

$1-2369 \mathrm{Cl} 1$

INSTALLATION AND USE OF A QUANTIMET 720 IMAGE ANALYZER FOR PARTICLE CHARACTERIZATION
K. J. JUDGE

MRL 89-28 (TR) C, / MPUB MARCH, 1989

INSTALLATION AND USE OF A QUANTIMET 720 IMAGE ANALYZER FOR PARTICLE CHARACTERIZATION
by
K. J. Judge*

ABSTRACT

The size and shape of particles, in a dust, can affect the explosion hazards posed by the dust. Dust explosion work at the Canadian Explosive Atmospheres Laboratory (CEAL) now involves the use of an image analyzer. The analyzer is being used to characterize the shape and size of grains involved in explosion tests at this laboratory. It is hoped that this information will indicate the relationships between these parameters and that a more comprehensive prediction of dust explosion phenomena will result.

The system configuration, operating procedures and supporting hardware and software are detailed in this report.

Key words: Image analyzer; dust explosions, particle size distribution; procedures

* Research Technologist, Canadian Explosive Atmospheres Laboratory, Mining Research Laboratories, CANMET, Energy, Mines and Resources Canada, Ottawa, Ontario.

INSTALLATION ET UTILISATION DE L'ANALYSEUR D'IMAGE QUANTIMET 720 POUR LA CARACTERISATION DES PARTICULES

par

K.J. Judge*

RESUME

La dimension et la forme des particules de poussière peut influer sur les dangers d'explosion de cette dernière. Les Laboratoires canadiens de recherche sur les atmosphères explosives (LCRAE) se servent, à présent, d'un analyseur d'image dans leurs travaux sur les coups de poussière. L'analyseur est utilisé pour caractériser la forme et la taille des grains utilisés au laboratoire à des fins d'essai sur les matières explosives. On espère que l'information recueillie démontrera les liens entre ces paramètres et qu'il sera possible d'établir des prévisions plus complètes pour ce qui est des coups de poussière.

Dans le present rapport, la configuration du système, le mode operatoire, de même que le matériel de soutien et les logiciels sont decrits de façon détaillee.

Mots clés : Analyseur d'image; coups de poussière; distribution granulométrique des particules; mode opératoire.
*Technologue de la recherche, Laboratoires canadiens de recherche sur les atmosphères explosives, Laboratoires de recherche minière, CANMET, Energie, Mines et Ressources Canada, Ottawa (Ontario)

TABLE OF CONTENTS

Page
ABSTRACT i
RESUME ii
INTRODUCTION 1
SYSTEM CONFIGURATION 1
UNIT 1 2
Microscope 2
Stage X/Y Control 2
Auto Focus 3
Stabilized Power Supply 4
Sensing Head 4
UNIT 2 5
System Control 5
Display 6
Variable Frame \& Scale 7
2D Auto Detector 7
Standard Computer 8
Function Computer 9
Calculator Field/Feature Interface 10
Programmer 11
UNIT 3 12
Peach Computer 12
CFFI Interface Card 13
SAMPLE PREPARATION 15
SLIDE PREPARATION 16
EXAMPLE ANALYSIS 16
CONCLUSIONS 17

TABLES

No. Page

1. Lens Combinations vs. System Specifications 18
2. Sieve Mesh vs. Opening Size 18
APPENDICES
I Operating Procedure "Cold Boot" 19
II Programmer Card Instruction Set 22
III Operating Procedure "Disk Formatting" 24
IV Start-up Switch Settings 25
V Operating Procedure "Slide Preparation" 29
VI Operating Procedure "Auto Focus" 30
VII Operating Procedure "Data Collection" 31
VIII Operating Procedure "Data Printout" 34
IX Operating Procedure "Plot Histograms" 35
X Rear Panel Interconnections 37
XI DUST.BAS 52
XII PRTDATA.BAS 55
XIII HSTOGRAM.BAS 57
XIV CFFI Interface Card Block Diagram 68
XV CFFI Interface Cable Wiring Chart 69
XVI Histograms - Pyrite Unwashed 70

INTRODUCTION

A Quantimet 720 optical image analyzer has recently been installed at the Canadian Explosive Atmospheres Laboratory (CEAL). This apparatus is intended to be used as a tool to further our knowledge of dust explosions and their relationship to grain shape and size. By making some basic measurements, we hope to quantitatively characterize the shape and size of dust particles in a given sample. This information will be correlated with various explosion tests in attempts to find relationships between grain shape and size and their effect on explosion hazards.

The 700 Series of analyzers, made by Imanco, is no longer in production and documentation is somewhat lacking. However, the resolution of the system is above average and the quality of the microscope stage and optics is quite good. This report is intended to detail the current system configuration, module functions, sample preparation techniques, operating procedures, and in-house software so as to provide a comprehensive and well organized source of information relevant to this laboratory's image analysis requirements. Since the development of software for this project will be an evolving process, the programs developed to date should be considered only as a first stage in this evolution.

SYSTEM CONFIGURATION

The system consists of three physically separate units:

1) Microscope, stage and associated modules
2) Analyzer function and display modules
3) Desk top computer and peripherals

Units 1 and 2 (Quantimet 720 image analyzer) are modular in design but, being of older design, do require interconnections to be made by the rear of the unit using twisted pair leads. These interconnections are detailed in Appendix X.

UNIT 1

Microscope

The microscope, made by Reichert, is of the type used in optical mineralogy and is fitted with X 10 , X 25 and X 40 objectives. A lever operated prism is used to transmit the image to either a scanning head or a binocular eyepiece. The binocular has two adjustments. The central knob adjusts for operator eye separation and the left monocle adjusts to account for differing eye strength (left to right). The microscope is currently set up for transmitted light but a reflected light arrangement can be realized by repositioning the light source to the upper mounting bracket. Between the microscope and the scanning head is a magnifier which has a three lens drum. This drum can be rotated (using the front mounted indicator knob) to select one of the three lenses (X0.8, X1.0 or X1.2) which, combined with the three objectives, provide a variety of final magnifications (see Table 1).

Stage x / y control

The microscope stage can be controlled automatically, in the "X" (left to right) and "Y" (front to back) directions using stepper motors. This control is carried out via the stage $\mathbf{x / Y}$ Control module and the resolution is equal to one step or 80 microns. A footswitch is provided for manual initiation of a step but normally the Programmer module in Unit 2 is used to generate step instructions. Fully manual movement of the stage is facilitated by setting the AUTO/MANUAL switch to MANUAL and turning the appropriate stage mounted knob by hand. The knob at the right rear controls the "Y" and the knob at the left front controls the "X" movement. Details of the operation of this module are included in Appendices I, IV and VII.

