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ABSTRACT

In this report, the mathematical formulation and some of the
advantages and possible uses for the boundary element process
have been reviewed. The choice of singularity problem has

been addressed and some real advantages of certain singularities
over others have been discussed. Constant, linear and quadratic
elements have been compared. In addition, the problem areas in
analysis and their effect on the resulting answer is presented.

RESUME

Dans ce rapport on fait la révision de la formulation mathématique
et de quelques-uns des avantages et des emplois possibles de la
méthode des é€léments de borne. Le choix du probléme de singularité
est abordé et les avantages réels de certaines singularités sont
discutés. Les éléments constants, linéaires et du second degré
sont comparés., En plus les difficultés de 1l'analyse et leur
influence sur le résultat sont présentées.
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FOREWORD

This report summarizes and discusses some of the advantages of the
boundary integral method when applied to stress. analysis. Various
new developments are presented and discussed in detail as far as their
advantages and disadvantages are concerned.

This report also contains the listing of the program . developed
at the University of Toronto and presents the various test cases which
were run. It finally discusses the application to modelling of pressurized
cracks.

Any opinions expressed in this report are those of the authors and
the Earth Physiés Branch takes no respensibility neither does it

endorse the findings.

Toronto, July 1980,

T.D. Wiles
J.=-C. Roegiers
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SUMMARY

In this report, the mathematical formulation and some cf the
advantages and possible uses far the boundary element process have been
reviewed. The choice of singularity problem has been addressed and
some real advantages of certain singularities over others have been
discussed. Constant, linear and quadratic elements have been compared.
In addition, the problem areas in analysis and their effect on the

resulting answer is presented.
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NOMENCLATURE

stress at point i
displacement at point i
force applied at point j

effect of unit point force or discontinuity applied
at point j

on stress

on displacement

body force applied at point k

potential at point i

distance between points i and j

Laplace's operator

normal to the bounding surface

vector of interpolation values for g

matrix of coefficients expressing stress at
ggigt i due to the interpolated representation

matrix of coefficients expressing displacement at
point i due to the interpolated representation of q

stress vector at boundary interpolation points
displacement vector at boundary interpolation points
work done

normal and shear stress components at point (x,y)
displacement components at point {(x,y)

Poisson's ratio

Young's modulus

shear modulus
point force or discontinutiy in x-direction
point force or discontinuity in y-direction



Chapter I

INTRODUCTION

In recent years there has been great interest generated in numerical
boundary integration approaches as applied to various engineering
problems. The main reason for this interest being that only the boundary
location and conditions need to be considered in most cases.

The amount of effort required to prepare the input for large
problems is therefore small compared to other techniques such as
Finite Elements or Fintte Differences, because only the bounding surfaces
need to be discretized. In addition, a small number of unknoﬁns may
only have to be considered for problems with boundaries extending to
infinity. .

The boundary integfation may be conducted in several ways by making
a variety of assumptions and approximations. In this report the point
load singularity as well as the singular displacement discontinuity are
compared for assumed constant, linear, and quadratic variations of the
singularity along the boundary. Both closed form solutions and numerical

integration approaches are considered.



CHAPTER II

THE BOUNDARY INTEGRAL METHOD

2.1 Indirect Approach

In order to understand the boundary integral approach, one need
only to conceive the principle of superposition. To illustrate this,
consider the two-dimensional(*) elasticity problem shown in Figure 2.1.

It is evident that there is na difference between systems (a)
and (b), provided that the stress distribution due to the load P is
removed by equal and opposite stresses around the apparent boundary.

In order to remove these stresses, however, one must apply additional
boundary forces, each of which will result in its own stresses at all

points around the apparent boundary. Now, if a boundary force distribution

’l

S B

;.--.---- - {’.\. -4

Apparent
Finite Body

(a) Finite Body

(b) Infinite
Body

Fiqure 2.1

\
*
(*) Idential arguments can be used for any potential problem in two
or three dimensions.



can be found which results in the desired boundary stresses, the overall
solution for the stress field within the boundary can be obtained by
superimposing(*) the effects of the entire boundary force distribution.

These considerations are equally valid when specifying stresses or
displacements along any portion of the apparent boundary or even when
considering cavities or inclusions in an infinite medium.

This method has been used to arrive at the closed form solutions
for a concentrated force acting on a beam and also for the case of the
diametral compression of a circular disk (Timoshenko and Goodier, 1970).
Massonnet (1965) also used this approach to determine the force
distribution required to obtain a resulting homogeneous compression of
any finite body. -

Superposifion for any applied force distribution results in the

following stress and displacement field

a4 'qu fa{ dav R (2-])

Uy -qu fu‘i1 dav . (2.2)

where:
o, represents the stress at any point i
Us represents the displacement at any point i;

q. represents the applied force at the point j;

(#)

Superposition is permissible here as the geometry of the infinite
medium does not change with any force application.



£4 represents the effect of a unit force applied at
point j on the stress (f_) or displacement (fu)
component at point i;
dV represents the integral taken over all locations
© where q acts.
The applied force distribution can be broken down into the forces

acting on the apparent boundary (i.e. surface forces), and the forces

applied within the body (i.e. body forces) giving

o 'qu fol ¢s *fbk fof v - (2.3)
uy .qu fu{ds«-[bkfu',‘dv ; (2.4)

where:

ds represents the integral taken over the entire
boundary;

9. represents the force distribution applied at any
location j on the apparent boundary;

dV represents the integral taken over the region where
bk acts;

bk ~ represents the body force distribution applied at
any point within the body.

This approach amounts to the application of Green's function theorem.
Numerous authors have obtained similar results using various mathematical
arguments and have applied it to solve different problems.

Massonnet (1965), and Benjumea and Sikarskie (1972), for example,
show that equations (2.1) and (2.2) are Fredhoim's equations of the
second kind due to the singular nature of the kernel "f". This makes

these equations solvable since the effect of the singularity at the



point at which it is applied becomes finite and hence can be removed
from the integral. Benjumea and Sikarskie (1972) also provided
solutions for a point load in a transversely anisotropic (sometimes
called orthotropic) medium.

Crouch (1978) obtained the equations (2.1) and (2.2) by application

of the Green's function theorem and presented solutions for a displacement

discontinuity in both an isotropic and transversely anisotropic media.

2.2 Direct Approach

An alternate approach is available by use of the reciprocal theorem

which states that

"the work done by the forces of the first set acting through the
displacements of the second set is equal to the work done by the
forces of the second set acting through the displacements of the
first set"™ (Jaeger and Cook, 1969).

If the first set is considered to be a unit point force applied at
any point i on the boundary, this theorem can be written from the

expression given by Timoshenko and Goodier (1970) as

e e .

[ni fo'} ds -j;j fu.ij ds +fbk ful v (2-5)

where:
cj represents the stress at any point j on the boundary;
uj represents the displacement at any point j on the
boundary.

This equation is sufficient to solve for the boundary unknowns, but
in order to determine stresses and displacements at other points inside
the body the Somigliana identity must be used. The required relation can

be expressed from the results given by Love (1927).35

N



u1 a.j'ujfo’; ds ‘fc} fu; ds +fbk ful av (2.6)
f

Stressas can then be obtained by differentiation and substitution
into stress/strain relationships.

Rizzo (1967) and Cruse (1969) also obtained this result and proved
that the equations are solvable due to the fact that the integrals are
finite at the singularity locations. The integration can be conducted
for any chosen singular solution. In this case, however, the remaining
integrations must be taken in the sense of Cauchy's Principal Value.

Rizzo and Shippy (1968) extended this solution to include the
effects of regular non-homogeneous elastic inclusions by evaluating the
integrals around the counfour of each inclusion.

Lachat and Watson (1976), applied this result to some three-
dimensional problems by evaluating the integrals usiné numerical processes.
Later on, Rizzo (1975) extended this boundary integral process to the

solution of Laplace's equation, i.e.

Ty =0, | (2.7)

where:
¢ represents the potential at any point;

V2 represents Laplace's operator.

By introducing a (1/r) - singularity into Green's theorem the

following, equation may be obtained,

1 1 3¢ /e, )
e, e



where:
represents the distance between points 1 and j;
represents the potential at any point j on the

surface s;

%
ds represents the integration along the entire
bounding surface;

9%

an

represents the gradient of ¢ taken in the direction
normal to the bounding surface.

This equation can be used in its present form. Rizzo (1975)
shows that it is solvable since the integral is finite when evaluated
at the singularity location. A similar result was obtained by Brebbia
and Dominquez (1977).

