OPEN FILE REPORT #82-6.

Geothermal Gradients on the West Side of Okanagan Lake, B.C.

By

T.J. Lewis

Pacific Geoscience Centre P.O. Box 6000 Sidney, B.C. V8L 4B2

And Len Werner

11937-230 Street Maple Ridge, B.C. V2X 6R3

Date: 14 April, 1982

Earth Physics Branch Energy, Mines and Resources Canada 1 Observatory Crescent Ottawa, Ontario, KlA 0Y3

EPB Open File 82-6 This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

OPEN FILE REPORT #82-6.

١

Geothermal Gradients on the West Side of Okanagan Lake, B.C.

By

T.J. Lewis

Pacific Geoscience Centre P.O. Box 6000 Sidney, B.C. V8L 4B2

And Len Werner

11937-230 Street Maple Ridge, B.C. V2X 6R3

Date: 14 April, 1982

Earth Physics Branch Energy, Mines and Resources Canada 1 Observatory Crescent Ottawa, Ontario, KLA 0Y3

RÉSUME

Deux trous verticaux ont été forés au diamant dans la partie ouest de la vallée de l'Okanagan en vue d'étudier le régime géothermique près de deux bassins datant du Tertiaire. Dans cette région où la température du flux de chaleur est anormalement élevée, ces bassins sédimentaires sont des sources potentielles d'énergie géothermique.

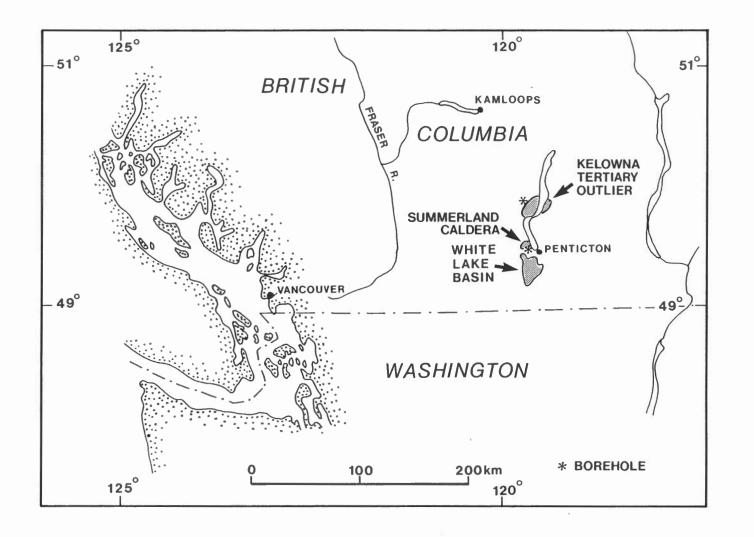
Chaque jour, avant que le forage ne commence, des levés de la température au fond des trous ont été effectués en vue d'obtenir une température d'équilibre de la roche. Dans le trou qui a été foré jusqu'à une profondeur de 470 m au lac Paynter, juste à l'ouest de la butte-témoin Kelowna datant du Tertiaire, les gradients géothermiques variaient de 27 à 33 mK/m. Ce trou a été foré principalement à travers les monzonites quartzifères de la formation de Valhalla qui date du Crétacé. Les gradients géothermiques variaient de 27 à 35 mK/m dans le trou d'une profondeur de 370 m qui a été foré dans les roches plutoniques de Nelson, au ruisseau Trout, au sud de la caldeira Summerland.

ABSTRACT

Two vertical diamond drill holes were completed on the west side of the Okanagan Valley to investigate the geothermal regime near two Tertiary Basins. Such sediment filled basins in this area of above normal heat flow are possible geothermal energy resources.

Bottom hole temperatures were measured each day before the drilling started, to obtain near-equilibrium rock temperatures. The Paynter Lake hole just west of Kelowna Tertiary Outlier, drilled to a depth of 470 m, had geothermal gradients between 27 and 33 mK/m. It penetrated mostly quartz-monzonites of the Cretaceous Valhalla rocks. South of the Summerland Caldera the Trout Creek hole, 370 m deep, had geothermal gradients between 27 and 35 mK/m. It was collared in Nelson plutonic rocks.

GEOTHERMAL GRADIENTS ON THE WEST SIDE OF OKANAGAN LAKE, B.C.


Introduction

In the Okanagan valley some small Tertiary basins may contain hot water which can be used for space heating. Low enthalpy (hot water) geothermal resources are economically used for heating homes, buildings, green houses and other structures in many areas of the world. In providing such heat, the hot water is replacing other types of energy which are more easily transported and which are usually more suitable for many other uses.

The purpose of this report is to describe the drilling of, and temperatures within two cored holes on the west side of Okanagan Lake. The locations of the holes are given in Table 1 and shown in Figure 1. This drilling is the first phase in assessing the geothermal potential of the Kelowna Tertiary Outlier and the Summerland Caldera.

Heat flow was previously measured at 5 sites within White Lake Basin to the south (see Figure 1). Four holes drilled for mineral exploration were logged as well as a single hole drilled for geothermal measurements (Jessop and Judge, 1971). These measurements indicated (Lewis, in preparation) that warm water for space heating may be available in the lower formation. Heat flow to the northwest in the Guichon batholith is 72, nearer to Kamloops it is 86 (Lewis et al., in preparation), and to the east in the Coryell Syenites it is 130 mW m⁻² (Lewis et al., 1979). Therefore heat flow in the entire region is probably above the world average of 60 mW m⁻².

-3-

4

FIG. 1: Location of three Tertiary Basins in south central B.C. The drill sites are shown by asterisks.

.

-1

.

г 1 Collar Elev. Total Depth (m asl) (m) 310-1 Paynter Lake 49° 57.5'N 119° 47.2'W 1311 368 310-2 Trout Creek 40° 34.2'N 119° 39.1'W 389 468

Table 1: Borehole Parameters

-5-

To evaluate the potential of a basin, the heat flowing up into the basin from beneath it should be known. Then the maximum temperatures within the basin may be calculated, using the thermal conductivities of the various members forming the basin. Within volcanoclastic basins water flows, both through formations and, more often, along individual volcanic flow tops. Such water movement may re-supply geothermal reservoirs, but it disturbs borehole temperatures directly by flowing into the boreholes, and indirectly by flowing beneath or adjacent to the holes.

Drilling in such rock is usually much more difficult and costly than in the surrounding granitic rock. Consequently we drilled a single hole at a suitable site just outside each basin to determine the regional heat flow near each basin.

Before this project commenced, B.N. Church of the B.C. dept. of Energy, Mines and Petroleum Resources and T.J. Lewis visited the municipal officials listed in Appendix 1. As well as making a presentation of our plans to them, we gave them copies of an outline of our plans, included here in Appendix 2. The responses showed interest and enthusiasm for geothermal energy.

The provincial officials of the Departments of Forestry and of Energy, Mines and Petroleum Resources, as listed in Appendix 3, were advised of our plans.

Geological Setting

The Cretaceous and Early Tertiary volcanic rocks, confined to the Intermontane belt and eastern flank of the Coast Mountains, erupted at

-6-

approximately the same time as the evolution and uplift of the Coast Plutonic Complex (Souther, 1977). Paleocene and Eocene volcanic rocks include the Marron, and parts of the White Lake and Kettle River Formations of southern British Columbia. The eruption of the rocks was closely associated with block faulting and many deposits are preserved in grabens, half grabens and cauldron-subsidence complexes. Close relationships between acid eruptive rocks and large epizonal plutons suggest that they are comagmatic. In the area west of Okanagan Lake, Armstrong and Peto (1981) note that the younger intrusive remnants are thought to be epizonal feeder and vent systems which formed during a post batholithic period of acid volcanism. They date the porphyritic rhyolite intrusions in this area at 52 Ma, the same as the Shingle Creek intrusion (Church, 1979) just to the south.

The remnants of what was once probably a continuous belt of mainly volcanic rocks in central Washington and central B.C. now form Tertiary "basins". Church (1973) has published the general geology and structure of the White Lake Basin, and has also described the Summerland Caldera (Church, 1980a) and the Kelowna Tertiary Outlier (Church, 1980b). These three basins lie along the Okanagan lineament. Their depths of over a kilometre and the types of formations allow the possibility of hot water reservoirs.

Borehole 310-1 at Paynter Lake was drilled 6.4 km from the western edge of the Kelowna Tertiary Outlier (see Figure 2) in Cretaceous Valhalla plutonic rocks (Little, 1961). The core from this hole is logged mostly as quartz-monzonite (see Appendix 4). Zones throughout the hole are extremely fractured, broken, shattered, sheared, and crumbly. The hole is located in a very small valley formed by Powers Creek.

-7-

Borehole 310-2 at Trout Creek is located in the creek gravels at the bottom of a canyon on the property of Agriculture Canada (Summerland Research Station). The Summerland Caldera (see Figure 3), bounded by the Summerland fault on the southeast (Church, 1980a) is 1 km from the drill site. The hole is collared in Nelson plutonic rocks (Little, 1961).