Auto Focus

The "Z" or vertical movement, used to focus the microscope, is controlled by the Auto Focus module and has a selectable resolution down to 0.11 microns. Generally, the stage horizontal motion is very planar and as a result the image usually stays in good focus when the stage is moved in the "X" and "Y" directions. However, on occasion, the slide/sample/cover glass combination may, on lengthy traverses, cause the image to go out of focus. Often, this module can be used to keep the image in good focus (for opaque grains) should such a combination occur. When attempting to refocus, the module detects the sharpness of grain boundaries and hunts up and down using a successive approximation method (better/worse) until the grain boundaries become sharpest. The procedure for using this module may be found in Appendix VI.

Panel controls for this module consist of STEP SIZE and SKIP FIELDS knobswitches; MANUAL/AUTO/START, ALLOWED EMPTY FIELDS and POWER ON toggle switches; and a Reser push button. The step size knobswitch is used to select the distance (in microns) that the stage will travel up or down each time a stage move is initiated during a focusing operation.

The SKIP FIELDS control selects the number of fields of view that will be skipped between focusing operations. A flatter slide requires fewer refocus operations than a sharply tapered one and similarly so would a smaller horizontal step increment (for the same lens).

The three position toggle switch ALLOWED EMPTY FIELDS will allow the system to encounter 1, 8 or an infinite number of empty fields, avoid focusing and continue to the next field. If more fields are encountered than the switch setting allows, program control will halt. This might occur when the sample is concentrated in one spot and a square sampling traverse is followed giving empty fields around the edges. This situation is unlikely however, because the amount of noise in the system currently produces enough image information to fool the module into focusing on it. If the ALLOWED EMPTY FIELDS lamp is on, it
can be reset by setting the switch to the infinite position or by turning the module off then back on (providing there is an image).

The MANUAL/AUTO/START toggle switch selects MANUAL or AUTOMATIC focusing modes and has a momentary start position which can be used to manually start the focusing sequence. This START parallels the rear panel START input which is used during program control for the specific case when an out of focus is sensed by the module but no focus command is issued (this is a module level fault).

The LIMIT lamp lights when the fine focus has travelled up or down to the end of its travel (LIMIT). The RESET push button is used to reset the module when a limit has been detected. However, the module will not RESET until the focus has been removed from the limit condition by the operator.

Stabilized Power Supply

The stabilized Power Supply module is an adjustable regulated DC power supply which provides 6 to 13 volts to the microscope's lamp. The only panel controls are the POWER ON toggle switch (up is on/down is off) and the voltage adjust knob. The numbers 7 through 12 around the knob correspond, approximately, with lamp voltage.

Sensing Head

The sensing head may be either a Vidicon Head or a Plumbicon Head; the latter is currently being used at CEAL. In either case, the only control associated. with the sensing head is an IMAGE ROTATION knob. This knob, when turned, actually rotates the scanning head inside the module thereby rotating the image received by the system and seen on the Display module. This feature in combination with the Variable Frame \& scales module allows precise length and.width measurements on individual grains since their axes can be lined up with the grid. This module
receives video raster signals from the System Control module, scans the optical image and produces an analog video output to the system Control module which in turn directs it to the 2D Auto Detector for grey level detection and to the Auto focus module for better/worse focus detection.

Unit 2

Unit 2 processes the Video signal received from Unit 1 , displays it, makes data available to the computer and provides stage stepping and focusing instructions back to unit 1 . The following is a module by module functional description of Unit 2. The modules are presented in a function logical order.

System Control

This module generates all system timing signals required by the scanner and Display modules and any other module requiring timing signals. In turn, it receives the analog signal from the scanner head, amplifies it, applies a shade correction and makes this signal available to the other modules. The shade correction is a detector (see 2D Auto Detector), with a block of memory and a summing amplifier which effectively tares out (removes) variation of shading inherent in the microscope and scanning head. This correction is made by scanning a blank slide and digitally storing this signal (pixel by pixel). Then, by subtracting this stored information from the incoming signal (from a sample slide), a shade corrected image is produced. Lastly, data received from other modules is accumulated and characters are generated for display and sent to the Display module.

The SHADE CORRECTION - RANGE knob adjusts the amount of correction applied. Full range would be used for large blank slide gray level variations (tare) but gives coarser resolution. Minimum range would be used for small variations and give finer resolution. Usually this knob is set to full range (full CW).

The SET push button is used to initiate the tare scan which takes about 13 seconds.

The sENSITIVITY/WHITE LEVEL toggle switch when set to sEnsituvity gives an indication, on the analog meter, of the gain of the video amplifier. When this switch is set to wHITE LEVEL the meter indicates the strength of the incoming video signal.

The ACCUMULATOR section has a RESET ALL push button which resets all modules connected to it via the rear panel RESET interconnection. Also there is an Acc toggle switch which, in the up (on) position, sets the module to accumulate consecutive readings in its memory. When this memory is full the red full indicator lamp lights and can be reset by the RESET push button.

The SYSTEM MODE section consists of an AVERAGE switch which, when in the AVERAGE (up) position, averages the readings from sixteen scans before displaying the data or making it available to the cFFI. This mode takes approximately four times longer than a single operation but will reduce variations in consecutive readings. The INTERCEPT/AREA switch setting determines whether the detector will be used to detect transitions (grain boundaries) or areas (within boundaries): This switch is left in the AREA position. The CONTINUOUS/SINGLE SCAN/AUTO switch when set to CONTINUOUS will scan repeatedly while the SINGLE SCAN/AUTO setting will scan only when the sINGLE sCAN button is pressed or under program control from the Programmer module.

Display

This module receives various display signals and character information, from other modules, and displays them on the screen as selected by the operator. These signals are:

1) Image - shade corrected video signal
2) Detected - selected by the Auto Detector module
3) Scales \& Figs - scales as selected by the Variable Frame and Scale module

- figures; left from: detector; right from Calculator Field/Feature Interface module

4) Guard - the border around the selected frame (highlights the character display)
5) Computed \& Amended - selected via the Standard and Function Computer modules
Each signal has its own on/off toggle switch and intensity knob to control its display, and there is a brightness and standby switch for the overall display.

Variable Frame \& Scale

This module allows the user to adjust the size and shape of the field being examined by the other modules. These features allow manual grain size measurements or, possibly, exclusion of areas that may have shading variations that are too large for the shade corrector. Also, since the computers (standard and Function) perform their operations on grains whose lowermost picture point is within the variable frame, the upper frame boundary can be lowered so that most grains thus observed will fall completely within the screen boundaries i.e., if the grains are generally less than 100 picture points in diameter the upper boundary can then be set to 100 and the whole grain will be analyzed even if only its bottom edge is within the frame selected.