Brebbia (1978) applied equations(2.5) to (2.8) to a variety of
problems considering both isotropic and orthotropic material properties.
In-addition he extended equation (2.8) to thé more general case of
Poisson's equation(*). A1l of Brebbia's equations are derived using
the weighted residual method or the principle of virtual work.

.Numerical integretation processes are used throughout his work.

(*) V3 = f(x,y)



CHAPTER III

NUMERICAL APPROACH

In order to evaluate the system of integral equations (2.3 and
(2.4) or (2.5 and{2.6) the boundary can be discretized into several finite

Tine segements (neglecting body farces) giving for equation (2.3)

n
01 = kf‘ [ QJ fﬂ'z ds , (3'])

where the sum is taken over all boundary elements, and the integrals are
evaluated for each segment of the boundary. This equation is exact and
numerical approximation is only introduced at this point if the boundary
segments do not exactly represent the actual boundary shape.
Integration of the n integrals above is still rquired. I[f. some
distribution for q on each each element is assumed, these can
then be evaluated either numerically-or following a close form solution.
If some distributionifor q on each element is assumed and expressed
as a function of the value of q at discrete interpolation points, the
result will be of the form ‘
n

gy L Fa, P ,
! (3.2)

where:
P represents a vector of interpoiatfon values for q;
Fc1 represents a vector of coefficients expressing the

stress at point 1 due to the interpolation representation
of q.



A similar result can be found for the displacements, i.e.
n

Uy = ¢ Fm‘ P, (3.3)
k=1 :

Equations (3.2) and(3.3) can then be evaluated at the location of the

apparent boundary, giving

g=FgP ' (3.4)

u=Fy P

(3.5)

where:

¢ and u represent yectors of values of stress and
displacement at the boundary interpolation
points;

Fo and Fu represent matrices of coefficients expressing
the stress and displacement at each boundary
interpolation point as a function of the
interpolated representation of q.

Considering n boundary points with two degrees of freedom at each
point, there are consequently a total of 2n values for each combination
of g, u and P. Since there are 4n equations, therefore 2n unknowns
must be supplied to solve the problem.

Equation (2.5) can be set up in the same way by assuming some

variations for o and u on each element, the result will be of the

form

ful o= Fol u s (3.6)

T

Where FuT and Fo' are the transposes of the same matrices as in

equations (3.4) and (3.5).



By substitution of equations (3.4) and (3.5) into the expression

(3.6) it can easily be found that

Q‘FUTFUP=FQTFuP . (3.7)

Where Q is the work done in the reciprocal theorem for each
element.

This relation requires that the product FuTFG by symmetric.
The body forces can be included by conducting the required volume
integration in equations (2.3) through (2.5), similarly to the approach

used in the Finite Element technique.



CHAPTER IV

SINGULAR SOLUTIONS

Although the preceeding discussion has been concerned with the
effect of a point Toad in an infinite medium, the entire discussion
is equally valid for many other singular solutions. The body force
integrals must use the point load singularity however.

Various authors have used a variety of singularities including a
point load on the surface of a semi-infinite medium, point loads in an
infinite medium, and discontinuities in displacement in infinite and
semi-infinite media. Anisotropic cases have been treated as well.

A few of these singularities are discussed below.

4.1 Point Load on the Surface of Semi-Infinite Medium

This singular solution is exceedingly simple for the isotropic
case and its closed form solution has been used by Massonnet (1965).
It should however be pointed out that since the point load has no effect
above the surface of the semi-infinite medium its solution cannot be
used in cases where there are reentrant corners or cavities in the.
geometry. Benjumea and Sikarskie (1972) also mentioned that the use
of this singularity is more complex in the anisotropic case than other

more useful singularities.

4.2 Point Load in an Infinite Medium

This is by far the most widely used singularity in boundary integral

methods. While this singularity is somewhat simpier than a discontinuity



in displacement, it has certain drawbacks due to its poor accommodation
of rigid body motion and non-zero displacements at infinity. In
addition, while well-defined shapes are easily modelled, openings such
as mathematically flat cracks cannot be accommodated due to the fact
that two point loads acting in opposite direction at the same point
Eimply cancel one another rather than stressing the medium. The

result for a point load in an infinite medium is given by Timoshenko

and Goodier (1970) for the plane stress situation as

lp o, " - gswﬂz P cos 8 ° ,
g, » Mgl Pes s (4.1)
t

.0 ¢ a{l=v) P sing

ro 4nvpr

Figure 4.1 Point Load in an Infinite Medium

For the plane strain situation, the complete solution for applied

forces in the x and y-directions can be found to be

%% T @) | e 2 M T g PO .

r
& -

X [2ey2  (3-2v) x|, Y l:gy_’ _(1+2v) y]
2
-

[ 2 N 3 -
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= - = =4V ) X
Txy T &Y | 2 | E(y [‘ s e B
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D S DL Y e x
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= _X_l:v_a Y (L’V)xz 2 .
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where:
X and Y are point forces applied at the origin;
cx,cy,rxy are the stress components at the point (x,y);
u and v are respectively the displacement in the x
and y -directions at (x,y);
vis Poisson's ratio;

E is Young's modulus

yA

Figure 4.2 Applied Forces in the x and y-directions in an
Infinite Medium

It should be noted that although the stresses become zero as r
approaches infinity, the displacements do not vaﬁish. Also, the adaition

of arbitrary rigid body terms will not affect the solution.

4.3 Displacement Disctontinuity in an Infinite Medium

Crouch (1976) suggested using the solution for a constant discontinuity

in displacement. The singular solution for this case can be obtained by



differentiation of Crouch's constant displacement discontinuity, or can

be deduced from the solution for a point load in an infinite medium by

setting
u(X) = -rxy(x) s
u(Y) = <
v(X) = -rxy(Y) . (4-3)
Cv(Y) = -ay(Y) .
where:

u and v are the displacements due to point discontinuities
at the origin;

Tyy and g are the shear and normal stresses due to point
loads at the origin.

The solution can be found to satisfy the equilibrium and compatibility

conditions and is given by

X8 (_.L"_‘_sﬂ‘-) PR {

(xh - yh . sxz 2)
2a(1=9) 2m(1-v) et

=
°x

x* - 3y* + 6xyt,

m (__L_.J_) 4-—(—-)-1r 1ot ¢ ~ )

16 2+ y* - 6x3y3y 6 (Zx’x - Gx!’)
L O] (= i U TS s ’

v - (4.4)

X 2y’ (3-2v) v Y 2y*x _ (1-2v) x
4= 41[’!'-\); [- -“‘L * rz ] * 411'(1-\)) [ l‘h rz

)



where:

X and Y are points discontinuities in displacement at
the origin;

cx,oy,rxy,u,v are the stresses and displacements at
point (x,y);

G is the shear modulus.

It should be noted that the stresses and displacements all tend to
be zero as r approaches infinity. Again, the addition of arbitrary
rigid body terms will not affect the solution.

Although this solution can be used-with efther the direct (equations .
2.5 and 2.6) or indirect (eouations 2.3 and 2.4) approaches, it will
generally be most desirable to'use the indirect approach as values of

the discontinuity in displacement are required when modelling mathematically

flat cracks.

4.4 Discussion

It caﬁ be observed in both systems of equations (4.2) and (4.4)
that the stresses depend on the elastic constants. This is a result of
the fact that the infinite medium in which the singularities are imposed
is a multiple-connected body. That is, a section can be cut from the
from the application point of the singularity to infinity without dividing
the body into two parts. The actual general solution is not single-valued
unless the initial stresses due to any dislocation along such a cut
is specified. The solutions used here have assumed that all such

dislocations are non-existent.



CHAPTER V

INTEGRATION OF SINGULAR SOLUTIONS

5.1 Generalities

Numerical integration of the singular solutions is straightforward
at any location (x,y) except at the point (0,0). Special forms of
numerical integration formulae which can accommodate certain types of
singularities could be used, although for straight elements the
integrals are easily evaluated in closed form. Numerical integration
is however mandatory if one is to consider curved elements.

