As may be seen from comparing the two figures, the narrower and
hence stiffer fracture converges much more rapidly and although the
normal load is almost twice that on the soft fracture the percent change
in aperture remains about the same. The table belowshows typical
initial normal stiffnesses for various maximum closures, assuming in all

cases g = -1 and £ = 0.1..

NORMAL STIFFNESS FOR VARIOQUS

MAXIMUM CLOSURES

VmC (meters) KN, (force/length)
.05 200
.01 1,000
.005 2,000
. 001 10,000
.0001 100,000

From the viewpoint of practical rock engineering it is generally

only those apertures 1 mm and less that are of interest.
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4,2.3 Fracture Behaviour Under Shear Load

In recent years considerable research has been conducted on the
shear stress - shear deformation behaviour of individual rock fractures
and fractured rock masses. Barton (1978), Goodman (1976), and Hoek (1977)
give comprehensive reviews of existing shear strength theories and
present extensive available data.

For the joint element progfam Goodman chose to use the mechanistic
model proposed by Ladanyi and Archambault (1970) since the equation for
peak shear strength is derived from identifiable properties of the
joint and wall rock. They combined the friction, dilatancy and inter-
lock contributions to peak shear strength to derive a general strength
equation that hasproven accurate in model studies (Goodman 1976). Their
equation for peak strength is: -

. . g (]-as) (v + tan ¢u) +ag SR (2.4)
p 1 - (1-as) v tan ¢y ’

where ag is the proportion of joint area sheared through

the asperities

v is the dilation rate at the peak shear stress
(secant dilatancy rate) Av (Tp)/AU (Tp)

R is the shear strength of the rock composing the

IML™]
asperities.

Ladanyi suggested substituting Fairhurst's parabolic criterion for

( )%
_ 1+n)- 1
sR = Q n

35 .
" (1+n U/Ql{) (4.5)
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where ¢ Q 1is the unconfined compressive strength of the asperities
( u
1n is the ratio of compressive to tensile strength of the

asperities.
Ladanyi and Archambault also suggested power laws for v and ag:

for o < Qu

o
"

K.
g=1-(-0n,)" | (4.6)

<
#

K2
(1 - c/Qu) tan ig (4.7)

and suggested exponents K, = 1.5 and K, = 4. The values of a and v

then vary between the 1imits

! 0 @:o=0
a -
s
ll @o=Q,
(4.8)
' tan io @ o=0
V =

0 @ ?= Qp

With the above conditions equation (4.5) defines a curved peak stress
criterion as shown on Figure 4.5.
. ozvll

Fairhurst Parabola
for the Rock

Peak Shear Strength
for_the Joint

T, ' o
Figure 4.5 Ladanyi and Archambault's Shear Strength Relationship
) for Rough Joints.

Note or = transition pressure where joints are no longer
weaker than rock matrix.

ML™% ]
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Goodman treats the shear stress/shear deformation behaviour in a
s similar manner to fracture opening with the Timiting shear stress
criterion being analogous to the no Zension criterion imposed on the
normal stress/normal displacement curve. Lacking a universal model for
shear stress-shear deformation of fractures, he assumes the simple

! constitutive law shown in Figure 4-6. The initial stress, To and

initial shear stiffness,KS define the elastic region. The joint is

assumed to behave elastically up to the peak stress T

function of the normal stress , i.e.

, which is a

‘ T =f (O‘) . (4'9)

/ If T is exceeded the shear strength falls attaining a residual value,

Tpos when the displacement u. has been attained.

. =f (o) (4.10)

ty l(z-p' Up () |

(7., Upgsy)

Y

Au
T, = 1, (O)
. T, = {,(o)

(" To.upey)

|
|
|
!
|
|
|
|

|
|
|
|
!

1]

IV

Note: 1, 11, etc. represent separate regions

Figure 4.6 Goodman's Constitutive Law for Shear Deformation
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Details of the formulation for the constitutive law are given by
Goodman (1976). Any consistent experimental or empirical results can
be used to define (f,) and (f,). Goodman has used the results from
Ladanyi and Archambault and these same laws were used to obtain the
results presented in this report.

Little is known of the variation of residual shear strength, Ty
wiih o. Goodman inputs f, in a consistent manner as follows:

Tr/rp = BO (4.11)
where >0 -
<l @ o=0
Bo =
=1 @ 0=Qu

The parameter B0 is then left as an input parameter such that both
brittle and plastic behaviour may be studied.

Figure 4-7 shows a computer simulation of a simple direct shear
test on a smooth fracture. In this case the applied shear stress (t)
exceeds the peak shear strenéth (rp)l The load transfer process is
able to follow the deformation into the post-failure range. The
increasing values of AS indicate divergence and in this case shear
failure of the fracture. |

Natural fractures are seldom perfectly smooth and planar. Rather
they generally exhibit a varying degree of roughness. A shear test
conducted under restricted normal displacement conditions, (Figufe 4-8
curves B), generally show much higher shear strengths than those with

constant normal load as in curve A. This effect is related to a



s T s S

— -

%

— o e e

——

SHEAR STRESS (MPa)

UDL=7.1 MPa

s = anY Y 1 l y

Joint: ‘¢u 30 ; ) Z ;
K.S. = 1000
| @ ° |  ~
B, = 0.6 ®
Q, = -50 MPa & = -
- 6 /1%
®
T | ® @
8 S 10
=

gl 3 "
t,___ AS,\
Tote — — Asg

Sl : :

Constitutive Curve for
Shear Displacement

T —

4

2L

0 |1 1 £ 2 1 |

o/ u, 1 2 g 3 4 5 Au

SHEAR DISPLACEMENT (x10-2)M
0

Figure 4-7 Shear stress versus shear deformation
diagram for smooth joint.
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phenomenon known as dilatancy. ﬁerfect]y mating rough blocks can be
forced to slide past one another only if they are free to move apart
or dilate. If the normal movement is restricted, the shear may only
occur if the asperities themselves are sheared through. Hence dilatancy
may have two important effects:

(i) if normal movement is restricted it may considerably increase

| the shear strength of a fracture.
(ii) 1if normal movement is allowed dilatancy may lead to significant

changes in fracture aperture,

v{7T) P

8 Au(T) au(T)

(2) DILATION : {b) NORMAL STRESS

2au(T)

{¢) SHEAR STRESS
Figure 4.8 Effect of Test Mode on Shear Deformation Curves
for dilatant joints.
( A: shear at constapt normal stress
| B: shear with condition of no normal displacement
(after Goodman 1976)
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The latter point is discussed in more detail in the next section of this
report.

Dilatancy is thus a function of the normal load acting on the
fracture, the degree of confinement and the strength of the wall rock.
Figure 4-9, (Barton, 1971), shows a plot of peak dilation angle as a
function of the ratio of normal stress to wall rock strength. As may
be seen with either low normal stress or very high fracture wall stréngth
one may expect much highef peak dilation angles than for higher values

of this ratio.
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Figure 4.9 Peak Dilatancy Angle as a Function of the Ratio of
Normal Stress to Compressive Strength for Model
Extension Joints.
(after Barton 1971)
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Figure 4-10, based on work by Ladanyi and Archambault, shows that

although the effect of dilation on shear strength is significant at

Tow normal stress it rapidly drops to zero as ¢ approaches the wall

rock strength. T

74

/
A& T JOINTS = B{T) T,

Te

Tr = Q, (AssumeD)

- '
tan o

o, o

Figure 4.10 Assumed Variation of Peak and Residual
Shear Strength and Peak Dilatancy (v)
with Normal Stress (based on Ladanyi
and Archambault, 1970)

(After Goodman 1976)

Figure 4-11 shows the effect of increasing the c/Qu ratio on peak ‘

shear strength for various specific dilatancy angles, using Ladanyi

and Archambault's shear criterion.

for c/Qu ratios below about 0.2

These effects appear most pronounced

With the above discussion jn mind let us examine the effect of

performing the shear box test shown in figure 4.7 on a rough fracture,

The c/Qu ratio for this fracture is 0.144. Referring to figure 4-9

a dilatancy angle of 10° was chosen. The test was then rerun including
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a 10° dilatancy and the results are shown on Figure 4-12. As shown
the peak shear strength now exceeds the applied shear stress and the

shear deformation remains in the elastic range, that is:

u = t/K.S.
T
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Figure 4.12 Shear Stress Versus Shear Displacement
for Dilatant Joint
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4.3 Fracture Permeability

4,3.1 Generalities

-47-

For numerical studies of fluid flow through rock fractures the

discontinuities are idealized as smooth pérallel plates as was shown in

Figure 4.1. For this model, which is generally known as the Hele-Shaw

model, the flow quantities and pressure distribution can be solved in

closed form as long as the flow remains laminar (see Batchelor, 1970).