FRAME POSITION is defined as the upper left corner of the Variable Frame and is set via the corresponding HORIZONTAL or VERTICAL thumbwheel switch with respect to the upper left corner of the display. FRAME SIRE defines the variable frame with respect to the frame position and is set by its corresponding switches. One other control on this module is the VARIABLE/STANDARD toggle switch and controls which display (Variable as set by FRAME SIZE and FRAME POSITION or STANDARD) is to be used by the display and the computers.

2D Auto Detector

This module is essentially an adjustable shading comparator.

The incoming analog video signal (shades of gray) is compared (lighter than/darker than) to a reference level which is set by the operator. A "true" comparison results in the picture point being DETECTED. Thus, in a transmitted light situation where a grain will appear darker than the background, the grain may be detected by selecting darker than (black down arrow) and adjusting the detection level (or selector) until the grains are detected. This information is used by other modules to calculate areas, lengths, boundaries etc.

The upper left knobswitch sets the detected function (or polarity) and has three settings; darker than (top position black down arrows); slice (middle position - white horizontal line); and lighter than (bottom - white up arrows) and defines the relation of the detected area with respect to the detection level or levels. The knobswitch directly below this one selects the detection level to be used as a reference for the detected function. The SELECTOR A and SELECTOR B knobs are used to set detection levels within its 0 to 64 grey range. Seven segment displays to the left of the knobs indicate these levels. As an example of the detection logic, a darker than detected function and a detector selector setting of 3 would display a point darker than the level selected by sexector b.

The DISPLAY switch, usually left in the on (up) position, acts as an enable sending the DETECTED information to the Display module. The AUTO DELINEATOR, when on (switch in up position), removes the transition region halo errors from the slice display and sharpens the grain boundaries. The EMPHASIS control selects the kind of image detail to be given accentuated contrast. This switch is normally left in the off position. The ATtENUATION control, normally left in the DETAIL position, reduces (attenuates) the contrast of certain features and details.

Standard Computer

This module normally (INPUT switch set to NORMAL) receives the detected signal mentioned above and, depending upon its
function switch setting or program input, calculates various parameter values. However, input may be received from another module (INPUT switch set to MODIFIED). The SIZER may be used (switch up) so that only those grains that are larger or smaller (toggle switch) than the selected number (thumbwheel switch) of picture points. The sizer is not used here as the Peach computer is being used, instead, to sort grain size. Three keys may be used to further select or ignore features. These keys are also not used for our application. AREA, PERIMETER, INTERCEPT (also called PROJECTION) and number of grains (or COUNT) in a field are the parameters which may be derived using this module. Two PROJECTIONS (HORIZONTAL and VERTICAL) are available. A PROJECTION is the horizontal or vertical length (in picture points) of a grain plus the horizontal or vertical length (in picture points) of any convolutions of the grain. A setting exists for automatic control of this module via the Programmer module. One other function setting (PATTERN RECOGNITION) allows control to be passed to the Function Computer which is discussed below and is the normal setting. The DIsplay enable switch position is unimportant since the Function Computer is providing the COMPUTED display for the system.

Function Computer

This module, with the function switch of the standard Computer set to PATTERN RECOGNITION, can be used to determine AREA, PERIMETER, horizontal and vertical PROJECTION and FERET diameters. Like the PROJECTION two FERET diameters (HORIZONTAL and VERTICAL) are available. As with the PROJECTION and FERET measurements is the length of a grain except it does not include the length of convolutions and is, therefore, a true length. Similar to the standard Computer the Function Computer has an AUTO setting. The information collected by the software programs includes these horizontal and vertical feret diameters and thus this computer is normally selected and set to AUTO. The DISPLAY enable is left on (up position) and the INPUT switch is set to

NORMAL.

Calculator Field/Feature Interface

Usually abbreviated CFFI, this module acts as the interface between the analyzer and the Peach computer. Seven digits, each in binary coded decimal (BCD) form, are simultaneously transmitted in parallel along with a data ready flag to the Peach computer. Six of these digits are data and one is a sofTWARE CODE added by the PROGRAMMER module so the Peach computer can confirm which instruction is being executed by the analyzer. Commands are received, from the Peach computer, in the form of one four bit word. The commands are; initiate the next programmed instruction; initiate a focus; and initiate a reset.

When data has been loaded into its buffer the CFFI suspends systems operation via an EXT BUSY TO PROG rear connection to the programmer module. The instruction execution command frees the CFFI removing its BUSY signal and the Programmer module continues. This command is a positive going edge to the execute pin (pin 31) on the interface connector. The CFFI returns a low level on the FLAG pin (pin 29) when data is ready.

The focus initiation command line has been added as a flying lead on the back of the CFFI connector. This line, coming from the Peach computer, bypasses the rear connector of the CFFI and is routed directly to the auto focus module START input. A positive going edge triggers the START of a focus by the Auto Focus module.

The 'reset' command line has also been added as a flying lead on the back of the CFFI. Bypassing the connector, this lead is routed to the Function computer module so that it may be reset when an overflow situation occurs.

The data being transmitted to the Peach computer is also sent to the system Control module and eventually appears as the right numerical display on the screen of the Display module.

The SOFTWARE CODE switch, when set to AUTO, allows the Programmer to send an instruction number to the Peach computer,
along with the data, so that synchronization can be maintained between the analyzer and the computer. An OVERFLOW RESET switch allows the module to be reset should an overflow occur. The upper DISPLAY switch, when in the on (top), position enables the character output. This information is displayed on the RIGHT character display of the Display module. The lower DIspLAy switch, when on, enables the current feature marker (oblong box) which appears on the display module at the bottom right of the current feature. The FIRST FEATURE/NEXT FEATURE switch moves the current feature marker to the first feature (up) or next feature (down).

The 'data transfer selector' (bottom) knob selects whether FIELD DATA or FEATURE DATA is transferred to the Peach computer. FEATURE DATA is gathered and transferred grain by grain and instruction by instruction. FEATURE DATA includes AREA, PERIMETER, PROJECTIONS and FERETS as well as coordinate information. Two additional FERET diameters may be determined using this module and are selected by this switch. These FERET measurements are taken at 45 and 135 degrees with respect to those of the Function Computer and can give a better indication of the true elongation of a grain if the maximum and minimum of the set are used. At the moment there seems to be a timing problem with this function and it is not being used. The Programmer instruction set and the data gathering control program will have to be revised to incorporate this feature when it is repaired. This switch is left in the AUTO position.

