1-12629c.2 BArjang OPUB

Workshop on Numerical Modelling Timmins, Ontario April 25-27,1989

> EXAMPLE PROBLEMS PCEPFE Software Package

> > CANMET/MRL/CMTL Ottawa, Ontario

> > > This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

ix C *'Q*-//// 1PL

g.,

EXAMPLE PROBLEMS

Several examples were devised to illustrate the use of the PCEPFE computer package and to demonstrate how to achieve the loading correctly.

Underground Opening

•• ,

The first example is a hypothetical underground opening, horse-shoe in shape, approximately 10m high and 6m wide, is located at a depth of about 340m below the ground surface. Figure 1 shows the cross sectional view of the location of the opening. The region of interest for simulation is shown in dashed-lines. Beacuse of symmetry, only one half of will be considered for simulation. Figure 2 shows the schematic diagram of the opening with boundary constraints. A traction is applied along the top boundary to simulate the 'over-burden' stresses. Note that a postive traction represents compression. The horse-shoe opening, its zone diagram and its associated key diagram for meshgeneration are shown in Fig. 3. Figure 4 shows the corresponding finite element mesh.

The input data required by MSHGEN to generate part of the input for PCEPFE is shown in Fig. 5. Additional input data required by EPFEC, as shown in Fig. 6, is then merged with MSHGEN output data ('genout.dat') to produce an input file which is acceptable to PCEPFE.

The Initial Stresses are assumed to be varying linearly with depth and are in the form of:

 $\sigma_{xx} = a_{xx} + b_{xx} \times Y$ $\sigma_{yy} = a_{yy} + b_{yy} \times Y$ $\sigma_{zz} = a_{zz} + b_{zz} \times Y$ $\sigma_{xy} = a_{xy} + b_{xy} \times Y$

where σ_{xx} , σ_{yy} are the horizontal and vertical stresses respectively. σ_{zz} is the stress perpendicular to the plane and σ_{xy} is the shearing stress in the XY plane. a_{xx} , b_{xx} , a_{yy} are the coefficients relating the stress components with depth. Y is the depth at which the stresses are evaluated. The definition of axes is shown in Figs. 2 and 3.

Under Gravitational Loading and under plane strain conditions, the loading for evaluating the resultant stresses from the finite element model can either be achieved by applying appropriate tractions along the boundary of a model or by placing appropriate constraints along the sides of the model.

<u>Case 1 - No Initial Stresses</u>:

In this case the loading is assumed to be gravational only. The loading can be generated through appropriate boundary constraints as shohwn in Fig. 2.

••••

Fig. 1 A hypothetical underground opening - a sectional view

٠.

Fig. 2 An underground opening with fictious boundaries and constraints

1

`۹,

.

•

Fig. 3 A zone diagram (numbers are specified nodes and numbers in brackets are zones) and its associated key diagram

Fig. 4 Finite element mesh

5

									Totel No.
'Exampl	e 1A -	- gravity	with no i	nitia	stre	ass'			
26	8	$\frac{2}{2}$ 4	2 0						Dou elemons
<u> </u>	1015	·	- ·	2		5	15		
6/5	4	1 6		(_	່. ເ		- FIT
<u> </u>	3	0.00	0.00	1	(5	Y		
2	2	3.00	0.00	}					
3	3	50.00	0.00 `	<u> </u>					
4	1	0.00	30.00						
5	0	3.00	30.00						
6	1	50.00	30.00						
7	1	0.00	39.00						
8	0	3.00	39.00						
9	1	50.00	39.00						
10	1	0.00	40.00						
11	0	2.00	40.00						
12	1	50.00	40.00						$\langle \rangle$
13	1	0.00	70.00						
14	0	2.00	70.00						
15	1	50.00	70.00						
16	0	17.50	0.00						
1/	0	0.00	20.00						
18	0	3.00	20.00						
19	0	17 50	20.00						
20	0	17 50	30.00						
21	0	17.50	39.00						
22	ñ	0.00	50.00						
20	õ	2 00	50.00						
25	ŏ	50.00	50.00						
26	õ	17.50	70.00						
1	1	2 5	4 0	18	0	17	1	0	0
2	2	3 6	5 16	19	20	18	1	õ	0
3	4	5 8	7 0	0	0	ō	1	2	0
4	5	6 9	8 20	0	21	0	1	ō	0
5	7	8 11	10 0	0	0	0	1	2	0 0 1
6	8	9 12	11 21	0	22	0	1	0	o no s pressure cardo
7	10	11 14	13 0	24	0	23	1	0	1,4
73	8.	70 8	.70						- V
/ 8	11	12 15	14 22	25	26	24	1	0	1
/ , 3	8.	70 8	.70						
"/									
/									
1					•				

.

6

50 20 0.0 2 1.0 1 -1.0 0 1 0.029 4.0E+05 2.50 0.25 40.0 0.0 2 0.000 0.00 0.0 0.0 0.0 0.0 Inside ... 0 ***** Evaluating the state of initial stresses ****** 1 ****** Excavating the underground opening ****** 2

۰ ۲۰

Fig. 6 EPFEC input data with no initial stresses - Example 1A

:(?

If displacements are of no concern, then it is not required to enter the initial stresses. The input of initial stresses will not affect, in any way, the resultant stresses resulting from any excavation, but it will have an effect on the displacements.

