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ABSTRACT 

In this report, the mathematical formulation and some of the 
advantages and possible uses for the boundary element process 
have been reviewed. The choice of singularity problem has 
been addressed and some real advantages of certain singularities 
over others have been discussed. Constant, linear and quadratic 
elements have been compared. In addition, the problem areas in 
analysis and their effect on the resulting answer is presented. 

RESUME 

Dans ce rapport on fait la révision de la formulation mathématique 
et de quelques-uns des avantages et des emplois possibles de la 
méthode des éléments de borne. Le choix du problème de singularité 
est abordé et les avantages réels de certaines singularités sont 
discutés. Les éléments constants, linéaires et du second degré 
sont comparés. En plus les difficultés de l'analyse et leur 
influence sur le résultat sont présentées. 
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FOREWORD 

This report summarizes and discusses some of the advantages of the 

boundary i ntegra1 method when appl i ed ta stress. ana 1 ysi s. Vari ous 

new deve1opments are presented and discussed in detai1 as far as their 

advantages and disadvantages are concerned. 

This report a1so contains the listing of the program . deve1oped 

at the University of Toronto and presents the various test cases which 

were run. It fina11y discusses the application ta mode11ing of pressurized 

cracks. 

Any opinions expressed in this report are those of the authors and 

the Earth Physics Branch takes no responsibility neither does it 

endorse the findings. 

Toronto, Ju1y 1980. 

T, D. Wi1 es 
J.-C. Roegiers 
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SUMMARY 

In this report, the mathematical formulation and some cf the 

advantages and possible uses far the boundary element process have been 

reviewed. The choice of singularity problem has been addressed and 

some real advantages of certain singularities over others have been 

discussed. Constant, linear and quadratic elements have been compared. 

In addition, the problem areas in analysis and their effect on the 

resulting answer is presented. 
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NOMENCLATURE 

stress at point i 

displacement at point i 

force applied at point j 

effect of unit point force or discontinuity applied 
at point j 

on stress 

on di spl acement 

body force applied at point k 

potential at point i 

distance between points i and j 

Laplace's operator 

normal ta the bounding surface 

vector of interpolation values for q 

matrix of coefficients expressing stress at 
point i due to the interpolated representation 
of q 

matrix of coefficients expressing displacement at 
point i due to the interpolated representation of q 

stress vector at boundary interpolation points 

displacement vector at boundary interpolation points 

work done 

normal and shear stress components at point (x,y) 

displacement components at point (x,y) 

Poisson I s ratio 

Young 1 s modulus 

shear modul us 

point force or discontinutiy in x-direction 

point force or discontinuity in y-direction 



Chapter I 

INïRODUCTION 

In recent years there has been great interest generated in numerical 

boundary integration approaches as applied to various engineering 

problems. The main reason for this interest being that only the boundary 

location and conditions need to be considered in most cases. 

The amount of effort required ta prepare the input for large 

problems is therefore small compared to other techniques such as 

Fi ni te E1 ements or Fi ntte Di fferences, because onl y the boundi ng surfaces 

need ta be discretized. In addition, a small number of unknowns may 

only have ta be considered for problems with boundaries extending ta 

infinity. 

The boundary integration may be conducted in several ways by making 

a variety of assumptions and approximationsr In this report the point 

load singularity as well as the singular displacement discontinuity are 

compared for assumed constant, linear, and quadratic variations of the 

singularity along the boundary. Bath closed form solu·tions and numerical 

integration approaches are considered. 



CHAPTIR II 

THE BOUNOARY INTEGRAL METHOO 

2.1 Indirect Approach 

In order ta understand the boundary integral approach, one need 

only ta conceive the principle of superposition. Ta illustrate this, 

consider the two-dimensiona1(*) elasticity problem shown in Figure 2.l. 

It is evident that there is na difference between systems (a) 

and (b), provided that the stress distribution due to the load Pis 

removed by equal and opposite stresses around the apparent boundary. 

In order ta remove these stresses, however, one must appl y additiona 1 

boundary forces, each of which will result in its own stresses at all 

points a round the apparent boundary. Now, if a boundary force di strtbution 

( *) 

P' ~ ,. ______ l ______ , 
1 ' 
1 1 

L--------~-l 

{a) F1n1te Body Apparent 
F1n1te Body 

(b) 

Figure 2. 1 

Idential arguments can be used for any potential problem in two 
or three dimensions. 

L 
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can be found which results in the desired boundary stresses, the overall 

solution for the stress field within the boundary can be obtained by 

superimposing(*) the effects of the entire boundary force distribution. 

These considerations are equally valid when specifying stresses or 

displacements along any portion of the apparent boundary or even when 

considering cavities or inclusions in an infinite medium. 

This method has been used, to arrive at the closed form solutions 

for a concentrated force acting on a beam and also for the case of the 

diametral compression of a circular disk (Timoshenko and Goodier, 1970). 

Massonnet (1965) also used this approach ta determine the force 

distribution required ta obtain a resulting homogeneous compression of 

any finite body. 

Superposition for- any applied force distribution results in the 

following stress and displacement field 

( *) 

where: 

cr1 represents the stress at any point i 

u1 represents the displacement at any point i; 

q. represents the applied force at the point j; 
J 

( 2. 1 ) 

(2.2) 

Superposition is pennissible here as the geometry of the infinite 
medium does net change with any force application. 

'3 



f~ , represents the effect of a unit force applied at 
point j on the stress (f

0
) or displacement (fu) 

component at point i; 

dV represents the integral taken over all locations 
where q acts. 

The applied force distribution can be broken down into the forces 

acting on the apparent boundary (i.e. surface forces), and the forces 

applied within the body (i.e. body forces) giving 

where: 

q_ 
J 

(2.3) 

(2.4) 

·represents the integral taken over the entire 
boundary; 

represents the force distribution applied at any 
location j on the apparent boundary; 

represents the integral taken over the region where 
bk acts; 

represents the body force distribution applied at 
any point within the body. 

This approach amounts to the application of Green's function theorem. 

Numerous authors have obtained similar results using various mathematical 

arguments and have applied it ta salve different problems. 

Massonnet (1965), and Benjumea and Sikarskie (1972), for example, 

show that equations (2.1) and (2.2) are Fredholm 1 s equations of the 

second kind due to the singular nature of the kerriel 11 f 11
• This makes 

these equations solvable since the effect of the singularity at the 



\ 

point at which it is applied becomes finite and hence can be removed 

from the integral. Benjumea and Sikarskie (1972) also provided 

solutions for a point load in a transversely anisotropie (sometimes 

called orthotropic) medium. 

Crouch (1978) obtained the equations (2.1) and (2.2) by application 

of the Green 1 s function theorem and presented solutio_ns for a displacement 

discontinuity in bath an isotropie and transversely anisotropie media. 

2.2 Direct Approach 

An alternate approach is available- by use of the reciprocal theorem 

which states that 

11 the work done by the forces of the first set acting through the 
displacements of the second set is equal ta the work done by the 
forces of the second set acting through the displacements of the 
first set 11 (Jaeger and Cook, 1969). 

If the first set is considered to be a unit point force applied at 

any point ion the boundary, this theorem can be written from the 

expression given by Timoshenko and Goodier (1970) as 

where: 

(2.5) 

represents the stress at any point j on the boundary; 

represents the displacement at any point j on the 
boundary. 

This equation is sufficient to salve for the boundary unknowns, but 

in order to detennine stresses and displacements at otner points inside 

the body the Somigliana identity must be used. The required relation can 

be expressed from the results given by Love (1927) as 



(2.6) 

StreSSo:S can then be obtained by differentiation and substitution 

into stress/strain relationships. 

Rizzo (1967) and Cruse (1969) also obtained this result and proved 

that the equations are solvable due to the fact that the integrals are 

finite at the singularity locations. The integration can be conducted 

for any chosen singular solution. In this case, however, the remaining 

integrations must be taken in the sense of Cauchy's Principal Value. 

Rizzo and Shippy (1968) extended this solution to include the 

effects of regular non-homogeneous elastic inclusions by evaluating the 

integràls around the countour of each inclusion. 

Lachat and Watson (1976), applied this result to some three­

dimensional problems by evaluating the integrals using numerical processes. 

Later on, Rizzo (1975) extended this boundary integral process to the 

solution of Laplace's equation, i.e. 

where: 

~ represents the potential at any point; 

72 represents Laplace's operator. 

( 2. 7) 

By introducing a (1/r) - singularity into Green's theorem the 

following, equation may be obtained, 

ds , (2.8) 



where: 

r .. 
lJ 

<P . 
J 

fs 

represents the distance between points i and j; 

represents the potential at any point j on the 
surfaces; 

represents the integration along the entire 
bounding surface; 

represents the gradient of~ taken in the direction 
nonnal to the bounding surface. 

This equation can be used in its present form. Rizzo (1975) 

shows that it is sol~able since the integral is finite when evaluated 

at the singularity location . A similar re$ult was obtained by Brebbia 

and Dominguez (1977). 

Brebbia (1978) applied equations(2.5) ta (2.8) ta a variety of 

problems considering bath isotropie and orthotropic material properties. 

In -addition he extended equation (2.8) ta the more general case of 

Poisson 1 s equation(*). All of Brebbia 1 s equations are derived using 

the weighted residual method or the principle of virtual work. 

Numerical integretation processes are used throughout his work. 

(*) ï7 2 q, = f(x~y) 

Î 



CHAPTER III 

NUMERICAL APPROACH 

In order to evaluate the system of integral equations (2.~ and 

(2 .4) or (2.5) and (Z.6) the boundary can be discretized into several finite 

line segements (neglecting body forces) giving for equation (2.3) 

( 3 .1) 

where the sum is taken over all boundary elements~ and the integrals are 

evaluated for each segment of the boundary . This equation is exact and 

numerical approximation is only introduced at. this point if the boundary 

segments do not exactly represent the actual boundary shape. 