Polynomial interpolation of the gq distribution in equations (2.3)
and (2.4) requires tha q be represented by discrete values at points
along the integration interval. It can easily be found that for a

linear variation of q the result is given by

P P 5.1
q(x") '2§ [(bﬂ) + (x‘-l)] + [(b-x) - (x‘-x)] ) ( )

where:
x' is the location of q in the (x,y) space;

+b are the locations of the interpolation points,

94

Figure 5.1 Linear variation of q



If a quadratic variation of q is assumed the result is slightly

more complex

P
q(x') = i" l:(x'-x)2 + (2x-b) (x'=x) + x(x-b)]
Pz
4';[-()(%)()2 - 2x{x'-x) + (b+x) (b-x)] (5.2)

p ’ .
+I;- [(x‘-x)z + (2x+b) (x'-x) + x(xﬁ:)] .

q4

A 4

-2 =d b a X

Figure 5.2 Quadratic variation of g

The required integrals in equations (2.3) and (2.4) are

a
I fdx'
-2

I (x'-x) £dx*
-3 (5.3)

(x'-x)® £ax'

C A

where f is given by either of the singular solutions (equations 4.2

or 4.4) with (x-x') substituted for x. The results of these integrations

are given in Appendix I.



These integrals can then be substituted into the interpolation
relationships giving the required expressions for the stresses and

displacements.

The choice of the Tocation of the interpolation points must be

made such that the error due to polynominal interpolation is minimized.

This can be ensured by choosing the zeros of Chebyshev's polynominals

(Hornbeck, 1975)
2n+1
crees |G| (5.4)

where:
(n + 1) is the number of interpolation points;

m=20,1, 2,--,n is the point number.

The same result can be found for equations (2.5) and (2.6) by
interpolating ¢ and u as polynomials. In this case the distribution
of ¢ and u are well-defined as nth order polynominals and consistent
values for distributed loadings are easily arrived at. Unfortunately,
for the first case (equations 2.3 and 2.4) the surface stress and

displacement variations are not defined at all. For both the point:

load and the displacement discontinuity sinqularities the stresses become

infinite at the ends of the elements if q is not continuous. This may
result in difficulties when applying surface loads which are actually

equivalent to the desired loads.



5.2 Additional Considerations

(i) Symmetry

When dealing with symmetrical problems stresses and displacements
need only be solved over a portion of the total body. In order for
symmetry to exist it is also necessary that portions of g (see equations
(2.3) through (2.5)) have the same value. Thus in equations (3.4) and
(3.5) the number of unknowns can be restri;ted to those in one of the
symmetric portions.

Considering for example tﬁe following probiem with one line of

symmetry.
Y ﬂ;j;_Line of symmetry
T 51 52 lT Applied
: l Load
—“
X

Figure 5.3 Symmetric Problem

The number of boundary conditions can be reduced since

9y (s3) = q, (sy) (s 5)'-
9y (s2) = -q_ (s,)

It should be noted that integration along the surface proceeds in
opposite directions. This will affect the results of the integrations
in equation (3.1) which must then be evaluated for the:q distribution
around the entire boundary. However, from the form of equations (5.5)

it can be seen that the coefficients evaluated along the symmetric portions



of s, and s, can be added together. For one line of symmetry this
results in solving only half of the original equations.

Although F in equations (3.4) and (3.5) is one quarter its original
size, one-half as many coefficients need to be eva]ﬁated since each
coefficient in F represents the sum of two soefficients, one for $q and
one for So-

If two lines of symmetry were to be present the problem would
even be further simplified. Even though F would then be one-sixteenth
its original size, only one-quarter as many coefficients would need to
be evaluated since each coefficient in F represents the sum of four

coefficients.

(i) Initial Stress, Initial Strains and Body Forces

Any field stresses which do not vary with position can be treated
as initial stresses by superimposing the solution for an edual and
opposite pressure distribution on the boundary. This amounts to
subtracting the field components from the stresses everywhere to obtain
an equivalent problem with zero field stresses and some modified boundary
stresses. After solving this problem the field stresses need to be
added back to obtain the solution of the original problem.

Bbdy forces can be directly incorporated as indicated in equations
(2.3).to (2.5) by conducting the volume integrations. This will in
general require full discrtization of the loaded region.

However, the exact solution of some problems may require integrations
extending to infinity in certain directions. This sitﬁatioﬁ can be

simplified by considering the probiem of body forces applied everywhere



(within the bounding surface too), then removing these forces in the

bounded area and adding on the effect of any local variations.

Bounding
Surface

Region with
regular variation

Region with
irregular variation

Figure 5.4 Body Forces

Initial stresses and initial strains which vary with position

can be incorporated as body force contributions by the method of
strain suppression (Timeshenko and Goodier, 1970).

As in the case of body forces, the initial stresses and initial
strains will be regular everywhere except in the immediate region of the
bounding surface. Therefore, the affects of these local perturbations
can be included by considering the effect of initial homogeneous
values applied everywhere, then removing the effect within the

bounded area and adding any local perturbations.

(ii1) Multiple Surfaces

Multiple-connected bodies or multiple openings in an infinite

medium can be accommodated by simply considering several separate

-

surfaces simultaneously.



(iv) Multiple Materials

Rizzo and Shippy (1968) also consider non-homogeneous inclusions
in an infinite medium. They show that an inclusion of different
material properties can be included by solving two problems at the
same time. The stresses at the boundary of the inclusion must be in
equilibrium with the stresses on the surface of the bounding medium and
compatibility or known discontinuities in displacement must be required
at the interface surface. A layered medium can be modelled by carrying

the interface surface far away from the region of interest.

2



CHAPTER VI

TEST CASES

6.1 Generalities

Several test cases were analyzed in order to investigate the
performance of each singularity. Some singularities were observed
to perform better than the others depending on the case considered.
The influence of the order of the polynominal interpolation was also
compared. '

A1l generated data was evaluated based on the total number of
unknowns used to analyze the problem. From now on, the abbreviation
PL will be used to represent the point load singularity while DD will
represent the displacement discontinuity. With the exception of the

6 while Poisson's

beam example ( 6.6), Young's modulus was set at 10
ratio was kept at 1/4. Plane strain conditions were also assumed.
A1l runs were conducted on the University of Toronto IBM 370 computer.
For each test case,-a few runs were duplicated using both single
(7 significant digits) and double (15 significant digits) precision to
try and detect any numerical error. Single precision was found to’give
accurafe results up to about 25 unknowns. In most examples, shapes
with straight sides were used so that no error due to the approximation
of the boundary shape was introduced. In all cases the closed form

integrated solutions were used for the analyses and the problems were

solved using Gaussian elimination.



The percentage error in displacements and stresses show identical
trends and have almost the same magnitude at all points. The maximum
errors occur nearest any non-straight points on the boundary. However,
the large errors associated with these corner areas is confined to the
immediate vicinity of the kink in the boundary. It should be pointed
oui, however, that a large error was noted in the tangential boundary
stresses for constant elements. This error was reduced by more than
an order of magnitude by using higher order elements. It remained,
however, considerably higher than for the interior stress values. It
should be noted that the surface displacement values show approximately

the same error as the interior displacements and stresses.

6.2 Riqid Body Translation

%,/'Line of Symmetry

b = oo = o

Figure 6.1 Rigid Body Transliation

Consider a 2x2 square prism translated by one unit in the posifive
x-direﬁtion. The analysis using the DD singularity resuited in
uniform translation of the body with no error in the displacement
distribution. In addition, the related stresses (in the range of uxE/105
for single precision and uxE/'lOl4 for double precision) were within the

1imits of the numerical accuracy of the computer.

2t
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Some results for the PL singularity are presented in Figures 6.2.
It can be observed that all stresses and displacements, except in
the corner areas, are approaching the correct values with an increase
in the considered number of unknowns. The stresses in the corner area
are approximately equal to u x E.

| Love (1927) presented a technique for separating the rigid body

component which would alleviate this problem. His approach was not
introduced in the program at this stage since rigid body motions would

be of second order importance in the scope of this research.

6.3 Pure Shear y
Wity P!

—
—
_—
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=X
N"_ Lines of Symmetry

1 1t

<A

Pt s
Figure 6.3 Pure Shear Loading

A 2x2 square prism was loaded in pure shear by a unit stress as
shown in Figure 6.3.

"~ Figures 6.4 show results comparing the element order for both
singularity types. Neither singularity offers any significant improvement
in accuracy. The quadratic elements give consistently better accuracy.