-8-

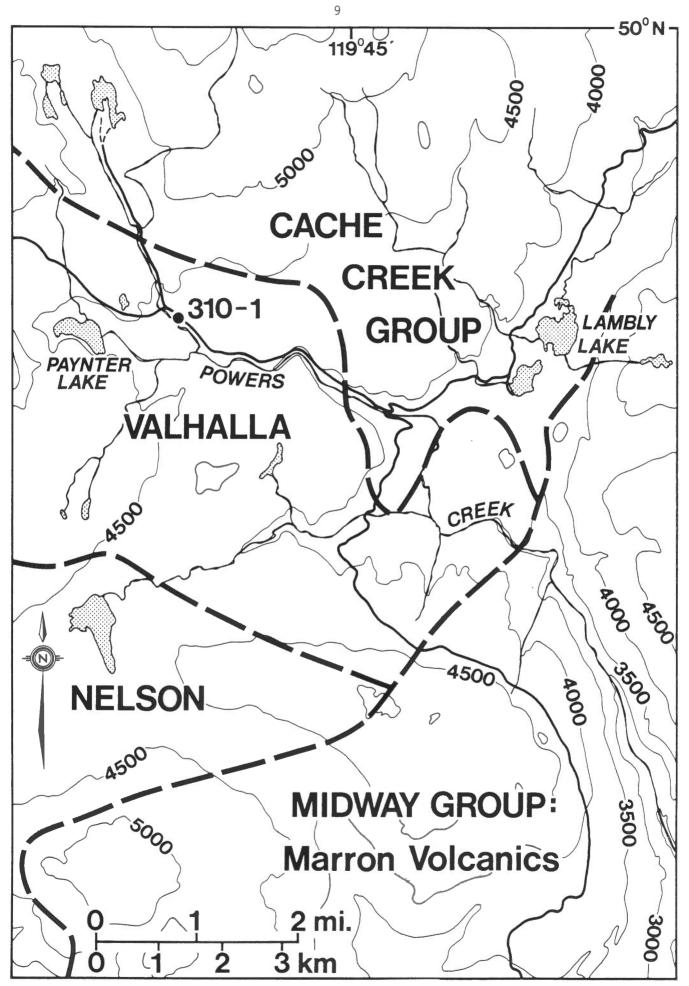


FIG. 2: The geology surrounding drill hole 310-1

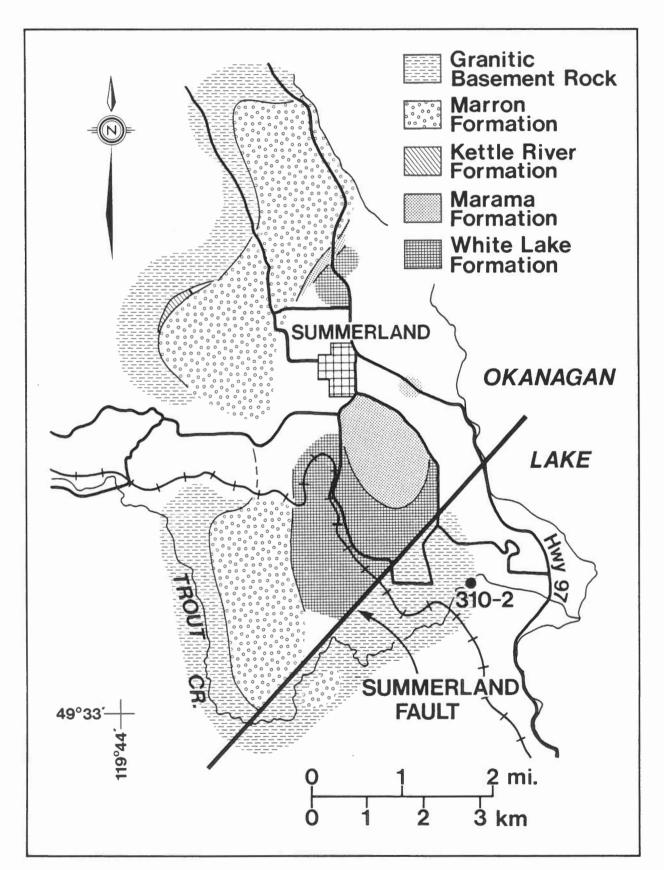
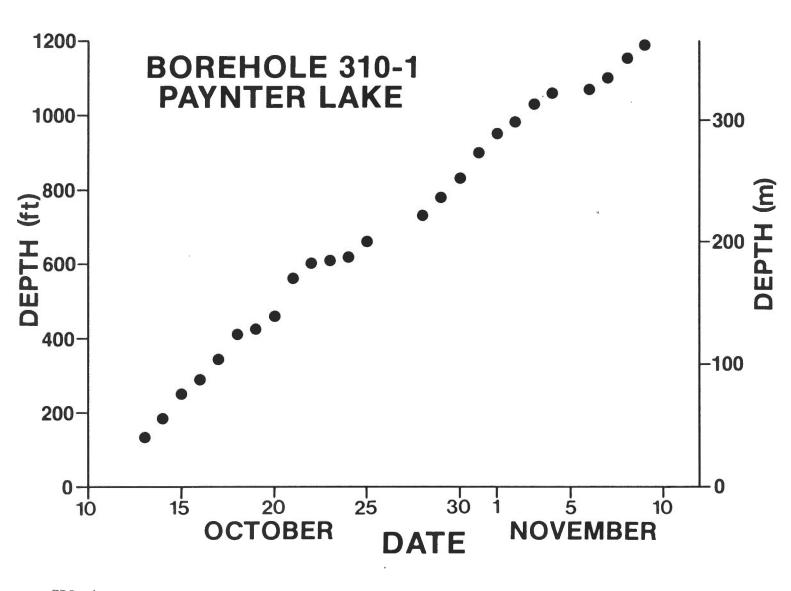
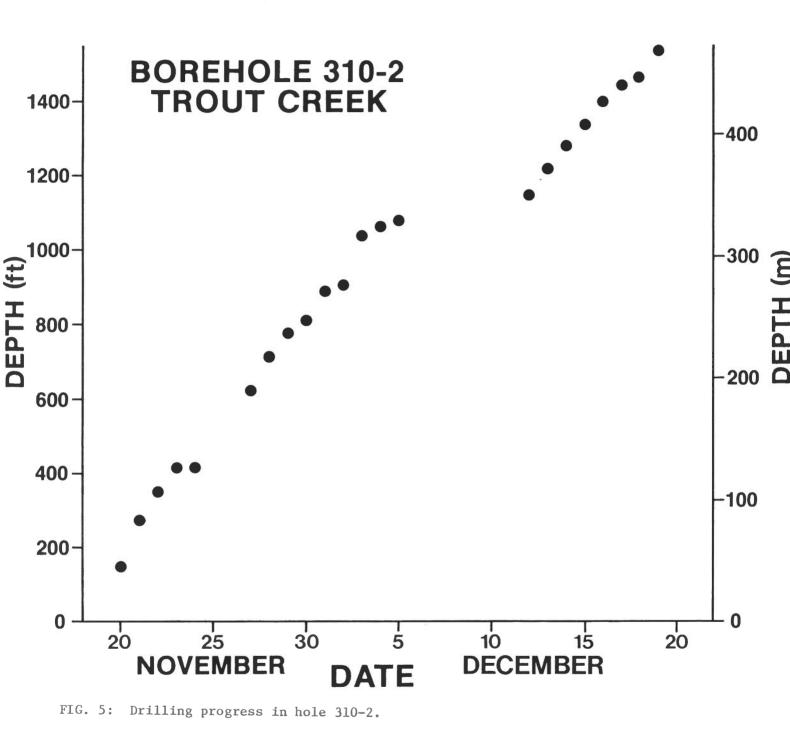


FIG. 3: The geology surrounding drill hole 310-2, from Church

10


Drilling Program

Two cored boreholes were drilled in the Fall of 1980 by Interior Diamond Drilling Ltd. of Summerland, B.C. Our requisition for the Drilling went to D.S.S. on August 11, the drilling went out for tender, bids were received and evaluated by us on September 4 and the contract was let on September 19. The drilling progress of the two holes is shown in Figures 4 and 5. The hole size was BQ. The second hole was completed on November 19, 1981. The total cost of drilling was \$56,073. Only surface casing was left in the holes.


The core is stored at the Geological Survey of Canada in Vancouver, B.C. During the drilling representative samples were chosen for thermal conductivity measurements and for heat generation measurements. The depths of these samples are listed in Tables 2 and 3.

Appendix 4 contains a detailed geological log of the core from both holes. The number of fractures as well as the degree of alteration present at nearly every depth indicate the possibility of water movement, both past and present.

-11-

.