Integration of the n integrals above is still required. If . some 

distribution for q on each each element is assumed, these can 

then be evaluated either numerically -or following a close form solution. 

If some distribution for q on each element is assumed and expressed 

as a function of the val ·ue of q at discrete interpolation points, the 

result will be of the form 

where: 

p 

(3.2) 

represents a vector of interpolation values for q; 

represents a vector of coefficients expressing the 
stress at point i due to the interpàlation representation 
of q. 



A similar result can be found for the displacements, i.e. 

n 

( 3. 3) 

Equations (3.2) and(3.3) can then be evaluated at the location of the 

apparent boundary, giving 

where: 

a• Fa P • (3.4) 

(3.5) 

cr and u represent vectors of values of stress and 
displacement at the boundary interpolation 
points; 

Fcr and Fu represent matrices of coefficients expressing 
the stress and displacement at each boundary 
interpolation point as a function of the 
interpolated representation of q. 

Considering n boundary points with two degrees of freedom at each 

point, there are consequently a total of 2n values for each combination 

of cr, u and P. Since there are 4n equations, therefore 2n unknowns 

must be supplied ta salve the problem. 

Equation (2.5) can be set up in the same way by assuming some 

variations for cr and u on each element, the result will be of the 

form 

FuTa•FaTu ( 3. 6) 

Where Fuî and Fcrî are the transposes of the same matrices as in 

equations (3.4) and (J.5). 

- -~ . . : 



By substitution of equations (3 . 4) and (3.5) into t he expression 

(3.6) it can easily be found that 

Q a Fu T Fa P a Fa T Fu P 

Where Q is the work done in the reciproca l theorem for each 

element. 

This relation requires that the product FuTFa by symmetric. 

( 3. 7) 

The body forces can be included by conducting the required volume 

integration in equations (2.3) _ through (2.5), similarly to the approach 

used in the Finite Element technique. 

IC 



CHAPTER IV 

SINGULAR SOLUTIONS 

Although the preceeding discussion has been concerned with the 

effect of a point load in an infinite medium, the entire discussion 

is equally valid for many other singular solutions. The body force 

integrals must use the point load singularity however. 

Various authors have used a variety of singularities including a 

point load on the surface of a semi-infinite medium, point loads in an 

infinite medium, and- discontinuities in displacement in infinite and 

semi-infinite media. Anisotropie cases have been treated as well. 

A few of these singularities are discussed below . 

4.1 Point Load on the Surface of Semi-Infinite Medium 

This singular solution is exceedingly simple for the isotropie 

case and its closed fonn solution has been used by Massonnet (1965). 

It should however be pointed out that since the point load has no effect 

above the surface of the semi-infinite medium its solution cannot be 

used in cases where there are reentrant corners or cavities in the . 

geometry. Benjumea and Sikarskie (1972) also mentioned that the use 

of this singularity is more complex in the .anisotropie case than other 

more useful singularities. 

4.2 Point Load in an Infinite Medium 

This is by far the most widely used singularity in boundary integral 

methods. While this singularity is samewhat simpler than a discontinuity 

" 



in displacement, it has certain drawbacks due ta its poor accommodation 

of rigid body motion and non-zero displacements at infinity. In 

addition, while well-defined shapes are easily modelled, openings such 

as mathematically f1 at cracks cannot be accommodated due ta the fact 

that two point loads acting in opposite direction at the same point 

simply cancel one another rather than stressing the medium. The 

result for a point load in an infinite medium is given by Timoshenko 

and Goodier (1970) for the plane stress situation as 

• • (3+v) P cos 9 . 
ar 4m-

(1-v) P cos 9 
ae • 41Tl' ( 4. 1 ) 

t • (1-v) P sin 9 
re 4ll'r 

Figure 4.1 Point Load in an Infinite Medium 

For the plane strain situation, the complete solution for applied 

forces in the x and y-directions can be found ta be 

X [2xy2 
_ (3-2v) x] +-,---;-Y,..-..,.. 0 x • 411'(1-v) r• rl 411' (1-v) 

a • X [-~ + (1-Zv)xj + y 
y 411'(1-v) • 2 411'(1-v) r r 

• X [_gi_ (3-2v)y ] Y 
'xy 4ll'(l-v) • • 2 + 411'(1-v). 

r r 
[- z;( - (1-~~l J . 

(4.2) 

• X l+v El. Y [ (l+v)x
2 

2 ] 
v 4irË ï=v r2 + 411'€(1-v) • r2. • (3 • v - 4v ) in r 

) 1... 



where : 

X and Y are point forces applied at the origin; 

crx,cry,Txy are the stress components at the point (x,y); 

u and v are respectively the displacement in the x 
and y-directions at (x, y); 

vis Poisson's ratio; 

E is Young's modulus 

y 

X -------....------x 
y 

Figure 4.2 Applied Forces in the x and y-directions in an 
Infinite Medium 

It should be noted that although the stresses become zero as r 

approaches infinity, the displacements do not vanish. Al~o, the addition 

of arbitrary rigid body tenns will not affect the solution. 

4.3 Displacement Oisctontinuity in an Infinite Medium 

Crouch (1976) suggested using the solution for a constant discontinuity 

in displacen,ent. The singular solution for this case can be obtained by 

1 3 



differentiation of Crouch's constant displacement discontinuity, or can 

be deduced from the solution for a point load in an infinite medium by 

setting 

where: 

u(X) • -T {X) 
xy 

u(Y) • -c {X) 
y 

v(X) • -T {Y) xy 

· v(Y) a -a {Y) 
y 

(4.3) 

u and v are the displacements due to point discontinuities 
at the origin; 

T and cry are the shear and nonnal stresses due to point xy 
loads at the origin. 

The solution can be found to satisfy the equilibrium and compatibility 

conditions and is given by 

• • 1 1 XG (2y3x-6yx 3 )+ YG (;i: +y -6xy) 
0x'" 21T(1-v) r' 21T(1-v) r' 

111, i. 2 1 
XG ,zx 3y - 6xy 3

) + YG (X - 3y + 6x Y) 
ay '"21T(1-v) r' 21T(1-v) r' 

XG x• + y• - 6xzyz) + YG (2x 3 y - 6xy 3
) 

îxy '" h{i-v) ( ' 21T(1-v) r' r (4.4) 

X [- ~ + (3-2v) y1 + y [~-(1-2v)x1 
U'" 4lf(1-v} r• r1 4,r(i-v) r' r2 

X [z/x + (1-2v) x] + Y [ 7 + (1-~~)y] 
V • 4'1f(1-v} • 1 41T(1-v) 

r r 

1 '-1 



where: 

X and Y are points discontinuities in displacement at 
the origin; 

cr ,cr ,T ,u,v are the stresses and displacements at 
X y XY 

point ( x, y) ; 

G is the shear modulus. 

It should be noted that the stresses and displacements all tend ta 

be zero as r approaches infinity. Again, the addition of arbitrary 

rigid body tenns will not affect the solution. 

Although this solution can be used with either the direct (equations 

2.5 and 2. 6) or indirect (eouations 2.3 and 2.4) approaches, it will 

generally be most desirable to use the indirect approach as values of 

the discontinuity in displacement are re~uired when modelling mathematically 

f1 at cracks. 

4.4 Discussion 

It can be observed in bath systems of equations (4.2) and (4.4) 

that the stresses depend on the elastic constants . This is a result of 

the fact that the infinite medium in which the singularities are imposed 

is a multiple-connected body. That is, a section can be eut from the 

from t'he application point of the singularity to infinity without dividing 

the body into two parts. The actual general solution is not single-valued 

unless the initial stresses due ta any dislocation along such a eut 

is specified. The solutions used here have assumed that all such 

dislocations are non-existent. 



CHAPTER V 

INTEGRATION OF SINGULAR SOLUTIONS 

5. 1 Genera 1 iti es 

Numerical integration of the singular solutions is straightforward 

at any location (x,y) except at the point (0,0). Special forms of 

numerical integration formulae which can accornmodate certain types of 

singularities could be used, although for straight elements the 

integrals are easily evaluated in closed form. Numerical integration 

is however mandatory if one is to consider curved elements. 

Polynomial interpolation of the q distribution in equations (2.3) 

and (2.4) requires tha q be represented by discrete values at points 

along the integration interval. It can easily be found that for a 

linear variation of q the result is given by 

where: 

( 5. 1 ) 

x 1 is the location of q in the (x,y) space; 

+b are the locations of the interpolation points. 

q 

-a -b b a X 

Figure 5 .1 L inear variation of q 



If a quadratic variation of q is assumed the result is slightly 

more compl ex 

q(x ' ) a :~ 2 [(x'-x}
2 

• (~x-b} (x'-x} • x(x-b}] 

• :: [ -(x'-x} 2 
- 2x(x'-x) • (b+x} (b-x}] 

• ~ fcx 1 -x} 2 
• (2x•b} (x'-x) • x(x+b}] 

2b2 l' 

q 

-a -b b a X 

Figure 5.2 Quadratic variation of q 

The required integrals in equations (2.3) and (2.4) are 

a 

f f dx ' 
-a 

a 

f (x' -x} f dx' 

-a 

a 

f (x'-x)
2 

f dx' 

-a 

( 5. 2) 

( 5 . 3 )· 

where fis given by either of the singular solutions (equations 4. 2 

or 4.4) with (x-x') substituted for x. The results of these integrations 

are given in Appendix I. 

jl 



These integra1s can then be substituted into the interpolation 

relationships giving the required expressions for the stresses and 

di spl acements. 

The choice of the location of the interpolation points must be 

made such that the error due to po1ynominal interpolation is minimized. 

This can be ensured by choosing the zeros of Chebyshev's po1ynominals 

(Hornbeck, 1975) 

where: 

[ 
2n+1 7 

X ,. -a cos (zn+zl ,rj . 

(n + 1) is the number of interpolation points; 

m = 0, 1, 2, · ··, n is the point number . 