In other words, a model, consisting of no excavation, is loaded with boundary tractions together with the input of initial stresses which are compatible with the applied tractions, then, the displacements everywhere within the model should be zero. This establishes the reference point for evaluating displacements in the subsequent subproblems.

First, let's examine the model under gravitational loading which is achieved through the boundary constriants but without the input of initial stresses. A traction is applied at the top of the model to simulate the 'overburden stresses'.

The input data for MSHGEN and EPFEC, genin.dat and epfecin.dat, is given in Fig. 5 and Fig. 6 respectively.

Case 2 - with initial stresses

Under gravitational loading, the initial shearing stress $\sigma_{xy} = 0$, therefore, the coefficients $a_{xy} = b_{xy} = 0$. The vertical stress σ_{yy} is due to gravity only and the horizonal stresses, σ_{xx} and σ_{zz} , are due to Poisson's effect. If we assume that γ , the average unit weight of rock mass, is 0.029 MPa/m, and the Poisson's ratio is 0.25, then, the stresses are given:

$$\sigma_{yy} = \gamma \times h'$$

$$\sigma_{xx} = \frac{\nu}{1 - \nu} \sigma_{yy}$$

$$\sigma_{zz} = \nu(\sigma_{xx} + \sigma_{yy})$$

Where h' is the depth below the ground surface.

The coordinates system adopted for this model is shown in Fig. 3. At the top of the model, Y = 70m, and it is 300m below the ground surface (h' = h = 300).

We have:

$$\sigma_{yy} = 0.029 \times (-300)$$
$$= a_{yy} + b_{yy} \times Y$$
(1)

Note that a negative sign is added here so that the sign convention used in the PCEPFE program is maintained (please refer to users manual for detail).

At the bottom of the model, where Y = 0.0m and h' = 300 + 70, we have: We have:

$$\sigma_{yy} = 0.029 \times (-300 - 70)$$
$$= a_{yy} + b_{yy} \times Y$$
(2)

From Eq. 1 and Eq. 2, we have: $a_{yy} = -10.73$ $b_{yy} = +0.029$

The following two equations also hold:

$$a_{xx} + b_{xx} \times Y = \frac{0.25}{1 - 0.25} (a_{yy} + b_{yy} \times Y)$$
(3)
$$a_{zz} + b_{zz} \times Y = 0.25 \times \{ (a_{xx} + b_{xx} \times Y) + (a_{yy} + b_{yy} \times Y) \}$$
$$= \{ 0.25 \times (a_{xx} + a_{yy}) + 0.25 \times (b_{xx} + b_{yy}) \times Y \}$$
(4)

From Eq. 3 and Eq. 4, we obtain:

$$a_{xx} = -3.57667$$

 $b_{xx} = +0.009667$
 $a_{zz} = -3.57667$
 $b_{xx} = +0.009667$

Summarizing, we have:

$$a_{xx} = -3.576667$$

$$b_{xx} = +0.009667$$

$$a_{yy} = -10.7300$$

$$b_{yy} = +0.02900$$

$$a_{zz} = -3.576667$$

$$b_{zz} = +0.009667$$

$$a_{xy} = 0.0$$

$$b_{xy} = 0.0$$

The input data for MSHGEN (genin.dat) is same as that shown in Fig. 5. However, the input for EPFEC (epfecin.dat) with the initial stresses is different and is shown in Fig. 7.

Assignment No.1:

- 1. Run both cases (Case 1 and Case 2) and examine the deformed mesh before and after the horse-shoe shaped excavation was made.
- 2. Print (if you have a 132-column printer) your output file: epfeprt.dat and examine the resultant stresses and displacements for both cases. What are the differences?

Table 10 See pagi 27 NP NRES NMOT MaxELR ACELR NELZ SCALE 50 20 0 2 0.0 -1.0 1.0 0 1 0.029 4.0E+05 0.25 2.50 40.0 0.0 0.000 2 0.0 0.00 0.0 0.0 0.0 0 -3.576667, 0.009667 --10.730000, 0.029000 -PXX byv -> bZZ -3.576667, 0.009667 → 0.0, 0.0 \rightarrow $\delta \chi y$ ****** Evaluating the state of initial stresses ****** 1 ***** Excavating the underground opening ****** 2 Input Lata Fig. 7 EPFEC input data with initial stresses - Example 1B

Case 3 - Uniform Tectonic Stresses:

In the Canadian Shield, it is known that horizontal stresses are greater than vertical stresses. In this case the conditions simulating the in-situ stress field must be achieved by applying appropriate tractions along the boundary of the mine model. Let's suppose that the vertical stress σ_{yy} is due to gravity only. The horizonal stresses, σ_{xx} and σ_{zz} , are consisting of two components, one of which is the tectonic stress uniformly distributed across the depth, say 3 MPa in x-direction and 2 MPa in z-direction, and the other part is due to the Poisson's effect, i.e., $\frac{\nu}{1-\nu}\sigma_{yy}$. Also we assume that the vertical stress is one of the principal stresses. Then the initial shearing stress $\sigma_{xy} = 0$, and therefore, the coefficients $a_{xy} = b_{xy} = 0$.