The stress and displacement distributions along the x-axis are shown
in Figure 6.5. The error at mid-side (1,0) for the case of the tangential
stress is shown in Figure 6.6. As mentioned previouslx, the use of

quadratic elements gives a much better correlation. Figure 6.7 represents



.5)

% Error in stress at (.5,

.5)

% Error in stress at (.5,

® Constant
A Linear
o Quadratic

(o]
A © o
A
- A
) Bl B Gl N
.50 100
Number of Unknowns
(a) PL
® Constant
A Linear
0 Quadratic
A
o A
o) A
(0]
5 o] =8,
50 100
Number of Unknowns
(b) DD

FIGURE 6.4 PURE SHEAR

)



Stress Ratio

% Error in u

N
1.02 =
g
l y/pi
1.0l
1.00 = /
e o, /p]
0.99 F Tey =0
| | A,
0 0.5 1.0
x-Axis
(a) Stresses on x-Axis
0.4 1-

0.3

0.2

0.1

Ve 1 >

0 0.5 1.0
x=-Axis
(b) Displacement on x-Axis

FIGURE 6.5 PURE SHEAR (DD), 8 QUADRATIC ELEMENTS,
2 LINES OF SYMMETRY



% Error in Mid-Side
. Tangential Stress

% Error in Mid-Side
Tangential Stress

A @ Constant
1004 A Linear
3 Quadratic
10 F © s
© o
A A A A
1.0 m
o 0 g
0.1 1 T
0 50 100
Number of Unknowns -
(a) PL
® Constant
A Linear
o 3 Quadratic
A
10 [
A
= A
1.0F =) a
| 1 >
0.14 50 100
Number of Unknowns
(b) DD

FIGURE 6.6 PURE SHEAR, MID-SIDE TANGENTIAL STRESS

24



Tangential Stress

Normal Dispalcement xE

A
— DD
—so PL
1.05f
1.0 B o Exact
0.95p
] | %
0 0.5 1.0
x-Axis
(a) Tangential Stress
A
-1.27f — DD
—
-1.26[
-1.25
| il »
0 0.5 1.0

X=Axis
(b) Normal Displacement

FIGURE 6.7 PURE SHEAR, 16 QUADRATIC ELEMENTS



the surface stresses and displacement distributions along y=1. It can
be observed that the poor results are confined to the first few corner

nodes. The PL singularity exhibits the best behaviour.

6.4 Homogeneous Compression

Yy
Y

p=1
= :‘EAX
= K=
——— \

TTTTTT Lines of Symmetry

Figure 6.8 Case of Homogeneous Compression

Consider the same square prism submitted to a unit hydrostatic:
compression (Figure 6.8).

The Results obtained for this case are almost identical to the
previous example of pure shear.

As can be seen from the following figures the PL-singularity gave
results with significantly smaller errors than the DD-singularity.
Also, quadratic and linear elements gave better results compared to
constant elements.

In Figures 6.11 the mid-side (1,0) tangential stress is compared
for various element orders and show that for both singularities a
large improvement in accuracy results by use of higher order elements.
The surface displacement and stresses along y=1 are plotted in
figures 5.12 and show that the large errors again are confined to

the corner areas.

3\
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6.5 Pressurized Cavity

Lines of Symmetry

Figure 6.13 Pressurized Cavity

Consider a circular cavity with a unit radius and pressurized
as shown in Figure 6.16.

In this example the higher order elements for the DD-singularity
gave consistantly better results.

The results for both singularities are presented in Figures 6.14.

The noticeably poor behaviour of the high order elements for a small
number .of unknowns can be attributed to the poor approximation of a
circular boundary shape when using a small number of straight elements.

In Figures 6.15 the error for the surface tangential stresses are
compared. In the case of the quadratic element, the value used corresponds

to the average of the three nodal point values,

6.6 Beam with End Shear

vy

T=40 l

N

W RN

Figqure 6.16 Clamped beam submitted to end shear.
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A 12x48 rectangular built-in cantilever was loaded with parabolically

varying end shear-according to the following relation

p=-y?1.2+5 (6.1)

For this particular case, Young's modulus was set at 19,200.0
while Poisson's ratio was assumed to be 0.2. These input values for the
plane strain situation correspond to a plane stress analysis with the
following elastic constants

E = 20,000.0, v = 1/4

The theoretical tip deflection for the plane stress case is given

by (Timoshenko and Goodier, 1970)

' v'%-O.S‘lZ , (6.2)
where:
£ = 48 is the beam length;
I = 144 is the moment of inertia of the beam.

Several examples with a variety of discretizations were tried using
the PL singularity with no success. The best result obtained gave errors
in displacements and stresses of approximately 20% for 20 quadratié
elements (120 unknowns). This extremely poor behaviour is probably
due to the unfavourable accommodation of rigid body motion by this type
of singularity. The end of the beam indeed deflects a considerable
amount as a rigid body. This same problem was encountered by

Massonnet (1965).
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The DD-singularity showed equaily poor correlation for both the
constant and linear elements, however for the quadratic element, reasonably
accurate results were found (Refer to Figure 6.17). Both the tip
deflection and stress at point (36,0) had the same error magnitude.

These results can be compared to the ones presented by Brebbia and Connor
(1974) who treated a similar situation using the finite element approach.

In view of the fact that the variation in deflection is a function
of the cubeof x, it can be expected that cubic DD-elements should provide
very accurate answers with only a few unknowns considered. For this
type of problem the use of boundary integral techniques may prove to

be exceedingly more economic than finite element approaches.

6.7 Pressurized Crack

A1)

E

Line of Symmetry

Figure 6.18 Pressurized Crack

Consider a classical Sneddon flat elliptic crack, uniformly
pressurized as shown in figure 6.18.
The higher order elements show a drastic improvement in accuracy
in this case. In all cases the surface tangential stress is equal to
the bressure in the crack in agreement with theory. .
The mid-side surface normal displacement is compared to the analytically
obtained value in Figure 6.19a. In Figure 6.19b the average of the

arror in the stresses is presented.
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CHAPTER VII

A BIE PROGRAM

7.1 Generalities

The computer programs used to conduct the analyses included in
this report are described and discussed in the following sections.
The restrictions imposed in setting up the programs reflect the prasent
needs of the authors rather than difficulties in providing more general
coding. Programs permitting larger degrees of variability and solving

capabilities have however been developed.

7.2 Program Documentation

(i) Input
INPUT FORMAT DESCRIPTION
1 20A4 Title
2 415, 4F10.0,I5 Control information:

NNOD is the total number of element corner
points to be read-in; _
NORD is the element order to be used in -
analysis (0 is constant, 1 is linear,
2 is quadratic);
NLS is the number of lines of symmetry to
be considered (1 for just x-axis, 2 for both
x and y axes);
MSOL is the solver type to be used
(0 for Gaussian elimination,
1 for Gauss-Siedel iteration with relaxation);
E s Young's modulus; :
PR* is Poisson's ratio;
CP is the permissable error in the value of
stress (CPxE for displacement) estimated
by the iterative solver;
RP is the relaxation parameter
(>1 for overrelaxation, <1 for under-
relaxation); )
MIT is the maximum number of jteratiqns permitted.



3 4F10.0,21I5 Mesh data and boundary condition information:
X is the x-coordinate;
Y is the y-coordinate;
N is the known normal boundary value;
S is the knowr shear boundary value;
NCODE, SCODE indicate respectively, whether
N and S are stresses (code 0), displacements
(code 1) or discontinuities (code -1).

4 3F10.0 Field stresses;
SX is the stress in the x-direction
SY is the stress in the y-direction;
SXY is the shear stress in the x-y plane.

5 15 Number of interior points at which stresses
and displacements are to be determined
( 0 ends the progam)

6 2F10.0 ) Coordinates of interior points:

X is the x-coordinate;
Y is the y-coordinate.

Table 7.1 Program Input

(ii) Discussion

The mesh data cards are input in order of increasing corner point
as well as element numbering (i.e. corner points 1 and 2 define element
1, corner points 2 and 3 definte element 2, and sc on). The last corner
point input combined with point 1 define the last element.

As far as the boundary conditions are concerned, each input
associated with a particular corner point automatically defines thé
boundary conditions for the element.

If any 1lines of symmetry are present it is assumed that at least
one of the lines intersects the boundary surface. The number of elements
is then assumed to be one less than the number of corner points. This
may not always be true but can be easily be overridden through the use

of the subroutine SETUP.

9



If the boundary surface is input in clockwise order, a finite body
is analysed while counterclockwise input corresponds to a cavity in an
infinite medium. »

The backsubstitution program is set-up to accept additional load
vectors.