( 5. 4) 

The same resu1t can be found for equations (2.5) and (2.6) by 

interpo1ating cr and u as polynomia1s. In this case the distribution 

of a and u are we11-defined as nth arder po1ynomina1s and consistent 

values for distributed loadings are easily arrived at. Unfortunately, 

for the first case (equations 2.3 and 2.4) the surface stress and 

displacement variations are not defined at all . For both the point ' 

load and the displacement discontinuity singularities the stresses become 

infinite at the ends of the elements if q is not continuous. This may 

result in difficulties when applying surface loads which are actua1ly 

equiva1ent to the desired 1oads. 

,i 
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5.2 Additional Considerations 

( i ) Symmetry 

When dealing with symmetrical problems stresses and displacements 

need only be solved over a portion of the total body . In order for 

symmetry to exist it is also necessary that portions of q (see equations 

(2.3) through (2 .S))have the same value. Thus in equations (3.4) and 

(3.5) the number of unknowns can be restricted te those in one of the 

symmetric portions. 

Considering for example the fo11owing problem with one line of 

symmetry . 
Y '$Line of symmetry 

T t s 1 5 2 4 A pp 1 i ed 
i i T Load 
-------+-------

-X 

Figure 5.3 Symmetric Problem 

The number of boundary conditions can be reduced since 

(5 . 5) 

It should be noted that integration along the surface proceeds in 

opposite directions. This will affect the results of the integrations 

in equation (3.1) which must then be evaluated for the.q distribution 

around the entire boundary. However, from the form of equations (5.5) 

it can be seen that the coefficients evaluated along the symmetric portions 

19 
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of s1 and s2 can be added together. For one 1 i ne of symmetry thi s 

results in solving only half of the original equations. 

Although Fin equations (3.4) and (3.5) is one quarter its original 

size, one-half as many coefficien~s need ta be evaluated since each 

coefficient in F represents the sum of two soefficients, one for s1 and 

one for s2. 

If two lines of symmetry were to be present the problem would 

even be further simplified. Even though F would then be one-sixteenth 

its original size, only one-quarter as many coefficients would need ta 

be evaluated since each coefficient in F represents the sum of four 

coefficients . 

(ii) Initial Stress,. Initial Strains and Body Forces 

Any field stresses which do net vary with position can be treated 

as initial stresses by superimposing the solution for an equal and 

opposite pressure distribution on the boundary. This amounts to 

subtracting the field components from the stresses everywhere ta obtain 

an equivalent problem with zero field stresses and some modified boundary 

stresses. After solving this problem the field stresses need to be 

added back ta obtain the solution of the original problem. 

Body forces can be directly inc~rporated as indicated in equations 

(2.3) . ta (2.5) by conducting the volume integrations. This will in 

general require full discrtization of the loaded region. 

However, the exact solution of some problems may require integrations 

extending to infinity in certain directions. This sitùation can be 

simplified by considering the problem of body forces applied everywhere 



(within th~ bounding surface tao), then removing these forces in the 

bounded area and adding on the effect of any local variations. 

cavity 
Region with 
irregular variation 

Figure 5.4 Body Forces 

Region with 
regular variation 

Initial stresses and initial strains which vary with position 

can be incorporated as body force contributions by the method of 

strain suppression (Timeshenko and Goodier, 1970). 

As in the case of body forces, the initial stresses and initial 

strains will be regular everywhere except in the immediate region of the 

bounding surface . Therefore, the affects of these local perturbations 

can be included by considering the effect of initial homogeneous 

values applied everywhere, then removing the effect within the 

bounded area and adding any local perturbations. 

(iii) Multiple Surfaces 

Multiple-connected bodies or multiple openings in an infinite 

medium can be accommodated by simply considering several separate 

surfaces simultaneously. 

L i 
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( i V) Multiple Materials 

Rizzo and Shippy (1968) also consider non-homogeneous inclusions 

in an infinite medium. They show that an inclusion of different 

material properties can be included by solving two problems at the 

same time. The stresses at the boundary of the inclusion must be in 

equilibrium with the stresses on the surface of the bounding medium and 

compatibility or known discontinuities in displacement must be required 

at the interface surface. A layered medium can be modelled by carrying 

the interface surface far away from the region of interest. 

2. 'L 
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CHAPTER VI 

TEST CASES 

6.1 Generalities 

Severa1 test cases were analyzed in order to investigate the 

performance of each singuîarity. Sorne singularities were observed 

to perform bette~ than the others depending on the case considered. 

The influence of the order of the po1ynominal interpolation was also 

compared. 

All generated data was evaluated based on the total number of 

unknowns used to analyze the prob1em. From now on, the abbreviation 

PL will be used to represent the point load singularity while DO will 

represent the displacement discontinuity . With the exception of the 

beam example ( 6.6), Young 1 s modulus was set at 106 while Poisson 1 s 

ratio was kept at 1/4. Plane strain conditions were also assumed. 

All runs were conducted on the University of Toronto IBM 370 computer. 

For each test case, a few runs were duplicated using bath single 

(7 significant digits) and double (15 significant digits) precision to 

try and detect any numerical error. Single precision was found to give 

accurate results up to about 25 unknowns. In most examples, shapes 

with straight sides were used so that no error due to the approximation 

of the bounda ry shape was. i ntroduced. In a 11 cases the cl osed form 

integrated solutions were used for the analyses and th~ problems were 

solved using Gaussian elimination. 



The percentage error in displacements and stresses show identical 

trends and ha~ealmost the same magnitude at all points. The maximum 

errors occur nearest any non-straight points on the boundary. However, 

the large errors associated with these corner areas is confined to the 

immed.iate vicinity of the kink in the boundary. It should be pointed 

out, however, that a large error was noted in the tangential boundary 

stresses for constant elements. This errer was reduced by more than 

an order of magnitude by using higher order elements. It remained, 

however, considerably higher than for the interior stress values. It 

should be noted that the surface displacement values show approximately 

the same errer as the interior displacements and stresses. 

6.2 Rigid Body Translation 

y 

r--
1 
1 

1 

1 

Line of Symmetry 

1. --t--...... --' 

Figure 6 .1 Rigid Body Translation 

Consider a 2x2 square prism translated by one unit in the positive 

x-direction. The analysis using the DO singularity resulted in 

uniform translation of the body with no errer in the displacement 

distribution. In addition, the related stresses (in the range of uxE/1 □ 5 

for single precision and uxE/1 □14 for double precision) were within the 

limits of the numerical accuracy of the computer. 
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Sorne results for the PL singularity are presented in Ftgures 6.2. 

It can be observed that all stresses and displacements, except in 

the corner areas, are approaching the correct values with an increase 

in the considered number of unknowns. The stresses in the corner area 

are approximately equal taux E. 

Love (1927) presented a technique for separating the rigid body 

component which would alleviate this problem. His approach was not 

introduced in the program at this stage since rigid body motions would 

be of second order importance in the scope of this research. 

6.3 Pure Shear y 

iii .~~ p=l 

- -- -- -- ~ -- ttt ttt 
Lines of Symmetry 

Figure 6.3 Pure Shear Loading 

A 2x2 square prism was loaded in pure shear by a unit stress as 

shown in Figure 6.3. 

Figures 6.4 show r.esults comparing the element order for bath 

singularity types. Neither singularity offers any significant improvement 

in accuracy . The quadratic elements give consistently better accuracy. 

The stress and displacement distributions along the x-axis are shown 

in Figure 6.5. The errer at mid-side (l ,0) for the case of the tangential 

stress is shown in Figure 6.6. As mentioned previouslr, the use of 

quadratic elements gives a much better correlation. Figure 6.7 represents 
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the surface stresses and displacement distributions along y=l . It can 

be observed that the poor results are confined to the first few corner 

nodes~ The PL singularity exhibits the best behaviour. 

6.4 Homogeneous Compression 
y 

U! ui p=l -= ---
tt1 ttt 

X 

Lines of Symmetry 

Figure 6.8 Case of Homogeneous Compression 

Consider the same square prisrn submitted to a unit hydrostatic 

compression (Figure 6.8). 

The Results obtained for this case are almost identical to the 

previous example of pure shear. 

As can be seen from the following figures the PL-singularity gave 

results with significantly srnaller errors than the 00-singularity. 

Also, quadratic and linear elements gave better results compared to 

constant elements. 

In Figures 6.11 the mid-side (1,0) tangential stress is compar.ed 

for various element orders and show that for bath singularities a 

large improvement in accuracy results by use of higher order elements. 

The surface displacement and stresses along y=l are plotted in 

figures 5.12 and show that the large errors again are confined to 

the corner areas. 
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6.5 Pressurized Cavity 

Lines of Symmetry 

Figure 6.13 Pressurized Cavity 

Consider a circular cavity with a unit radius and pressurized 

as shown in Figure 6.16 . 

In this example the higher order elements for the 00-singularity 

gave consistantly better results. 

The results for bath singularities are presented in Figures 6.14. 

The noti ceabl y poor behaviour of the hi gh order el ements for a sma 11 

number of unknowns can be attributed to the poor approximation of a 

circular boundary shape when using a small number of straight elements. 

In Figures 6.15 the error for the surface tangential stresses are 

compared. In the case of the quadratic element, the value used corresponds 

to the average of the three nodal point values . 

6.6 Bearn with End Shear 

)s 

X 

Figure 6.16 Clamped beam submitted to end shear. 
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A 12x48 rectangular built-in cantilever was loaded with parabolically 

varying end shear according to the following relation 

p•-rn.z+s ( 6. l ) 

For this particular case, Young 1 s modulus was set at 19,200.0 

while Poisson's ratio was assumed to be 0.2. These input values for the 

plane strain situation correspond ta a plane stress analysis with the 

following elastic constants 

E = 20,000.0, v = 1/4 

The theoretical tip deflection for the plane stress case is given 

by (Timoshenko and Goodier, 1970) 

TJ. l 
v • JEI • a. s1 z • 

(6.2) 

where: 

i = 48 is the beam length; 

I = 144 is the moment of inertia of the beam. 