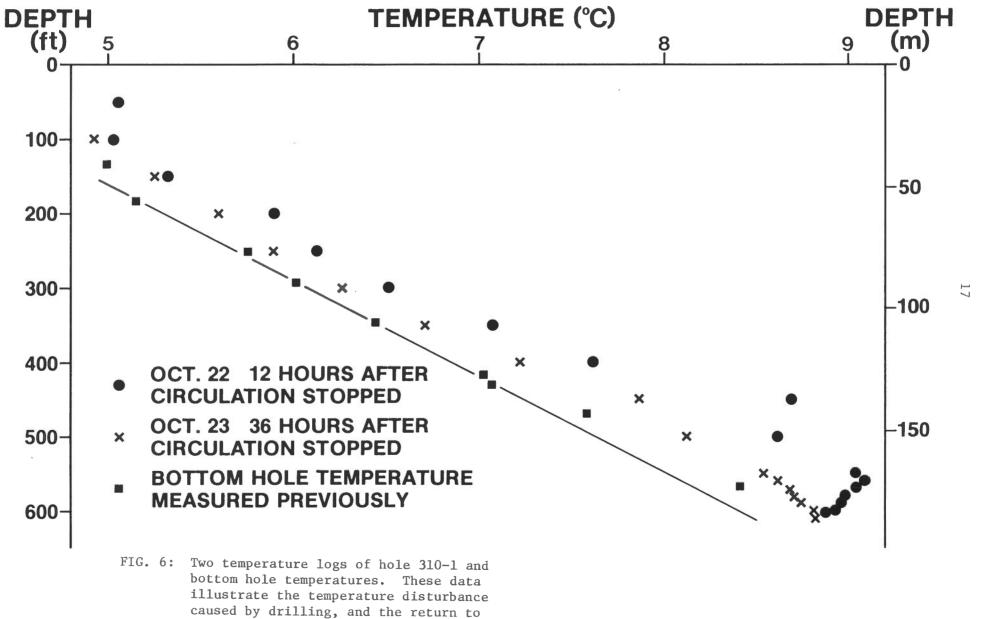
Table 2: Depths from which conductivity samples were chosen

Table 3: Depths from which heat generation samples were chosen.

Hole 310-1 Pay	nter Lake	Hole	310-2 Tro	ut Creek	
(ft) (m)	(ft) (m)	(ft)	(m)	(ft) (m))
119 36	707 215	102	31	805 24	5
213 65	821 250	201	61	895 273	3
291 89	913 278	299	91	989 303	1
397 121	1000 305	390	119	1097 334	4
502 153	1117 340	501	153	1204 36	7
604 184	1202 366	624	190	1301 393	7
		698	213	1397 420	6
				1497 450	6

.

-


Temperature Measurements

Temperatures were measured each day, just before commencement of drilling. Since there was only a single drilling shift each day, the water equilibrated with the surrounding rock for about 12 hours after the drilling circulation stopped before the temperature was logged. At the bottom of the hole both the temperature disturbance caused by drilling and the chances of a disturbance caused by water entering the hole from a fracture and flowing up the hole are minimal (Lewis et al., 1979). Consequently bottom hole temperatures measured during stops in the drilling best indicate the undisturbed temperature gradient within the rock. If water does not flow in the hole from fracture to fracture, or from fractures to the surface, then the final temperature log taken weeks after the hole is completed should agree with the bottom-hole temperatures.

A thermistor sensor mounted in a water- and pressure-proof brass probe was used to measure down-hole temperatures. The probe was lowered down the drill hole on a four-conductor cable from a light-weight backpack winch, and the absolute resistance of the thermistor was determined on surface with a sensitive Wheatstone Bridge. Temperatures were then determined from previous calibration of the thermistor. The instrumentation was described in detail by Lewis (1975).

Figure 6 shows a typical temperature log measured 12 hours after circulation stopped, as well as an additional log taken 24 hours later. There was no drilling nor circulation between the two logs. The higher temperatures caused by drilling operations decayed about 0.4°C during the 24 hours; the bottom hole temperature is the least disturbed. At a

-16-

equilibrium temperatures.

depth of 425 ft (130 m) a relatively higher temperature was encountered the previous day, which we interpret as the effect from relatively warm water entering the hole near that depth.

Figure 7 shows the final temperature log of hole 310-1 (Paynter Lake) measured 9 days after the hole was completed, as well as the bottom hole temperatures. Tables 4 and 5 contain the data. The hole is now blocked at 1100 ft (335m) depth. The general agreement between the final log and the bottom hole temperatures indicates that very little, if any, water is flowing up or down the hole. The bottom hole temperature at 1000 ft (305 m) is much higher, indicating that at this depth a large volume fracture accepted the warm water being circulated, and took much longer to cool afterwards. The core log shows fracturing in many places, but severe fracturing occurred in only a few places, including 987 to 997 feet (301-304 m). If the temperature were not measured in such a fracture zone then the prolonged thermal disturbance associated with the zone would not be detected.

If the bottom hole temperatures from hole 310-1 are plotted in detail, as is partially done in Figure 6, the data are best approximated by five straight line segments:

1 from 185 (56) to 430 ft (131 m) with a gradient of 26.7 mK/m 2 from 467 (142) to 629 ft (192 m) with a gradient of 28.2 mK/m 3 from 629 (192) to 796 ft (243 m) with a gradient of 32.5 mK/m 4 from 837 (255) to 1037 ft (316 m) with a gradient of 30.3 mK/m 5 from 1067 (325) to 1207 ft (368 m) with a gradient of 30.8 mK/m

-18-

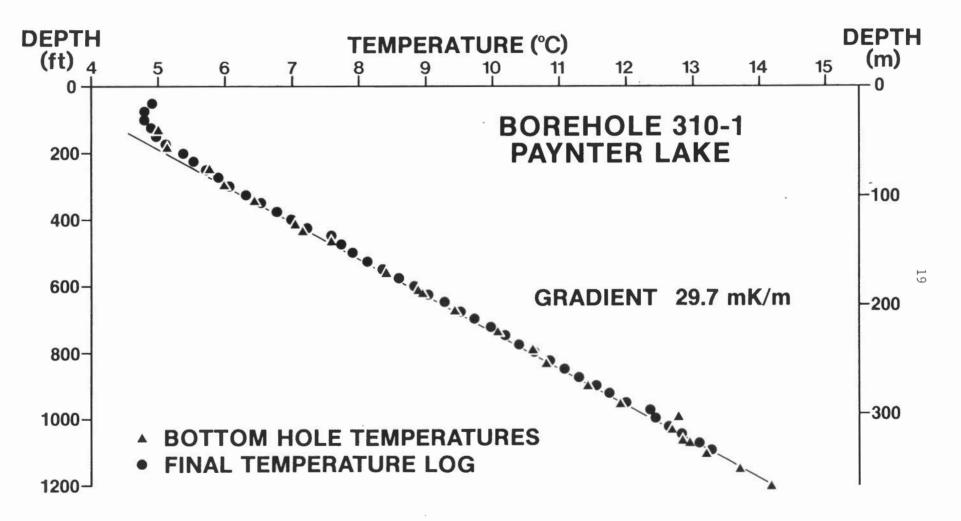


FIG. 7: Temperatures in borehole 310-1.

Table 4: Bottom hole temperatures of borehole 310-1 Paynter Lake

Dep	oth	Temperature	Date Measured
(ft)	(m)	(°C)	
135	41	4.99	13 October
185	56	5.15	14
252	77	5.75	15
293	89	6.01	16
347	106	6.44	17
417	127	7.05	18
430	131	7.17	19
467	142	7.58	20
567	173	8.41	21
617	188	8.88	22
629	192	8.96	24
677	206	9.43	25
738	225	10.07	28
796	243	10.60	29
837	255	10.81	30
905	276	11.42	31
957	292	11.92	1 November
1000	305	12.78	2
1037	316	12.65	2
1067	325	12.85	4
1077	328	12.95	6 7
1107	337	13.22	
1157	353	13.69	8 9
1207	368	14.17	9

۰.

-20-

						-21-	
Table	5:	Final	Temperatus	Log.	of	Hole	310-1

DEPTH	(m)	TEMPERATURE	9 days since
(ft)		(°C)	circulation stopped
(ft) 0 25 50 75 100 125 150 175 200 226 250 275 300 325 351 375 400 425 450 475 501 525 550 576 600 625 650 675 700 725 750 775 800 825 850 875 900 924 950 975	0 7.6 15.2 22.8 30.4 38.1 45.7 53.3 60.9 68.8 76.2 83.8 91.4 99.0 106.9 114.3 121.9 129.5 137.1 144.7 152.7 160.0 167.6 175.5 182.8 190.5 198.1 205.7 213.3 220.9 228.6 236.2 243.8 251.4 259.0 266.7 274.3 281.6 289.5 297.1	(°C) 4.949 6.112 4.921 4.796 4.782 4.891 4.979 5.113 5.364 5.520 5.705 5.895 6.072 6.313 6.542 6.760 6.978 7.212 7.584 7.730 7.902 8.123 8.347 8.583 8.347 8.583 8.805 9.033 9.265 9.509 9.724 9.956 10.166 10.381 10.615 10.850 11.058 11.289 11.552 11.740 11.989 12.349	
1001	305.1	12.426	
1025	312.4	12.632	
1050	320.0	12.844	
1075	327.6	13.065	
1098	334.6	13.271	

These data can be explained by a complex pattern of changing thermal conductivity in the rocks penetrated and/or zones in which convective flow of heat exists. Further interpretation awaits the measurement of the thermal conductivity of the core samples.

Figure 8 shows the bottom hole temperatures of hole 310-2 (Trout Creek) as well as the final temperature log run 26 days after the hole was completed. Tables 6 and 7 contain this data. The final log shows no indication of water moving within the borehole. The bottom hole temperatures are best approximated by three straight line segments as shown in Figure 8:

1. from 227 (84) to 787 feet (240 m) with a gradient of 35.4 mK/m

2. from 817 (249) to 1157 feet (353 m) with a gradient of 33.8 mK/m

3. from 1157 (353) to 1547 feet (472 m) with a gradient of 26.9 mK/m Again final interpretation awaits the measurement of the thermal conductivity of core samples.