Now we assume that γ , the average unit weight of rock mass, is 0.029 MPa/m, and the Poisson's ratio is 0.25, then, the stresses are given:

$$\sigma_{yy} = a_{yy} + b_{yy} \times Y \tag{5}$$

$$\sigma_{xx} = \sigma_{xx} + \sigma_{xx}^{''} \tag{6}$$

$$\sigma_{zz} = \sigma'_{zz} + \sigma''_{zz} \tag{7}$$

where a_{yy} and b_{yy} are the same as we calculated before. σ'_{xx} and σ'_{zz} are the tectonic stress components which are assumed to be constant acting across depth, i.e., $\sigma'_{xx} = -3$ and $\sigma'_{zz} = -2$. σ''_{xx} and σ''_{zz} are the components induced by gravitational loading, i.e.:

$$\sigma_{xx}'' = \frac{\nu}{1 - \nu} \{\sigma_{yy}\} = \frac{\nu}{1 - \nu} a_{yy} + \frac{\nu}{1 - \nu} (b_{yy} \times Y)$$
(8)

$$\sigma_{zz}^{''} = \nu(\sigma_{xx}^{''} + \sigma_{yy}) \\ = \frac{\nu}{1 - \nu} a_{yy} + \frac{\nu}{1 - \nu} (b_{yy} \times Y)$$
(9)

Similarly, at the top of the model, Y = 70m (where h' = h = 300m, and at the bottom of the model where Y = 0 (where h' = 300 + 70).

therefore

$$a_{yy} = -10.730$$

 $b_{yy} = +0.029$

From the following two equations:

$$a_{xx} + b_{xx} \times Y = \{-3.0 + \frac{0.25}{1 - 0.25} \times (-10.73)\} + \frac{0.25}{1 - 0.25} (0.029 \times Y)$$
$$a_{zz} + b_{zz} \times Y = \{-2.0 + \frac{0.25}{1 - 0.25} \times (-10.73)\} + \frac{0.25}{1 - 0.25} (0.029 \times Y)$$

we obtain:

·· .

$$a_{xx} = -6.576667$$

 $b_{xx} = 0.0096667$
 $a_{zz} = -5.576667$
 $b_{xx} = 0.0096667$

Summarizing, we have:

 $a_{xx} = -6.576667$ $b_{xx} = 0.0096667$ $a_{yy} = -10.7300$ $b_{yy} = 0.029$ $a_{zz} = -5.576667$ $b_{xx} = 0.0096667$ $a_{xy} = 0.0$ $b_{xy} = 0.0$

Note that the calculation of these coefficients are dependent on the coordinate system you selected for your model.

Figure 8 shows the boundary constraints and boundary tractions for this example. The input data for MSHGEN and EPFEC, genin.dat and epfecin.dat, are shown, respectively, in Fig. 9 and Fig. 10.

•, .

.

r

Fig. 8. A schematic diagram showing the boundary constraints and tractions - Example 1C

.

Frame		- arau	-i+v	unif		tecton	ic st	TACC	and	initial	stress,
26 27			- Uy,	0	J L III	000000	TC 20	1033	unu	THEOTOR	801088
20	10 2	т	2	v							
E E	10	6									
1	-7 I	0 00	0	00							
⊥ ົ	5	3 00	0.0	00							
2 2	2	5.00	0.0	00							
3		0.00	20.	00							
ч с	1	2.00	30.	00							
5	4	5.00	30.0	00							
7	1 1	0.00	20.	00							
0	1	3 00	30.	00							
0 0	1	5.00	30	00							
10	1	0.00	10	00							
11	Ô	2 00	40.	00							
10	1	50 00	40	00							
13	1	0.00	70	00							
14	Ô	2 00	70	00							
15	1	50.00	70	00							
16	Ō	17.50	0.0	00							
17	õ	0.00	20.0	00							
18	õ	3.00	20.0	00							
19	1	50.00	20.0	00							
20	ō	17.50	30.0	00							
21	0	17.50	39.0	00							
22	0	17.50	40.0	00							
23	0	0.00	50.0	00							
24	Ō	2.00	50.	00							
25	1	50.00	50.0	00							
26	0	17.50	70.0	00							
1	1 2	5	4	0	18	0	17	1	(0 (
2	2 3	6	5	16	19	20	18	1	() 1	
2	6.5766667	6.2866	667								
3	45	8	7	0	0	0	0	1	2	2 0	
4	56	9	8	20	0	21	0	1	(0 1	
2	6.2866667	6.1996	667								
5	78	11	10	0	0	0	0	1	2	2 0	
6	89	12	11	21	0	22	0	1	() 1	
2	6.1996667	6.1900	000								
7	10 11	14	13	0	24	0	23	1	() 1	
З	8.70	8	.70								
8	11 12	15	14	22	25	26	24	1	() 2	
2	6.1900000	5,9000	000								
3	8.70	8	.70								

Fig. 9 MSHGEN input data - Example 1C

1.0 20 2 0.0 -1.0 50 0 0 0,029 1 35.0 0.0 0.50 4.0E+05 0.25 0.000 2 0.00 0.0 0.0 0.0 0.0 0 -6.576667,0.0096667 -10.730000,0.0290000 -5.576667,0.0096667 0.0 0.0, ****** Evaluating the state of initial stresses ****** 1 ***** Excavating the underground opening ****** 2

Fig. 10 EPFEC input data - Example 1C

Assignment No. 2:

۰. ر

Run the model with uniform tectonic stresses (Example 1C), and examine the results.