Programmer

The programmer module controls the High Level programming lines to the other modules. Up to sixteen instructions may be set on either or both of two instruction cards. The instructions on a board will be numbered according to which slot the card is inserted into. The left slot will number the instructions 0-15 while the right slot will number them 16 - 31 . The instructions are set using dip switches on the newer boards and by pin
insertions on the older boards. There are thirty-two control lines available which are labelled A through \mathbf{z} and $A A$ through $k r$. Line A acts as an enable for the instruction. If A is off (not pinned) the instruction if present will be ignored. The switch settings and control line/module wiring for the current data acquisition system are outlined in Appendces II \& X.

The top knobswitch selects which or both board(s) will be accessed for instructions. The lower knobswitch selects which instruction, in the SET UP (manual) mode, is accessed. The field counter digiswitch selects the number of fields of view (for FIELD DATA) or grains (for feature data) that will be sampled before stopping. Pressing the button resets the counter to the preset value. This value may be set by pressing the button, holding it in and turning it 90 degrees then setting the value on the digiswitch and releasing the button. Since our programs count the number of grains and has rejection criteria this switch is left in the 'in and turned' position. The RUN/STOP switch, for programmed control, is left in the RUN (up) position. The STEP button is pressed to advance to the next instruction when in the manual mode.

UNIT 3

Peach Computer

The Peach computer ('executive' module) is an Apple II clone. Sales and service are handled through Peach Microsystems Inc., 110 O'Connor St., Ottawa, Ontario, Telephone 594-4721. Separate interface cards for the disk drives are not required as Peach has put these interfaces on the mother board. The computer itself has 64 K of Random Access Memory on the mother board. A saturn 128K RAM Card in one of the expansion slots provides additional memory. Other expansion slots contain cards which perform the following: serial communications, parallel communications, CP/M operating system, clock/calendar, and the CFFI Interface Card.

The serial communications card, a super serial card clone, in
slot 0 , can be used to plot histograms on a plotter. Using a set of DIP switches on the card, communications protocol may be set to match the plotter being used. The necessary cabling and software for this task has not yet been undertaken.

The parallel communications card, a wizard Buffered Parallel Output Printer Interface Card (Wizard BPO), in slot 1 , is used as the interface to the printer. The buffer allows the operator to continue other tasks while the printer is printing.

Slot 2 contains a Z-80 co-processor unit which provides the flexibility of Digital Research's CP/M operating system and Microsoft's BASIC interpreter. This operating system is available when the computer is booted.

The clock card, a Thunderclock Plus clone, in slot 4 , can be used to automatically time and date stamp each data file. This will involve some additional programming but will ensure that all files are properly and consistently stamped. Presently, the operator is prompted to enter this information through the keyboard.

Slot 5 contains the CFFI Interface Card and is discussed in detail later (see CFFI Interface Card p.14).

The Saturn 128K RAM Card, located in slot 7, provides 128 kilobytes of random access memory. For our purposes, this memory is used as a RAM disk to provide fast data storage and retrieval. Information on up to 2900 grains may be acquired in this way and then transferred to diskettes for storage and evaluation. The driver for this card/disk is installed when the system is booted (turned on). Complete details may be found in its accompanying manual.

CFFI Interface Card

The CFFI Interface Card, located in slot five, was designed and constructed by Peach Microsystems and has since been modified in-house. A block diagram and schematic diagram are provided in Appendices XIV and XV. This interface employs a decoder (U5) designed to select 1 of 8 - 4 bit words (U1 - U4 tristate octal
line drivers) being sent to/from the CFFI module. Seven of these words retrieve information from the CFFI (six of which are BCD data the other is a status word) and the eighth is a control word being sent to the CFFI. A 3-state octal transceiver with enable (U6) is used to buffer the input/output signals to the Peach data bus. Originally the data received from the CFFI was converted to ASCII by adding 48 (D4 \& D5 tied high, D6 \& D7 tied low) to the data from the drivers. As it seemed pointless to convert the data to ASCII then later back to character format this conversion was removed (D4 - D7 tied low).

The CFFI Interface Card may be accessed via PEEK and PORE instructions in BASIC. The base address is hexadecimal EOD8. Data from the CFFI is obtained by PEERing digits DO - D5 (\&HEOD8 - \&HEOD8 + 5), weighting each by its appropriate magnitude. (DO * 100, DI * 101...., D5 * 105) and summing together, the result being the value of the instruction. The status word is made up of a Data Ready Flag and a three bit Instruction Number Indicator. The status word is obtained by PEERing location \&HEODE. The first bit of the word is the Data Ready Flag and gives a positive logic i.e., busy lamp on - CFFI buffers loaded logic level high - data ready. This value is found by ANDing the status word with one. The Instruction Number Indicator is found by stripping the leading bit Data Ready Flag (in binary, divide by two) from the status word and evaluating the quotient (3 bits as a BCD from 0 to 7).

The control word is an output to the CFFI and is set by POKEing memory location \&HEODF with an appropriate value. Values are determined by setting bits according to the function(s) desired. The three functions; instruction execution, focus initiation and function computer reset correspond to the first three bits of the hexadecimal memory address location EODF. Multiple instructions may set by adding individual instructions together. As an example, a focus and reset may be initiated by setting the second and third bits. The fourth bit is available should some other function become necessary and encoding could give a total of fifteen functions. A monostable (U7) is used to
extend the reset pulse to allow the analyzer enough time to respond to the reset command before the signal is removed.

SAMPLE PREPARATION

If the material is not already well sorted, it may be sorted using sieves. The amount of sample being sieved should first be weighed. Sieving is best accomplished by placing a small amount of sample in the sieve at a time (enough to cover the bottom of the sieve), sieving it into a pan, and collecting each portion. Starting with the coarsest sieve (lowest mesh number), this step is repeated, with occasional sieve cleanings, until all the sample has been sieved. Using the portion collected in the pan, this procedure is repeated with the next finer sieve and so on until all fractions required have been separated. The standard set of sieves used at CEAL is: 20, 100, 200, 325 and 400 mesh.

Very small particles can be prone to significant electrostatic attraction which may cause clumping and thus hinder the sieving process. These particles may be removed from the sample through washing. However, before washing, the effects of this operation must be considered i.e., significantly loss of material, oxidation and further grain size reduction. If washing is to be carried out it may be done by stirring the sample in water, allowing a reasonable settling time and then decanting the water and suspended particles. The sample is then dried in the oven below $100^{\circ} \mathrm{C}$. The weight is measured again, compared with the initial weight and any significant loss of material should be accounted for or its significance evaluated and discussed with the project leader.

After sieving, each fraction is weighed, its proportion determined and the total compared to the pre-sieving weight. Any significant loss of material should be accounted for and its significance evaluated as in the washing stage. After this separation, individual image analysis may be carried out and then combined using the proportions found above.