If one combines an approximate gradient of 30 mK/m with an approximate conductivity of 2.5 W/m $^{\circ}$ C, this indicates an approximate heat flow of 75 mWm⁻². The amount of quartz in hole 310-1 is likely to make the thermal conductivity there higher than in hole 310-2.

-22-

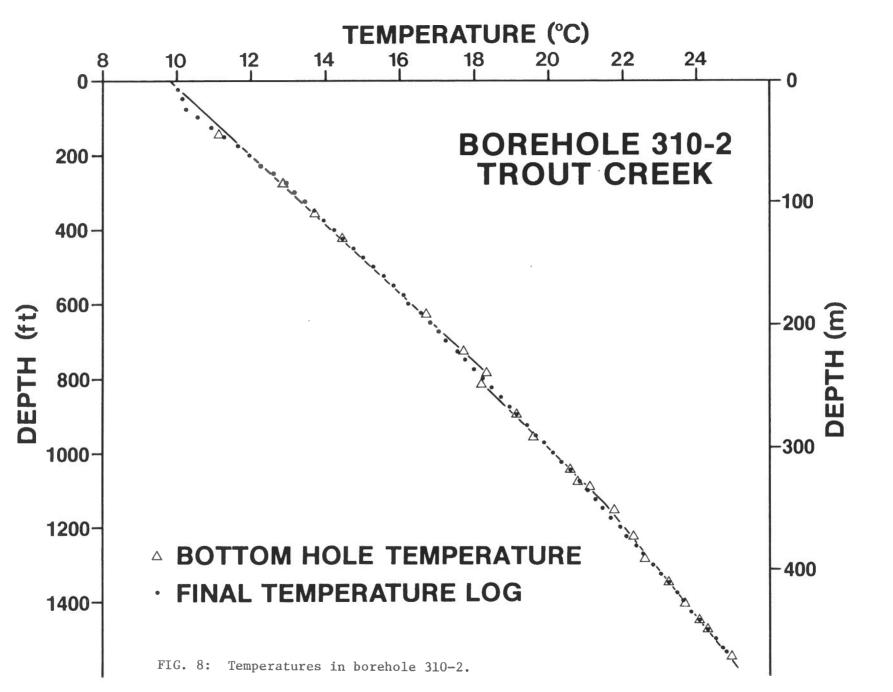


Table 6: Bottomhole temperatures of borehole 310-2 (Trout Creek)

Depth		Temperature	Date Measured
(ft)	(m)	(°C)	
		•	
145	44.2	11.12	20 Nov
277	84.4	12.86	21 Nov
357	108.8	13.71	22 Nov
427	130.1	14.45 (14.39)	23 Nov (24 Nov)
627	191.1	16.72	27 Nov
727	221.6	17.70	28 Nov
787	239.9	18.33	29 Nov *1
817	249.0	18.17	30 Nov *2
897	273.4	19.16	1 Dec
957	291.7	19.62	2 Dec
1047	319.1	20.60	3 Dec
1078	328.6	20.77	4 Dec
1093	333.1	21.08	5 Dec
1157	352.6	21.78	12 Dec *3
1227	374.0	22.28	13 Dec *1
1287	392.3	22.58	14 Dec
1347	410.6	23.22	15 Dec
1407	428.6	23.68	16 Dec
1450	442.0	24.07	17 Dec
1477	450.2	24.31	18 Dec
1547	471.5	24.95	19 Dec

*1	No	rods	in	hole	

*2 Poly-drill in hole

*3 Hole cemented 1080-1157

Table 7: Final temperature log of hole 310-2

DEPTH (ft)	(FROM GROUND) (m)	TEMPERATURE CIRCULATION (°C) 26 days ago	STOPPED
26	7.9	10.01	
50	15.2	10.14	
75	22.8	10.25	
100	30.4	10.57	
125	38.1	10.92	
151	46.0	11.29	
175	53.3	11.63	
201	61.2	11.97	
225	68.5	12.28	
250	76.2	12.60	
275	83.8	12.92	
301	91.7	13.16	
325	99.0	13.43	
350	106.6	13.69	
375	114.3	13.96	
400	121.9	14.22	
425 450	129.5 137.1	14.49 14.74	
475	144.7	14.74	
500	152.4	15.28	
525	160.0	15.56	
550	167.6	15.81	
575	175.2	16.08	
600	182.8	16.21	
625	190.5	16.56	
650	198.1	16.82	
675	205.7	17.05	
700	213.3	17.27	
725	220.9	17.53	
750	228.6	17.74	
775	236.2	18.00	
800	243.8	18.23	
825	251.4	18.48	
850	259.0	18.71	
875 900	266.7	18.95	
	274.3 281.9	19.15 19.40	
925 951	289.8		
975	297.1	19.65 19.88	
1000	304.8	20.10	
1025	312.4	20.10	
1050	320.0	20.55	
1075	327.6	20.81	
1099	334.9	21.02	
1125	342.9	21.26	
1149	350.2	21.46	
1175	358.1	21.68	
1201	366.0	21.91	

-25-

-	2	6	-
	-	~	

Table 7 (cont'd) DEPTH (FROM GROUND) (ft) (m) 1225 873.3 1250 381.0 388.6 1275 1300 396.2 403.8 1325 1350 411.4 419.1 1375 1400 426.7 1425 434.3 1451 442.2 449.5 1475 457.2 464.8 1500 1525 1537 468.4

TEMPERATURE CIRCULATION STOPPED (^O C) 26 days ago
22.09
22.35
22.57
22.80
23.02
23.22
23.44
23.64
23.87
24.09
24.29
24.51
24.72
24.81

Radioactive Heat Generation

The concentrations of the long-lived radioactive isotopes of uranium, thorium and potassium were determined in samples from each hole. The method, as described by Lewis (1974), has since been modified to use samples of a constant mass, 330 g, and a constant absorption. The results are contained in Table 8, where the counting error, given as a percentage of the heat generation, indicates the standard deviation accurately when greater than 8%.

The thirteen samples from the Paynter Lake hole indicate very uniform rock was penetrated with an average heat generation of $1.7 \pm .3 \mu W/m^3$. This quartz monzonite is much less radioactive than the Coryell syenites. Three of the samples from the Summerland hole have heat generations greater than 4 μ W/m³, the largest being 8.7 μ W/m³. The average result for this hole is affected by the number of such highly radioactive samples included in the average. Two of the high values come from "extensively fractured" and "crumbly" core where ground water flow may have contributed to an enrichment during alteration, although at 696 feet (212 m) the relatively larger concentrations of thorium and potassium might indicate that leeching has occurred.

-27-

						Counting	
	Depth	U	Th	K	Heat	Error	Th/
	(ft)	(ppm)	(ppm)	(%)	Generation* $(\mu W/m^3)$	(%)	ν υ
		310-1	Paynter	Lake			
		3.75	8.78	2.61	1.83	9.2	2.3
	119	4.02	4.56	2.87	1.63	14.1	1.1
	213	4.10	9.01	2.85	1.97	6.2	2.2
	291	3.29	5.95	2.91	1.54	14.6	1.8
	397	2.32	5.68	2.63	1.25	18.2	2.5
	502	3.16	6.68	2.60	1.53	16.0	2.1
	604	3.97	8.97	3.06	1.95	8.4	2.3
	707	4.55	7.68	2.59	1.96	9.0	1.7
	821	3.51	6.61	2.82	1.63	9.4	1.9
	913	3.70	6.99	2.96	1.72	9.9	1.9
	1000	3.83	12.1	2.86	2.10	11.2	3.2
	1117	3.72	6.87	2.81	1.71	2.6	1.8
	1202	2.75	4.30	1.97	1.20	2.8	1.6
	Averages:	3.59	7.24	2.73	1.70		
St.	Deviation	+.57	+2.02	+.26	+.31		
			_	_			
		310-2	Summerland				
	102	28.7	14.1	3.93	8.75	1.6	.5
	201	2.33	4.19	1.57	1.04	19.9	1.8
	299	12.1	16.2	2.20	4.47	4.1	1.3
	390	3.08	3.92	2.07	1.26	18.5	1.3
	501	2.90	6.21	1.99	1.38	16.6	2.1
	624	.59	2.57	2.02	.53	32.5	4.3
	696	6.38	33.1	4.57	4.42	4.2	5.2
	805	1.00	2.85	2.05	.65	33.3	2.9
	895	1.32	3.08	1.62	.72	29.	2.3
	989	1.04	5.28	2.17	.85	21.7	5.1
	1097	.81	4.85	2.30	.77	21.1	6.0
	1204	1.71	13.3	2.62	1.63	9.7	7.8
	1301	2.58	10.6	2.74	1.68	8.8	4.1
	1397	1.78	6.79	2.04	1.13	18.6	3.8
	1497	1.08	1.96	3.62	.76	27.3	1.8
	Averages:	4.48	8.63	2.49	2.00		
St.	Deviation	+7.03	+7.91	+.83	+2.86		
			_	_	<u> </u>		

Table 8: Radioactive Heat Generated in Core Samples

* Assuming $\rho = 2.67 \text{ g/cm}^3$

-28-

Conclusions and Recommendations

It is necessary to measure the thermal conductivity of the core samples to determine if the measured vertical heat flux is constant, or if this flux is modified by regional water flows. This is also necessary in order to obtain accurate heat flow values.