Case 4 - Arbitrary Tectonic Stresses:

Let's assume again that the vertical stress σ_{yy} is due to gravity and the horizonal stresses are given as follows:

$$\sigma_{yy} = a_{yy} + b_{yy} imes Y$$

$$\sigma_{xx} = 1.5\sigma_{yy} \tag{10}$$

$$\sigma_{zz} = 2.0\sigma_{yy} \tag{11}$$

The evaluation of these initial stress coefficients for this case is simple and straight forward.

The calculation of a_{yy} and b_{yy} is same as before:

$$a_{yy} = -10.73$$

 $b_{yy} = 0.0290$

From Eqs. 10 and 11 we have:

$$egin{aligned} \sigma_{xx} &= 1.5 \sigma_{yy} \ &= 1.5 (-10.73 + 0.029Y) \ \sigma_{zz} &= 2.0 \sigma_{yy} \ &= 2.0 (-10.73 + 0.029Y) \end{aligned}$$

Therefore, we have:

$$a_{xx} = -16.095$$

 $b_{xx} = +0.0435$
 $a_{yy} = -10.7300$
 $b_{yy} = +0.02900$
 $a_{zz} = -21.460$
 $b_{zz} = +0.0580$
 $a_{xy} = 0.0$
 $b_{xy} = 0.0$

The input data for MSHGEN and EPFEC, genin.dat and epfecin.dat for the example 1D, are given in Fig. 11 and Fig. 12 respectively.

'Examp	ple No.	1D	- grav	ity,	arbi	trary	tect	onic	stress,	and	initial	stress'
26	8	2	-4	2	0						•	
4	10											
6	4	1	6									
1	3		0.00	́О.	00							
2	2		3.00	0.	00							
3	2		50.00	0.	00							
4	1		0.00	30.	00							
5	0		3.00	30.	00							
6	0		50.00	30.	00							
7	1		0.00	39.	00							
8	0		3.00	39.	00							
9	0		50.00	39.	00							
10	1		0.00	40.	00							
11	0		2.00	40.	00							
12	0		50.00	40.	00							
13	1		0.00	70.	00							
14	0		2.00	70.	00							
15	0		50.00	70.	00							
16	0		17.50	0.	00							
17	0		0.00	20.	00							
18	0		3.00	20.	00							
19	0		50.00	20.	00							
20	0		17.50	30.	00							
21	0		17.50	39.	00							
22	0		17.50	40.	00							
23	0		0.00	50.	00							
24	0		2.00	50.	00							
25	0		50.00	50.	00							
26	0		17.50	70.	00							
1	1	2	5	4	0	18	0	17	1	0	0	
2	2	З	6	5	16	19	20	18	1	0	1	
2	16.095		14.790	0								
3	4	5	8	7	0	0	0	0	1	2	0	
4	5	6	9	8	20	0	21	0	1	0	1	
2	14.790		14.398	5								
5	7	8	11	10	0	0	0	0	1	2	0	
6	8	9	12	11	21	0	22	0	1	0	1	
2	14.3985	;	14.355	0								
7	10	11	14	13	0	24	0	23	1	0	1	
3	8.	70	8	.70					_			
8	11	12	15	14	22	25	26	24	1	0	2	
2	14.3550) i	13.050	0								
З	8.70		8.70									

1

Fig. 11 MSHGEN input data - Example 1D

.

0.0 -1.0 1.0 50 20 0 2 0 0.029 1 5.00 40.0 0.0 4.0E+05 0.25 0.000 2 0.00 0.0 0.0 0.0 0.0 0 -16.0950, 0.04350 -10.7300, 0.02900 -21.4600, 0.05800 0.0, 0.0 ***** Evaluating the state of initial stresses ****** 1 ***** Excavating the underground opening ****** 2

Fig. 12 EPFEC input data - Example 1D

Assignment No. 3:

í

1. Run the model with the specified loading as given above, and examine the state of stresses. Are the tractions applied along the boundaries compatible with the initial stresses?

(S Agony

ANOTHER EXAMPLE WITH MSHGEN

Finite element meshes can be designed in different ways using the mesh-generator MSHGEN. To demonstrate the capability of MSHGEN we will re-design the mesh for the same horse-shoe shaped mine geometry as we discribed in the previous example (Figs. 2, 3).

The new zone diagram and its associated key diagram for the new mesh are shown in Fig. 8.

Usually the boundary constraints generated by MSHGEN are correct, however, there are exceptions.

In this case, the output file generated by MSHGEN, genout.dat, is shown in Fig. 9. It is noted that constraints at several nodes, marked by "**", are incorrect. Therefore, genout.dat has to be modiffied before you run the interface program EPFEC which will merge the modified genout.dat with additional input data (epfecin.dat) and produces the input file required by PCEPFE, i.e., epfein.dat.

٠.

,

. ..