SLIDE PREPARATION

The best materials for analysis are those whose grains are well sorted and opaque. For this type of sample, a small amount is placed on the centre of a clean glass slide. A drop of immersion oil is dropped onto the sample and stirred with a piece of soft wire such as the end of a paper clip (more oil may be required for large grained materials). A clean slide cover is put over this mixture. Care should be taken to not entrain air bubbles which could give a false 'particle' during the analysis. This procedure may have to be repeated with less or more sample so that roughly 10% coverage is attained. The most important fact is that the grains should not be in contact with one another.

EXAMPLE ANALYSIS

A sample of pure pyrite was ground and then sieved into various fractions for a study of grain size versus minimum explosible concentration and maximum pressure rise. The standard set of sieves used was $20,100,200,325$ and 400 mesh. The sieving process proved difficult and clumping occurred. Examination under the microscope showed the large grains to be covered with very fine grains. The samples (except the -400 mesh) were washed in the sieves thus removing this very fine material. Then each fraction was dried and sieved again to improve the sorting of the remainder, which resulted in an additional -400 micron sample, now cleaned of the very fine material. This procedure differs from that described earlier in that no weighing was done and the samples were washed in individual sieves. This procedure was used as the sample was produced at CEAL, by grinding, and did not represent any particular mine dust so proportions were not of interest. Consideration of this procedure did result in development of the procedure described earlier.

Slides were prepared of each fraction (including the unwashed
-400 mesh sample) and data was collected using the acquisition program DUST.BAS. Histograms were produced from this data and are presented in Appendix XVI

CONCLUSIONS

The basic installation of the Quantimet 720 has been completed, including numerous repairs. While some troubleshooting and modifications remain to be carried out, in the areas of improved video clarity and parameter selection, image analysis may be performed under programmed control via the interface to the Peach computer.

The programs written to date allow basic parameter measurement, data storage/retrieval, generation of histograms and, data and calculations printouts.

Analysis, using the previously mentioned software, has been carried out on a number of different samples. As mentioned, well sorted opaque materials gives the best results.

Sieved fractions are relatively easy to make slides from and programmed control of the data acquisition process proceeds smoothly when samples with high contrast and good sorting are analyzed. Histograms of these fractions show that reasonable separation is attained using the wet sieving process.

Since the explosibility of dusts is very dependant on the particle size, it is imperative to know the particle size distribution for any particular sample in order to provide meaningful data. The method using the image analysis system, in this report, provides a reasonably easy method of generating a particle size distribution, as well as providing some information about the distribution of shapes. .

Table 1. Lens combinations vs. system specifications

| | Magnification
 Objective
 Magnifier | | | Overall | Screen
 Resolution* |
| :---: | :---: | :---: | :---: | :---: | :---: | | Step size |
| :---: |
| (mm) |\quad| X Steps |
| :---: |
| (per field) |

*Screen resolution: actual overall; measured using graduated slide and screen scales; given in um/pixel

Table 2. Sieve mesh vs. opening size

Mesh
(Tyler Standard Equiv.)

20	850	0.033
28	600	0.0234
35	425	0.0165
48	300	0.0117
60	250	0.0098
80	180	0.0070
100	150	0.0059
115	125	0.0049
150	106	0.0041
170	90	0.0035
200	75	0.0029
250	63	0.0025
270	53	0.0021
325	45	0.0017
400	38	0.0015

APPENDIX I

1. Verify programmer card instruction set (see Appendix II)
2. Turn on the three power switches on the microscope modules (Stabilized Power 100, Auto Focus, stage X/Y Control)
3. Turn on the two power switches on the analyzer chassis
4. Put the diskette labelled ANALYZER SYSTEM AND PROGRAMS in DRIVE A (bottom drive) of the computer and close the door
5. Put a blank formatted data disk in DRIVE B (top drive) of the computer and close the door. note: if disk needs to be formatted see Appendix III starting with step 2
6. Turn on the power bar for the desk top computer and peripherals. The printer carriage should move to the right and the on LINE light should be lit. The computer should beep, the A DRIVE lamp should light momentarily as the disk is accessed and the monitor should display the system level prompt (A>)
7. Verify start-up switch settings (see Appendix IV)
8. Place the sample slide (see Appendix v) on the stage
9. Slide the SCANNER/BINOCULAR pin in (left side of microscope above the objectives)
10. Select an appropriate lens and focus on the sample slide
11. Replace the sample slide with a clean blank slide
12. Slide the sCANNER/BINOCULAR pin out
13. Adjust the LIGHT sENsITIVITY knob on the system Control module to give a reading, on the meter above it, of 0.3
14. Set the sENSITIVITY/WHITE LEVEL switch on the system control module to wHITE LEVEL
15. Adjust the knob on the stabilized Power 100 module to give a meter reading of 1 on the system control module. Try to keep the setting of the knob below 10 to prolong the life of the lamp. If necessary, adjust the iris under the stage or raise or lower it to attain the 1 reading. Closing the iris will cut the amount of light passing it and will increase the depth of focus
16. Press the shade CORRECTION - 8ET switch on the system control module. The corrector will perform a tare of this "null image" pixel by pixel in about 13 sec . and a mosaic will flash on the screen for a moment
17. Repeat steps 15 to 16 until the meter reading remains at 1 after the correction
18. Turn on (switch up) the DETECTED display on the Display module and check the shade correction by adjusting the sELECTOR B knob on the 2D Auto Detector module. The detection should occur across the whole screen around 50 or more
19. Turn off the DETECTED display
20. Replace the blank slide with the sample slide
21. Push in the SCANNER/BINOCULAR pin
22. Move the stage, using the left to right (front knob) and front to back (right rear) knobs, to the front left $1 / 3$ portion of the slide and adjust the focus
23. Check the focus across the slide (if necessary use the auto focus procedure, see Appendix VI) and return to the front left $1 / 3$ position.
24. Pull out the sCANNER/BINOCULAR pin
25. Select an appropriate magnifier lens using the knob above the microscope
26. Select the appropriate \mathbf{X} and \mathbf{Y} STEP SIZE (obtained from Table 1) on the stage X / Y Control module

27. Select an appropriate number of \mathbf{X} sTEPS, also on the stage X / Y Control module (Table 1 gives a reasonable maximum value)