Several examples with a variety of discretizations were tried using 

the PL singularity with no success. The best result obtained gave errors 

in displacements and stresses of approximately 20% for 20 quadratic 

elenents (120 unknowns). This extremely poor behaviour is probably 

due to the unfavourable accommodation of rigid body motion by this type 

of singularity. The end of the beam indeed deflects a considerable 

amount as a rigid body. This same problem was encountered by 

Massonnet (1965). 
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The 00-singularity showed equally poor correlation for bath the 

constant and linear elements, however for the quadratic element, reasonably 

accurate results were found (Refer ta Figure 6.17). Bath the tip 

deflection and stress at pain~ (36,0) had the same error magnitude. 

These results can be compared ta the ones presented by Brebbia and Connor 

(1974) who treated a similar situation using the finite element approach. 

In view of the fact that the variation in deflection is a function 

of the cubeof x, it can be expected that cubic 00-elements should provide 

very accurate answers with only a few unknowns considered. For this 

type of problem the use of boundary integral techniques may prove ta 

be exceedingly more economic than finite element approaches. 

6.7 Pressurized Crack 

y 

( 1 , 1 ) ,. 

p=l Line of Symmetry 

Figure 6.18 Pressurized Crack 

Consider a classical Sneddon flat elliptic crack, uniformly 

pressurized as shown in figure 6.18. 

The higher order elements show a drastic improvement in accuracy 

in this case. In all cases the surface tangential stress is equal ta 

the pressure in the crack in agreement with theory. 

The mid-side surface normal displacement is compared ta the analytically 

obtained value in Figure 6.19a. In Figure 6.19b the average of the 

error in the stresses is presented. 
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CHAPTER VII 

A BIE PROGRAM 

7 .1 General iti es 

The computer programs used to conduct the analyses imcluded in 

this report are described and discussed in the following sections . 

The restrictions imposed in setting up the programs reflect the present 

needs of the authors rather than difficulties in providing more general 

coding. Programs permitting larger degrees of variability and solving 

capabilities have however been developed. 

7.2 Pro gram Documentation 

( ; ) Input 

INPUT FORMAT 

l 20A4 

2 4 I 5 , 4 Fl O . 0 , I 5 

DESCRIPTION 

Titl e 

Central i n format i on : 
NNOD is the total number of element corner 
points to be read-in; 
NORD is the element order to be used in · 
analysis (0 is constant, l is linear, 

2 is quadratic); 
NLS is the number of lines of symmetry to 
be considered (1 for just x-axis, 2 for bath 
x and y axes); 
MSOL is the solver type to be used 
(0 for Gaussian elimination, 
1 for Gauss-Siedel iteration with relaxation); 

E is Young's modulus; · 
PR is Poisson's ratio; 
CP is the permissable error in the value of 

stress (CPxE for displacement) estimated 
by the iterative solver; 

RP is the relaxation parameter 
(>1 for overrelaxation, <1 for under­
relaxation) ; 

MIT is the maximum number of iteratians permitted . 



1· 

3 4F10 . 0,2I5 

4 3F10 . 0 

5 I5 

6 2Fl O. 0 

Mesh data and boundary condition information: 
Xis the x-coordinate; 
Y is the y-coàrdinate; 
N is the known normal boundary value; 
Sis the knowr shear boundary vnlue; 
NCODE, SCODE indicate respectively, whether 
N and Sare stresses (code 0), displacements 
(code 1) or discontinuities (code -1 ). 

Field stresses; 
SX is the stress in the x-direction 
SY is the stress in the y-direction; 
SXY is the shear stress in the x-y plane. 

Number of interior points at which stresses 
and displacements are to be determined 
( 0 ends the progam) 

Coordinates of interior points: 
Xis the x-coordinate; 
Y is the y-coordinate. 

Table 7.1 Program Input 

(ii) Discussion 

The mesh data cards are input in order of increasing corner point 

as well as element numbering (i.e. corner points 1 and 2 define element 

1, corner points 2 and 3 definte element 2, and se on). The last corner 

point input combined with point 1 define the last element. 

As far as the boundary conditions are concerned, each input 

associated with a particular corner point automatically defines the 

boundary conditions for the element. 

If any lines of symmetry are present it is assumed that at least 

one of the lines intersects the boundary surface. The number of elements 

is then assumed ta be one less than the number of corner points. This 

may not always be true but can be easily be overridden through the use 

of the subroutine SETUP. 



If the boundary surface is input in clockwise order, a finite body 

is analysed while counterclockwise input corresponds ta a cavity in an 

infinite medium. 

The backsubstitution program is set-up to accept additional load 

vectors. 

The iterative solver calculates its final approximation of the input 

boundary conditions and substitutes this approximation for the actual 

values . The converged permissible error in this approximation is equal 

to the parameter CP for stresses and CPxE for displacements. Any desired 

convergence criterion can however be substituted. 

(iii) Sign Conventions 

Tensile stresses are taken as positive. As far as displacements 

are concerned, they are positive in the direction of the axes. The 

boundary 'displacements are defined as shown in Figure 7.1 

Figure 7.1 Positive Normal and Shear Oisplacements 



7.2 Program Listing 

MAIN 

This main program controls the program execution. 

The dimensions required are 

X(ND/2+1), Y(ND/2-t-1), PS(ND), P(ND), CS(ND,ND), 
CU(NO,ND), CT(ND12,ND), MT(N0/2) 

where NO is equal ta the total number of unknowns, 

which is twice the number of elements times the number of nodes for each 

element (1 for constant, 2 for linear, 3 for quadratic). 

I~PLICIT INTEGER*2CI-M),INTEGER*4(N),REAL*8(A-H,0-Z) 
CCMMCN/CCNS/E,PR,PI,GP(3),SX,SY,SXY,N~CD,NORO,NLS,NORD2,NOR,MSCL 
CCMMCN/I TSCL/CP ,RP ,MIT 
C C'-4MCN X ( l 6 l • Y ( L 6) , PS C 30 ) , P ( .:!O } , CS C 3 0 , 3 0) , CU C 3 0 , 3 0 ) , C T ( 15 , .3 0 } , 

• .'-1T(30) 
NO=30 

C BIE - DISPLACEMENT D[SCONTINUITY 
WRITECé, LOOO) 
CALL SETUP 
CALL ASE;',IB 
IF(MSOL)4,5,6 

5 C1\LL GAUSS(CS,l'IDA,ND) 
CALL SSUS(CS,P,NDR,ND) 
GOT□ 7 

6 CALL G~I(CS,PS,P,NDR,ND) 
7 CALL STRESS 

'l'JAITECS, LOOl) 
4 RETURN 

1000 FOR~AT( LHl ,33H aIE - DISPLACE~ENT DISCONTINUITY,4H DP} 
1001 F □ AMAT(/l2H END PROGRAM) 

END 



SETUP 

This subroutine reads in all information, sets all constants and 

initializes all variables. All input stresses and displacements are 

assumed constant on any element. This is not necessary and can easily 

be changed. The field stresses are substracted at this point. 

sueRCUTINE SETUP 
IMPL!CIT INTEGER*2(I-M),INTEGER*4(N),REAL*8(A-H,0-Z) 
DIMENSICN NHED(20) 
CGMMON/CELEM/C(J,6,2),CC,CE,Cl,C2,C3,C4,CS,C6,C7,C8,RX,RY 
CCMMCN/ITSCL/CP,RP,MIT . 
CCMMCN/CCN S/E ,PR, PI , GP ( 3}, SX ,SY, SXY, NNOD, NORD, ~lLS ,NORD2, NOR, MSOL 
CCMMC!'l X(l6) ,Y( 16) ,PS(30l ,P(3O) ,CS(.30,.30) ,CU(JO,3O) ,CT( 15,30), 

• -'•H(30l 
C NNOO NUM3ER CF CORNER NOCES 
C NORD - GRDER CF ELE~ENT: 0 CONSTANT; 1 LINEAR; 2 QUADRATIC 
C NLS SYMHETRY: l X-AXIS; 2 XiY-AXES 
C MSOL SCLVER TYPE: 0 ELIMINATICN; L ITERATION 
CE YOUNG'S MODULUS 
C PR POISSCN'S RATIO 
CCP CCNVERGED AaSOLUTE ERROR (TI ,'-ies E FOR DISPL) 
C RP RELAXATION FACTOR 
C ~IT - MAXIMUM NO. ITERATIONS 
C MT 8CUNOARY KNOWNS: 0 STRESS; l DISPLACEMENTS; -1 DISCONTINUITY 
C SX,SY,SXY - FIELD STRESSES 

~EAO(S,lCOO)NHED,NNOD,NORD,NLS,MSCL,E,FR,CP,RP,MIT 
~RITE(5,lCOl)NHED,NNOO,NORD,~LS,MSOL,E,PR 
I F ( M SCL • EC • l ) 'NR I TE ( 6 , l O O 2 ) CP , R P , ."l I T 
IF(MSCL.EC.O)~RITE(6,l00.3J 
'-"Al TE ( ô , l C 04.) 
~IORQ=NORO+ t 
~~O RD 2=1"10 AD* 2 
:JO l N= l ,!'1 r-ao 
l'!h=(:-4-1) •NCP.02 
qE AC ( 5 • 2 OC O l X ( :,.~ ) , Y ( l'I l • PS ( NN + l) • PS ( NN + 2 l • ,'-1 T ( NN + l l • ."IT ( NN + 2} 

l '/IRIT:::C6,2'J\JtlN,X(Nl ,Y(l'~),PS(N;--~+ll ,PS(NN+2l,'◄T(:'~l'l+ll ,MT(NN+2.) 
X(NNCD+l ): ;<( l l 
Y (NNOO+ l l-=Y ( l) 
IF(NLS.GE. l HINOD-=NN0O-1 
REA0(5,2002}SX,SY,SXY 
'/Il AIT E ( 6 , 2'J C.J. l SX , S Y, SX Y 
DO 4 N= l ,N 1\00 
NN:(N-1 l *NCR02 
IF01TU!N+l ).NE.O.AND.MT(NN+2).NE.O)GOTG 5 
X D = X ( ~I+ l l - X ( N ) • 
Y D= Y ( !'I+ l l - Y ( N ) 
R=OS~R:(XD**2+YD**2l 
CA=XO/~ 
5A=Y'J/~ 
5N=SX*~~**2-2.00*SXY*CA*S~+SY*CA**2 
SS=(SY-SXl*CA*SA+SXY*(CA**2-SA**2) 

C REMOVE FIELD 3T~ESSES 
I F ( MT ( ~ ! N + l ) • E Q • 0 l P S ( N I', + l l = P S ( N N + l } - S N 
IF ( MT ( l'!N+2 l. EQ. 0 l PS ( : JN +2) =~S ( NN+2) -SS 

5 [F(NORD.EQ.l)G~TO ~ 
DG 2 J-=3 ,,•:cr1::,2, 2 
!-1 T ( N N + J l =:~ T ( N N + l ) 
MT(NN+J+tl=MT(NN+2l 
PS{NN+Jl=PS(NN+ll 

2 °S(l'JN+J+ll=::>SUIN+2) 
4 CC NT I :-ILlE 

:--m R-=:"-JNCD*MCRD*2 
NDR2-=:-IQR /2 
PI:3.1~159265353~793 

Yl 



) . 