The iterative solver calculates its final app;oximation of the input
boundary conditions and substitutes this approximation for the actual
values. The converged permissible error in this approximation is equal
to the parameter CP for stresses and CPxE for displacements. Any desired

convergence criterion can however be substituted.

(ii1) Sign Conventions

Tensile stresses are taken as positive. As far as displacements
are concerned, they are positive in the direction of the axes. The

boundary displacements are defined as shown in Figure 7.1

ug frh
A" ]D =<
N , n DS
%
Boundary Input
this Direction

Figure 7.1 Positive Normal and Shear Displacements

5



7.2 Program Listing

MAIN
. This main program contrels the program execution.
The dimensions required are

X(ND/2+1), Y(ND/2+1), PS(ND), P(ND), CS(ND,ND),
CU(ND,ND), CT(ND12,ND), MT(ND/2)

where ND is equal to the total number of unknowns,
. which is twice the number of elements times the number of nodes for each

element (1 for constant, 2 for 1inear, 3 for quadratic).

IMPLUICIT INTEGER*Z2(I-M), INTEGER*4(N) ,REAL¥3(A~-H,0-2)
CCMMCM/CENS/EPRIPILsGP(3) 1SXs5Y+SXYNNCDH»NORD,,NLS SNORD2,NOR » MSCL
COMMCMN/ITSCL/CPRRP L MIT

CCMMCM X(18),Y(156),PS(30),+,2(30),C3(30,+,30),CU(30,30)CT(15+30),
oMT(30) .
NO=3¢

C Bl - DISPLACEMENT OISCDNT[NUITY

WRITE(&E,100G0) -
CALL SETWP
CALL ASEMBE
IF(MSCL)4,5+86

S CALL GAUSS(CS,MDR,ND)
CALL S3UB(CS,PysNDR,ND)
GcQTo 7

6 CALL GZI(LSsPS.P «NDR,ND)

7 CALL STRESS
HRITE(S,1201)

4 RETURNM
1000 FORMAT(1H],33H BlE — DISPLACEMENT DISCONTINUITY,4H DP)
1001 FORMAT(/12H END PROGRAM)

END

He



SETUP

This subroutine reads in all information, sets all constants and
initializes all variables. All input stresses and displacements are
assumed constant on any element. This is not necessary and can easily
be changed. The field stresses are substracted at this point.

SUSRCUTINE SETUPRP

IMPLICIT INTEGER*2(I-M), INTECER*4(N),REAL*8(A-H,0-2Z)

DIMENSICN NHED(20)
COMMON/CELEM/C{3:64+2) s CCHCEICL+C2+9C3,C4,CS53C6+C7+C8B,RX,RY
CCMMCN/ITSCL/CP +RPMIT )

CCMMCN/CCMS/E PR LPTI yGP(3)sSXsSY+SXY,NNOD » NORD » NLS +NORD2 , NDR » MSOL
CCMMCM X(L18) s Y(16),PS(30),P(320)+CS(30+30),CU(33+30),CT(15+30),
«MT(30)

C NNOD - NUM3ER CF CORNER NGCCES

C NORD = QRDER QOF ELEMENT: 0 CONSTANT; 1 LINEAR: 2 QUADRATIC
C NLS = SYMMETRY: 1 X=-aAXIS; 2 XEY-AXES

C MSOL - SCLVYER TYPE: 0 ELIMINATICN; 1 ITERATION

C E -~ YQUMG'S MQDULUS

C PR - POISSCN'S RATIO

C CP ~ CCMNVERGED A3SOLUTE ERRCR (TIMBES E FOR DISPL)

C RP - RELAXATIGN FACTOR i

C MIT =~ MAXIMUM NO. [TERATICNS )

C MT ~ BCUMDARY KNOWNS: O STRESS; | DISPLACEMENTS; —1 OISCONTINUITY
C SX3S8SY,3XY - FIELD STRESSES

READ (S LODO)MHED s NNOD s MORD s NLS+ MSCL +E+sFR,CPRP,MIT
WYRITE(S,1C01 INHED sNNOD +NORD ,ALS,MSQL ,E s PR

IF{MSCL EQL)IWRITE(6,1002)CPRPMILIT
IF(MSCL.EQQIWRITE(6,1003)

WRITE(S,1004)

HQRO=MCRO+1

NQRO2=MCRD %2

20 1 N=1,MN3D

MAN=(N-1) *MCRO2

QEAD(Sozono
NRITE(6,2
X{NNCDR+1

)
L
£
Y (NMNJD+1 (
)
)

N XX G

(N

N

)

)}
NOD=NMCD-1
X

SX

2200 h uo
UUE
WNZZZUVO0—InT X

P

X~ 7

4

2 .
EeQsANDMTINN+2).NEL.O)IGATS 3
) .

)

+

H o~

YO*%2)

3A=YD/R
SN=SX*¥3A*¥%2-2 ,00%SXYXCA*SA+SY*CA®*2
SS={SY-SX)}*CA*SA+SXY®(CAX*¥2-SA*%2)

C REMOVE FIELD 3TRESSES

&N

IF(MTI{MN+!) ECD)IPS(NN+L)=PS{NN+1)-35N
IF(MTIMMN+2) s SC.0)PS(NIN+2)=PS(NN+2)~SS
IF(MORD.EQ.1)GITO 4

DC 2 J=2,.,MCNRD2,2

MT(NN+J)=MTINN+L)

MT(VN+J+1)-!T(NN+2)

PSINMN+JI)I=OS(NN+L)

QS(NN+J+1)-3S(‘1N+2J

CCNTIMUE

NDR=MMID*MCRD %2

NDR2=MOR/2

PI—...41592;53530793

11



Constants for DD singularity

(4 D0%P 1 *( | .D0-PR¥x%x2))

SDO/(FPI%(1 .00-PR))

D0% (1 .DO-BR)

20=2.00 %R

«eD0=2.00%PR

D2+2.00%PR

«D0=2.C0%PR

J=1 ,M0OR

K=1,NDOR

»K)=0.D0

1X)=0.00

K=1 ,NDR2
CT(K,J)=0.09
CALL QUAD ’
RETURNM

1000 FCSMAT(20A4/4[5,4F10.0,15)

1001 FURMAT(///7/71X420A4//T7 +4HMNOD+T18+SHORDER »T 28 s 3HNLS,»T37 ,4HMSOL,
eT49,1HE s T54,2HOR/4110,2F1S5.5)

1002 FCRMAT(//174 ITERATIVE SOLVER.T33., 2HCFvT48o2HRp T63,3HMIT/
e2SX s 2F15.5:110Q)

1003 FCRMAT(//721H GAUSSIAN ELIMINATION)

1004 FOQRMAT(//TLO s 1HNsT1941HX, T34 s1lHY sT49,1HN,TE54,1HS,T78, SHNCODE,
«T86,SH3CADE)

2009 FGSRMAT(4F10.0,215)

2001 FCRMAT (I 12,2F15.5/T41 ,2F15.5+2110)

2002 FORMAT(3F10.0)

2003 FCRMAT(//13H FIELD STRESSES//TO,2HSEX s T24,:2HSY sT39:3HSXY/3F15.5)
END

Wb n
WeCoUdrrm=re M
. o O\

oNNO0ONOHNOONN
o~

QcwoaomeWiw—imn

Constants for PL singularity

- CC=.23D0/(Fl%x(1 .D0=PR))
CE=CC/=
Cl=1.02+PR
C2=1.00-PR
C3=1.00+2.D0%PR
Ca4=1.D0-2,.00%PR
CE=S.00-2.00%PR,
C7=2.D0-PR
C8=3,00~PR—=4 .00 *%*PR%x*2
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ASEMB

This subroutine assembles the coefficient matrices FG and Fu (see
equations 3.4 and 3.5) and reorders them, ready to be solved.

The symmetry loop considers each reflected portion of the boundary
consecutively (1 input boundary, 2 reflected in x-axis, 3 reflected in
y-axis, 4 reflected in x and y axes).

The loaded element loop sets the Tocation of the distributed Toad
or discontinuity. The affected loop sets the location of the point at
which the effect of the loaded element is to be determined.

During assembly the normal and shear stress coefficients are put
into CS, the normal and shear displacement coefficients are put into CU
and the tangential stress coefficients are put into CT.

Portions of CS and CU are the only parts which are used to solve the
problem. Consequently, only one complete matrix of values needs to be
stored at this time. The coefficients required to determine the unknowns
could be recalculated or recalled from disk in subroutine stress to save
storage space.