28. Select AUTO with the two position toggle switch on the Stage X/Y Control module
29. Press ORIGIN on the Stage X / Y Control module
30. Turn on (switch up) the DETECTED display (on the Display module)
31. Adjust the sELECTOR B knob on the 2D Auto Detector module until the areas within the grains are detected and little or none of the background is detected (compare with the normal IMAGE by turning the DETECTED switch on and off)
32. Select VARIABLE (switch up) on the Variable frame and scale module. This should mask any wavy noise on the edges of the screen
33. Turn off (switch down) the IMAGE display (on the Display module)
34. Turn off (switch down) the Detected display and turn on (switch up) the COMPUTED \& AMENDED switch (both on the Display module). This is the AREA display derived from the Function computer module and should be the same as the Detected display
35. Select 19-3 with the SET UP switch on the Programmer module. This is the PERIMETER display derived from the Function Computer module and should form an outline of the detected grains
36. Select 20-4 as above and the HORIZONTAL FERET (derived from the Function Computer module) should be displayed. This display appears as an outline of the top of each detected grain
37. Select 21-5 as above and the VERTICAL FERET derived from the Function Computer module should be displayed and appears to be an outline of the left side of each detected grain
38. Select 18-2 and the AREA display should return
39. Proceed to Data Collection operating procedure Appendix VII step 2

APPENDIX II

PROGRAMMER CARD INSTRUCTION SET

Instruction \#	$\begin{aligned} & \text { Control } \\ & \text { Line } \end{aligned}$	Switch Position	Controlled Function
0, 1, 6-15	A	off	instruction: disable
2	A	on	instruction: enable
	B	off	Function Computer:
	C	off	AREA
	D	on	
	E	off	
	AA	on	SOFTWARE CODE: 2
	BB	off	
	CC	on	
	DD	off	
	FF	off	CIFFI function:
	GG	off	feature data
	HH	on	
	JJ	off	
	others	off	
3	A	on	instruction: enable
	B	off	Function Computer:
	C	off	PERIMETER
	D	on	
	E	on	
	AA	on	SOFTWARE CODE: 3
	BB	off	
	CC	on	
	DD	on	
.	FF	off	CIFFI function:
	GG	off	FEATURE DATA
	HH	on	
	JJ	off	
	others	off	

A	on
B	off
C	on
D	on
E	off

AABBCCDDFFGGHHJJothers
on
off
B
C
D
E
AA
BB
CC
DD
FF off
GG
HH
JJ
others on
on
on
on
on off on off on off
off
instruction: enable
Function Computer: HORIZONTAL FERET

SOFTHARE CODE: 4
on off off

off

 off on off off1. Put the diskette labelled ANALYZER SYSTEM AND PROGRAMS in DRIVE A (bottom drive) of the computer and close the door
2. Put the disk to be formatted in DRIVE B (top drive) of the computer and close the door.
3. Turn on the power bar for the desk top computer and peripherals.
4. Type copy b:/F then press RETURN
the computer will respond with: Insert disk to be formatted in drive $\mathrm{B}:$ Press RETURN to begin
5. Press RETURN
the computer will format the disk then respond with: operation complete

Do you want to want to repeat this operation?
6. Type N the computer will return to the system level prompt A>; the Cold Boot operating procedure of Appendix I may be resumed from step 7.

APPENDIX IV
START UP SWITCH SETTINGS

MODULE: Display
IMAGE - knob: 5 o-clock position

- switch: on (middle)

UNDETECTED - knob: 5 o-clock
DETECTED - knob: 8 o-clock

- switch: off (down)

BRIGHTNESS - knob: 4 o-clock
STAND BY - switch: display on (up)
SCALE \& FIGS - knob: 8 o-clock

- switch: both on (top)

GUARD - knob: 7 o-clock

- switch: on (up)

COMPUTED \& - knob: 8 o-clock AMENDED - switch: off (down)

MODULE: System Control
SHADE CORRECTION
RANGE - knob: full CW
SCANNER LIGHT SENSITIVITY
SENSITIVITY/
WHITE LEVEL - switch: SENSITIVITY
PLUMBICON LIGHT
INTEGRATION - switch: X 1
MAN/AUTO - switch: MAN
LIGHT
SENSITIVITY - knob: 10 o-clock
ACCUMULATOR
ACC

- switch: off (down)

MODULE: System control con't

SY8TEM MODE

AVERAGE - switch: off (down)
INTERCEPT/AREA - switch: AREA
CONTINUOUS/
SINGLE SCAN/AUTO - switch: SINGLE BCAN/AUTO

MODULE: Variable Frame and scale
FRAME POSITION
HORIZONTAL - thumbwheel switch: 100
VErtical - thumbwheel switch: 100
FRAME SIZE
HORIZONTAL - thumbwheel switch: 700
VERTICAL - thumbwheel switch: 500
FRAME OUTPUT
VARIABLE/
STANDARD - switch: sTANDARD
SCALE DISPLAY
HORIZONTAL - switch: off (down)
VERTICAL - switch: off (down)

MODULE: Calculator Field/Feature Interface sOFTWARE CODE - knobswitch: AUTO

DISPLAY - switch: on (up)
Field/Feature - knobswitch: AUTO
DISPLAY - switch: on (up)

MODULE: Programmer
AUTO/SET UP - top knobswitch: 0-15 (blue)

- bottom knobswitch: 18-2

RUN/STOP - switch: RUN

MODULE: Standard Computer
INPUT - switch: NORMAL
SIZER - switch: off (down)
Function Switch - knobswitch: PATTERN RECOGNITION

MODULE: Auto Detector

Detected Function- top left knobswitch: darker than (black down arrows)

Detected Selector- knobswitch (below above switch): 3
SELECTOR A - knob: 64 (LED indication)
SELECTOR B - knob: 30
DISPLAY - switch: on (up)
AUTO DELINEATOR - switch: on (up)
EMPHASIS - knobswitch: off
ATtenuation - knobswitch: detail

MODULE: Function Computer
INPOT - switch: NORMAL
FUNCTION - knobswitch: AUTO

MODULE: Stabilized Power 100
POWER ON - switch: POWER ON
Level - knob: 8

MODULE: Auto Focus
STEP SIZE - knobswitch: 0.8
sKIP FIELDS - knobswitch: 0
MANUAL/AUTO/START- switch: MANUAL
ALLOWED EMPTY
FIELDS - switch: 8
POWER ON - switch: POWER ON

MODULE: Stage X/Y Control
MANUAL/AUTO - switch: MANUAL
POWER ON - switch: POWER ON

APPENDIX V

Operating procedure "slide preparation"