Fig. 8 Zone diagram with triangular zones

'Exampl	Le 2	- ho	rse-si	loe s	haped	U/G	орө	ning,	gravi	.ty	Loading	, no	initial	stres
24	10	2	5	2	0									
2	3													
3	3	3	3	З										
1	2		0.00	0 (.00									
2	2		40.00) 0	.00									
3	1		0.00) 25	.00									
4	0		3.00) 25	.00									
5	1		0.00) 26	.00									
6	1		0.00) 28	.00									
7	1		0.00) 30	.00									
8	0		3.00) 30	.00									
9	1		40.00) 30	.00									
10	1		0.00) 31	.50									
11	0		3.00) 34	.00									
12	1		40.00	60	.00									
13	1		0.00) 33	.00									
14	0		2.00) 35	.00									
15	0		20.00) 60	.00									
16	1		0.00) 34	.00									
17	1		0.00) 35	.00									
18	1		0.00) 60	.00									
19	1		0.00) 16	.00									
20	0		16.40) 16	.00									
21	0		16.40) 30	.00									
22	1		0.00) 44	.00									
23	0		8.50) 44	.00									
24	0	_	16.00) 43	.00				-					
1	5	3	4	6	0	()	0	0	1	1 ()		
2	3	1	2	4	19	() ``	20	0	1	0 0)		
3	0	4	8		0) ``	0	0	1	1 (,		
4 E	4 7	2	9	8	20		,	21	0	4		,		
5 6	0	0	10	11	21		,	24	0	4		, `		
0 7	10	9 11	14	13	21		,	2 4 ^	0	4		,		
	10	11	14	13	0		,	0	0	4	2 (,		
8	11	0 70	15	14	24	,)	23	0	T	0 1	•		
2	4.0	0.10	4 **	0.10	~		、	~	^	-	<u> </u>			
40	13	14	10	16	0		,	0	0	ч Т	2 0	,		
10	14	15	ŦS	0 70	23	(,	22	U	T	0 1	•		
2		0.10		ð./0										

. s,

, ⁷

Fig. 9 Input data for MSHGEN - genin.dat

ĮЮ 0.0 100 20 1.0 1 2 0.0 0 1 0.029 10.00 40.0 0.0 4.0E+05 0.25 2 0.000 0.0 0.0 0.0 0.0 0.00 0 ****** 1st sub-problem - excavating the lower level of the U/G opening ****** 1 ****** 2nd sub-problem - excavating the upper level of the U/G opening ****** 2

۰,

Fig. 10 Input data for EPFEC - opfocin.dat

96	75	2	6	1							
Example	2 -	horse	-shoe	sha	ped U/G	opening,	gravity	Loading,	no	Initial	Stress
1	1	0.000	0000E	+00	0.41500	00E+02					
2	1	0.0000	000E	+00	0.40750	00E+02					
3	1	0.000	000E	+00	0.40000	00E+02					
4	1	0.0000	000E	+00	0.33333	33E+02					-
5	1	0.0000	000E	+00	0.20000	00E+02					
6	2	0.0000	000E	+00	0.00000	00E+00	**				
7	1	0.000	000E	+00	0.42000	00E+02					
8	0	0.5000	000E	+00	0.41000	00E+02					
9	0	0.9999	9999E	+00	0.40000	00E+02					
10	0	0.177	7777E	+01	0.33629	63E+02					
11	0	0 5518	3518E	+01	0 20296	29E+02					
10	°,	0 122)))))))))))))))))))	+02	0.00000	005400					
12	1	0.1222	0000F.		0.43500	005100					
14	Å	0.0000	1000E	100	0.41050	005+02					
1 - 1	0	0.1000	1000E	101	0,41250	006402					
15	0	0.2000	JOOOE.	+01	0.40000	006+02					
16	0	0.503	0366	+01	0.33925	92E+02					
17	0	0.1400	000E	+02	0.20592	59E+02					
18	2	0.2888	3889E	+02	0.00000	00E+00					
19	1	0,000)000E	+00	0.43000	00E+02					
20	0	0.1500)000E·	+01	0.41500	00E+02					
21	0	0.3000)000E·	+01	0.40000	00E+02					
22	0	0.9777	777E·	+01	0.34222	22E+02					
23	0	0.2544	1444E·	+02	0.20888	89E+02				•	
24	2	0.5000)000E·	+02	0.00000	00E+00	**				
25	1	0.0000)000E·	+00	0.43666	66E+02					
26	0	0.1500)000E-	+01	0.42666	67E+02					
27	0	0.3000	000E-	+01	0.41666	66E+02					
28	0	0.1007	408E-	+02	0.37814	81E+02					
29	0	0,2574	1074E+	102	0.28925	92E+02					
30	1	0.5000	000E-	102	0.15000	00E+02					
31	1	0.0000	0000E+	+00	0.44333	33E+02					
32	ō	0.1500	000E4	F01	0 43833	335+02					
33	Ň	0 3000	0000	+01	0 43333	335+02					
34	õ	0 1037	00000 03754	L02	0 41407	415+02					
35	ñ	0.1007	1704 EJ	102	0.36062	115-02					
36	4	0.2000	0000	102	0.30902						
20	4	0.5000			0.30000	006402					
31	1	0.0000	000E1	100	0.45000	JOE+02					
38	0	0.1500	000E4	-01	0.45000	JOE+02					
39	0	0.3000	000E4	-01	0.45000	JOE+02					
40	0	0.1066	667E4	-02	0.45000	D0E+02					
41	0	0.2633	333E+	-02	0.45000	DOE+02					
42	1	0.5000	000E+	-02	0.45000	DOE+02					
43	1	0.0000	000E+	-00	0.455000	00E+02					
44	0	0.1500	000E+	-01	0.45916	36E+02					
45	0	0.3000	000E+	-01	0.463333	33E+02					
46	0	0.1066	667E+	·02	0.48518	52E+02					
47	0	0.2633	334E+	02	0.530740)7E+02					
48	1	0.5000	000E+	-02	0.60000)0E+02					
49	1	0.0000	000E+	-00	0.460000)0E+02					
50	ō	0.1500	000E+	·01	0.46833	33E+02					
51	õ	0.3000	00054	01	0.47666	36E+02					
52	õ	0 1066	66754	.02	0.52037)3E+02					
52	ň	0.1000	22251	.02	0 611/0	555-02					
00 E1	4	0.2033	0005	.02	0.75000						
04 FF	4	0.000	00051	-UZ	0.100000						
55	1	0.0000	OOOE+	00	0.405000	JOE+02					