The columns correspond to the location of the interpolation load
point value and the rows correspond to the location where the load has
an effect (see figure 7.4). The rows of the vectors P and PS correspond

to the interpolation point values.

Interpolation 4 5 6
points

1 Corner Points

Figure 7.4 Coefficient Matrix Set-up



cSs
Cu
CcT

nonon.

(4]

ASscs

w0

A11 knowns are then put into CS and P ready to be solved. Any
displacement coefficients are multipliied by Young's modulus to avoid

numerical errors.
SUSRCOUTINE ASEMB

INPLICIT INTESGCER*2(I-M), INTSCER*®4(N) REAL*3 (A=H,0-2Z)
CC“MCM/CE’EV/C(3¢5’2)QCC¢CEvC1|C2vC3 C4,CS, C5cb7 C8 +RX 4 RY
CCMMON/CCNS/EWPRHIPLIGPR(3) 1SXs5Y+1SXY NNbD,NORDi LS 9?40902!-40R MSCL
COMMCN X(lo).Y( 6)sPS(30)+sP(320)+CS(30:30),CUI30:30),CT(15,30)»

MT(30)

MBLE CQEPF ICLENMT MATRICIES

- MCRMAL & SHEAR STRESS CDREF
-~ NCE8MAL £ SEEAR OISPL COEF
- TAMGENTIAL STRESS CCEF

RX=1.00

RY=1.D0

NUSP=2*%* (NLS+1) /2

SYMMETRY LCCP

DO 1! NO=1,NL3P

- IF(NQ.EQ.1)G3TQ 7

a4
3
7

IF(NO=-2)3,4,3
RY==RY

RX==RX
RXY=QX%NY
SN=RXY

C LOADEDO ELEMENT LOCP

0C 1 M13=!,MNCD
NJ=(N12-1) *NORD2

C AFFECTEZD LCOP

DA 1 MN34=1 ,MNNCD
NL=(M34-1)*MNORD
NK=ML*2
NT=M34

XM= (X(M34+1)+X{(N34))/2.00
XD=(X{(M34+1)=-X{(N24&))/72.00
YM=(Y(M34+1)+Y(N34))/2.00
YD=(Y(M34+1)-Y(N34))/2.00
IF(N34.EQaN12AND MO EQel INT==1
DA 1 J=1,MCRD

JK=AK+(J—1)%x2
XP=XM+XD*GF(J)
YP=YM+YD%GF(J)
CALL ELEMIXP,YP,X(M34),Y{(N34),X(N12),Y{(N12) ,MT)
DC 1 M=1,NCRD2

SN=SN%*RAXY -

00 2 X=1,2

CQ(JK‘PV NI+M)=C (K+1 )My 1) ESNFCS{(IK+KyNI+M)
CU(IK+K NS+ SC(K+L My 2)ESNFCU(IK+K g NI+M)
CTINL+I NI +M)I=C (1 oMl )ESN+CT(NL+I NI +M)
ALL XKMCWNS IN CS & P.

00 12 M=1,NOR .

IF(MT(N) MEL.1)30TQ 9

00 12 J=1,NDR
CSS=CS(N-J)
CS(IN+J)=CU(M,J) *E

DA 5 N=1,NDOR

) NE-1)GOTC S
=1 +MDR
(J)-CS(J.N)*PS(N)
}=

)

—
Rl
=
4

Q.C?2

mounonnovo
Zmowun~0



QUAD

This subroutine sets the location of the interpolation points given

by equation (5.4).

SULIRJUTINE 2UAD
IMPLICIT INTEGER=*®2(I-M
CCMMEN/COMNS/Z PRHLPIL ,GP
C LOCATICM JF IMTERPALATICN
N=NORD
IF(N-2)1,2,3
1=2.00

OCC3(PI/4.00)
-GP(2)

C3S(PI[/6.00)
<00
GRP(3)

-
D

to

(]
MBOGOOOOLN

CrplOr—ar
I w0

ZMDDVIVOVDLOD
D e
AR NN NES

Qdmememe{rmmeg~

J s INT
(3),53
PAOINT

SCER*®4 (N) REAL*3 (A—=H0-=2)
é 2 SY s SXY s NNCD » NORD s MLS L NCRD2 yNDR , MSTL



ELEM

This subroutine calculates the coefficients called for by subroutine
ASEMB and STRESS. The Toaded element and affected point are first
redefined such that the loaded element is centered at the origin. The
coefficients are then calculated in the matrix S such that: column 1
respectively refers to the tangential, normal and shear components;
column 2 respectively refers to the normal and shear Toads; column 3
refers to the stress and displacements; and column 4 refers to the

element order.

The matrix W contains the interpolation formula (equations 5.1 and
5.2).
PL Singularity

SUBRQUTINE
INPLICIT I
DIMENSICN X
CCMMCM/CELEM
CCMMOM/CONS/

4.Y344,X12,Y12,N
INTECGER*4(N) RE
X34(2),Y34(2)+53
[}
)

:X.SY SXY,NNGD

3
S

)
L
» C
s M

)
v
2,MNDR, MS

C CALCULATE COEF,

1

-
o P

S

5

FXh”UNN“\
VOUVVVQ
4+ NN
D~~~

X=2(XP=X0)%xCA+(YP=YQ)*xSA
Y=(YP=Y0)*CA=-(XP—=XQ0)%xSA
Y2=Y x%2

0Q 15 JU=1,3

DO 1S K=1,NORD2

0C 1S5 L=1,2
CldoKeL)=2.00

AMX=A=X

ARPX=A+X

R1I=0SQAAT(AFX%® %2+Y2)
R2=03JRT (AMX%x%2+Y2)
IF(DABS(Y) «e3T.1 .E-5)GATO 14
TC=0.090

[F{DABS(X) LE.A)YTD=PI]
GOTO 18

TO=DATAM(~AMX/Y )J=-DATAN(APX/Y)
ALLI=CLCOG(R1)
ALZ2=0LCG(R2)
RI=1.00/R2*%*x2—-1 ,00/R1wx2
XRI=ZAMX/R22%2+APX/R1%%2
ALC=AL2-AL1



£y

(13

C CCN

C LIN

11

12

C CUA

STANT VARIATION
S(1,1,1,1)==Y*XRI-2.00¥%¥PRxTD

(1420135 1)==Y2xRI=-CS*ALD

(20151 ,51)=YRXRI[-2.D0%xC2%TD
(2:2,1,1)=Y2%RI[+C4*ALD
(3¢151,1)=Y2%QA1-C43ALD.
(352¢14531)==YEXRI-2.00%C2*%TD

ALDSAMXRAL2 AP X®ALL
(2.1.2.1)=-_.OO*Cl*CA*(2.DO*A+Y*TD)+C8#XALD
(2,2,2,1)=C1l%*Y®ALD

(3+1+251)=S(2.,2+2451)

(3¢2+2,1)=C8%( XALD—=2.00%A)~4.00%C1%C2%Y%TD
(1,1)=1.00

FI(NORD.EQL.L1)GOTO 10 '

3=Y*%x3

EAR VARIATICM

1,1+1,2)=Y32RI+CI*Y*ALD "
102+1+22)==-Y22XRI[-2.00%CS5S*A=2.00%*C7*Y*TD
29191 ,2)==Y3kRI+CEEYRALD"
292:1:2)1=Y2%XRI+2.D00FC2xYXTOD+2 .00%C4& %A
3511 ,2)=Y2%XR[=2.00%C4XA+2,D0xPRXY%®TD
3,2,1:,2)=Y3%R[+CSEY®ALD
ALD=AMX %2 %2% AL 2=-APX®X2%A )

LO=X2ALD+Y2*ALD

D= AMX* 2 AP X**2
Cl*Y2#ALD -

2.00#( RALO-X25/2.D0)

8/2
1:2,2)=02-01+C1l%X2D/2.D00
2:25,2)=2C 1Y X (2. 00%A+Y%TD)
1,2:2)=S(2,2+2,2)
2:2,2)Y=D1+02
990-2)10911912
«20*8
t)=(8=-X)/82
1)=(B8+X) /82 ! .
2)==1,00/82
2)==-9w(1,2)
10

. rk4

D C VYARIATION !
141 0s3)=Y3%XXRI+Z2.00%CLRY2ETO+2.00%XCIxY %A
201 3)1=Y4%R [ +CORY2RALD—-CSkX2D/2.00
196193} ==Y3%XRI-=2.,00%PREXY2XxTD+2 ,DO0XCA4xY%A
251 3)==Y42xR[~-CS2Y2*xALD+Ca%X2D/2.00
141 +3)==YokRI-CIY2XALD—-C54%X2D/2.D00
251,32)=Y3XXRI+2,00%C7%2Y2%TD+2.00%CS*kY*®A