It is also necessary to measure the thermal conductivity of members of all formations forming these basins, so that the maximum temperatures at the bottoms of the basins can be calculated.

The approximate measured heat flow, without any corrections, is 75 mWm^{-2} . This is approximately the same as nearby sites referred to earlier.

This heat flow through a sediment filled basin such as the Summerland Caldera, will produce at a given depth, higher temperatures than in the surrounding crystalline rock. It is recommended that a hole be drilled in these basins to determine the rate at which water can be produced and the temperature of the water.

Acknowledgements

We wish to thank Interior Diamond Drilling and its personnel for drilling under contract in a competent manner, and Dr. Glen Russell, Director of the Agriculture Research Station at Summerland, for allowing us to drill the second hole on the station.

-29--

References

- Armstrong, Richard Lee, and Petö, Peter (1981) Age and Sr Isotope composition of the Siwash Creek, Trout Creek, and other quartz-feldspar porphyry intrusions west of Okanagan Lake, southern B.C. Northwest Geology <u>10</u>, 13-19, University of Montana.
- Church, B.N. (1973) Geology of the White Lake Basin. B.C. Dept. of Mines and Petroleum Res. Bull. 61, Victoria, B.C.
- Church, B.N. (1979) Geology of the Penticton Tertiary Outliner, B.C. Ministry of Energy, Mines and Petroleum Resources, Revised Preliminary Map 35.
- Church, B.N. (1980a) Geological Fieldwork, B.C. Ministry of Energy Mines and Petroleum Resources, Paper 1980-1.
- Church, B.N. (1980b) Geology of the Kelowna Tertiary Outliner, (West Half 82E/13) B.C. Ministry of Energy, Mines and Petroleum Resources, Mineral Resources Division, Geological Branch, Preliminary Map 39.
- Jessop, A.M. and Judge, A.S. (1971) Five measurements of heat flow in southern Canada. Can. J. Earth Science 8, 771-716.
- Lewis, T.J. (1974) Heat production measurement in rocks using a gamma ray spectrometer with a solid state detector. Can. J. Earth Sci. 11, 526-532.
- Lewis, T.J. (1975) A Geothermal Survey at Lake Dufault, Quebec. Ph.D. Thesis, University of Western Ontario, London, Ontario.

-30-

Lewis, T.J., Allen, V.S., Taylor, A.E. and Jessop, A.M. (1979) Temperature observation during drilling of two 400 m wells in the Coyell Intrusives north of Grand Forks, British Columbia, 1978. Earth Physics Branch Open File 79-4, Ottawa.

Little, H.W. (1961) Geology of Kettle River, West half, British Columbia. Geological Survey of Canada, Map 15 - 1961, Ottawa.

Souther, J.G. (1977) Volcanism and Tectonic Environments in the Canadian Cordillera - a second look, in <u>Volcanic Regimes in Canada</u>, Baragar, W.R.A., Coleman, L.C., and Hall, J.M. (eds), Geol. Ass'n of Canada spec. paper 16, 3-24.

-31-

Appendix 1: Elected or Staff Municipal Officials with whom we spoke:

Mr. Donald W. Barcham, Director of Planning
Regional District of Central Okanagan
540 Groves Avenue,
Kelowna, B.C.
763-4918

Mr. K.M. Blagborne, Mayor
The Corporation of the District of Summerland
P.O. Box 159
Summerland, B.C.
VOH 1Z0
494-6451

Mr. R.G. Game, Senior Planner Regional District of Okanagan - Similkameen 1101 Main Street Penticton, B.C. V2A 5E6 492-4918

Mr. A.T. Harrison, Administrator
Regional District of Central Okanagan
540 Groves Avenue
Kelowna, B.C.
763-4918

-32-

Appendix 2: Program Description

ASSESSMENT OF THE GEOTHERMAL ENERGY POTENTIAL OF TERTIARY BASINS OF THE OKANAGAN VALLEY

Geothermal energy is one of the alternate sources of energy which the Federal Government of Canada is anxious to see assessed and developed. Therefore the government has been conducting its own research programs as well as funding contracts to encourage the development of geothermal energy.

Geothermal energy is energy in the form of heat which comes from the ground. Nearly everywhere on the earth's surface there is a small net amount of heat flowing out of the ground. But for geothermal energy to be useful, we need it at high temperatures, and concentrated in small volumes from which we can extract if efficiently. This occurs in several different ways in nature.

Steam coming directly up wells from underground formations is the most valued type of resource. The steam can turn turbines which generate electricity. At Meager Mountain 160 km north of Vancouver the federal Dept. of Energy, Mines and Resources and B.C. Hydro have been exploring for such a resource since 1973. This steam comes from very hot rocks in geologically young areas.

The hot water stored in sedimentary basins is another, different source of energy. Although not able to turn turbines directly, it is ideal for space heating: heating homes, buildings, schools, greenhouses, etc. At the University of Regina the Federal Government and the Province of Saskatchewan have drilled a well to 2200 m depth to test production of such warm water for heating a new University building.

-33-

In the Okanagan Valley there exist small Tertiary basins which may contain reservoirs of hot water which could be used for space heating. In the Okanagan the net amount of heat flowing up through the rocks, the terrestrial heat flow, may be much larger than normal. This would cause the increase in temperature with depth to be larger than normal, and under the insulating layers of sedimentary rocks, temperatures of 70°C might occur at depths of just over one kilometre.

High values of terrestrial heat flow have been measured to the south in the White Lake Basin (Penticton Inlier) between Penticton and Keremeous, to the west in the Highland Valley and to the east in the Coryell Syenites north of Grand Forks.

During 1980-81, with a limited budget, we would like to measure the terrestrial heat flow near two of the Tertiary Basins: near Summerland and near Westbank. This would entail having a contractor drill a cored hole near each basin in which we would accurately measure temperatures. We would also measure the thermal conductivity of core samples as well as samples from the sedimentary formations. We have not chosen the exact drill sites yet but we have decided not to drill entirely within sedimentary formations.

This outline is presented to inform people within the area of our plans. We have contacted or are contacting the Regional Boards, Regional Officials, and Municipal Councils for the areas in which we plan this work to inform them of our plans and to receive from them their response and/or questions concerning the project. No development is without advantages and disadvantages. However, geothermal power is generally considered an ideal source of energy.

- . . . ·

-34-

For further information please contact:

Dr. Trevor Lewis Pacific Geoscience Centre Earth Physics Branch Energy, Mines and Resources 9860 West Saanich Road Sidney, B.C. V8L 4B2 656-8447

Dr. Neil Church of the B.C. Dept. of Energy, Mines and Petroleum Resources has studied the geology of these basins and is assisting us in locating the drill sites.

-35-

Appendix 3: Officials of Provincial Departments of Forestry and Energy, Mines and Petroleum Resources

Dept. of Energy, Mines and Petroleum Resources

Mr. Gordon White 101-2985 Airport Drive Kamloops, B.C. V2B 7W8 376-7201

Mr. George Addey 310 Ward Street Nelson, B.C. V1L 5S4

B.C. Forest Service District Forrestor R.R.#2 Highway 97 North Kelowna, B.C. VlY 7P2 765-5178 Appendix 4: Core log of hole 310-1 (Paynter Lake)

For each interval a description of the rock type is given, followed by 6 columns giving the number of fractures in the rock in each 15° - interval measured from the horizontal. The next column is the fracture density per foot. The next two pairs of columns each consist of a first column giving the scale of alteration:

- Unaltered: fresh surfaces only, no indications of secondary mineral formed.
- Mild alteration: low grade secondary minerals evident, small cavities from dissolved minerals; fine-grained precipitation of minerals in pores and fractures.
- Moderate alteration: coarse-grained precipitation of secondary minerals, mafic minerals chloritized; feldspars beginning to alter along fractures.
- 4. High alteration: chloritization or epidotization pervasive throughout the rock, hardness of all mafic minerals affected, alteration of silicic minerals pervasive from fractures into rock. Kaolinization evident.
- Severe alteration: all minerals altered, rock competency lost. Includes gouge, shear zones, faults.

The second column describes the alteration. The first pair describes the fracture alteration and the second pair, the rock alteration.