If the fluid flow between the plates is assumed to be one-dimensional,

the velocity varies from zero at each boundary to a maximum in the center

with the result that the velocity gradient and hence shear stress, is

a maximum at the boundaries and zero in the centre.
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Figure 4.13 Hele-Shaw Model
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(c) Shear Distributic

For this case of steady state laminar viscous flow through such

a model the general equation of motion (i.e. Navier-Stokes equation)

is given by:

_=-]_
Y 0

rad p + vAv + F

(4.12)
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where /F = external forces .L,T2]
p = fluid pressure N R

< v = kinematic viscosity = u/p CL2T71]

Y = fluid acceleration CLT™23

\V' = fluid velocity [LT™3]

For the case of motion between two parallel plates:
u=u (X,y,2); v=0; w=0 (4.13)
The equation of continuity gives '

. Bu L 3V . W _
divv=0 or ™ + 3y t 5 0 (4.14)

When considering equations (4.13) and (4.14), it can easily be seen
that u is a function of y and z only.

Now, assuming an aperture e = 2 a and u = u(z) (Two infinite

_parallel plates), it can be shown that the final differential equation

is:
ap* . 3%
_ e (4.15)
z
where p* is the hydrostatic head CL]

Integrating 4.15 twice yields

1 ap*
u = 55-55— 22 +cz2+0 (4.16)
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Inserting the following boundary conditions
(i) no flow at the boundaries, i.e. u(+a) = u(-a) = 0

(i1) maximum flow at the centre

i.e. = =0
32 | 220
gives
_z' - a® ap*
u = 3 o (4.17)
But _
= E—-}- Xi .
h=1z+ 03 ¥ 23 (4.18)
v 0 for laminar flow
which gives the result
p* = p + pgz (4.19)

and equation (4.17) can be written as

or

7-49{2) g | , (4.20)

where 3; is the component of the gradient in the z-direction.

The permeability of a planar joint Kp is then defined as:

2

Ko = ¥55 [Lr-13 (4.21)
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If q is the flow rate per unit width, q = eu. One may then define

3

K= d [L*T74] (4.22)

as the area permeability.

This derivation shows that for smooth planar fractures, the
conductivity is proportional to the square of the aperture. However,
as discussed previously with respect to shear deformation, many natural
fractures deviate significantly from the above model. Louis (1969) and -
Lomize (1951) investigated experimentally the effect of fracture
geometry and roughness on conductivity and documented a number of
empirical laws governing fracture flow. This experimental work and
the corresponding flow laws have been reproduced earlier in chapter III.
These laws have been plotted using log coordinates (g versus gradient’
J for varying apertures and roughnesses), for parallel flow (relative
roughness K/Dhgp.033) and non paraliel flow (K/Dh>0.033) assuming a
water viscasity of 10”°(m°s™*)(see figures 4.14 and 4.15). A1l of the
various flow laws vary only by minor numerical factors and can be

represented by the general law

Q=K a8 (4.23)

where KE is the area permeability.

Further, it should be noted that in Figures 4.14 and 4.15 both laminar flow
k]ower) and turbulent flow (upper) laws have been plotted. Questions
however remain concerniné the validity of the turbuient flow equations,
(Wilson (1970), Gale (1975), Iwai (1977)), and further laboratory and

field experimentation is required to determine if turbulence plays
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a significant role in fracture flow. This question is beyond the scope
of the present study and only laminar flow is considered.
For both parallel and non-parallel laminar flow conditions the

relation between joint conductivity and fracture aperture is:

K. o e? (4.24)
or for area permeability

K; o e’ (4.25)

For the remainder of this report we will refer to fracture conductivity.
It can easily be seen that a small change in fracture aperture can

make a large difference on fracture conductivity and hence on flow

rates and pressures. It is of interest then to consider intuitively

what effects the fracture stress-deformation characteristics, discussed

in section 4.2, might have on fracture flow. These effects depend on

whether the deformation results from normal or shear deformation as:

(i) normal closure decreases the aperture in varying amounts depending

on the load, normal stiffness, etc. and hence decreases q and/or
increases the pressure magnitude.
(i1) normal tension opens the fracture but is not of practical interest
since fractures are assumed not to be able to withstand tension.
(iii) non-dilatant shear should act the same as normal closure, the
shearing displacement having no effect on conductivity.
(iv) dilatant shear:
(a) With vertical restraint the fracture may open slightly but

will probably have minimal effect on conductivity.
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(b) Without restraint the fracture may open by varying amounts
depending on dilation angle, shear deformation, shear stiffness
etc. This could radically alter the conductivity and hence

also flow rates and/or pressures.

Any of the above factors may be beneficial or detrimental, depending
on the engineering structure and geologic regioné involved. In the
remainder of this section we will evaluate the significan;e of the above
factors in detail using simple models and in the next chapter will show

the effect of some of these on a simulated full scale structure.

4.3.2 Effect of Normal Deformation on Fracture Conductivity

A typical normal stress-normal deformation curve was. shown on
Figure 4.3 and was discussed in detail in section 4.2.2. Since the
fracture is assumed to show no strength in tension,only normal closure
will be d%scussed with respect to fracture conductivity.

As noted previously the fracture condhctivity is direct]y proportional

to the square of the fracture aperture. Hence under normal closure

‘we would expect a considerable decrease in permeability. Furthermore

since the constitutive law for normal stress-normal deformation is highly
non-linear we expect the conductivity to show at Teast as pronounced a
non-]fnearity. .

Several factors which affect the amount of closure and'consequent
change in conductivity are:

(i) magnitude of applied normal load .

(i1) stress history of fracture.

(§i1) normal stiffness of fracture.
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The effect of an increase in the applied normal load is to cause the
fracture aperture to decrease. The actual amount of closure is dependent on
both the previous stress history of the fracture and its initial normal
stiffness. This may be more easily understood by referring to figure
4.3. The stress history dictates what level of initial stress js acting
on the fracture. This in turn governs the starting point on the normal
closure curve. If the fracture has only been subjected to low normal
stress then the starting point will be on the upper flat or "soft"
portion of the curve wheregs if the insitu stresses are high the starting
point will be on the steep "stiff" part of the curve, Larger deformations
would be ekpected in the former than the latter case for the same applied
load.

For any given fracture having a particular insitu stress and normal
stiffness, increased load will lead to increased deformation. The
increase in deformation will be non-linear and will have a maximum,
being the maximum closure of the fracture. The load also has a limit,
the compressive strength of the rock. As the fracture closes the fracture
conductivity also decreases. An example of this for one particular

fracture is shown on Figure 4.16.

1.0

Jatnt: a e Ype " 0.001
X.X. » 10,000
6y " 1 MPa

(13-4

o
©

DIMENSIONLESS RATIO K,/H,

os ! ' ’ '
Q 2.2 .4 Qs oa
DIMENSIONLESS RATIO C"/Q

Figure 4.16 Change in Conductivity versus Normal Load
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As can be seen, for this particular case, once the normal load reaches
about 40% of the wall rock strength further changes in conductivjty
become negligible. Other fractures having different stress histories
will show similar trends but the point at which conductivity changes
become neg]ig?b]e and the'absolute change in conductivity may vary.
The data is plotted as dimensionless ratios showing the change in
conductivity relative to the conductivity of the initial "rigid" fracture
versus the applied load relative to the wall rock compressive
strength.

The stress history of a fracture depends on the geologic processes
to which it has been subjected. Laboratory experiments (Goodman (1976),
Gale(1975), Iwais>{(1977) indicatethat fractures subjected to cyclic normal
loads show a stress hysteresis. Hence once a fracture has been subjected
to load (e.g. from overburden) even though this load may be reduced
(e.g. by.erosion) the fracture stiffness will not decrease appreciably.