D=AMX* %3k AL2+APXE%TxAL L

AMXEXT +APXx %3

1*Y2%( 2.00%A+Y%TD)

3/2.00%( X3ALD=X30/300+2.,00%xY2%A+Y3*TD)

NZLEFUKEXENVNUNOOXXDUVNNVNIKOELERND-HNLVLNVNODXDIXNUNNWNVD <XV NNV XNWLLNNY
A=A A AR POA~AAANTIAmAANSNL NS~~~

Ul ettt il 810> e il e i~ i
¢ e v e s uveveoevesNAINEe oeseeowtt(leves e NZewewlD

1:2,3)=02-01+C1xX30/3.00
2+2:3)=ClExYx(X2D/2.00-Y2%ALD)
192¢3)=5(3242+2,3)
292,3)=01+02

1)=X*%x({ X-=3)
1)=2.0C%(B+X)*(3=-X)
1)=X*(X+3)

2)=2.,00%X-3

2)=2.00%X+8

3)=1.00

3)=1.00



38=2.,D00%8% %2
DQ 13 J=1,3
20 13 K=1,3
12 W(J ,X)=w(J4,K)/BS
10 DO 7 L=1,MCRD
LL=(L-1)*2 '
DQ 7 X=1,2
LX=LL+X
DO 7 M=1,MCRD
DQ 3 J=1,3
8 ClILXs1)=CLI LKLL)) +S(J K31, NIECCxW{L 4N)
DO 7 J=2,32 ’
7 Cld sl s2)=CL I LK i2)+S{JI»K,2,N)*CEx0(L,N)}
IF{(NT}I2,4,3
4 CALL RQOT(—=3A,CA)
G3T0 2
2 R34=0SART( (X34(2)—=X34(1))%x%2+({Y34(2)-Y34(1) )%x*x2)
CG=(X3a(2)-X34(1))/R34
SG=(Y24(2)-Y34(1))/R34
SB=SG*CA-CG*x3A
CS=CG*¥CA+SG*35A
CALL RCT(sS8,C2)
2 RETURN

ENOD

DD Singularity

SUBRQUTINE ELEM(XP,YP,,X34,Y34,X12,Y12,NT)

IMPLICIT INTEZGER*2([-M), INTEGER®4(N),REALFZ(A-=-H,0-2Z)
DIMENSICN X12(2)sY12(2)+X34(2):sY34(2)+53(3+2+2:3)534(3,3)
CCMMCN/CELEM/C(3+168+2)3CCesCEICLIC2+C3+,C24+C55C5,C7,C84,RX,WRY
COMMON/COMI/E PR+ PT 3GP(3) 3SX3sSY s SXY L NNCD» NORD » NLS » NOR

n
n

C CALCULATE COFEs

IF(NT=-1)8,5,5

S X0=(X12{2)+X12(1))/2.DC*RY
XD=(X12(2)=X12(1))/2.D00*RX
YO=(Y12(2)+Y12(1})/2.00%RX
YO=(Y12(2)=Y12(1))/2.D0%RY
A=DSQRAT (XD ** 2+YD%x %2 )
8==-A*GN (1) *RX*RY
CA=XD/A
SA=YD/A

€ X=(XS=X0)*CA+(YP-YQ)*3SA
Y=(YP=Y0)*®CA=-(XP=-X0)*SA

Y2=Y*x2
D0 1S J=1,3
D0 1S K=1,NORD2
00 1S L=1,2

1S C{J+KoL)=2.00
AMX=A-X
AR X=A+X

R1=0SQAT (AFX**2+Y2)
R2=DSQRAT (AMX**2+Y2)
IF{DABS(Y) «GT.l.E~5)GQTO 14
TO0=Q0.00
IF(CABS(X) LEA)TO=-PI
GQTQ 15

14 TO=0ATAM(AMX/Y) -DATAN(-APX/Y )

16 ALO=0LOG(RZ2)-DLAOG(R1)

C CONSTANT VARIATION

Y3=Y**3
R21I=1.J0/R2%%x2-1 ,00/R1%x%*2
RAI=1.00/R2%%4-1,00/R1*®x%x4
X1IR2=SAMX/N2%* %2+ APX/R1 %%2
RIRA=AIIX/RZ*¥* 3+ APX/R1 2 %4
X2REANXIX 2/ R2* X4 -APXx*x2/R 1 * x4
X3RA=AUX®® T/ RO XA +APX XTI /R 1% %4
S(lslsls1)==X3NG+Y2%X1R4
S(1le2s1, L )==Y3RRA[=3.00%YxX2Ra
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[
C RQTATE TQ REQUIREC ANGL

ROT

This subroutine rotates any orthogonal set of stresses and

displacements to a new axis frame.

SUSRCUTINE RQT(S3.,CB)
INSLICIT INTEGER*2([-M), INTEGER*¥4(N) »REAL*8(A-H,0-2)

DIMENSION S(3,58:2)

CCMMCM/CELEM/C(3+6+2) yCCHCESCL yC2+C35sC44C5:CH+9C7+C3RXHRY

CCMMOMN/CAONS/E,PR«PIiGP(3) s SXsSY s SXYSMNNCDSNORD S MLS +NORD2 ,NDR » MSOL
=

00 1 J=1,3 '

DO 1 %X=1,M0R02

DA 1 M=1,2

S{JesXN)=C(Js3KsN}

DO 4 K=1,MCRD2

Cl(2+K,32)=S(2:K»2)*%CB-S(3,KX,2)%S3
Cl3+Ke2)=5(2+K+2)%S38+S(3,K,2)%C3
CllsK,1)=S{LlsKy1)RCBE%2+S(2,K, 1)%SB%%x2+S(3,K,1)*¥2,00%33%C3
C{2/K»1)=S(1lsK,1)*SB*%2+5(2,K, 1) *C32*¥2-5{3,K,1)*2,D00*%383%C8
Cl33Ks1)=(S{29K+1)=S{1,Ks1))*S8*CB+S(3,K,1)*(C3*%x2-S3%%x2)
RETURM :

END

S



STRESS

This subroutine first calculates the boundary unknowns, and then

any interior point values. The field stresses are added back in at

this stage.

SUSROUTINE STRESS

IMFLICIT INTEGER*2(I-M), INMTEGER*4(N) ,REAL*8 (A-H,0~-2)

DIMENSIAON S(3,2)

CCMMCN/CELEM/C(3+692) sCCHCEHCL ,C2+C3+C4,CS5,CH5+C74C35RXHRY
CLMMON/CCNS/E sPR«PLHYGP{3) 93X +SY,SXYSNNJD,NORD . NLS ,NORD2,MDR, MSQL
CCMMCN X(18),Y(16),PS(320),P({30),CS(30,30),CU(30,30),CT(15,30),

MT(30)

C CALCULATE SQUNCARY UNKNQOWNS

12

C ADC

WARITE(S,2C00)

DO 12 N=1,NDR

IF(MT(M) MNMEL=-1)GOTO 12

DO=PS(N)

PS{N}=8 (N}

P(N)=DD

CCENTINUE

DO 1t A=1,.MNOD

XD=X{N+1)=X{N)

YO=Y{(M+1)=Y(N)

R=0SQART(XD*xx2+YD*x %2 )

CA=XD/R

SA=YO/R

ST=SX¥CA*%X2+2 ,JORSXYECAXSA+SYRSAEXR2
SN=3X*SAk%2-2 ,DORSXYRCA®SA+SYRCAR%2
SS=(3Y=3SX) 2sCAXSA+SXYR( CARR2=-SA%%x2)
JI=(N=-1) *NCRD

MN=JJ*2

DO 1 K=1,MGRD

NS=NN+(K-1)%2

MT=JdJ+%

N1=23

N2=2 )
IF{MT(MNS+1).SQe1)NL=1
IE(MT(MS+2) «SQs 1 )N2=1

FIESLD 3TRES3ES BACK IN
S(1,1)}=87

S(2.,1)=3N

S(3,1)=55 .

S(2,2)=0.20

S{3,2)}=0.,D4.