Constants for DO si ngul arity 

C C=E/ ( '\. • DO *PI* ( l • DO -PR** 2 ) ) 
CE=.2500/(~I*(l .oc-PR)) 
C l = 2 • DO* ( l • 0 0-P R ) 
C.2= l .D0-2. DO *PR 
C3=3 .;)Q-2. OO*PR 
C4= l .D •J+2. DO*PR 
C==4.D0-2.00*PR 
DO 3 J=l,NDR 
DO 5 K= l ,NOR 
C S ( J • K ) = 0 • IJO 

ô CU(J,K)=0.00 
00 3 K= l ,NOR2 

3 CT ( K , J)-= ~. Cl 0 
CALL Q'JAO 
RETUR1'l 

1000 FC~MAT(20A4/4IS.4Fl0.0,I5) 
1001 FGRMAT(////lX,20A4//T7,4HNNOO,Tl6,5HOROER,T28,3HNLS,T37,4HMSOL, 

• T 49 , l HE• T5.4 • 2H.O R/ 4 I 1 0, 2F l 5. 5) 
1002 FCRMAT(//t7H ITERATIVE SOLVER,T33,2HCP,T48,2HRP,T63,3HMIT/ 

• 25X • 2F l S .S, ! l O) 
1003 FC~~AT(//~lH GAUSS!AN EL1MINAT10N) 
1004 FORMAT(//TL0,1HN,Tt9,lHX,T34,lHY,T49,1HN,T~4,1HS,T76,5HNCOOE, 

• T86, SHSCODE) 
2000 FGRMAT(4Fl0.0,2I5) 
200 l FCRMAT ( I lC ,2F 15 • 5/T41 ,2Fl 5.5 ,2 I 10) 
2002 FO~~AT(JFtO.O) 
2003 FCRMAT(//lSH FIELD STRESSE3//T9,2H5X,T24,2HSY,T39,JHSXY/JFLS.Sl 

END 

Constants for PL singularity 

Cc-=: 2 5 iJ O / ( ~ ! * ( l • Do-PR l ) 
CE=CC/~ 
C l=l .D ·J+?R 
C2= l .00-PR 
C3=1.Dû+2.DO*i=iq 
C~ l .DIJ-2. DO*Pq 
C~=J.00-2.DO~PR 
C6=5 .oa- 2. DO* PR. 
C7=2.DO-PR 
CS-=3 .oo-PR-4-. DO *PR* 1'2 



\ . 

ASEMB 

This subroutine assembles the coefficient matrices Fa and Fu (see 

equations 3.4 and 3.5) and reorders them, ready te be solved. 

The symmetry loop considers each reflected portion of the boundary 

consecutively (1 input boundary, 2 reflected in x-axis, 3 reflected in 

y-axis, 4 reflected in x and y axes). 

The loaded element loop sets the location of the distributed load 

or discontinuity. The affected loop sets the location of the point at 

which the effect of the loaded element is ta be determined. 

During assembly the nonnal and shear stress coefficients are put 

into CS, the nonnal and shear displacement coefficients are put into CU 

and the tangential stress coefficients are put into CT. 

Portions of CS and CU are the only parts which are used to salve the 

prob1em. Consequently, only one complete matrix of values needs ta be 

stored at this time. The coefficients required ta determine the unknowns 

could be recalculated or recalled from disk in subroutine stress to save 

storage space . 

The columns correspond ta the location of the interpolation load 

point value and the rows correspond te the location where the load ~as 

an effect (see figure 7.4). The rows of the vectors P and PS correspond 

to the interpolation point values. 

Interpolation 
points 

1 

4 5 6 

1 Corner Points 

3 

Figure 7.4 Coefficient Matrix Set-up 



All knowns are then put into CS and P ready to be solved . Any 

displacement coefficients are mùltiplied by Young's modulus to avoid 

numerical errors. 
Sl.;::ROUTI NS ASEi-18 
I~PLICIT INTEG~R*2CI-M),INTEGER*4(N),REAL*8(A-H,O-Z) 
CC~MON/CELE~/C(3.6,2),CC.CE,Cl,C2,C3,C4,C5,C6.C7,Cd,RX,RY 
CC~MCN/CCNS/E,?R,P[,GP(3l ,SX,3Y,SXY,NNCD,NORDj~LS,NCR02,NDR,MSCL 
CC .~M C?'-l X { l 6) , Y ( l 6 ) , P S ( 3 0 l , ? ( 3 0 ) , CS ( 3 0 , .3 0 ) , CU ( 3 0 , 3 0 ) , C T ( 15 , 3 0 l , 

•• 
11T ( 30 l 

C ASSE~SLE COEFFIC[E~T MATRICIES 
C CS - NCR~AL & SHEAR STRESS CDEF 
C CU - NCR~AL &. S~EAR DISPL COEF 
C CT - TANGENTIAL STRESS COEF 

RX= l .DO 
RY-=l.DO 
NLSP=::?**{NLS ► ll/2 

C SY~MET!=.Y LOOP 
DO l NC=l,1'L3P 
IF (NO • E Q • l l G .J TO 7 
I F ( N 0- .J ) ~, 4 • J 

4 R Y-=-RY 
3 R.X-=-~X 
7 R.XY=RX*l1Y 

SN=RXY 
C L □ AOED ELE~E1',T LOOP 

DO l !"H 2=t ,,'lNCD 
N.J-= ( ~l 2- l) * t~ORD2 

C AFFECTED LOOP 
DO l M..34-=l ,?'-lNCD 
NL= ( N34- l) *~JORD 
NK=NL1°'::? 
NT=!"l.34 
XM=(X(N~4+l)+X(N34) l/2.DO 
XO=(X(N~4+l)-X(N.34)l/2.D0 
Y M-= ( Y ( N3 4- + l ) + Y ( N 3 4 ) l / 2 • D 0 
YD=(Y(N34+1)-Y(N34) l/2.00 
IF(N34.EC.Nl2.AND.NO.EC.l)NT=-l 
DO 1 J=l .NCRD 
JK-=l'.K+ ( J-1 )*2 
XP=X,\1+X:)#Çl=( J l 
YP=Y~+YD*Gl=(Jl 
CALL ELEM( X?,YP,X(N34) ,Y(N34l,X(Nl2l ,Y(Nl2) ,NT) 
D C l ~= l , !"I C:1 D 2 
SN=SN*RXY 
DO 2 K= l ,2 
C3(JK+K,~J+~)=C(K+l,M.ll*SN+CS(JK+K,~J+M) 

2 CU(J~+K,~J+~l=C(K+l,M,~)*SN+CU(JK+K.~J+M) 
1 CT(NL+J,~J+~l=C(l,M,ll*SN+CT(NL+J,~J+M} 

C PUT ALL ~NC~NS I~ es & P. 
00 1~ N=l,l'lOR 
IF(MT(NJ.NE ■ ll~OTO 9 
DO 12 J-= l , ND :~ 
CSS= CS ( N , J l 
CSCN,Jl=CUCN.Jl*E 

l 2 CU C N , J ) =CSS 
P S ( l'i ) =P S ( ?'-! ) * E 

9 ? ( N) =P S { N) 
10 IF(MT{Nl.E.J.-l)P(Nl=O.DO 

C ELIMINATE KNC~N P'S 
0 0 5 ~-= l , /'J OR 
IF (.',1T ( ~l) .NE.- l) GO TC 5 
DO 9 J-= l ,:0-!0'{ 
P(J):P(J)-C3(J,Nl*PS(N) 

3 CSCJ,Nl=O.C'.1 
C S ( N • :0-J ) = - 1 • :J -J 

5 CONT I~!UE 
RETUF.N 
END 



QUA□ 

This subroutine sets the location of the interpolation points given 

by equation (5.4). 

Sl.:R'.JUT!NE 'JUAO 
I~PLIC!T rNTEGëR*2(I-~),INTEGER*4(N),REAL~ô(A-H,O-:J 
CCMMCN/CONS/E,?R,PI ,GP(3l,SX,SY,SXY,NNCO,NORD,NLS,NOR02,NOR,~SOL 

C LOCATICN QF INTERPOLATICN POINTS 
N=NORD 
IF(N-2) l ,2 ,3 

1 GP( l ):().DO 
::;QT.:J 4 

2 GP(2l=DCCS(~I/~.DO) 
G? ( l ) =- GP ( 2) 
GOTO 4-

3 GP(3)=DCOS(~I/6,00l 
~P(2)=),00 
GP(ll=-GP(3) 

4 RETURM 
='.ND 



ELEM 

This subroutine calculates the coefficients cal l ed for by subroutine 

ASEMB and STRESS. The loaded element and affected point are first 

redefined such that the loaded element is centered at the origin. The 

coefficients are then calculated in the matrix S such that: column 

respectively refers to the tangential, normal and shear components; 

column 2 respectively refers to the normal and shear loads; column 3 

refers to the stress anci dis.placements ; and co 1 umn.. 4 refers. to the 

el ement order ·. 