The initial normal stiffness is dependent on the initial stress:

KN = % (4.26)
° T |
where( o, = Initial stress N
) Voo = maximum closure CLd
£ = seating load ML~ 7723

The variation of normal stiffness with insitu stress for various values
of normal closure (assuming £ = 0.1 in all cases) is shown in figure
4,17. As may be seen the normal stiffness can easily vary over one or

two orders of magnitude for a given fracture depending on initial stress
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Figure 4.17 Variation of Normal Stiffness with Insitu
Stress and Maximum Closure.

or for a given initial stress depending on the maximum closure (Vmc).
As noted the initial stress depends on the geologic history and because
of the loading hysterésis one would only imagine the most near surface

and highly stress-relieved fractures to be on the flat portion of the

loading curve. The maximum closure however depends mainly on the strength

of the wall rock asperities. This depends on the 1ithology, degree of
weathering or chemical alteration and the number of contact points

(i.e. stress concentration on the asperities). The variation of conductivity
with nprma] stiffness as th is changed for a given fracture and normal

load is shown on figure 4.18. As may be seen the change in conductivity

for this case becomes negligible for normal stiffness of about 50,000 KN.

2
~
x
=
L
<
Z asel waL
L3 1 1
& XX
-
H fem
gu-- ﬁ-,-moonm
-
§ e
) -
092 -
58 ; 5 | | . i ; | .
-] 1 0 0 40 30 (-] n 80 9

NORMAL STIFFNESS KN{x10%) (Mpu)

Figure 4,18 Change in Conductivity vs. Normal Stiffness
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Normal stiffness is of course different for fractures with different
initial apertures (eo). However it is found that if such fractures are
all loaded with the same normal load, the same percent change in
conductivity occurs in each case (i.e. K/Ko = constant).

The relationship of normal closure and conductivity discussed
above indicates that while normal loads might significantly reduce the
conductivity of certain fracture sets below surface structures such as
a dam where significant stress relief may have occurred, the effect

around underground structures such as tunnels or cavities would be

expected to be much less.

4.3.3 Effect of Shear Deformation on Fracture Conductivity

The shear stress - shear deformation characteristics of rock
fractures, as discussed in section 4.2.2, are extremely important in
practical rock engineering. However, from the viewpoint of fracture
flow, since conductivity is proportional to the aperture squared, only
those deformations.directly affecting the magnitude'of the fracture
aperture are of interest. In shear stress - shear deformation behaviour _
two distinct categories must be evaluated: smooth (non-di1atént) and

rough (dilatant) fractures.

a) Shear on Non-Dilatant Fractures

When a smooth fracture is sheared the two fracture planes are
forced to slide past one another. Neither the shear stresses nor the
shear deformations directly affect the magnitude of the fracture aperture.
However, in order to develop shear resistance a normal load is
required. For the most simple case of a smooth fracture this may be

expressed as:
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T =0 - tan¢ (4.27)
where T = maximum shear strength CML™IT™%]

o = normal applied stress N

¢ = friction angle of the material,

Thus for fracture flow on smooth surfaces, the only critical parameter
is the normal applied load.. Consequently, the conductivity changes

will be identical to those discussed in section 4.3.2. of this report.

b) Shear on Dilatant Fractures

The shear stress - shear deformation characteristics of rough
(dilatant) fractures differs radically from that of non-dilatant fractures.
As discussed previously two separate boundary conditions may occur:

(i) movement normal to the fracture plane is restrained

(i1) moveﬁent.is not restrained and normal stress is kept

constant.

In the first case, deformation normal to the fracture plane
(aperture increasing), is restrained, leading to large increases in the
normal stress across the fracture and, consequently, in peak shear
strength. 'From the point of view of fracture flow this case differs
markedly from the non-dilatant shear case. Even though the aperture
doe§ not increase, or increases only slightly such that the fracture
conductivity essentially remains unchanged, in non-dilatant shear the
aperture would have closed under the normal load, with a consequent
decrease in conductivity. In the restrained case then the fracture

system tends to act as a "rigid" system.
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In the second case where movement normal to the fracture plane
is not restrained very signficant changes in conductivity may occur.
Qne of thé first researchers to recognize the significance of dilation
to conductivity was Maini, (1971). He performed a very simple shear
test to determine what order of magnitude the effects might be. Maini
used (0.125m x 0.125m) slabs of slate split along the cleavage with the
two halves mounted in a plexiglass frame as shown on Figure 4.19, He
then first measured the initial conductivity at zero shear displacement

and then at 0.2 cm intervals. His results are shown on the same figure.

Nater.§n

Rock Sample or
Araldite Mould

L g
O\ \\\ —
\

o = Seif Weight

Perspex Frame

(a) EXPERIMENTAL APPARATUS

K, CM/SEC

107 l ! ! I
0 0.2 0.4 0.6 0.8
SHEAR DISPLACEMENT (cM)

(b) EXPERIMENTAL RESULTS

- Figure 4.19 Dilatancy versus fracture conductivity.
(After Maini, 1971).
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Maini suggests that this may be an important mechanism in fracture
flow and that more controlled tests should be done. Concerning his own
results he notes the following criticism:

(i) One expects the initial change in conductivity to be less

since

(a) even at low o,dilation will be less than at o = 0,

(b) fines (gouge) developed during shearing might block the
fissures and reduée the effective aperture,

(i1) higher increases in conductivity may be expected in hard rocks

than in soft rocks.

Although the absolute conductivity - values from Maini's experiment
are not reliable the trends shown are very interesting.

As noted previously (section 4.2.2) the dilatant shear criteria
proposed by Ladanyi and Archambault was used in the numerical model for
this research. This model then coupled with the fracture flow model,
was used to predict.conductivity changes associated with dilatant shear.

The model presupposes a rather straichtforward coupling of dilatancy and
conductivity which has not been reliably tested in the laboratory. |
However until detailed controlied laboratory testing of the phenomenon
has been done this -is the only model qvai]ab]e. The data presented is
in no way meant to be interpreted as exact or final. It is merely
presented to demonstrate the trends that might be expected in nature and
the relative importance of the various parameters involved.

The model was found to be extremely sensitive to data input and

cases with numerical instabilities were quite common. Some of these
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could be attributed to incompatible data, however others appear to be
related to the dilatancy formulation itself. During the course of the
study it became very apparent that a great deal more research into many
aspects of the dilatant behaviour of fractures is required.

In order to attempt to obtain cémpatib]e data the input parameters
were selected based on thg work done by’Barton (1971). The dilatancy
angles were selected from the graph shown on figure 4.9 while shear
stiffness values were selected from figure 4.12. The data is presented
in the form of dimensionless ratios as much as possible such that
relative changes rather than absolute numbers will predominate.

Figures 4.20 through 4.24 present the results of a parametric study
of the dilatancy - conductivity relationship. In each graph the
ordinate represents a dimensionless ratio of the final permeability
after shear displacement to the original conductivity of the undeformed
riéid fractures. The abscissa represent dimensionless ratios of various
other parameters such as shear stress, normal load, etc. In all cases
the shear stress was kept below the shear strength since it is the
potential change in fracture flow characteristics prior to failure that
are of most interést.

Figures 4.21 and 4.22 show the change in conductivity associated

~with increasing shear stress. In figure 4.21 the ratio of c/Qu is

about .07, hence low normal stress. The initial fracture aperture
was 0.5 mm. The fracture then represents a very stiff joint with
strong unaltered wall rock. At low normal stress one would expect
significant dilation. The conductivity changes are plotted for

dilatancy angles of 5, 10 and 15 degrees. Relative roughness (k/Dh)
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values of .06 and .12 were assigned for 10 and 15 degree dilatancy

angles respectively. As may be seen enormous conductivity changes

could be expected under these conditions and at the higher values of

dilatancy angle (io) these. changes occur at very low shear stresses.
Figure 4.22 shows the relative conductivity changes associated

with shear of a softer fracture under higher'norma] Toad (Cf/Qu = .18)

for a dilatancy of 5 degrees. Comparison of the two graphs proves that

small changes in normal load and fracture stiffness ﬁay exhibit a

remarkable influence on fracture conductivity; the relative conductivity

change at v/t 0of 0.5 of the former case being four times as great as

R
in the latter.
Figure 4.23 represents the effect of normal stress on the
conductivity ratio for a dilatant (io=5°) fracture using the
shear stiffness as as parameter. It can easily be seen that increasing
normal stress rapidly eliminates conductivity increases associated with
dilatancy. From the data there also appears to be a definite limit in
the normal stress beyond which dilatancy effects are completely overidden.
It should be noted that for higher values of the dilatancy anale, io
higher normal stress levels would be required to suppress dilatancy.
Figure 4.23 also shows that changing the shear stiffness of the
fracture radically alters the relative change in conductivity. This

is to be expected. Since, in the elastic range, the shear deformation

is given by

u=1/K.S (4.28)
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Figure 4.22 Normalized Conductivity versus
Shear Stress '
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Hence as the shear stiffness increases the shear displacement decreases
and, consequently, the associated normal displacement and conductivity
decrease.