• .

Fig. 11 Output data generated by MSHGEN (genout.dat)- nodes with incorrect constraints are marked by '**'

56	0	0.15	00000	E+01	0.477	5000	E+02
57	0	0 30	იიიიი	E+01	0 490	იიიი	E+02
E0	ŏ	0.00	00000	E100	0.100	CCCC	E.00
50	0	0.10	00007	ETUZ	0.555	00000	GTUZ
59	0	0.26	33333	E+02	0.692	2222	E+02
60	1	0.50	00000	E+02	0.900	0000	E+02
61	1	0.00	00000	E+00	0.470	0000	E+02
62	0	0 13	22222	F+01	0 481	6666	F+02
02	0	0.10	00000	D.01	0.101		
03	0	0.20	0000/	E+01	0.493	00000	BTUZ
64	0	0.93	70371	E+01	0.559	2592	E+02
65	0	0.23	03704	E+02	0.694	8148	E+02
66	0	0.43	66667	E+02	0.900	0000	E+02
67	1	0 00	იიიიი	E+00	0 475	0000	E+02
60	ō	0.11	00000	E.01	0.100	0000	GT02
00	0	0.11	00007	ETU1	0.400	00000	
69	0	0.23	33333	E+01	0.496	6666	E+02
70	0	0.80	74072	E+01	0,562	9630	E+02
71	0	0.19	74074	E+02	0.697	4075	E+02
72	0	0.37	33333	E+02	0.900	0000	E+02
73	- i	0 00	00000	F+00	0 490	0000	5100 5100
74	2	0.00	00000		0.100	0000	B102
14	0	0.10	00000	E+01	0.490	0000	E+02
75	0	0.20	00000	E+01	0.500	0000	E+02
76	0	0.67	77778	E+01	0.566	6666	E+02
77	0	0.164	44444	E+02	0.700	0000	E+02
78	0	0.310	00000	E+02	0.900	0000	E+02
70	- 1	0 000	00000	ET00	0 403	2222	GTU3
00	1	0.00	00000	B+00	0.400	0000	
80	0	0.66	00007	E+00	0.491	6667.	E+02
81	0	0.13	33333	E+01	0,500	0000	E+02
82	0	0.45	18518	E+01	0.566	6666	E+02
83	0	0.10	96296	E+02	0.700	0000	E+02
84	0	0 20	66667	E+02	0 900	0000	E+02
95	Ť	0 000	00000	ET00	0.000	ecce	CT00
00	1	0.000			0.400	22220	
80	0	0.33	33333	E+00	0.493	3333	5+02
87	0	0.660	66666	E+00	0.500	0000	£+02
88	0	0.22	59259	E+01	0.566	6666	E+02
8 9	0	0.548	81481	E+01	0.700	0000	E+02
90	0	0.10	33333	E+02	0.900	00001	E+02
01	1	0 000	00000	5+00	0 400	00001	2102
00	4	0.000			0.400	00000	3102
92	1	0.000		6+00	0.495	00001	5+0Z
93	1	0.000	00000	E+00	0.500	00001	≤+02
94	1	0.000	00000	E+00	0.566	6666]	S+02
95	1	0.000	00000	E+00	0.700	00001	E+02
96	1	0.000	00000	E+00	0.900	00001	3+02
1	- 1	2	я	7	1	1	0
5	ŝ	2	ő			4	õ
2	2	3	9	0	1	1	0
3	3	4	10	9	1	3	0
4	4	5	11	10	1	З	0
5	5	6	12	11	1	З	0
6	7	8	14	13	1	1	0
7	Ŕ	ā	15	14	-	-	Ň
0	0	10	10	4 5	4	-	0
8	9	10	10	15	Ţ	3	0
9	10	11	17	16	1	3	0
10	11	12	18	17	1	3	0
11	13	14	20	19	1	1	0
12	14	15	21	20	1	1	0
13	15	16	22	21	Ť	3	Ő
14	10	17	22	20	-	5	Å
14	10	11	23	22	L ,	3	0
15	17	18	24	23	1	3	0
16	19	20	26	25	1	1	0
17	20	21	27	26	1	1	0
18	21	22	28	27	1	з	0
19	22	23	29	28	1	3	0
20	27	20	30	20	1	ž	ñ
Z .V	20	44	00	2.0	1	0	~