The matrix W contains the int~rpolation formula (equations 5.1 and 

5 .2). 

PL Singularity 

SUSAOUTINE ELE~(XP,YP.X34.Y34,Xl2,Yl2,NT) 
I~PLICIT rNTEG~R*2Cr-MJ,INTEGER*4(N),REAL•O(A-H,O-Z) 
D I -~E !'IS I C N X l 2 C 2 ) , Y t 2 ( 2 ) , X.34 ( 2) , Y:3 4 C 2 ) , S C 3 , 2 , 2, 3 } , 'Ji C 3, 3 l 
CC ~ M CN /CEL E:-1 / C ( 3 , 6 , 2 l , C: C , CE , C 1 , C 2 , C 3 , C ~ , C 5 , CS , C 7 , C 8 , R X , R Y 
CGMMON/CONS/E,?R,PI ,GP(3l,SX,SY,SXY.N~OD,NO~D,NLS,rl0RD2,NDR 9 MS QL 

C CALCULATE COE~. 
tF(NT-t):,5.6 

5 X O= ( X l 2 ( 2) + X 1 2 ( l) ) / 2 • 0 0 * R Y 
X D= ( X t 2 ( 2 ) - X l 2 ( l ) } / 2 • 0 0 * R X 
Y O= ( Y l ~ ( 2) +Y 12 ( 1) ) / 2. DO *R X 
YO=(Yt2(2)-Yl2( l) )/2.DO*RY 
A=OSQRT(XD**2+YD**2) 
8=-A*G?C t )*RX~RY 
CA:X:)/A 
SA=YO/A 

6 X=(XP-XO)*CA+(YP-YO)*SA 
Y=(YP-YO)*CA-(XP-XO}*SA 
Y2:Y•~2 
DO 15 J=t,:l 
DO 15 Y.= l, NOR02 
DO 15 L=l,2 

15 CCJ.K,LJ=0.00 
A.'-1X-=A-X 
APX-=A+X 
Rl=OSQRT(~FX**2+Y2l 
R2=0S~RT(A~X**2+Y2) 
IF(OABS(YJ .GT.l .E-S)GOTO 14 
TC=0.00 
IF CDASS C X) .LE .A) TD=PI 
GOTO 16 

1 4 TD-=OAT Ml (-M-1X /Y ),-DA TAN ( AP X/Y) 
lé ALl=CLOG(Rl} 

AL.2=0LOG(f12} 
RI=l .DC/~2**:Z-l .DO/Rl*~2 
XRr=AMX/R2•*2+APX/Rl**: 
AL~=AL2-AL1 



C CONSTANT VARIATION 
S ( l , l • l , l l =- Y* X R I - 2 • DO 1' PR* T D 
S ( l , 2 • 1 • l ) =- Y 2 * R I -C 5 * AL D 
S ( 2 , l • l , l l -=Y* XR I - 2 • DO * C 2 * T D 
SC2,2,t,ll=Y2*RI+C~*ALD 
5(3,l,l,l)=Y2*RI-C4*ALD. 
S(3,2,t,ll=-Y*XRI-2.~0*C2#TD 
XALD=AMX*AL2+APX~AL1 
s,2.1.2,t)=-2.oo*Cl*C4*(2.00*A~Y*TD)+C3*XALD 
S( 2,2.2, l) =Cl *Y*ALD 
S ( J, 1 , 2, l l -=S ( 2, 2 , 2, l l 
S(3,2,2,l)=C8*{XALD-2.00*A)-4.DO*Cl*C2*Y*TD 
':i(l,ll=l.00 
IF(NORD.E·J.l )GOTO 10 
'f3=Y•~3 

C ~INEAR VARIATICN 
S ( l, 1.1., 2)=Y3*R I+C3*Y*ALD· · 
S(l,2,1,2)=-Y2*XRI-2.DO*CS*A-2.00*C7*Y*TD 
S(2,l,1,2J=-Y3*RI+C4*Y*ALD · 
S{2,2,1.,2l=Y2*XRI+2.DO*C2*Y*T0+2.DO*C4*A 
S(3,t,1,2)=Y2*XRI-2 ■ DO*C4~A+2.DO*PR*Y*TD 
S(J,2.l,2)=Y3*RI+C5*Y*ALD 
X2AL:J.= AMX* *2* AL2-AP X **2*AL l 
RALD=X2ALD+Y2*ALD 
X2D=AMX**2-APX**2 
Dl=Cl*Y2*AL.:> 
D2=C9/2.DO*(RALD-X2~/2.00) 
S(2,1,2,2)=02-Dl+Cl*X2D/2.00 
S(2,2,2,2)=Cl*Y*{2.00*A+Y*TD) 
SC3,l,2,2l=S(2,2,2,2} 
S ( 3 , 2 • 2 , 2 } =O l +O 2 
IF ( N ORO - 2) 10 • 11 , l 2 

11 82=2.DC*8 
'Il ( l , I. ) -= ( E- X } / 82 
'#( 2, U=C S+X)/82 
'fi { l , 2) =- 1. DO/ 82 
'#(2,2)=-~(1,2) 
GOTO l 0 

12· Y4=Y**4 
C CUAORATIC VARIATION 

S(l,l,l,3)=Y3*XRI+2.DO*Cl.*Y2~TD+2.DO*C3*Y*A 
S(l,2,l,J)=Y4*RI+C6*Y2*ALD-C5*X20/2.DO 
S(2,l,l,3}=-Y3*XRt-2.00*PR*Y2*TD+2.DO*C4*Y*A 
S(2,2,1,3)=-Y4*RI-C5•Y2*ALD+C4#X2D/2.DO 
SCJ,l,l ,3)=-Y~RI-C3*Y2*ALD-C4*X2D/2.00 
S(J,2,l,3)=Y3*XRI+2.00~C7*Y2*TD+2.oa•cs•Y*A 
X3ALO=AMX**J*AL2+APX**3*ALl 
XJO=AMX**3+APX**3 
Dl=Cl*Y2*(2.00*A+Y•TDJ 

· 02=C3/3.00*(XJALD-XJD/~.oo+2.oa*Y2*A+Y3*TD) 
sc2.1..:.J)=02-0l+Cl*X30/3.DO 
SC2,2,2,3}=Cl*Y*(X20/2.00-Y2*ALD) 
SCJ,l,2,3J=SC2,2,2,JJ 
S ( 3 • 2 , 2 • 3 } =O l +D 2 
'oll ( l , l ) =X• ( X- 3 ) 
'-1' ( 2, l) =2 .o C* { 8+ X)* ( 3-X) 
'.1(3.l )=X*(.X+9) 
·o11c 1 .2>=2.oa•x-e 
':1(2,2)=-4.00*X 
W ( 3 • 2) =2 .O O* X +B 
'JI C l • .J) = l .o a 
'11(2,3)=-2.00 
'M { 3 • J) = l .O 0 



3S=2.DO*E'!<*2 
DO l 3 J= l, 3 
:)O l 3 K= l, J 

l .3 W ( J , :< } = ':J ( .J , :< ) /B S 
l O DO 7 L = L , M c.~ D 

LL=(L-1)*2 
D07K=l,2 
LK=LL+K 
DO 7 t-i= l ,MGRD 
DO 3 J= 1 ,.3 

3 C ( J , L:-< , l l= C ( J , Li< , l ) +S ( J , K , l , N l *CC:* •,HL, N l 
DO 7 J=2,3 

7 C(J,LK,2)=C(.J,LK,2l+S(.J,K,2,N)*CE*~(L,Nl 
IF(NT)2,4,3 

4 CALL ROT (-SA, CA) 
GOTO 2 

3 R34-=DSQRT( (X34(2)-X34(1))**2+(Y34(2)-Y34(ll )**2) 
CG-=(X34(2}-XJ4( ll }/R34 
SG-=(Y34(2)-Y34(1))/R34 
sa=SG*CA-CG*SA 
CS=CG*C:A+SG*SA 
CALL RCT(S8,CS) 

2 RETUF<N 
END 

DO Singularity 
SUSRCUTINE ELE~(XP,Y~,X34,Y34,Xl2,Yl2,NTJ 
I~PLIC!T !NT~GER*2( I-M),INTEGER*4(N),Re~L*8(A-H,O-Z) 
D I ~ENS ! 0 N X l 2 ( 2 ) , Y l 2 ( 2 ) , X 3 4 ( 2 J , Y 3 4 ( 2 ) , S ( 3 , 2 , 2 , 3 ) , ,'J ( 3 , .3 ) 
cc M ~CN/'CEL e1/ CC 3, 6, 2) , CC, CE, Cl , C2 , CJ, C4, C 5, CS, C7, es, RX, RY 
CCMMC~/CCN3/E,?R,PI,GP(3},SX,SY,SXY,NNCD,NO~D,NLS,NORD2,NOR,MS~L 

C CALCULAT: COEP. 
IFCNT-L )5,5,5 

5 X O= ( X 1 2 ( 2 l +X l 2 ( l ) ) / 2. 0 C *R Y 
XO=(Xl2(2)-Xl2( l) )/2.DQ.:ltRX 
Y0=(Yl:!(2} +Yl2( ll )/2.DO*RX 
YO-=(Y!2(2)-Yl2( l) )/2.D0*RY 
A=DSCR:(XD**2+YD=*2) 
9=-A•Gr(ll*RX*RY 
C.A=XD/A 
SA=YD/A 