Figure 4.24 shows a similar plot except for the fact that the normal
stiffness of the fracture is used as the parameter. ‘This data indicates
that for given normal and shear stresses, increasing the normal stiffness
may significantly increase the cqﬁductivity ratio. This data is easily
understood if one ;eca11s that for a given normal load increasing the
normal stiffness will decrease the normal deformation (closure), enabling it
to mask the conductivity changes due to dilatancy.

Figure 4.25 shows the conductivity changes associated with changing
shear stiffness using the dimensionless ratio o/Qu as a parameter. As
would be expected from earlier results increasing the shear stiffness
decreases the change in conductivity. Ihterestingly there appears to be
a cut-off where, for a pérticu]ar dilatancy angle and shear stress,
the shear stiffness is so great that conductivity changes associated
with that shear stress are negligible. As before, for high values the
dilatancy angle 10 this cut-off shear stiffness would obviously be
larger. The dimensionliess parameter .o/QU simply indicates that for a
given shear stiffness, dilatancy angle and shear stres;,increasing the
normal load will decrease the associated conductivity change as would
be expected from thé preceeding data.

In summary,

(i) at low o, dilatancy may.éreatly increase K.

>(ii) increasing normal load and/or shear stiffness will decrease

the associated conductivity change.
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(ii1) increasing the fracture normal stiffness will increase the

associated conductivity change.

The conductivity changes associated with dilatant shear as described
above might be of importance to many rock engineering problems. Fracture
conductivity changes for example in rock slopes due to shear movement
might be extremely significant to the long term slope stability.

Similarly in dam foundations and abutments conditions could be altered
from the assumed design condition due to shear loads transmitted from

the structure. In underground storage caverns rock movement into the
éavern if occurring as shear movement along fracture planes could alter
the conductivities around the cavern in such a way as to be detrimental to
its storage capability.

As mentioned previously the model used for this research is an
extension of existing discrete fracture flow models and has yet to be
experimentally verified. Convergence was very slow for most rough
fractures. Althcugh some of the convergence problems may be due to
incompatible data it is the authors belief that much of the problem lies
in the dilatancy formulation itself. Because of the potential significance
of this problem to general rock engineering considerable research into
dilatancy and the dilatancy-conductivity relationship 1is warranted in

the immediate future.
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CHAPTER V

LARGE TEST CASES

5.1 Generalities

The ultimate goal of any numerical mode]]iﬁg is to simulate full
scale practical field situations. The present development was used to
simulate two different configurations: a dam founded on a rock wedge
bounded by two discontinuities and a tunnel intersecting horizontal
fractures. | |

The main problems encountered in testing these examples were
numerical instabilities associated with joint dilatancy as well as
the rapidly escalating cost and computer storage requirements as
additional fractures were considered.

The two large scale examples discussed below were highly idealized,
especially with respect to the number of fractures. Therefore, they
should be primarily regarded as illustrations of the potential of this
technique for sophisticated in situ modelling rather than within the

quantitative context.

5.2 Dam Stability

The first example, shown on figure 5.1, models a thin concrete
arch dam founded on a bedrock wedge bounded by two intersecting
fractures labelled joints 1 and 2 respectively. The fractures forming
the wedge are hydraulically connected to the full reservoir head and
the wedge is subjected to the full loading from the dam and reservoir.

Figure 5.2 shows a schematic of the fracture deformation éround

the wedge for the case where the initial apertures of both joints
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1 and 2 are equal. Similar trends were encountered in all other computer
runs. The dam load tends to put joint 1 wunder a high shear load.
This load, with the given fracture configuration, then tends to rotate
the complete wedge coqnter-c]ockwise. Joint 1 and the lower half of
joint 2 close in response to the normal load while the wedge rotation
opens the downstream half of joint 2 slightly.
Figures 5.3 and 5.4 show the hydraulic potential aiong the two
fractures below the dam for varijous initial aperture conditions and
the changes in potential due to the particular loading conditions of
this example. The boundary head conditions were set at 120 and 60
meters at the upstream and downstream extremfties of the wedge respectively.
In figure‘5-3 both joints were assigned the same initial aperture.
The potential distribution for the rigid fracture assumption is shown
by curve ‘Ho', while the final potential distribution following fracture
deformation is given by curve 'Hf'. The effect of fracture deformation
on the fluid potential in this case has been minimal. Closure of joint 1
while opening of the toe of fracture 2 has led to a slightly more
significant potential drop across the downstream portion of joint 2.
Figure 5.4 shows the effect of varying initial fracture aperture
for both the rigid and deformed cases. Curve 1 shows the case where
fracture aperture 1 is set at about one half fracture aperture 2 and
curve two vice-versa. As shown on figure 5.4 the effect of initial
aperture on the potential distribution greatly exceeds any deformatfon
effect. In curve 1, where e <<.e0’2, almost the total head loss

051
occurs in joint 1 and the effect of fracture deformation on the
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potential distribution is negligible. The uplift forces on the wedge
in this case are very small and hence should have minimal effect on
the stability.

In curve 2, S >>e0,2,most of the head loss occurs across
joint 2, the uplift pressures on the wedge are very high and thus

detrimental to overall stability. The rotational motion of the wedge

and subsequent opening of joint 2 leads to a small decrease in potential

on the downstream portion of the wedge, hence helping to stabilize
the structure.

The relatively minor effect of fracture deformation on the fluid
potential in this example would be anticipated from the parametric
analysis discussed earlier. The initial apertures are both small and
hence their normal stiffness is high. This will tend to minimize
the normal deformation. Furthermore the highest loading, from the
dam, is applied to joint 1 primarily as a shear load, thus having a
minimal effect on normal deformation.

It is of interest however to consider the effect of the shear
loading discussed previously for the case where joint 1 is dilatant.
In this case the shear deformation would tend to open joint 1 causing
the pressure distribution given by curve 1 to shift towards curve 2.
This effect would, of course, be detrimental to the dam stability.

The total flowrate below the structure is also governed by the
fracture aperture distribution. Figure 5.5 shows the variation of
the dimensionless flow ratio with variation of the aperture ratio
for joints 1 and 2, (e]/ez). As shown, the flow gquantity increases

as ey increases with respect to e,. Referring back to figure 5.4,



-79-

8 .
e
S22
-] 50
gr | &3
-l
EHES
o =
LolZE A
&
a
a 0.88
cc
S
(o
0
o 0.96
g
(ol
[7p]
[72]
Y 094
2 O
O
[?2]
=z
L
=
a 082}
0.90 1 1 ! 1 . 1
0 0.5 1.0 1.5 2.0 2.5
DIMENSIONLESS FRACTURE APERTURE RATIO (e,/e,)
FIGURE 5.5
DIMENSIONLESS FRACTURE APERTURE VERSUS DIMENSIONLESS
FLOW RATIO



-80-

the reason for this becomes obvious. When e, >> e, very little head
loss occurs through joint 1. This increases the effective gradient
across joint 2 and hence increases the flowrate following the already

established relationship:

The results discussed above indicate a much higher factor of
safety for the case corresponding to curve 1 than for the one associated
with curve 2. The practical implication of this is that the factor of
safety could be significantly increased by grouting joint one and
hence shifting the potential distribution curve toward curve 1, assuming
both joints had equal aperture originally (figure 5.4). The stability
could be further enhanceq by providing drainage for joint 2 downstream
of the dam which further reduces the uplift pressure in that particular
joint. This would essentially annihilate the rotational component
applied to the rock wedge.