-37-

INTERVAL	ROCK TYPE	15 30 45 60 75 T	PT	FRACTURE ALTERATION		ROCK ALTERATION	REMARKS
5-10	Hb-Bi granodiorite 50% recovered weathered , brocken to crumbly, sandy in features.		. 4	Powdery sand, rust	3	chlorite	Low recovery, fractures not counted
10-17	Bi Hb qtz. monzonite 80% recovered		6.9 4		2	11	
17-19	" 100% rec.	12	6.0 4	Chlorite, rust	2	11	
19-27	Hb Bi QZMZ	29 	3.6 3	Chlorite still sandy	2		Still lots of sand in fractures
27-37	", apatite bearing	17	1.7 4	Kaolinite rust, feldspars dissolved	2	**	Moderately competent
37-47	H Bi QZMZ, apatite; mafic orbicular inclusions	16	1.6 2	Calcite	2	Chlorite	
47-55	*1	25	3.1 2	11	2	11	
55-57	Pink granite, blended change over 2' from QZMZ	10	5.0 2		2	**	
57-63.5	Variable, granite to QZMZ	23	3.5 2	Chlorite, Calcite	2	Minor Chlorite	
63.5-74.5	Granite, highly fractured and weathered. Crumbly. 85% recovery	Crumbly	10 3-5	11	4-5	Feldspears weather- ed, kaolinized	
74.5-77	QZMZ	17	6.8 2	Calcite, Chlorite, minor hematite along slickensides		Chlorite, some rust stain in feldspars near fractures	
77-87	QZMZ – Granite	variably crumbly where not crumbly 2.0	10 2	Calcite	2	Chlorite	

87-96	QZMZ	11	$\frac{10}{2.5}$ 2	Calcite, Chlorite	2 "		39
96-112.5	QZMZ-Granite	**	2	Calcite, Chlorite	2 Minor	chlorite	Common solution of minerals adjacent to fractures.
112.5-123	", 90% recovery	· · · · · · · · · · · · · · · · · · ·	. 41 3.9 2	11	2	11	
123-127		••••	13 3.3 2	Calcite, minor chlorite, bleaching	2		
127-137		•••• •••• •••	. 24 2.4 2	**	2	"	
137-147			19 1.9 2	" Quite Sandy	2	"	Sandy in fractures
147-157	QZMZ-CNDT	extensive sub- vertical fractures	8 3	Calcite, bleaching solution cavities	2	"	
157-167	QZMZ	· · · · · · · · · · · · · · · · · · ·	•	Minor calcite, minor chlorite	2	"	
167-177	QZMZ, occasional dark inclusions (ie 181)	· · · · · · · · · · · · · · · · · · ·	33 3.6 2	" Some bleaching adja- cent wallrock	2	"	
177-187	QZMZ	· · · · · · · · · · · · · · · · · · ·	•	. 11	2		
187-197	QZMZ-GNDT		•	Calcite, chlorite			
197-207	QZMZ	· · · · · · · · · · · · · · · · · · ·	. 25 2.5 2	11	2	11	Possible apatite
207-217			•	"	2	**	
217-227	11	• • • • • • • • • • • • • • • • • • •			2	**	
-	ZMZ-Granite, becoming crumbly ighly fractured		8 3	"	2	**	Crumbly, into 5-10cm chunks
	07M7-oranite. extremelv crumbl	lv.	10+ 3	ń	2	"	1-7 cm chunks

241.5-256	QZMZ-Granite	49 3.4 3 " 2 "	
256-266	"	Variable to powder 3 " 2 " in shear zone	Shear with gouge at 264
266-276	11	···· ··· ··· 29 2.9 2 " 1	
276-283.5	QZMZ	\cdots 12 2 " 1 "	
283.5-293.5	"	··· ·· · 10 1.0 2 Very minor 1 · · · · · · · · · · · · · · · · · · ·	Quite competent
293.5-296.5 296.5-306.5	"	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
306.5-316.5	QZMZ-Granite	20 2.0 2 Calcite, Chlorite 1	
316.5-326.5	Granite	··· ··· ·· ·· ·· ·· ·· 14 1.4 2 " 1	
326.5-336.5	"	:	
336.5-347	QZMZ-Granite, becoming shattered	8 3 " 3 Chlorite, kaolinite	
347-358	Broken granite, highly fractured, altered 90% recovery	8 3 " . 3 "	
358-365	11	10+3 " 5 Chlorite, Kaolinite	often only grains recovered
365-371	**	10+2 " 4 "	slightly more competent, 1-10cm chunks
371-381		10+3 " 4-5 "	

381-391.5				10+ 3	**	5.4	**	Last 5' more competent
391.5-401.5	Variable, moderately competent to crumbly granite	x x	х	8 2 [°]	"	2	Chlorite	
401.5-407	", mostly crumbly			10+ 2	"	3	Chlorite, kaolinite	
407-413	"			10+ 2	"	4	"	
413-417	"			10+ 3		4	11	
417-423	", crumbly to grains			10+ 4	**	5	11	
423-427	**			10+ 3	н	5	11	
427-430	Granite QZMZ; sheared 427-428, then massive, competent.	•••	9	3.0 3-2	"	5-2	**	
430-437	QZMZ		6	1.2 2	Minor calcite	1		
437-447	QZMZ	••• ••	12	1.2 1		1		
447-457	11	* * * * * * * * * * * * * *	• • • • • • 27	2.7 2	Calcite	1		
457-467		• • • • • • • • • • • • • • • • •	22	2.2 1		1		
467-477	**	0 0 0 0 0 0 0 0 0 0 0 0 0 0	22	2.2 2	Minor calcite	1		
477-487	11	* * * * * * * * * * * * * * * *		2.8 2	"			
487-497	"		27	2.7 2	11	2	Calcite, chlorite	

497-507		• • • • • •	••••	•••	• • • •	18	1.8 2	**	1	
507-517	",becoming shat- tered, crumbly						83	Calcite, chlorite	2–5	Calcite, Chlorite
517- 527	QZMZ	• • • • • • • • • •	••••			42	4.2 2	"	2	**
527-537	", becoming shattered	• • • • • •	• • • • • • • • •	• • •	· · · ·	44	4.4 3		3	**
537-547	", highly fractured			,	•••		63	11	3	11
547-557	QZMZ, massive competent	•	•••••	• • •		15	1.5 2	"	. 1	
557-567	"	•••	٠	•••		13	1.3 1		1	
567-577	QZMZ, dense fractures						5 3	Calcite, chlorite	3	chlorite
577-597	**						5 3	"	3	11
597-607	QZMZ, more competent	• • • • •	• • • • • • • • • • •	•	•••	26	2.6 2	11	1	
607-617	Granite, occasionally crumbly	0 0 0 0 0 0 0 0	* * * * * *	• • • • • • •		. 42	4.2 2	"	2	Calcite, chlorite
617-627	Granite-QZMZ,dark inclusions	•••	* * * * * * * *	• • •	• • •	25	2.5 2	"	2	"
627-628	"		• •		••	4	4.0 2	**	4	11

.

628-637	QZMZ	$\cdots \cdots \cdots 16 \qquad 1 \qquad \qquad 1$	
637-647	"	Calcite, chlorite	
647-657	11	···· ·· ·· ·· 11 1.1 2 " 1	Competent care
657-667	**	1	
667-677	**		Fault zone (6") @ 670
677-687	11		Fault zone 6" 682
687-697	", dark inclusions to 6"	161.62Calcite, minor1chlorite	
697-707	11		
707-717	"	Calcite, chlorite 1	
717-727	**		Competent
727-737	11		
737-747	**	···· · · · · · · · · · · 1	
747-757		· · 8 0.8 1 1	Very competent

757-767	11	11	. 1.1 1	2 Orange staining of feldspars
767-777	"	28	8 2.8 2 Minor chlorite	2 "
777-787	**		3.6 2 Calcite, chlorite	2 Minor chlorite, l fracture in 1st 6'; all staining of feldspar rest in last 4'.
787–796	QZMZ, dense fractures, weathered in zones to much	x x x	8 3	
796-806.5	QZMZ	42 ••••	4.2 3	2 Minor chlorite
.5-816.5	17	40 	0 4.0 2 Calcite	1
816.5-827	17		3.0 2 "	2 chlorite
827-831	", very broken, bleaky		8 2 "	2 "
831-837	QZMZ,distinctly altered	28	3 4.7 3 Calcite, chlorite	3 chlorite
837-847	QZMZ, competent, minor mafic inclusions	12	2 1.2 2 Calcite	1
897-857			2.9 2 Calcite, chlorite	1
857-867	11	49 	4.92"	1

867-877	", competent	• • •	•	•	• • •	• •	15	1.	52	**	1		
877-887	QZMZ, gauge zone 882-883	• • •	• • • • • • • •	•••	• • •	• • • • • •	32	3.2	23	"	2	chlorite	
887-897	QZMZ	• • • • • • • • • •	•••	•••		• • • • • •	31	3.3	12	**	1		
897-905	QZMZ, shattered							10-	+ 3	Chlorite, calcite	4	chlorite, clays	Should be zone of water flow (check profiles)
905-911	11							10-	+ 3	11	4	"	
911-917	QZMZ	• •	٠	• •	•••	• • • • • • • • •	26	4.3	32	Calcite	2	Minor chlorite	
917-927	"	• • •	•••	•••	* * *	• • • • • • • • • • • •		3.	52	Calcite, quartz	2	Some sol'n of feldspars	
927-937	QZMZ, dense fractures							8	3	Calcite, chlorite, minor quartz.	3	Sol'n of feldspars, clays	
937-943	QZMZ, shattered							10-	+ 3	Calcite, chlorite	3	"	
943-951.5	QZMZ, shattered to dense fractures						*	8	2	Calcite, chlorite	3	Chlorite	
951.5-957.	QZMZ, dense fractures		•••	• •	٠	 a b a a<		4.(02		2	"	
957-967		• • • • • •	• • • • • •	• • •	• • • •	• • • • • • • • •		3.3	12	"	2	"	Gouge at 962