1. Take a glass slide from the bottom drawer of the image analyser cabinet and ensure that it is clean
2. Using a small spatula place some sample in the middle of the slide
3. Drop a drop of immersion oil on the slide next to the sample
4. Stir the sample into the oil with a piece of soft metal (such as the end of an opened paper clip)
5. Trying to remove any air bubbles spread the oil and sample over an area about half the size of a cover slide (stir in different directions to make a more homogeneous mix)
6. Place a cover glass over the mix in such a way so as not to entrain air bubbles. This is best done by placing one edge on the slide then slowly lowering the other edge
7. Place the slide on the microscope stage and push in the SCANNER/BINOCULAR pin
8. Ideally the grains should not be touching each other but at least there should be very few if any clumps. It may be necessary to repeat the procedure with less sample or more stirring.
note: If the material is affected by the oil some other media which does not affect the sample, possibly water, may be used to suspend the grains and relieve surface attractions
9. If the LIMIT lamp on the Auto Focus module is on turn the manual ring on the stepper motor (left side of motor at the rear left of the microscope stage) in the allowed direction about ten turns. This will move it to the middle of its range
10. Focus on a grain using the manual/coarse focus drum (at rear and slightly below the microscope stage). If sorting is poor focusing on a midsized grain will the give best overall results
11. Slide the microscope SCANNER/BINOCULAR pin out
12. Slide the manual-coarse focus drum (at rear and slightly below the microscope stage) to the left to disengage it
13. Select START with the AUTO/MANUAL/START switch on the Auto focus module then release (this is a momentary position and the switch will return to AUTO)
14. The manual ring on the stepper motor should move slightly then stop if it does not stop but hunts back and forth the STEP SIZE on the Auto Focus module must be reduced. Ideally the ring should move back and fourth a couple of times then stop. If little or no movement occurs increase the sTEP SIZE
15. Repeat 5 and 6 until a suitable setting is found
16. Check the set up on another field of view by pressing the stage step footswitch (connected to the rear of the stage \mathbf{X} / \mathbf{Y} control module)

APPENDIX VII

Operating procedure "Data collection"

1. Perform the Cold Boot operating procedure or similarly prepare analyzer for acquisition
2. Type mbasic dust then press Return the computer responds by loading the Basic programming file then loading and running the Basic program called DUST.BAS which gathers data from and issues instructions to the image analyzer
3. The computer will display any files that are on the data disk (data files will have a .DAT ending called and extension) and prompt with ENTER FILENAME TO BE CREATED ON DRIVE C:.
type in a filename of up to eight characters and numbers (do not specify a drive or include an extension as it will be added by the computer) then press RETURN
4. The computer responds with ENTER COMMENTS: (date, time etc.)
type any comments as suggested up to 45 characters then press RETURN
5. The computer responds with ENTER RESOLUTION OF SCREEN (um/pixel):
type the value obtained from Table 1 for the objective and multiplier used then press RETURN
6. The computer responds with HOW MANY GRAINS? (MAX = 2900)
type in the number of grains to include in the sample then press RETURN
7. Set the AUTO/SET UP switch (on the Programmer module) to Auto 0-15 (white letters)
8. The analyzer should commence programmed parameter measurements. The BUSY lamp on the CFFI module should flash on and off as data is passed to the PEACH computer; the green binary instruction number lamps on the Programmer module should consecutively display the four programmed instructions (two through five) and; the display module should display each parameter and, the marker should move from grain to grain (left to right and top to bottom)

Notes: if nothing happens press STEP on the Programmer module to initiate the first instruction
if the Auto Focus module is not being used (i.e. manual operation) and the EXT lamp on the Programer module is lit, the Auto Focus module may be generating a busy signal. This can be cleared by selecting start on the Auto Focus module then resetting to manual
if the Auto Focus module is not being used (i.e. manual operation) it must still be turned on or else the BU8Y signal from the 8 tage \mathbf{X} / \mathbf{Y} Control module will not be passed to the programmer module
9. For lengthy sampling procedures the 8TAND BY switch on the Display module may be turned off (down position) to save the display from being burned into the screen

Notes: the Auto Focus module (when in the Auro mode) will from time to time generate a busy signal to the EXT busy on the Programmer module but does not initiate a refocus. This results in operation being halted and thus the CrFI module does not receive any new data. The computer has a time out sequence for receiving data from the CFFI module and generates a refocus command for the Auto Focus module if data is not received within that period. No action is required by the operator.

Similarly the overfiow lamp on the Function Computer indicates an external busy EXT to the Programmer module. This will also be reset by the time out sequence from the computer
10. Once sampling is complete the computer will provide some information regarding rejected grains and explain how to save the data to floppy disk
11. Leave MBABIC and go to the system level by typing 8Y8TEM then pressing RETURN the computer will respond with the A> prompt
12. Check the name of the file you have just created on the pseudo disk using the directory. Type cat C: then press RETURN the computer will respond with a list of the files. Those that are data files will have the .DAT extension
13. Transfer this file to a data disk DRIVE B: by typing PIP B:=C:FILENAME.DAT (substitute, for FILENAME, the name given to the file created by DUST.BAS) and then pressing RETURN the light on DRIVE B: will light as the file is
transferred and then the computer will give the A> prompt
14. To check that the file has been transferred to the data disk type CAT B: then press RETURN the computer will respond by listing any files on DRIVE B:

APPENDIX VIII

Operating procedure "Data printout"

1. Ensure that the ANALYZER SYSTEM AND PROGRAMS disk is in DRIVE A and close the door
2. Ensure that the data disk containing the data file to be printed is in DRIVE B and close the door
3. Turn on computer and peripherals via power bar if not already on
4. If in MBASIC enter the system mode by typing SYSTEM and pressing RETURN)
The computer should display the system prompt (A>)
5. Type CTRL-C (press and hold CTRL key while typing C) The computer will initiallize all disks and return with the A> prompt
6. Type mbasic prtdata then press RETURN

The computer will load the Basic operating and language file (MBASIC): the printout program PRTDATA.BAS is then loaded, commences execution and lists any files that are on the data disk
7. The computer then prompts for the name of the file to be printed with ENTER FILENAME TO OUTPUT: Type the filename (8 characters or less with no extension) then press RETURN
8. The computer responds with SET PRINTER TO TOP OF page then hit any key. If the printer is not set rotate the drum until the printer head is set to print at the top of the page then turn the printer off then back on again. The printer will then initiallize and the ON LINE lamp will light. Press RETURN
9. The computer will print the file information and comments and then the headings and data in columnar form with 60 grains per page. When finished printing the data the rejection data is printed, the program ends and the computer prompts with OR
10. The system may be turned off via the button on the power bar