This example then demonstrates the important effects that fracture
aperture and orientation may exert on dam stability. It further shows
that standard remedial measures such as grouting and drainage, even
when only partially effective, may be a significant aid in stabilization.

. As noted however, minor geological details, such as dilatancy in
a critical fracture set, may completely alter the analysis. It is
hence most critical that very detailed surface, subsurface and
laboratory analyses be carried out prior to any compreheﬁsive stability

analysis.
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5.3 Flow into Tunnel Through Horizontal Fractures

The second example, shown on Figure 5.6, models a 55 meter deep
tunnel intersected by a single horizontal fracture.' For the initial
tests the hydraulic boundary conditions were set as potentials; namely
110 meters remote from the tunnel and at the level of the fracture at
55 meters, at the tupnel wall.

Initially, gravity body loads were applied; the resultanp normal
stresses and final apertures are shown on Figure 5.7. The normal load
across the fracture is, of course, the same as the tangential stress
around the tunnel and therefore is affected by the stress con-
centration due to the tunnel excavation. The resultant
fracture deformation follows the same trend as the stresses as would
be expected, the maximum fracture closure occurring adjacent to the
tunnel wall. Consequently, when the hydraulic boundary conditions are
fixed, the fracture conductivity at the tunnel entrance will govern
the water inflow. For this particular example the
flowrate 1into the tunnel following deformation of the fracture is only
56% of the flowrate if rigid fractures would be assumed. Although this
example includes only one horizontal fracture intersecting the tunnel,

basically the same results would be expected for any number of fractures

since the stress concentration is uniform around the excavation (i.e. each

fracture contributing to identical reduction). Underground structures
with shapes other than circu]ér would of course create different stress
concentration patterns that might affect fracture deformation quite

differently. In light of this,a test was run with the same total load

but varying the shape of the stress concentration, e.g. triangular and
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parabolic. It was found that these different distributions had a
negligible effect (about 1%) on the final flowrate ana hence are of
1ittle interest.

The zones that would be of more direct interest are the areas of
stress concentration compared with areas of stress relief. In such a
case, flow in certain areas may be strongly affected while in others little
or no change from the initial fracture conductivity might occur.

If boundary conditions are changed such that the flowrate into the
fracture and the potential remote from the tunnel are prescribed, then
fracture deformation may have a major affect on the potential distribution.
The results from such a test case are shown in Figure 5.8. In this test
case,although a very stiff fracture (eO = 0.0001 m) was considered,
the fracture deformation caused a change in potential at the tunnel
wall as high as 13%. This of course decreases the effective stress
across the fracture and hence the final amount of closure.

Figure 5.10 (Wilson 1970), shows the size effect of the tunnel
diameter on inflow to the tunnel. Wilsons' model assumes a rigid
fracture network and his results show a linear relationship between
flowrate and the ratio of tunnel diameter to fracture spacing. These
results contradict the work by Maini (1970). As discussed previously,
(section 4.3.3), Maini's results appear questionab]el A similar test
was run using the present approach and varying the number of horizontal
fractures intersecting a tunnel. The data generated by this'study is
summarized on figure 5.11 and shows the existence of a linear relation-
ship similar to the one derived by Wilson. The effect of fracture

deformation is simply toslightly adjust the position and slope of this
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relationship. The fracture deformation, in this case normal closure,
tends to shift the relation down (i.e. towards less total flow). The
introduction of dilatant shear on these fractures would, of course,

tend to shift the relation the opposite way.

5.4 Summary

The previous two examples have shown that certain structures may
be very sensitive to particular fracture parameters such as orientation,
initial aperture, etc. Furthermore fracture deformations under induced
or applied loads may exert a significant influence on flowrates and
or fluid potentials, depending on the particular structure and boundary
conditions involved. Clearly situations such as described in the
preceeding chapter may be quite remote from any porous medium analogy.
These examples point out the impértance of very detailed surface
and subsurface geological investigations for any project in fractured
rock. Although the true field conditions can seldom be modeiled exactly,
deformable fracture flow models at least allow sensitivity analysis
of the various field parameters to be performed. The model can further
be used to determine if,~for a particular case, a statistical approach

can give reasonable results.
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CHAPTER VI

DISCUSSION

6.1 Statistical Modelling - The Equivalent Porous Medium Analogy

6.1.1 Generalities

The concept of equivalent porous medium modelling involves
statistically sampling the properties of the fracture system and using
this data to develop a permeability tensor that completely describes the
hydraulics of the rock mass. The prime advantage of the model is that
no detailed knowledge of the fracture system geometry is required to
obtain a quantitative statement of the seepage characteristics of the
system.

A number of general assumptions concerning the fracture system(s)
are required if a statistical approach is to be used. The most important
of these are listed below:

1) each fracture is assumed to be plane and contjnuous in-plane.

2) the fracture aperture is considered to be consistent.

3) fracture in-filling (if any) is considered to be uniform.

It is obvious that none of‘fhe above assumptions model realistic
field situations well. The question which arises is at what point the
equivalent porous medium model should be discarded.

The two most prevalent statistical models are those by Snow (1965)
and Rocha and Franciss (1977). In his work, Snow assumes that all
fracture systems form a cubic network, a condition rarely validated in

fieﬁd observations. Rocha and Franciss, in their model apply a correction
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factor to force the nuﬁerica] results to correspond with standard
Lugeon field test results. The authors claim that this is required to
correct for the assumption of in-plane continuity. However, it could
equally wg]] be related to the effect of radial flow in the field

tests as discussed later in this chapter.

6.1.2 Scale Effect

A definite Timitation to the equivalent porous medium analogy
occurs as the fracture spacing increases, (scale effect). That is,
each sample volume must contain enough fractures with various orientations,
apertures, in-filling, etc., to be representative of the fractured rock
mass. Alternately each fracture set may be sampled ﬁndividug]]y by
utilizing careful borehole orientation. However, the same criterion
must hold for each sample tested.

The scale effect is hence completely site dependent and thus is
extremely difficult to guantify in any general manner. Although numerous
attempts at such quantification have been made, none of these have achieved
wide recognition.

Rats and Chernyashov (1965) attempted to define the 1imits for
statistical versus discrete modelling based on statistical distributions
(reference Figure 2.3. Their work indicates that for standard field
sample tests one requires a very small fracture spacing of the order
of < 10cm for the equivalent porous medium approach to be valid.

Maini (1971) presents data, (refer to Figure 2.4), interpreted
from field results that indicate that as the totalinumber of fractures

intersecting a test section increases, the flow per fracture decreases



in a non-linear manner to some assymptotic valuesafter which the author
assumes the continuum modelling to be satisfactory.

In his numerical studies Wilson (1970) shows that the total flow
into a section should vary linearly as the number of fractures increases.
He assumes that if the engineering structure involved is at least fifty
times longer than the longest fracture spacing then the equivalent porous
medium analogy is satisfactory. Inherent in this assumption however is
that each fracture is considered as a fluid conductor.

Barton (1972) found that the spatial frequency of fluid conductors,
at his field site in Norway, varied from four to fifteeen times that of
the total fracture spacing, based on fractured sections showing zero water
take. One of the present authors has also encountered this phenomenon at
numerous sites in a variety of rock types. Barton furthermore found that
the frequency of fluid conductors tended to decrease with depth. Field
observations from deep mines in South Africa, (Cook, personal communications,
1974) and from deep holes (Handin, personal communication, 1974; Hot Dry
Rock Geothermal Experiment, Los Alamos Scienfitic Laboratory, 1973)
contradict this, indicating that possibly no general trend exists.
Including each fracture encountered in a test section as a fluid conductor,
may however be very misleading. Barton (1972) states that with the
spatial distribution of fluid conductors encountered in his tests the
equivalent porous medium analogy must breakdown. This conclusion is
further backed up by Gale's (1975) observation that during a packer
test certain fractures may preferentially open while others close.

The effect of the above observations is that if Wilson's hypothesis

(1970) concerning scale effect is to be used, it must be interpreted as
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fifty times the spacing between fluid conductors. The problem inherent

in using this in the field is how 16 determine, accurately,which fractures
act as fluid conductors. The authors are not aware of any tests confirming
Wilson's hypothesis.

Consequently, although the equivalent porous medjum analogy has been
used successfully in a number of cases, either petroleum production or
regional hydrogeology, these examples deal with extremely large samples
for which statistical modelling is adequate.