967–977	QZMZ	13 1.3 2 " 2 Minor chlorite, staining	Distinctly more massive
977-987	**		
987-997		x x x 6 2 Minor calcite 1	Most frx inlst 5'; gouge at 996
997-1000	11		
1000-1007	. 17		
1007-1017	**	13 1.3 1	Competent; 30" unbroken to 1015.
1017-1027		::: ::: 25 2.5 3 Calcite, chlorite 2 Bleaching of feldspars in 1025-1027	
1027-1037	", shattered lst foot	··· ··· ··· ··· 21 2.3 2 " 1	Fracture count ignores shattered 1027-1028
1037-1047	н	···· 20 2.0 2 " 1	
1047-1057	QZMZ	···· 32 3.2 2 " 1	Hemative (old) coated slicker sides at 1047, horizontal movement.
1057-1067	11		

*

1067-1077	"	· · · · · · · · · · · · · · · · · · ·		• • • •	33	3.3	2		1		45
1077-1086.5	**	•••• •••		• • • • • • • •	27	3.0	2	Chlorite	2	Minor chlorite	Last foot shattered
1086.5-1096.5	", crumbly					6	3	Calcite., quartz	2	Bleaching	Losing competency
1096.5-1107.	", crumbly						3	11	2	17	Only 3' recovered, core tube not locked
1107-1117	Crumbly to mush to 1 competent QZMZ	L113,then					N.A. 10+		5	Clay	
1117-1126	QZMZ,variable competent t	ox x	x			8	2	Calcite, chlorite	2	chlorite	crumbly zones probably due ^{to}
1126-1136.5	crumbly QZMZ		• • •	• •	50	5.0	2	"	2	"	core following vertical fractures
1136.5- 1146.5	11	• • • • • • • • • • • •		•••	16	1.6		Minor chlorite	1		
1196.5-1157	QZMZ	• • • • • • • • • • • • • • • • • • •	• •		31	3.1	2	Calcite-epidote, chlorite	1		Several calcite epidote filled fractures at
1157-1167		• • • • • • • • • • • • • •	•••	• • •	. 22	2.2	2	Calcite	1		
1167-1177	QZMZ extremely competent	· · · · · · · · ·			18	1.8	2	Calcite	1		
1177-1187	QZMZ competent up to 1184, then altered		••	• • • •	38	3.8	3	Calcite, chlorite	2	Chlorite	
1187-1197	QZMZ, competent	•••	,	•	12	1.2	2	Calcite	1		
1197-1207	",altered @1205-6	•		••	13	1.3	3	Calcite, chlorite	1		

Appendix 5: Core log of hole 310-2 (Trout Creek)

For each interval a description of the rock type is given, followed by 6 columns giving the number of fractures in the rock in each 15° - interval measured from the horizontal. The next column is the fracture density per foot. The next two pairs of columns each consist of a first column giving the scale of alteration:

- Unaltered: fresh surfaces only, no indications of secondary minerals formed.
- Mild alteration: low grade secondary minerals evident, small cavities from dissolved minerals; fine-grained precipitation of minerals in pores and fractures.
- 3. Moderate alteration: coarse-grained precipitation of secondary minerals, mafic minerals chloritized; feldspars beginning to alter along fractures.
- 4. High alteration: chloritization or epidotization pervasive throughout the rock, hardness of all mafic minerals affected, alteration of silicic minerals pervasive from fractures into rock. Kaolinization evident.
- Severe alteration: all minerals altered, rock competency lost. Includes gouge, shear zones, faults.

The second column describes the alteration. The first pair describes the fracture alteration and the second pair, the rock alteration.

INTERVAL	ROCK TYPE	15 30 45 60 75 T	PT	FRACTURE ALTERATION		ROCK ALTERATION	REMARKS
21-26.5	Altered, crumbly pink granite, highly weathered Aplitic zones		10+ 2	Dolomite?, Chlorite	4	General weathering to clays	
26.5-37.	Altered, crumbly, included green shistose metamorphics		10+ 2	Dolomite?, Chlorite	4	General weathering to clays	
37-47	Altered, crumbly, included green shistose metamorphics		10+ 3	Dolomite?	5	General weathering to clays	
47-57	Pink granite/greenschist migmatite		82	Dolomite?	4	Weathering to clays, chlorite, poss. minor epidote in greenschist	
57-67	Pink granite/greenschist migmatite		10 2	Dolomite, Chlorite	3	11	
67-77	**		7 2		2	11	Local competent zones
77-87	11		8 2	н	3	17	
87-97	н		8 3		3	11	
97-107	", extremely crumbly		10+ 2	Dolomite	4-5	Weathered to complete loss of cohesiveness	
107-117	11		10+ 3	11	5	11	
117-126	Folded, banded chlorite- epidote schist		10+ 2	Chlorite, calcite	3	chlorite, Calcite epidote	
126-135	"		10+ 2	"	3	11	slickensides in chlorite at 131
135-145	", 1-3 cm aplite veins	6 13 5 8 22 54	5.4 2		2	11	
145-155	11	13 14 1 15 7 50	5.0 2	91	2	chlorite, calcite	
155-165.5	Folded, banded chlorite schist, becoming migmatitic by 160		8 2	11		¥8	Mush 159-161

165-175.5	Migmatite, mixture of pegmatitic aplite and greenschist or green gneiss							8	3	Chlorite, calcite	3	chlorite, calcite	some cavities 2-4 cm, filled with rhombohedral calcite (167)
175.5-185.5	" becoming dominantly banded gneissic schist by 180	14	11	8	8	14	55	5.5	3	"	3	"	
185.5-196.	green to grey, folded, banded gneiss	10	21	13	13	5	62	6.2	2	11	2	chlorite, epidote	
196-206.5	migmatite, becoming crumbly by 203		Х	Χ				10+	3	chlorite, minor calcite	3	extensive chlorite	
206.5-216.5	migmatite, greenschist & aplite	17	34	8	6	8	74	7.4	3	chlorite, calcite	3	"	extensive breaks// schistosity
216.5-226.5	"		Х					7	3	chlorite, calcite	3	chlorite, epidote	"
226.5-237	", chlorite-filled fault breccia 229-231.5	Х	Х					7	3	11	4	chlorite	
237-247	Migmatite, mostly green- schist-banded gneiss	3	20	7	7	3	40	4.0	2	11	3	chlorite, epidote	·
247-257	Migmatite, mostly aptite	8	15	7	8	12	50	5.0	2	calcite	2	minorchlorite	
257-267	Migmatite, mostly greenschis	st	Х			Х		8	3	chlorite	3	chlorite	chlorite mush @ 261
267-277	"		Х					8	2	chlorite, calcite	3	11	
277-287		2	21	8	7	5	43	4.3	2	"	2		
287-297	Green chlorite schist/ gneiss	2	21	6	12		41	4.1	2	"	3	"	
297-307	Green gneiss, locally diorite-gneiss	4	12	5	2	7	30	3.0	2	chlorite	2	11	

307-317	Green gneiss, locally diorite-gneiss	7	10	5	9	6	37	3.7	2	chlorite, calcite	1		
317-327	", locally crumbly, mixed with granite	5	5	2	13	8	33	3.3	2	п	1		Fracture readings taken excluding crumbly pores.
327-337	Highly fractured, locally crumbly, diorite-gneiss; andesite 329-734.5							10	2	calcite, chlorite	1		Too crumbly for fracture count
337-347	Gneissic diorite	11	17	15	10	3	56	5.6	2	calcite	1		
347-357	Foliated granodiorite to granite	9	7	6	12	10) 44	4.4	2	calcite, chlorite	1		
357-367		2	11	6	6	7	32	3.2	2	chlorite	1		
367-377	"	2	2	4	10	1	. 19	3.8	2	н	1		
377-387	п	11	16	7	9	5	48	4.8	2	calcite, chlorite	1		
387-397	Foliated, gneissic grano- diorite; crumbly, aplitic granite 392–394							8	3	**	2	calcite	
397-407	Migmatitic gneissic granodiorite, crumbled aplite 405–407	4	11	6	9	3	33	4.1	3	calcite, epidote, chlorite	2-5	calcite, epidote (5 in. crumbled aplite)	Fracture readings excluding crumbly zones.
407-417	Altered, foliated granodiorite	9	19	10	10	7	55	5.5	2	calcite, epidote	2	epidote	
417-427	Foliated monzonite- granodiorite	10	16	4	6	6	42	4.2	2	calcite	2	11	
427-437	", extremely altered and crumbly after 433	2	8	5	6	6	27	4.5	3	calcite	4	calcite, epidote	Frx. excluding crumbly zone
437-446.5	Extremely altered aplitic granite, locally to mush, more competent after 443							10+	4		5		