هې ا

Fig. 11 (continued) Output data generated by MSHGEN (genout.dat)- nodes with incorrect constraints are marked by '**'

25

21	25	26	32	31	1	1	0
22	26	27	33	32	1	1	0
23	27	28	34	33	1	З	0
24	28	29	35	34	1	З	0
25	29	30	36	35	1	З	0
26	31	32	38	37	1	1	0
27	32	33	39	38	1	1	0
28	33	34	40	39	1	З	0
29	34	35	41	40	1	З	0
30	35	36	42	41	1	3	0
31	37	38	44	43	1	2	0
32	38	39	45	44	1	2	0
33	39	40	46	45	1	З	0
34	40	41	47	46	1	З	0
35	41	42	48	47	1	З	0
36	43	44	50	49	1	2	0
37	44	45	51	50	· 1	2	0
38	45	46	52	51	1	З	0
39	46	47	53	52	1	З	0
40	47	48	54	53	1	З	0
41	49	50	56	55	1	2	0
42	50	51	57	56	1	2	0
43	51	52	58	57	1	3	0
44	52	53	59	58	1	З	0
45	53	54	60	59	1	З	0
46	55	56	62	61	1	2	0
47	56	57	63	62	1	2	Ō
48	57	58	64	63	1	З	0
49	58	59	65	64	1	3	0
50	59	60	66	65	1	3	1
2	8.7	00000	00	8.70	0000	•	-
51	61	62	68	67	1	2	0
52	62	63	69	68	1	2	Ō
53	63	64	70	69	1	3	0
54	64	65	71	70	1	3	0
55	65	66	72	71	1	3	1
2	8.7	00000	. –	8.70	0000	-	_
56	67	68	74	73	1	2	0
57	68	69	75	74	1	2	õ
58	69	70	76	75	1	3	Ő
50	70	71	77	76	1	3	Ő
60	71	72	78	77	1	3	1
ົ້	8 7	0000	10	8 70	0000	Ŷ	-
61	73	74	80	79	1	2	0
62	74	75	81	80	1	2	Ő
63	75	76	82	81	1	3	õ
64	76	77	83	82	1	ă	õ
65	77	78	84	83	1	3	1
00 2	8 70	20000	01	870	0000	Ŭ	-
2 66	70	80	86	85	1	2	٥
67	80	91 91	87	86	1	2	ñ
68	81	82	88	87	1	3	ñ
60	82	83	80	88	1	3	ñ
70	83	94	<u>a</u> n	80	1	3	1
' V ' N	00 2070	0.000	50	8 7A	0000	0	T
∠ 71	9E	98	۵۶	01	1	n	Δ
≀⊥ 7つ	00	00	07	0.0	4	ς γ	ñ
14 79	00	01	90 Q/	92 03	⊥ 1	2	n N
1071	01	00	0Ľ	50 04	⊥ 1	2	0
/ 1 7 F	00	09	90	94 05	1	ວ ຈ	1
10	09 07	90	90	90	1	3	T
2	8.70	10000		0.10	0000		

*** ***

• • •

Fig. 11 (continued) Output data generated by MSHGEN (genout.dat) - nodes with incorrect constraints are marked by '**'

Assignment 4:

Refer to Fig. 8, and assume the model is loaded with gravity only, please modify genin.dat (Fig. 9) and epfecin.dat (Fig. 10) so that:

1. ensure that all the boundary constraints are correct;

- 2. calculate and enter initial stresses coefficients assuming that the top of the model (Fig. 8) is located at 300m below the ground surface;
- 3. mining step 1 excavating zone 1 and zone 2;
- 4. mining step 2 backfilling zone 1 and zone 2;
- 5. mining step 3 excavating zones 5, 7 and 9.

Note: For faster turn around, please use a large C value to prevent any yielding, i.e., an elastic analysis only.

Example :

No. I nodal points 24 10 180 Blonk common Storay needed . ~ 30000 assigned

.