Baker (1955) succinctly depicts the fundamental problem with use
of the equivalent porous medium analogy:

The conductivity of a single continuous fracture having an aperture

04 0.0254 om 48 equivalent to 138 meters of porous medium having

a permeability of 10 mileidancys (107% em/sec).

6.1.3 Stress Dependent Permeability

Research into flow through rock fractures has validated the
relationship that flow through a fracture is proportional to the cube
of the fracthre aperture. Furthermore, research over the past fifteen
years has shown that fractures subjected to load undergo deformations
that are both non-linear and non-recoverable. It is then obvious that:
fracture apertures and hence conductivities are dependent on both
existing stress levels and previous stress history and may be altered
by stress changes. This coupling of stress and conductivity holds for
any fractured medium and hence must be accounted for in any modelling
techniqhe.

However, in equivalent porous medium modelling the coupling of

stress and permeability is often ignored. Field tests to determine the
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stress-permeability constitutive law for an equivalent porous medium
approach must develop the permeability curve for the complete load
range to which the rock mass will be subjected because of the non-linear

nature of fracture deformation.

As discussed later in this chapter the non-linearity of fracture
deformation depends on depth, stress history and stress changes applied
or induced in the rock mass under consideration. Thus the problem of
determining the coupled stress-permeability tensor for statistical

modelling is most complex.

6.2 The Discrete Model

6.2.1 Generalities

In the discrete fracture flow model each Hiscontinuity is modelled
indiVidually. For very large rock masses, in order to make the problem
tractable, several discontinuities may be incorporated and replaced by
a single equivalent discontinuity. The main advantage of this approach

is to allow examination of the influence of individual joint parameters

on the flow through jointed rock.

6.2.2 Experimental Studies

It was recognized during the earliest fracture-flow research that
flow through a single fracture can, in its simplest form, be modelled
using a Hele-Shaw apparatus. Some of the earliest fracture-flow
experiments, conducted by Lomize (1951) and Louis (1969),utilized a
modified version of the Hele-Shaw apparatus to study various parameters

such as roughness, tortuosity and turbulence.
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Louis found the basic cubic flow law to be valid for both the
linear and non-linear laminar flow domains (for one-dimensional flow).
Interpretation of Louis' laws (figures 3-15 and 3-16) predict the onset
of turbulence for pafa]]e] flow at a flowrate of 1.3 x 10'3 m3/sec,
irrespective of fracture aperture. For non-parallel flow however the
onset of turbulence could occur at flow rates as low as 0.332 x 10'3 m3/sec
depending on the relative roughness of the fracture. Louis concluded,
based on the combination of high gradients and rather wide apertures
required, that turbulence was not a major consideration for most rock
engineering problems. For example for a fracture aperture of 1 mm a
gradient of about 2 is required to initiate turbulence. However, for an
aperture of 0.1 mm a gradient of one thousand would be required.

It is not difficult to imagine field situations, especially
underground, where gradients well in excess of two might exist. One
of the authors has personally measured gradients from 3 to 8.7 above the
roof of an abandoned limestone mine in Ohio (Bawden and McCreath, 1978).
There was, however, no evidence of turbulence and the fracture apertures,
estimated from packer tests to be 0.1 to 0.2 mm, confirm that turbulence
should not occur in this case.

Most researchers have agreed with Louis and have ignored turbulent
flow. However, Iwai (1977) found that his test data began to deviate
significantly (about 20%) from the cubic law for Reynolds numbers greater
than 100, even though the apertures tested were very small (< 250 x 1074 cm).
He recommends that testing be extended to include the turbulent regime to
determine if the cubic law remains valid. Since Iwai's tests primarily

involved radial flow, turbulent effects could be very significant to the
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conduct and interpretation of standard packer field tests. The turbulent
flow laws presented by Louis are for linear flow and hence the two
results are not necessarily comparable. Iwai's exhaustive laboratory and
numerical research did, however, tend to validate the cubic flow rate
relation for most cases. A1l of this testing included the effects due

to normal load.

Recent research by Ribler (1978) indicates that turbulence may
indeed by very significant to the interpretation of standard field
injection tests. Using a rigid radial flow model the author demonstrates
that narrow fractures (e < 0.13 mm) are characterized by linear flow at
the fracture entrance while fractures with wide apertures (e > 0.4 mm)
are characterized by non-linear flow. In the range between e = 0.13 mm
toe = 0.4 mm a linear relation exists for low head values while
a non-linear relation prevails for high bead values.

Ribler shows that the critical energy head at the linear/non-linear
transition is mainly dependent on the fracture aperture. The author then
uses this result to calculate the fracture aperture and roughness from
the flowrate/energy head relation measured in the packer test.

Sharp (1970) challenged the basic cubic flow law relation and
proposed that Taminar flow was restricted to very low gradients followed
by a long transitional period prior to full turbulence. Reinterpretation
of this data however (Gale 1975), indicates that the cubic power remains
valid.

Laboratory studies on flow through a finely fissured micaschist
conducted by Jouanna (1972) also indicated that linear flow was restricted

to Tow gradients. His field tests on the same formation, however,
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contradicted the laboratory results. The author's attempt to model

his results numerically using a porous medium analogy approach was also
unsuccessful, probably due to the very stress dependent nature of the
formation conductivity.

Maini (1971) derived radial flow laws for parallel plate flow.

His calculations indicate a 58.5 % pressure drop at a distance of a
borehole diameter whereas a continuum model would show virtually no

pressure drop at this distance. Thus,when interpreting results from
standard packer tests one must be very careful in assuming too wide an
applicability of the results since it is only those fracture characteristics
very close to the borehole that control the pressure-flowrate relation.

The recent work by Ribler (1978) discussed previously confirms Maini's
hypothesis for radially symmetric flow.

The research as discussed above then indicates that although the
cubic flow law may be assumed valid in the modelling of most practical
rock engineering problems, one must be aware of the unique situations
retated to problems with radial flow. In radially symmetrical flow
combinations of high Reynolds numbers (Re > 100), moderately wide
apertures and high gradients may lead to turbuient flow especially near
the entrance from an injection borehole. Ribler (1978) demonstrated
that with careful flow and pressure measuréments this phenomenon may
be used to advantage to determine‘critica1 fracture flow parameters (aperture
and relative roughness). However, in packer tests where such turbulence
either remains unrecognized or non-appreciated due to inaccurate
measurements, pressure losses in lines, casing, etc., the calculated
conductivity values and/or permeability tensor may bear little resemblance

to insitu conditions.
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During the early research on fracture flow the fractures were
modelled as rigid members. Researchers realized, however, that in
reality, fractures deform in response to applied or induced stress changes
and that this deformation might be very significant to insitu conductivity
determination. Research during the past ten years into the load-
deformation character of rock fractures has shown this to be a very
complex non-Tlinear phenomenon. More receﬁt experimental work into
coupled fracture-flow has indicated that fracture conductivity may be
strongly influenced by applied or induced stresses, stress history, etc.

During field studies,Snow (1965) was able to measure surface strains
around a wellbore during fluid withdrawal operations. He postulated
that these strains were associated with fracture closure related to
decreased pore pressures at the well. Gale (1975) measured changes in
fracture aperture in an observation well during injection and withdrawal
from a nearby well.

The above experimental and field research confirms that the fracture
load-deformation character is an important parameter governing fracture
conductivity. Thus in any fracture flow study those parameters affecting
the load-deformation characters must be studied as well as those affecting
conductivity at a fixed aperture.

The main advantage of discrete model studies is their very basic
nature. Such tests allow parametric analysis to be'ﬁerformed to
determine the importance of different joint characteristics on the fluid
flow behaviour. The test results may then be introduced in a numerical
technique to analyse large scale cases of interest in rock engineering.

This same very fundamental approach, however, also accounts for

most problems encountered in attempting to use this method. This occurs
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because for normal field situations, within the Timitations of our
existing technology it is very difficult, if not impossible, to measure
with any degree of confidence all of fhe required parameters. A
further problem associated with obtaining appropriate field data is

the high cost of such an exhaustive program. A third problem, although
generally of less signficance, especially where a major program is
concerned, are the potentially high computational costs involved in

running large non-linear programs.