é X=(X?-XO)~CA+(YP-YO)*SA 
Y=(YP-YO l*C.\-(XP-XO )*SA 
Y 2-=Y*i< 2 
DO l S J= l, 3 
'JO l 5 K= l, NORD2 
DO 15 L-=1,2 

15 C(J,K,L.l=0.00 
A~X=~-X 
AF= X=A+X 
Rl-=DSQRT(AF=X~*2+Y2) 
R2=0SQRT(AMX**~+Y2) 
IF (D AS S ( Y l • G T • l • E-5 ) GOT O l 4 
TD=O .DO 
IF(CA8S(X).LE.A)TO=-PI 
GOTO 16 

14 TD=OAT~N(A~X/Y)-DATAN(-APX/Y) 
16 ALD=OLOG(R2)-DLOG(Rl) 

C CONSTANT VARIATI □ N 
Y3-=Y1<~3 
R2I-=l.:)0/R2~*2-l.OO/R1**2 
R~I=l.~O/n2~~4-l.DO/Rl**4 
XlR2-=AMX/n2~*2~APX/R1**2 
:< l R4=A>IX/R 2* * 4+ APX/R 1 **4 
X2.R 4.:A:-1X.** 2/q 2* -*4-AP X** 2/R l * *4 
:<.JR4=A '1X** J/R21< *4+APX-«•J/11 l * *4 
3 ( L , l , l , 1. ) =- X .J:1. 4 + Y 2 * X l f1 4 
S ( l , 2 • l , U =- Y 3* K 4 I - J • 0 0 *Y* X 21< 4-



S(2,1,l, l)=-X~R4-J.DO*Y2*XlR4 
3(2,2,l,l)=-Y3*R4[+Y*X2R4 
S ( 2 , l • 2 , t ) = Y -4< X 1 R 2 +C l * T D 
S(2,2,2,l)=Y2*R2I-C2*ALD 
S ( J , l , 2 , l ) = Y 2 * R 2 I +C 2 * AL D 
S(3,2,2,l)=-Yi<XlR2+Cl*TD 
~(1,1)=1.0ù 
IFCNCRD.EQ.l)GOTO 10 

C LINEAR VARIATICN 
Y4=Y*~4 
S( l,l,l,2)=4.OO*Y2*R2I-2.DO*Y4*R4I+ALD 
S ( l • 2 , 1 , 2 ) =- 4 • :) 0 * Y* X l R 2 + 2 • D O * Y 3 * X 1 R 4 + 2 • DO * T D 
S(2,l,1,2)=-2.oo*Y2*R2I+2.ùO*Y4*R4I+ALD 
S(2,2,1,2l=2.DO*Y*XlR2-2.00*Y3*XlR4 
S C 2 , 1 , 2 • 2 ) =- Y 3 * R 2 I + C 2 * Y *AL 0 
S(2,2,2,2)=Y2*~1R2-2.00*PR*Y*T0-2.DO*C2*A 
S(3,1,2,2)=Y2*XlR2-Cl*Y*TD+2.DO*C2*A 
SC3,2,2,2)=Y3*R2I+C3*Y*ALD 
IF(NCRD-2) ta ,11 ,12 

11 82=2.DO*B 
':I ( l , l l = ( 8- X) / 92 
\WC 2, l l = ( e+ :o / 92 
'li C l , 2) =- 1. OiJ / 32 
'M(2,2}=- ·;1'( 1,2) 
GOTO 10 

C CUAO~ATIC VARIATION 
12 Y5-=Y**5 

S(l,l,t,3)=5.DO*Y2*XlR2-2.0O*Y4*XlR4-4.0O*Y*TO+2.O0*A 
S(l,2,l,3)=-2.oo•YS*R4I+7.DO*Y3*R2I+S.OO~Y*ALD 
S(2,l,l,3)=-3.00*Y2*XlR2+2.DQ*Y4~XlR4+2.~0*A 
S(2,2, l ,3)=-5.D0*Y3*R2I+2.oo:::iy5*R4I-2.D0*Y*ALD 
X2C=AMX**2-APX**2 
S(2,l,2,3)=-Y3*XlR2+2.00*C2*Y*A+2 ■ DO*PR*Y2*TO 
S(2,2,2,3)=-Y4,;4rR21-C2*X2D/2.00-C~*Y2*ALO 
SC3,1,2,Jl=-Y4#R2I+C2*X2Q/Z.OO-C3*Y2*ALD 
S(3,2~2,3)=Y3*Xlk2+2 ■ DO*C3*Y*A-CS*Y2*TO ' 
"·< 1. 1 > =X*C x-a > 
WC2,ll=2.D0*Ca+X)*(B-X) 
':I ( 3 • l ) =X* ( X+O ) 
'.Il( 1.2)=2.D'.J*X-a 
'1'(2,2)=-4.CQ"iCX 
'1' C 3 , 2 ) = 2 • D G* X ~:3 
W ( l , 3) = 1 .O 0 
'1' ( 2 , 3 } =- 2. DO 
':1(3,3)=1.DC 
8S:;2 .0:1*8**2 
ùO 13 J=l,J 
ùQ 13 K=l,J 

l 3 il ( J , K ) = ':I ( J , K ) /0 S 
l O 00 '1 L= 1 ,:-~CRD 

LL= ( L-1 l *2 
00 7 K=l ,2 
LK=LL+!< 
:> 0 7 N-= 1 , ~ ! C.:1 D 
ùO 7 J= 1 ,2 
JP=J+l 
C ( J , LJ< , l ) = C ( .J , L :< , l ) + S ( J , K , l , N ) *CC * ·• ( L , N ) 

7 CCJP,L~,2)=CCJ~,LK,2)+S(JP,K,2,Nl*CE*~CL,N) 
C ( 3 ,LL+l, l l=C (2 ,LL+2, l) 

9 C ( 3 , LL + 2 , l >-= C ( l , L L + l , 1 l 
IFCNT)Z,4,3 

4 CALL R □T(-3A,CA) 
GOT'J 2 

3 R34=0SC2T( L~J4(2)-XJ4(l)l**2+(Y34(2)-YJ4(1) l**2l 
CG=(X3~(2)-X34( l) )/RJ4 
SG=(Y3~(2)-Y34( l))/~34 
S8-=SG~CA-CG~3A 
CS=CG*CA+SG'4<S..\ 
CALL ROT(S3,(:9) 

2 rtETUF.N 
END 



ROT 

This subroutine rotates any orthogonal set of stresses and 

displacements to a new axis frame. 

SUSRCUTINE ROT(S8,CSJ 
I~PLIC!T INTEGER*2(I-~l,INTSGER*4(N),REAL*8CA-H,0-Z) 
DIMENSION S(3,S,2l 
C C 1•1.'-4 C !'V CELE '-1 / C ( 3 , 6 • 2 ) , CC , CE , C 1 , C 2 , C 3 , C 4 , C 5 , C 6 • C7 , C3 • R X , RY 
C CMMCN/CONS/::'., .:>R •PI , GP ( 3 l, SX, SY, SXY, t-i NCD, NORD, /'!LS ,NOR02, iJOR, MSOL 

C ROTATE T □ REQUI~=C ANGLE 
DO l J= l ,.J 
DO 1 K= l ,:·!GR::>2 
DO l M= 1 ,2 

1 S(J,K,N)=CCJ,K,Nl 
DO· 4- K=l,NCRD2 
C(2,K,2)=SC2,K,2l*C8-S(3,K,2l*S8 
CC3,K,2l=SC2,K,2)*S3+S(3,K,2)*C8 
C ( l , K , 1 ) =S ( 1 , i< , l ) *CS** 2 + S ( 2 , K , l ) * S 8 * * 2 + S ( 3 , K , t ) • 2 • DO* SiJ *C 3 
CC2,K,l)=S(l,K,ll*S8**2+5(2,K,l)*CS**2-S{3,K,ll*2•DO*S8*C8 

4- CC 3,K, l )=( SC 2,K., l )-5( 1,K, l l) *SS*C8+SC3 ,K, l) *(C8**2-SE3**2l 
RETURM 
END 



STRESS 

This subroutine first calculates the boundary unknowns, and then 

any interior point values. The field stresses are added back in at 

this stage. 

SUS~OUTIN~ STRESS 
I~PLICIT .INTEGER*2(I-MJ,INTEGER*4(N},REAL*8(A-H,0-Z) 
DI~E:NS!ON 5(3,2} 
CCMMCN/CELEM/C(3,6,2),CC,CE,Cl,C2,C3,C4,C5,C5,C7,C3,RX,RY 
CC~MCN/CCNS/E,?R,PI,~P{3),SX,SY,SXY,NNOO,NORD,NLS,NORD2,NOR,MSOL 
C CM!':1CN X ( l 5} , Y ( 16 } , PS C 30 ) , P ( ::!O ) , CS ( 3 0 • 3 0) •CU ( 30 • 3 0 l , CT ( 15 , .3 0 l • 

.MT(JO) 
C CALCULATE SOUNCARY UNKNOWNS 

'a AI TE ( 5 • 20 00 J 
00 12 N= l • NOR 
IF(.1.1T(M).NE.-lJGOTO 12 
DD=PS(N) 
PS(N)=P(N) 
P(Nl-=OD 

12 CCNTINUE 
DO l I'.= 1 ,Ni"oOO 
XO=X(N+l )-xon 
YO=Y(~l+l )-Y(.") 
R=OSQRT(X~**2+YD**2) 
CA=XD/R 
SA=YO/R 
ST=SX*CA**2+2.JO*SXY*CA*SA+SY*SA**2 
SN=SX*SA**2-2.DO*SXY*CA*SA~SY*CA**2 
SS=(SY-SX)*CA*SA+SXY*(CA**~-SA**2l 
JJ-: ( N- l) *NCR:> 
NN:JJ>!r2 
DO 1 K-=l ,!'!G:1!) 
NS=NNH K-1 l :fl2 
'lî = J J+!< 
Nl=2 
N2~2 
I F ( ~ T ( .'I S + l l • ,:: Q. L l N L = l 
IF(MT(~IS+2) •. ~Q. L )N.2-=l 