 \sim \sim

MRL/CANMET NUMERICAL MODELLING CAPABILITIES

Canadian Mine Technology Laboratory

	S P O F P D N T N O P N S P P P P P P P P P P P P P P P P P																					
MODELS	S A P 2 D	P C S A P 2 D	Q U A D	E P F E	P C E P F E	D R U K P R A	N E A T	T E M P E E	N A O S	G E O R O C	B M I N E S	N O N S A P	S A P 3 D	B I T 3 D	P C B E M	B I T E M J	B E A P	B E A P D D	B E A P M	E N E R B R A Y	M I N T A B	P C M I N T A B
F.E.	x	x	x	x	(x)	x	x	. X	x	x	x	x	x									
B.E.														x	(\mathbf{x})	x	x		x	x		
D.D.					·													x_	x		x	(\mathbf{x})
2 D	x	x	x	x	\mathbf{x}	x	x	x	x	x	x				$\overline{\mathbf{x}}$	x				x		
3 D											X	X	x	x			x	x			х	(\mathbf{x})
Axisymmetric																						
Static, linear	x	x	x	x	(\mathbf{x})	x	x		x	x	x	X	x	x	· D	x	x	x		x	x	(.1)
Stress/displacement	x	x	x	x	(\mathbf{x})	x	x		x	X	x	X	X	x	(\mathbf{x})	x	x	x		x	x	(\mathbf{x})
Temperature/heat flux								x														
Energy release																				x	x	x
Dynamic											•	x										
Non-linear			x	(x)	\mathbf{x}	x	x			x	x	x				x						i.
Joints/faults			x								x					x			x			
Progressive failure				x	\mathbf{x}																	
Transient		·							· .	x	x											
Thermal stress	X	x									x											
Excavation	x	x	x	X.	æ	x	x_			x	X		x								x	$\overline{\mathbf{x}}$
Backfill			x	x	\mathbf{x}	x	x			x	x		x								x	\mathbf{x}
Substructuring						. X																
Restart			x			x	X			x	X					x					x	$\overline{\mathbf{x}}$
Pre-processor	x	x	?	x	\mathbf{x}	x	X		x	x	X		X	X	\mathbf{x}	x	?	?	?		х	\mathbf{x}
Post-processor	x	x	?	x	x	x		:	X		x		x		EX.	x	?	?	?		x	x.
Interactive		x			\bigcirc										(x)		x	x	x			$\widehat{\mathbf{x}}$
Documentation	g	g	?	g	B	f	f		g	g	g		f	f	f	f	f	?	?	f	g	g
Sources	1	1	*	1	1	1	1	1	1	1	2	3	1	4	1	5	*	*	*	1	1	1
Documentation:	$\frac{1}{g - good; f - fair;}$																					
Sources:	1 - MRL/CANMET; 2 - U.S.B.M.; 3 - Univ. of California, Berkley;																					
	4 -	Dr.	Ť./	4. C	ruse	, So	uthw	rest .	Rese	arch	Inst	itut	e, Sa	in A	nton	io T	x.	•				
	5 -	CSI	4 - Dr. 1.A. Gruse, Southwest Research Institute, San Antonio 1x. 5 - CSIRO; * - under development.																			

MRL/CANMET NUMERICAL MODELLING CAPABILITIES

Canadian Mine Technology Laboratory

_ · ·																						
MODELS	S A P 2 D	P C S A P 2 D	Q U A D	E P F E	P C E P F E	D R U K P R A	N A T	T E M P F E	N A S	G E O R O C	B M I N E S	N O N S A P	S A P 3 D	B I T 3 D	P C B E M	B I T E M J	B E A P	B E A P D D	B E A P M	E N E R B R A Y	M I N T A B	P C M I N T A B
F.E.	x	X	x	x	(\mathbf{x})	x	x	x	x	x	x	x	X									
B.E.														X	(\mathbf{x})	x	X		X	X		
D.D.																	\mathbf{x}					
2 D	X	X	<u>x</u>	X	ω	X	X	X	X	X	<u>x</u>				\bigcirc	X				X		
<u>3 D</u>			$\begin{array}{c c c c c c c c c c c c c c c c c c c $														(\mathbf{x})					
Axisymmetric	L			<u> </u>				·	<u>x</u>	x	x											
Static, linear	X	X	x	<u>x</u>	(\mathbf{x})	x	X		x	x	x	Χ	X	x	· Q	x	X	X		X	<u>x</u>	(\mathbf{x})
Stress/displacement	x	x	x	x		x	x		x	x	x	X	x	x	(\mathbf{x})	X	X	X		X	x	(x/
Temperature/heat flux					Ŭ			x								_						
Energy release																				X	x	x
Dynamic												X										
Non-linear			X	$\widehat{\boldsymbol{\sigma}}$	$\overline{\mathbf{x}}$	x	x			x	X	X		L		X						
Joints/faults			x								X					x			x			
Progressive failure				x	\mathbf{x}																	
Transient										x	X											
Thermal stress	x	X									X											
Excavation	x	X_	<u>x</u>	X	\mathbf{Q}	x	x			x	x		X								x	$\overline{\mathcal{Q}}$
Backfill			x	X	(\mathbf{x})	X	x			X_	x	[x			L					<u>x</u>	(X)_
Substructuring	ļ			ļ		X								ļ			ļ					Ļ
Restart			x			x	x			x	X					X					X	
Pre-processor	x	x	?	x	\mathbf{x}	x	x	L	X	x	x	L	X	X .	\mathbf{Q}	X	<u>?</u>	?	?		x	\mathbf{x}
Post-processor	x	x	?	x	\mathbf{x}	x			x	<u> </u>	x	L	x		X	X	?	?	?		X	
Interactive		X_			$\widehat{\mathbf{x}}$						· · · ·				6	L	X	X	X			\mathbf{R}
Documentation	ß	g g g g g f f f f g g																				
Sources	1 1																					
Documentation: Sources:	g - good; f - fair; 1 - MRL/CANMET; 2 - U.S.B.M.; 3 - Univ. of California, Berkley; 4 - Dr. T.A. Cruse, Southwest Research Institute, San Antonio Tx. 5 - CSIRO: * under development																					
		· \J	in U	•	unc	icr u	C A GT	opui	G116+									_				

Table 1

_

 - · -----

`