IF(N1.Z0.11)G0TQ 20
S(2,1)1=S(2+1)+RPS{(NS+1)

GOTO 21

S(2,2)=PS(NS+1)/E
IF(N2.22.1)5387T0 22
S(3,11=S(3,1)+PS{(NS+2)

GAaTC 12

S{(3,2)=PS(ANS+2)/E

00O 2 J=1,MDR
S(L,1)=S(1l,L)+CTI(NT,J)%xP(J)
S{2,M1)=3{2sN1)+CU(NS+1,J)%P(J)
S{3,N2)=S(3,N2)+CUIMS+2,J)*%P (J)
WRITE(S,2CO0L INsP{NS+1)+RPINS+2),

(S(JvE)!J=213)'(S(J:l)-J=lu3)

s



C CALCULATE MC INTZIRMAL STRESSE

11

C ADD

@

2

7
4

2200

30Q¢Q

READ(S5,2Q00)NC
IF{NC.LT.1)RETURN
WRITE(5,3001)

@)
(o]
&
AR

Wnnin O far

QO U HwmI

D
S
F
S
S
S
R
R
R

XM~~~ ~0
Wil »WuemmA
=rQe v o e O
QO

NLSP=2%% (MLS+1)/2
oQ 7 NQ=19NL59
IF(NO.Z2Q.1)50T2 8
IF(MQ=3)SsE,5

RY==RY
RX==-RX
RXY=RX*RY
SN=RXY

DQ 7 N=1,MNCD
NK=(N—-{ ) *NORD2

S

& DISPLACEMENTS AT

CALL ELEM(XP,YP, X(l).Y(l)oX(N).Y(N) Q)

DO 7 L=1,NQRD2
SN=SN*QXY

S(K.2 )=S(<n2)+C(KvL-2)*P(NK+L)*SN

0Q 7 X=1,3

S{Ky1)=S(X 1) +C (KL, 1)®P(NK+L)*SN
WRITE(S,3CC3IAP s YPy(S(4—=K,2

GQTC 11

)’K IOZ)O(S(KQI).K—

(XP,YP)

23)

FORMAT (IHL ,35H BOUNDARY OISPLACEMENTS AND STRESSES/

eT1O 4 IHM TIS,2HON T34,

a1+ 2HSS)
FCRMAT(IS)

3001 FQRMAT(///35H INTERNAL OISPLACEMENTS AND STRESSES/

3002

FOQRMAT({2F10.90)

3003 FORMAT (10X ,2F15.5+,2015.5,3F15.5)

END

e T20 »1HX 4 T34 1HY s T49 4 2HUX s TS84 2HUY s T7S»2HSX s T94 ,2HSY » TLO9,3HSXY)

g

2HDS s TAG . 2HUN s T6% , 2HUS s T79,2HST s, TS4,2HSN.T109
2001 FORMAT(I12,4015¢503F155)



GAUSS

This subroutine conducts Gaussian elimination on the matrix C.

SUBRCUTINE GAUSS(C,
IMPLICIT INTZGER*2(
DIMENSICN C(ND,WND)
C GAUSSIAN SLIMINATIIN
NM=N-=1
D30 2 J=1,MM
3=C(J4,J)
JB=J+1
00 2 K=JP, N
A=C(K,J) /2
DA 1 L=JPRP, M
ClL,L)I=C{K,L)=C(J,L)*A
CONTINUE
RETURN
ZND

NeNC)
I )

INTEGER=*4 (N),REAL*3 (A—H ,0~2)

N re



BSUB
This subroutine first reduces the vector of knowns P, then back

substitutes replacing the knowns in P.

SUSRCUTINE 38sSUB(C,P4N,MD) .
[IMPLICIT INTEGER=*2(I-M), INTECER*4(N) ,REAL*8(A~-H,C~-Z)
DQIMENSION CINDND)»P(ND)

C REDUCTICN
NM=N=—1
DO 1 J=1,MM
A=C(JdrJd) |
JR=J+1
DA 1 X=JP,N
1 p(K)=P(K)—F(J)*C(K'J)/A

Lo



GSI

This subroutine conducts Gauss-Siedel iteration with relaxation
on the matrix C such that R contains the knowns, and P is filled with
the determined values.

SUBRCUTINE GSI(

INPLICIT INTEGE

DIMENSIAON C(NOD»

CCMMCN/ZITSCL/CP
C GAUS3-SIEDEL ITERAT

NIT=0

1 M=0

IF(NIT.EQ.MIT)IGQOTO 7

NIT=NIT+1

DO & I=1 .M

T=R(1I)

IF(I.EQ.I)GDTC 2

) s INTEGER*4(N) s REAL %8 (A=H,0~-2)
D),P(ND)

H RELAXATION

4 1,4
2 IF(I.EQ.N)GDTG 3

IP=L+1
2Q 3 J=IPLN

5 T=T=R{J)*C(1l.d)

3 ER=0A3S(P(I)I*C(I.1)-T)

C ERROR IM ESTIMATE OF KMOWN VALUE

IF(ER ST CFR)M=t
T=T/C{I,1)=-2(1)

6 P(I)=P(l)+RP=T.
IF(MMELJ)ICITT 1
D3 38 I=1,M
DA 8 J=1,M

8 RIIN=R(INI+C(TI,J)%P(J)
RETURM
END



1

7.3 Sample Problem - Pressurized Crack

(i) Probiem
Consider a mathematically flat crack, modelled using one quadratic

DD element and exhibiting one line of symmetry (Refer to figure 7.2).

y
6

10
0.25
1

<
"

e —
Y

Line of Symmetry

Figure 7.2 Pressurized Crack

(i1) Input

The required program input is shown below.

Card Number Column Number

5 10 15 20 25 30 35 40 45 50

1 Title Pressurized Crack

2 Control 2 2 1 0 1000000. 0.25

3 Mesh and B.C. 0. 1.0 1.0 0.0 0 0
4 Mesh 0. 0.0

5 Field Stresses 0 0.0 0.0

6 Internal Points 1

7 Coordinates 1. 1.0

8 End Program 0

Table 7.2 Sample Problem Input



= DISPLACEENT DISCAONTLINUELY  OP

SSUR IZEC CRACK

NMNOO Q0ER NL S MSCL E PR
2 2 ] 3 1€€0030.000040 Q.25000
SLAM ELIMINAT IO
N X Y N S
) g.conrac 1.00390
t.CJ000 J. 00020
2 2.01200 0.00000
0.€0000 0.30000
D STRELSES
3x SY £XY
0.00ccC0O 3.30000 0.00300
MOARY DISPLACEIENTS AND STRESSES
. [} 0s UN u
[} -0.1£23599-05 2.1900013D 20 C.76344D-0¢ ~-0.548520-06
1 ~0.)2€63E2-218 Q. 200030 JQ 0.16344D0-05 -0.32509U-J36
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(iv) Results
Jaeger and Cook (1969) give the normal displacement on the surface

of this crack as

- m-zvmz)(c%y*)”

7.1
= (1-y%% x 6.25 x 1077 (7.1)

The stresses at the point (1,1) can also be determined from the

equations given by Jaeger and Cook (1969) as

o, = 0.0827 , g = 0.1064 , T, = 0.2979 , (7.2)

It can be observed that the results from the program agree very

well with this closed form solution.

™



CHAPTER VIII

CONCLUSIONS

The boundary element method offers considerabie advantages over
finite element analyses when the ratio of surface area to total volume
of the body considered is small. This is particularly evident in
problems such as the pressurized crack sample problem described
previously.

The indirect approach is most desirable when hode11ing cracks or
joints using the singularity corresponding to a discontinuity in
displacement since the value of the discontinuity will be required.

‘On the other hand, the diréct approach should be used when modelling
closed boundaries since the value of the discontinuity or boundary force
is of no interest and fewer unknowns need be considered.

The singularity corresponding to a discontinuity in displacement
offers considerable advantages in situations where rigid body motion
cannot be accounted for by independent means (bending).

Higher order elements give consistently more accurate results than
lower order elements for the same number of unknowns considered. In
many of the examples considered, quadratic elements gave an order of
magnitude accuracy increase.

Errors due to kinks in boundaries are Timited to the immediate
vicinity of the kink or corner and do not appear to affect the accuracy
of the soltuion at other distant points. The accuracy-increases as

one moves away from the boundary. The unknown boundary stress and



displacement values determined in the analyses are reasonably accurate
however, particularly away from any kinks or corners. Bending is poorly
accommodated by the point load singularity. High order displacement

discontinuity elements show promise for effectiveness in this situation.
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