C AOC FIELD STRESSES GACK IN 
S(l,ll=ST 
5(2,l)=SN 
5(3,l)=SS 
5(2,2)=0.O0 
S(J.2}=~.00 
IF(Nt.E:a.1 lGOTO 20 
S ( 2 • l l =SC 2, l l +PS ( NS + 1} 
GOTO 21 

20 SC2,2}=PS(~S+L)/E 
21 IF(N2.ca.1 )~OTO 22 

S ( J , L l = 5 ( 3 , L ) +P S ( NS + 2 ) 
GOTO l"J 

22 5(3,2l=PS(~S+2l/E 
l O DO 3 J=l ,.~JOR 

S ( L • l ) -=S ( l , l l +CT (NT• J) *P ( J l 
S C 2 • ~l l J = S ( 2 • ·" l l +CU ( l'IS + l , J l * P ( J l 

3 S(J,N2l=SC3,N2)+CU(NS+~,Jl*P(Jl 
l W R I T !:: ( 5 , 20 0 l l N, P { NS + 1 l • P ( N S + 2 l , ( S ( J • 2 l • J ·= 2 , J) • ( S ( J , 1 ) , J: l , 3 ) 

'S 1 



C CALCULAT: ~I C INT=R!'IAL STrtESSES & OlSPL.A.CE:-1ENTS AT (XP,YP) 
11 REAOC5,3000)NC 

IF(NC.LT ■ l )RET~RN 
'tJ RITE ( 6 , JO O 1 l 
DO 4 J=l ,.~ic 
DO g K=2,3 

9 SC:<,2}-:0.;Jù 
C AOD FIELD STR~SSES 

S(l,l)=SX 
5(2.l}=SY 
S(3,l)-=SXY 
READ(5,30C2)XP,YP 
RX-=l .00 

.: RY=l.O'J 
NLSP=2**(NLS+l)/2 
00 7 N·J= l, /1.LSP 
IF(N0.2Q.l}GOT8 8 
IF(N0-3)5,é,5 

é RY=-RY 
5 RX=-!1X 
8 RXY=RX*RY 

SN=RXY 
00 7 N= l ,NNJD 
NK={ N-1) *NORD2 
CA LL ELE ?-1 ( X? , Y? , X ( l ) , Y { l ) , X ( N ) , Y C N } , 0 ). 
DO 7 L= L ,NŒ102 
SN -=Si'l*P.XY 
oa 2 K=2,3 ; 

2 SCK,2)=SCK,2)+C(K,L,2l*P(NK+Ll*SN 
DO 7 K= L ,.3 

7 S(K,L)=S(~,L)+C(K,L,t)*PCNK+L)*SN 
4 ,,., R I T E C 6 , J C C 3 ) X? • Y P , ( S ( 4-K , 2 ) , l< = 1 , 2 } , ( S C K , l ) , K = l , 3 ) 

GOTO 11 
2000 FOHHAT( lHl ,.36H 8:JUNDARY :>ISPt.ACE.~E?'~TS AND STRESSES/ 

.TlO,LH~l,Tl9,2HDN,T34,2HDS,T~g.2Hu~.T6~.2HuS,T79,2HST,T94,2HSN,Tl 0 9 

.,2HSS) , 
2001 FORMAT[[l0,40LS.5~3Fl5.5) 
3000 FC;:.."!AT{ [5) 
3001 FOHMAT{///3ôH INTERNAL DISPLACEMENTS AND STRESSES/ 

.T20,tHX,T35,1HY,T49,2HUX,Tô4,2HUY,i79,2HSX,T94,2HSY,Tl09,3HSXY) 
3 0 0 2 F O H .•~AT ( 2 F l O • 0 > 
3003 FORMAT[lOX,2~15.5,2~15.5,3Fl5.5) 

END 



GAUSS 

This subroutine conducts Gaussian elimination on the matrix C. 

SUS~CUTINE GAUSS(C,N,NCJ 
I~PLICIT INTEGER•2( I-Ml,INTEGER*4{NJ,REA~*S(A-H,C-Z) 
DI~ENSICN C(NO,NO) 

C GAUSSIAN ELIMIN~Tl□ N 
NM-=N-1 
DO 2 .J.= 1 , ;,n~ 
3=CCJ,J) 
JP:J+l 
DO 2 K-=JP,N 
A=CCK,.J)/3 
DO l L.=JP, 1' 

l C(K,L)=CC~,Ll-C(J,L)*A 
2 CONTINUE 

RETUR!'l 
END 



• 

BSUB 

This subroutine first reduces the vector of knowns P, then back 

substitutes replacing the knowns in P. 

SUSRCUTINE 8SUB(C,?,N,NO) 
I~PLICIT INTEGER*2(I-Ml,INTEGER*4(~l,REAL*BCA-H,C-Zl 
~IMENSION C(NO,ND),?(NC) 

C REDUCTION 
NM=N-l 
DO l J=l ,NM 
A=CCJ,J) 
JP:J+l 
DO l K=JP,N 

1 P(Kl=P(K)-~(J)*C(K,J)/A 
C BACK SUSST!TUTICN 

P(N)=P(Nl/C(N,N) 
DO 2 J=l,NM 
K:N-J 
S-=O. 
KP.::K +- l 
DO 3 L=KP,N 

3 S-=S+C(K,L)*P(L) 
2 P(K)=(P{K)-S)/CCK,K) 

RETURN 
END 



' 

GSI 

This subroutine conducts Gauss-Siedel iteration with relaxation 

on the matrix C such that R contains the knowns, and Pis filled with 

the determined values. 

SUSROUTINE GSI(C,R,P,N,NO) 
I~PLICIT INTEGER*2CI-Ml,INTEGER*4(NJ,REAL*8(A-H,0-Z) 
DIMENSION C(NO,NO),RCND),P(NO) 
CC~MCN/ITSCL/CP,RP,~IT 

C GAUSS-SIE~EL ITERATION ~ITH RELAXATION 
N IT=O 

1 M=O 
IF(NIT.EC.MIT)GOTO 7 
NIT=NIT+l 
DOSI=l,:'I 
T =R C I ) 
IF ( I .ea • l) Ga TC 2 
I.''4=!-1 
ùO 4 J=l,I ,'-4 

4 T=T-P{Jl*CCI,J} 
2 IF ( I .E-.J.l'll GùTO 3 

I P= I + l 
:JO 3 J=IP,1' 

s r-= r- P < J > *C c r • J > 
3 ER=OA33CP{Il*CCI,Il-T) 

C ERR OR I l'I :3T IH ,HE OF KNOWN VALUE 
IF (ER • :3 T • Ci= ) ;'_.: l 
T = T / C ( r • r ) -P ( r ) 

6 ? ( I ) :PC I ) + RP * T 
IF(;',1.NE.:J)GOTO l 

7 DO .3 ! = l ,.'l 
R ( I J =C • 
DO 8 J= t ,N 

8 rt(I)=R{IJ+CC!,Jl*P(J} 
RETUHM 
END . 

(p 1 



• 

7.3 Sample Problem - Pressurized Crack 

(i) Problem 

Consider a mathematically flat crack, modelled using one quadratic 

DO element and exhibiting one line of symmetry (Refer to figure 7.2). 

y 

C 

p = 1 

X 

Line of Symmetry 

Figure 7.2 Pressurized Crack 

(ii) Input 

The required program input is shown below . 

Card Number Co 1 umn Number 

5 10 1 5 20 25 

1 Title Pressurized Crack 

E = 106 

V= 0.25 

C = 1 

30 35 

2 Contra 1 2 2 1 0 1000000. 
3 Mesh and B.C. o. 1.0 1.0 
4 Mesh o. 0.0 
5 Field Stresses 0. 0.0 0.0 
6 Interna 1 Points 1 
7 Coordi na tes 1. 1.0 
8 End Program 0 

Table 7.2 Sample Problem Input 

40 45 

0.25 
0.0 0 

50 

0 
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( iv) Results 

Jaeger and Cook (1969) give the normal displacement on the surface 

of this crack as . 

v ,. p(1-2v)(1+v)(c.2-Y'2 )~ 

E 

'"(1-y2}~ X 6.25 X 10-] 
( 7. 1 ) 

The stresses at the point (1 ,1) can also be determined from the 

equations given by Jaeger and Cook (1969) as 

ax • 0.0527 , a • 0.1064 , , • 0.2979 . 
Y xy 

(7.2) 

It can be observed that the results from the program agree very 

well with this closed form solution. 



CHAPTER VIII 

CONCLUSIONS 

The boundary e1ement method offers considerab1e advantages over 

finite e1ement ana1yses when the ratio of surface area to tota1 vo1ume 

of the body considered is sma11. This is particularly evident in 

prob1ems such as the pressurized crack sample problem described 

previously . 

The indirect approach is most desirable when modelling cracks or 

joints using the singularity corresponding to a discontinuity in 

displacement since the va1ue of the discontinuity · will be required . 

On the other hand, the direct approach should be used when modelling 

closed boundaries since the value of the discontinuity or boundary force 

is of no interest and fewer unknowns need be considered. 

The singularity corresponding ta a discontinuity in displacement 

offers considerable advantages in situations where rigid body motion 

cannot be accounted for by independent means (bending) . 

Higher order elements give consistently more accurate results than 

lower order elements for the same number of unknowns considered. In 

many of the examples considered, quadratic elements gave an order of 

magnitude accuracy increase. 

Errors due to kinks in boundaries are limited to the immediate 

vicinity of the kink or corner and do net appear to affect the accuracy 

of the soltuion at other distant points. The accuracj increases as 

one moves away from the boundary. The unknown boundary stress and 



displacement values determined in the anal yses are reasonabl y accurate 

however, particularly away from any kinks or corners. Bending is poorly 

accommodated by the potnt load singularity . High order displacernent 

discontinuity elernents show promise for effectiveness in this situation. 
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