6.2.3 Numerical Studies

Discrete fracture flow mode]1ihg techniques first became of
practical interest with the development of computers capable of hand]iﬁg
large numbers of simultaneous equations. Numerous methods have been
used by various researchers. Louis (1969) solved a series of simultaneous
equations based on methods used in electrical circuitry. Sharp (1970)
and Maini (1971) used the finite difference technique while Wilson
(1970) first used the finite e]ement.technique. A11 of this early
research ignored the coupling of conductivity and fracture deformation.

Noorishad (1971) first developed a finite element fracture flow
model coupling fracture conductivity and fracture deformation. The
fracture load-deformation constitutive law was based on the work of
Goodman (1970).

Gale (1975) and Iwai (1977) both used Goodman deformable joint
elements (Goodman 1976), modified for axisymmetric conditions coupled
with radial fracture flow elements for their numerical studies.

The early studies, assuming rigid fractures, indicated that fracture

orientation and spacing could radically alter pressure distributions in
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structures such as rock slopes, dam foundations, etc., from those
assumed from an equivalent porous medium approach. This could, under
certain conditions, strongly affect the stability of the structure.
Later research,using a coupled deformable fracture flow criterion,
indicated that fracture deformation could significantly alter pressure
distributions and or flow-rates from those calculated using the rigid
fracture assumption.

The present research program used the Goodman joint element
(Goodman, 1976) coupled with Wilsons' linear flow element (Wilson, 1970)
to model coupled deformable fracture flow. The program, once debugged
and modified to handle moderately large amounts of input data, was
used for parametric analyses in an attempt to define the range of
influence of fracture deformation on conductivity and the limitations
of the discrete approach based on existing models. The results of the
parametric analysis were given in detail in chapter 3 and the implications
are discussed in the following section of this chapter.

Two Jarge scale problems, discussed earlier in this report,

were also run to indicate the type of analysis suited to the model.

6.3 Coupled Deformable Fracture Flow

In order to study stress dependent fracture flow, the numerical
model must account for both fracture deformation and the coupling between
fluid pressures and the étress acting on the fracture. The following
assumptions were made:

(i)  known fracture geometry.

(i1) permeability is strictly secondary (primary permeability

could be added if required).
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(iii) intact rock behaves as a linear elastic solid.
(iv) fracture deformation is non-linear,
a) no strength in tension.
b) non-linear normal closure in response to compressive
stress
c) simple peak/residual non-linear shear deformation law

in response to shear stress.

6.3.17 Fracture Deformation

The fracture/normal load -deformation constitutive relation proposed
by Goodman (1976) was used for the present research. The model assumes
a maximum allowable closure for any fracture under compressive load
that may not exceed the initiai aperture. The load-deformation curve
is highly non-linear, hence with increasing load the normal stiffness
increases and consequently there is less deformation for the same load increment.

Experimental studies-indicate that fractures are sensitive to their
stress history. Cyclic loading produces a wide hysteresis loop, expecially
in the first cycle. Hence fractures once subjected to high normal stress
and later unloaded may retain a high normal stiffness. Fracture
deformation under an imposed load might then be much less than would be
anticipated.

The major problem in predicting the response of fractures insitu
to normal load lies in obtaining realistic input data for the model.
Ideally undisturbed samples of each fracture set should be obtained and

tested in the laboratory. Unfortunately it is extremely difficult to
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obtain undisturbed samples of fractures. Due to the fa;t that the sample
disturbance cannot be estimated, although the trends shown by the
experimental data discussed above appear credible, it is not yet known
exactly how these relate to actual insitu behaviour.

As far as shear stress - shear deformation is concerned, Goodman's
model (1976) was used. It was found, however, that the detailed input
parameters required may lead to difficulties since virtually no existing
field studies include all of the necessary data. Problems developed in
assigning properties that are both compatible and realistic for parametric
studies.

The model handled non-dilatant problems easily and was able to
follow the constitutive curve past the peak strength down toward the
residual portion. However, since shear deformation by itself does not
affect the fracture aperture nor hence conductivity, non-dilatant
problems are of 1ittle interest to the present study.

The model also includes dilatant effects which rmay be
very significant in fracture conductivity studies. Two limiting boundary
conditions were considered:

(i) restrained vertical movement leading to increases in normal

stress and peak shear strength.

(i) constant normal stress leading to increased fracture aperture

and conductivity.
Both of the above are of interest in fracture flow. The present study
attempted to define under what circumstances dilatancy may be a significant

influence.
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Barton (1971) indicates that the dilatancy angle that may be
expected is a function of the ratio of normal stress to the fracture
wall rock strength (reference Figure 3-9). However, the relation
between aperture change and shear deformation is not well understood.
Goodman (1976) show$ this as yet another non-linear curve (Figure 3-10).
Thus the introduction of dilatancy means that in solving the problem
there are three competing non-linear phenomena that must be accounted

for simultaneously.

6.3.2 Fracture Conductivity

The present study has shown that normal fracture deformation is
a critical factor governing fracture conductivity. As discussed
previously the three parameters controlling the normal deformation
are (i) the existing normal stress, (ii) the stress history, and (iii) the
normal stiffness. Although the influence of each of these parameters on
conductivity can be considered independently, it must be remembered that
all three parameters are in fact related and do not act separately.

As discussed earlier in this chapter the higher the applied
(compressive) normal 1oad,the.greater will be the closure of the fracture
aperture. The effect of normal load on conductivity is most clearly
seen if the load is taken as a ratio of the applied stress to the
compressive strength of the fracture wall rock. A typical example
(Figure 3-17) showed that as the load ratio increases toward one, the
relative change in conductivity rapidly decreases in a highly non-
1inear manner. The data then indicated that larger relative conductivity

changes would be expected at low normal stress and as the stress level
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js increased the conductivity changes become less significant. At
some stress level, further conductivity changes can be ignored. This
point, however, will depend on the particular fracture in question
(e.g. rock type, weathering and alteration on fracture wall, etc.)
and hence no global value can be chosen.

It is obvious from this data that the effect of normal stress
on conductivity may vary radically depending on the particular site
conditions. At sites where existing stresses are small, an additional
applied stress might significantly alter fracture conductivities whereas
if the existing stress field is quite large the effect of an additional
applied or induced stress on conductivity may be negligible.

Also, any increase in the normal stiffness diminishes the
relative change in conductivity in a non-linear fashion towards an
assymptotic value after which further conductivity change become
negligible. It was also shown that very small maximum closures may
simply be due to very fine initial apertures or to very fresh strong
wall rock such that the asperities or rock bridges transmitting the normal
stress are not easily crushed. In the latter case it may be impossible
to estimate this parameter insitu.

Hence, as discussed previously, one would generally expect the

‘greatest variation in conductivity with load in areas of low stress

or stress relief. The stress history of the fracture can, however,
lead to exceptions to this general rule. |

Previously loaded fractures {geologically speaking) and subsequently
unloaded, could have much higher normal stiffness than would be

anticipated from the present]y existing level of insitu stress. In this
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case further applied load might have minimal effects on conductivity
although the near surface location and Tow insitu stress condition
would have suggested that significant changes in conductivity might
occur.

Hence each case requires careful geologic interpretation and
detailed field study to determine how the loading from a proposed
structure may alter the hydraulics of the fractured medium,

As far as the influence of the shear deformation upon the
conductivity, two types of shear deformation should be considered.
Non-dilatant shear by itself has no effect on conductivity except the
possibility of local plugging due to gouge accumulation. Shear strength
mobilization, however, is a function of the normal load which may have
significant effects on conductivity as discussed in the previous
section. Dilatant shear, however, involves a complex coupling between
shear and normal deformation and may significantly influence conductivity.

In the first case of restrained normal deformationasuch as in the
case for most underground situations, the physical conditions are such
that the fracture cannot open further. The effect of dilatancy is then
to increase the normal load, and hence the shear strength, while at the

same time inhibiting normal closure of the fracture in response to this

load. The end result of this type of deformation is that the system

responds hydraulically as though the fracture system was rigid.
In the other case where the normal deformations are not restrained,
such as for open cuts, the fracture is allowed to tolerate the dilatancy

while the normal stress remains constant. Because of the cubic fracture
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flow relation such deformations might have a very significant influence
on fracture conductivity. In reality most cases probably constitute
some combination of the above two extremes. |

Maini (1971) was first able to demonstrate the feasibility of this
concept using a simple laboratory apparatus. The tests, however, are
too simplistic to indicate to what degree dilatancy might affect insitu
conduétivities.