446.5-457.	Monzonite to diorite	11	17	12	24	10 76	7.6	3	Calcite, chlorite	2	chlorite
457-467	Monzonite, dense fractures		Х		Х		10	3	11	3	calcite, chlorite
467-477	" andesite 470-473		Х		Х		10	3	11	3	11
477-481	monzonite, shattered						10+	3	11	4	11
481-487	foliated monzonite-diorite	8	4	2	12	13 39	6.5	3	", rust	3	11
487-495	"shattered	3	5		1	3	10+	3	11	4	**
495-505	shattered monzonite to 500, then chlorite-mush- matrix breccia						10+	3	11	5	
505-515	chlorite-mush-matrix breccia. Highly altered granitic fragments up to 2 cm.						10+			5	н.
515-524	shattered monzonite						10+	3	calcite, chlorite	4	н
524-529	11						10+	3	tt	4	11
529-537	11						10+	3	н	5	п
537-547	" becoming more competent after 542						10+	3	11	5	**
547-557	shattered monzonite					*	10+	3	11	4	11
557-567	broken monzonite						8	3	**	3	11
567-577	11						8	3	н	3	**

577-587	broken monzonite, shattere 579-582, 584-586	ed						10	3	calcite, chlorite	4	calcite, chlorite
587-597	shattered monzonite							10+	3	11	4	11
597-607	"							10+	3	112	5	**
607-617	broken monzonite							8	3		3	**
617-627	monzonite, foliated	22	8	7		7	47	4.7	2	11	2	11
627-637	", much more competent	23	14	3	1	2	43	4.3	2	11	1	
637-646		14	7	1	3	7	32	3.2	2	calcite	1	
646-656	monzonite-diorite	7	5	1	5	2	23	2.3	1		1	
656-666.5		18	10	1	5	6	40	4.0	2	calcite	1	
666.5-676.5	11	15	7	3	4	8	37	3.7	2		1	
676.5-687	monzonite, broken by extensive vertical fractures					Х		8	3	calcite, chlorite	3	calcite, chlorite
687~697	**							10	3	", some silica	4	"
697-707	", qtz. monzonite							10	3	calcite	2	calcite
707-717	broken qzmz		Х	Х		·X		10	2	"	3	calcite, chlorite
717-727	11							8	2		2	chlorite
727-737	Qzmz	9	14	6	8	7	44	4.4	2		1	
737-747	11	22	13	2	2	8	47	4.7	2		2	chlorite
747-757	variable granite to granodiorite	7	6	4	13	10	40	4.0	2	11	1	

...

757-767	variable granite to granodiorite	12	6	4	9	14	45	4.5	2	calcite	1	
767-777	variable granite	15	7	, 2	2	12	38	3.8	2	calcite, silica	2	calcite, chlorite
777-786	variable granite to granodiorite	11	4	2	4	7	28	2.8	2	11	1	
786-796.5	", occasionally gneissic	9	8	6	9	6	38	3.8	2	11	1	
796.5-807	11	9	10	6	7	9	40	4.0	2	calcite, rust	2	calcite, chlorite
807-817	11	12	8	4	5	11	40	4.0	3	calcite, chlorite, rust	2	11
817-827	variable granite- granodiorite	11	13	6	3	1	34	3.4	2	11	2	11
827-837	11	11	21	1	6	12	48	4.8	2	11	2	chlorite
837-847	11	11	10		3	7	31	3.1	2	**	2	**
847-857	11	6	5	1	12	4	28	2.8	2	17	2	**
857-867	н	8	10	4	17	5	44	4.2	2	11	1	
867-877	11	6	9	6	12	4	37	3.7	2	calcite	2	chlorite
877-887	11	5	9	3	4	2	23	2.3	2	11	2	11
887-897	11	5	12	8	10	. 2	37	3.7	2	chlorite	3	11
897-907	monzonite	12	7	3	16	16	54	5.4	2	calcite, chlorite	2	ŦŤ
907-917	11	10	9	3	12	12	46	4.6	2	chlorite	2	**
917-927	monzonite-granodiorite	5	2	3	24	15	47	4.7	2	calcite, chlorite	2	calcite, chlorite
927-937	11	6	4	3	9	15	37	3.7	2	", rust	2	11
937-947	monzonite	5	9	7	23	10	54	5.4	3	11	3	**

947-957	monzonite	8	13	5	11	9	46	4.6	3	calcite, chlorite, rust		calcite, chlorite
957-967	monzonite	9	9	3	20	9	49	4.9	3	11	3	11
967-977	", broken	1	1	3	4	2		6+	3	**	3	11
977-987	11							6+	3	11	3	ττ.,
987-997	monzonite	11	14	6	9	6	46	4.6	2	calcite, chlorite	3	calcite, chlorite
997-1007	**	1	5	7	16	12	38	3.8	2	11	2	**
1007-1017	11	8	13	8	10	13	52	5.2	3	", rust	2	
1017-1027	variable monzonite	6	4	4	12	9	35	3.5	3	**	3	
1027-1037	11	9	8	2	. 9	13	41	4.1	3	calcite, chlorite	3	**
1037-1047	11	19	13		7	18	56	5.6	3	calcite	3	
1047-1057	11	6	14	6	14	6	46	4.6	2	11	3	
1057-1067	"	8	12	2	5	15	42	4.2	2	п	2	"
1067-1077	granodiorite	10	10	3	9	9	41	4.1	2	11	1	
1077-1087	monzonite, broken to shattered	3	1		1	6		10	2	11	2	chlorite
1087-1093								8	2	11	3	"
1093-1103	monzonite-granodiorite	7	8	6	[′] 9	7	37	3.7	2	chlorite, epidote	2	
1103-1114	monzonite, shattered after 1107							10+	2	11	2	
1114-1124	broken monzonite		Х		Х			8	2	chlorite, epidote, calcite	1	
1124-1134	**	9	31	7	10	5	62	6.2	2	calcite, chlorite	1	

1134-1145	broken monzonite	14	19	8	6	3	50	5.0	2	calcite	1	
1145-1155	н	2	3	2	8	4		8	2	11	2	chlorite
1155-1157	"							8	2	calcite, rust	2	11
1157-1167	**							7	2	calcite, chlorite, rust	3	chlorite, epidote
1167-1177	п							7	3		3	11
1177-1187	monzonite	12	19	6	6	5	48	4.8	3	11	2	11
1187-1197		9	29	7	7	7	62	6.2	2	"	2	11
1197-1207	"	8	19	3	2	9	41	4.1	2	11	1	
1207-1217	11	7	30	9	8	4	59	5.9	3	calcite, chlorite, epidote	2	chlorite, epidote
1217-1227	"	12	17	11	18	8	66	6.6	2	calcite, chlorite	2	calcite, chlorite
1227-1237	"	2	15	8	2	8	33	3.3	2		2	11
1237-1247	monzonite-granodiorite	2	13	9	13	9	46	4.6	2	11	2	11
1247-1257	н	12	26	7	5	9	60	6.0	3	н	3	11
1257-1267	monzonite	7	13	9	8	6	43	4.3	3	11	2	11
1267-1277	11	12	9	9	18	3	48	4.8	3	11	3	11
1277-1287	", andesite after 1283	8	1	3	8	11	31	3.1	3	11	2	11
1287-1297	monzonite	7	13	6	6	8	40	4.0	3	"	2	calcite, chlorite epidote
1297-1307		9	15	7	9	4	43	4.3	2	11	1	

1307-1317	monzonite	11	21	9	10	2	53	5.3	3	calcite, chlorite	2	chlorite, epidote
1317-1327	", andesite after 1323	7	14	3	10	8	42	4.2	3	11	2	
1327-1337	andesite? or f.9 diorite	7	9	8	6	4	34	3.4	2	calcite	1	
1337-1347	monzonite	20	11	1	3	2	38	3.8	2	"	1	
1347-1357	11	10	7	9	8	3	38	3.8	2	14	1	
1357-1367	11	10	5	3	8	4	30	3.0	3	"	1	
1367-1377	monzonite, occasionally diorite, broken							7	3	11	2	chlorite
1377-1387	11							8	3	н	3	calcite, chlorite
1387-1397	н							10	3	н	3	н
1397-1407	monzonite	2	4	11	15	9	41	4.1	2		2	
1407-1417	f.q. diorite	2	4	8	15	8	38	3.8	2	calcite, chlorite	2	chlorite, epidote
1417-1427	11	2	3	4	9	9	27	2.7	2	"	1	
1427-1437	н	5	4	3	10	20	42	4.2	2	"	2	chlorite
1437-1447	", aplite 1438-1452, broken							6	2	11	2	11
1447-1450	monzonite	5	1	2	2	3	13	4.3	2	calcite	1	
1450-1457	11	3	4	6	10	3	26	3.8	2	11	1	
1457-1467	11	8	12	5	10	3	38	3.8	2	calcite, chlorite	2	chlorite
1467-1477	11	4	6	2	18	14	44	4.4		calcite, chlorite, rust	2	calcite, chlorite
1477-1487	broken monzonite							7	3	11	4	**

.

1487-1497	broken monzonite							7	4	calcite, chlorite, rust	4	calcite, chlorite	
1497-1507	monzonite-diorite	14	12	3	6	13	48	4.8	3	11	2	**	
1507-1517	н	2	7	3	10	7	29	4.1	3	н	4	**	altered to mush 1513-1516
1517-1527	monzonite	15	9	5	9	7	45	4.5	2	calcite, chlorite	1		
1527-1537	11	9	6	5	10	8	38	3.8	2	11	1		
1537-1547	п	11	4		6	5	26	2.6	2	**	1		
1547-1554		2	9	2	2	15	31	4.4	3	11	2	calcite	

þ