The model used in the present study employs the dilatancy relation
of Ladanyi and Archambault (1972). A straight forward coupling of
dilatancy and conductivity has been assumed at this time. This relation
remains to be confirmed experimentally. As noted previously the model
was found to be extreﬁe]y sensitive to input data for dilatant shear
problems. Numerical instabilities commonly occurred although the data
was chosen based on published results.

The problems with thé conductivity - dilatant shear relation can
be evaluated only through extensive and sophisticated laboratory tests
which are beyond the scope of the present study. The present results
taken from the stable cases, indicate that dilatancy may be critical
to fracture conductivity. It is imperative that this relationship be
evaluated experimentally so that its affect in practical rock engineering
may be accounted for.

In all the examples treated the shear stress was kept below the
beak shear strength since it is the conductivity changes prior to
failure that are of most interest. Furthermore it is very unlikely
that the simple direct coupling of conductivity and dilatancy assumed

in this work is valid beyond the peak shear displacement.
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It was also established that at low normal stress, very large
changes in conductivity may occur under dilatant shear conditions.

The conductivity change for any shear displacement is also very
dependent on the dilatancy angle for that fracture.

Decreasing shear stiffness and increasing normal stiffness both
tend to increase the fracture conductivity. The normal stress 1éve1,
however, appears to be the most predominant parameter. As the normal
stress i%creases it rapidly overcomes the dilatant effects, irrespective
of the other parameters.

The change in relative conductivity decreases with increasing shear
stiffness. For any applied shear stress a larger shear stiffness gives
a lower shear displacement and hence less dilatancy.

The data from the present model then indicates that the normal
load is-the primary parameter controlling dilatancy, with shear and
normal stiffness as secondary parameters. The relative conductivity
curves generated are all non-linear and show that for ény one or
combination of the above parameters there is a discrete value at
which the effect of dilatancy is completely subdued. It is expected
that this particular value will be unique to each fracture set and will
depend on parameters such as 1ithology, fracture wall rock properties,
weathering and alteration, stress history and dilatency angle. Again
many of these parameters are interdependent and determination of
their relative importance can only be done experimentally.

Fracture stiffness is not yet well understood. Intuitively both
normal and shear stiffness must be related to parameters such as

fracture wall rock strength, degree of weathering and/or alteration, area
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of contact, roughness~and interlocking of asperities, etc. Again detailed
experimental investigations will be required in order to evaluate
the relatijve importance of the various parameters and to indicate what
type of field measurements are required for numerical input.
To summarize, the results for conductivity with dilatant shear
show the following:
(i) at low normal stress dilatancy may cause radical changes in
conductivity,
(ii) increasing normal stress and/or normal stiffness will
decrease.the change in relative conductivity,.
(i11) increasing shear stiffness will decreése the change in

relative conductivity.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

The present study has compared the statistical versus the discrete
approaches as applied to fluid flow through a fractured medium.

In the statistical approach, the major drawback is the scale
effect, whereby the results of a standard packer test are definitely
a function of the fracture density. Unfortunately the required
functional is site-dependent and is consequently undetermined in most
cases.

The second drawback relates to the fact that both the primary and
secondary permeabilities are dependent on the existing and induced
stress fields. Although this restriction could be taken into account,
(i.e. through laboratory and field tests), the scale effect always
remains a stumbling-block.

The authors, therefore, believe that when considering fractured
rock masses, the statisiica] approach is valid only in the cases of
heavily fractured and/or weathered formations that behave in a manner
similar to a porous medium. It should be noted in this context that
fracture density is a relative notion and that a better parameter is
probably the ratio between the size of the "affected region" to the
fracture spacing. One must further beware that only the spacing
between those fractures that act as fluid conductors should be used.

Previous experimentalists have established, to the authﬁrs'

satisfaction, the validity of the cubic flow law for laminar flow in
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a fracture. The problems asﬁociated with the interpretation of standard
packer test data has also been pointed out by numerous researchers.
Due to the fact that the fra&ture conductivity is a function of the
effective stress, injection and withdrawal tests may give very different
results, the difference being more accute the more highly sensitive
the formation. It is, therefore, essential that insitu permeability
determinations be made under the smallest possible differential pressure,
a procedure which requires accurate and sensitive downhole equipment.
The previous arguments have established the necessity, in any
realistic numerical approach, to couple both the flow and stress
problems. This problem was fully realized by earlier researchers.

Initially, they considered the fractures to be rigid and demonstrated

the importance of fracture orientation and spacing. However, discontinuities

act as soft inclusions and their deformability can drastically inf]uencé
both the pressure distribution and the overall permeability of the
fractured rock mass. Although all of the conclusions reached using
rigid fractures can qualitatively be applied to deformable fractures,
the importance of the latter will be a function of the fracture
propertiés as discussed below.

Fracture closure under applied or induced normal stress may, under
certain circumstances, exert a significant influence on fracture
conductivity. The study has shown that the magnitude of this effect
depends on a complex interaction between the normal load itself, the
maximum fracture closure, the normal stiffness and the geological

(stress) history. Fracture closure and normal stiffness must, at the

same time, be related to the particular lithology and degree of weathering
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and/or alteration. The only method at present to isolate most of these
critical parameters is through laboratory testing, and as yet very
little data of this nature is available.

By far the most important property affecting the fluid conductivity
is the joint dilatancy and its influence on fracture closure. The
authors have further shown the influence of increasing dilatancy angle
in increasing the peak shear strength for a particular joint which, in
turn, will affect its conductivity.

It should be emphasized that this characteristic will have a
different effect for "surface” structures than for buried facilities.
In the first case the dilatant movement of the rock mass is essentially
unrestrained and conductivity properties are most strongly affected Ey
the rock movement. Conductivity changes in such cases can exceed an
order of magnitude. As depth increases restraint becomes mére and more
important, which increases the strength and hence decreases the
probability of movement. The fractures then act in a more rigid manner
and dilatancy becomes a second order parameter.

It should also be noted that the influence exerted by the fractures
and their properties is always a function of the nelative sZifgness of
joints as compared to the intact rock. In this context the importance
of the geologic stress history cannot be overstated. Although similar
stress conditions and f?acturé geometry may prevail at one 1ocati§n
as another, the owverall behaviour will be quite different if prior
unioading has occurred.

The authors have shown that the secondary permeability variations

due to insitu stress conditions may often be explained by considering
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the behaviour of pre-existing fractures. This is backed up by field
and laboratory data which revealed the drastic influence of the
fractures prevailing adjacent to the borehole wall.

Where remedial measures are to be considered with respect to
seepage, one must take careful account of both the fracture geometry
and the detailed fracture characteriétics.

This research has clearly established the importance of the properties
of discontinuities upon the fluid conductivity of fractured rock masses.
In order to obtain a full understanding of any field packer test data
it is, therefore, of the utter most importance to know both the
geometric relations as well as the physical properties with a high
degree of confidence. It is further important, due to the very limited
area of influence contro11ing radial flow, that a large number of tests
be conducted such that representative 1imits on the controlling parameters
may be determined.

It shqu1d also be realized that the work and research on shear
dilatancy is in its infancy. A strong effort should be made to obtain
a better grasp on the constitutive equations governing this phenomenon
in order to avoid numerical instabilities. Further research is also
required to delineate the compatibility 1limits between parameters such -
as wa11rock'§trength, normal and shear stiffness and dilatancy angle.

One of the important limitations with respect to this research
program was the tacit assumption that any differential movement in the
fracture could not alter, chemically or physically, the contact surfaces.
In reality crushing of the asperities will occur and/or pre-existing
gouge will be affected. Realistically speaking, the relationship between

fluid conductivity and joint displacement should be obtained experimentally.
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The authors also recommend that a special effort be made to extend
this work to include transient and turbulent flow regimes for both
radial and linear conditions. This will require extensive laboratory
testing to establish the proper equations of state.

The work reported here could also be extended to include seepage
within the rock matrix, a situation that may prevail in fractured porous
media.

Finally, in order to make the numerical approach more attractive
for applications to very large engineering situations, the computer
programmes should be optimized and other numerical approaches or

combinations thereof investigated.
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