APPENDIX IX

1. Ensure that the ANALYZER SYSTEM AND PROGRAMS disk is in DRIVE A and close the door
2. Ensure that the data disk containing the data file to be printed is in DRIVE B and close the door
3. If in mbasic enter system mode by typing system then pressing RETURN The computer should display the system prompt (A>)
4. Ensure that the pseudo disk (DRIVE C) has enough space available for the working files (i.e. erase all files)
Type ERA C:*.* then press RETURN
The computer prompts to double check this operation All (y / n)?
Type \mathbf{y} then press RETURN
The computer will erase the directory for DRIVE C then prompt with A>
5. Type CTRL-C (press and hold CTRL key while
typing \mathbf{c}
The computer will initiallize all disk drives and then prompt with A>
6. Type mbasic hstogram then press return The computer will load the Basic operating and language file then load the histogram program, commence execution and list any files that are on the data disk
7. The computer then prompts for the name of the file to be plotted with ENTER THE FILENAME TO PLOT: Type in the filename of the file to be plotted (8 characters or less with no extension) then press RETURN
8. The computer then prompts for the printer to be set to the top of a page. Rotate the printer drum to the top of a page, turn the printer off then on again then press RETURN
9. Next the computer prompts with ARE YOU ZOOMING? (y / n): to find out wether or not a zoom or expanded window of any parameter is required (usually this is done after a no zoom set of histograms has been generated) Type \mathbf{Y} for yes if zooming is required or \mathbf{N} for no
if it is not then press RETURN
10. If zooms are not requested a full set of plots is generated and then the zoom menu is displayed
11. If zooms are requested each parameter and window is specified (up to 10) from a menu using the number keys then pressing RETORN execution commences with the selection of the RUN option (*8)
12. Once the histograms have been generated the program returns to the zoom menu for further windowing or termination

APPENDIX X

REAR PANEL INTERCONNECTIONS

Module Page
Display 38
System Control (SYS. CTRL.) 39
Variable Frame \& Scale (VAR. F. \& S.) 41
Calculator Field/Feature Inteface (CFFI) 42
Programmer 44
Standard Computer 45
2D Auto Detector 47
System Control Side Timing 47
Synchronization Side Time 48
Function Computer 49
Stabilised Power 100 50
Auto Focus 50
Stage X/Y Control 51

MODULE: Display

NOTE 1: connector given as number of contacts and plug (P) or socket (S)
2: terminated - 150ohms

MODULE: System Control (SYS. CTRL.)

MODULE: System Control (con't)

origin		Destination		
Name Conn	ctor	Name	connector	Module
\checkmark TRIG	$2-\mathrm{P}$	V TRIG	2-S	SYS. CTRL. SIDE 2D AUTO DET.
CLOCK (left)	2-P	CLOCK	2-S	2D AUTO DET.
	2-p	CLOCK	2-S	CFFI
	2-p	CLOCK	2-S	PROGRAMMER
SCANNER (left)	BNC	SCANNER VIDEO	BNC	2D AUTO DET.
VIDEO (right)	BNC	VIDEO IN	BNC	AUTO FOCUS
SCANNER	32-P	7-coax cable	rom plinth	to camera
MULTIPLE ACCUMULATORS	$32-\mathrm{P}$	DATA TO SYS.	TRL. 32-P	CFFI

Origin		NameDestination Connector Module		
FIELD DATA IN	2-S	SELECTED	2-P	STD. COMP.
	2-P	DATA IN	2-S	SYS. CTRL.
CALC 1	2-S	END OF X	$2-\mathrm{P}$	AUTO FOCUS
	2-P	terminated		
FUNCTION 1 IN	20-P	FUNCTION OUT	20-S	FUNCTION COMP.
	20-S	jumper A to N		
MS3 COINC. OUT	$2-\mathrm{P}$	COINC. 1 IN	2-S.	STD. COMP.
MS3 COINC. IN	2-S	DETECTED VIDEO OUT SELECTED	$2-\mathrm{P}$	2D AUTO DET.
	2-P	terminated		
OFLO (right)	2-p	OFLO (right)	2-S	SYS. CTRL.
RIGHT	2-S	RIGHT	$2-\mathrm{P}$	SYS. CTRL.
FUNCTION CONTROL	20-P	FUNCTION CONTROL	20-S	FUNCTION COMP.
SOFTWARE CODES	6-S	AA-DD (white)	6-S	PROGRAMMER
PROGRAMMER				
CONTROLS	6-S	FF-JJ (black)	2-P	PROGRAMMER
EXT. DRIVE	20-S	EXTERNAL DRIVE	20-P	FUNCTION COMP.
FINISH	2-S	flying lead (blk/g	grn)	
	2-P	FINISH	2-S	STD. COMP.
FAIL	2-P	FAIL	2-S	STD. COMP.
	$2-\mathrm{P}$	terminated		
V TRIG	2-S	\checkmark TRIG	2-P	VAR. F. \& S.
	2-P	VERT TRIG	2-S	STD. COMP.
HOLD	2-S	HOLD	$2-\mathrm{P}$	SYS. CTRL.
RESET	2-S	RESET	2-P	SYS. CTRL.
	2-P	RESET	2-S	PROGRAMMER
STORE	2-S	STORE	2-P	STD. COMP.
CLOCK	2-S	CLOCK (center)	2-P	SYS. CTRL.
	2-P	CLOCK	2-S	VAR. F. \& S.

MODULE: Programmer

Origin		Destination			
Name Connector		Name	Conn	nector	Module
$B-E$	6-S	PROGRAMMER	CONTROL	6-S	FUNCTION COMP.
$\mathrm{G}-\mathrm{K}$	6-5	PROGRAMMER	CONTROL	6-S	STD. COMP.
FF-JJ (black)	6-S	PROGRAMMER	CONTROL	6-S	CFFI
AA-DD (white)	6-S	SOFTWARE COD	ODES	6-S	CFFI
H TRIG	$\begin{aligned} & 2-S \\ & 2-P \end{aligned}$	H TRIG terminated		$2-P$	2D AUTO DET.
SLOW CLOCK	$2-5$	SLOW CLOCK		$2-P$	SYS. CTRL.
AUTO	2-S	AUTO		$2-P$	SYS. CTRL.
FOOTSW	3-s	FOOTSWITCH		$3-P$	PLINTH
PAUSE	2-S	PAUSE		$2-P$	SYS. CTRL.
RESET	$2-s$	RESET		$2-P$	CFFI
EXT BUSY (center)	2-S	EXT BUSY TO	PROG	$2-P$	CFFI
STEP	$2-P$	STEP IN		2-S	CFFI
EXT BUSY (right)	$2-S$	BUSY TO PRO		$2-P$	AUTO FOCUS

MODULE: Standard Computer (STD. COMP.)

MODULE: Standard Computer (con't)

MODULE: 2D Auto Detector (2D AUTO DET.)

Origin

Name Connector

Destination
Name Connector Module
DETECTED VIDEO $2-\mathrm{P}$ MS3 COINC IN $2-S$ CFFI

DATA OUT SELECTED	$2-\mathrm{P}$	DATA IN	$2-\mathrm{S}$	STD. COMP.
BLANK FRAME	$2-\mathrm{S}$	BIG FRAME	$2-\mathrm{P}$	2D AUTO DET.
	$2-\mathrm{P}$	STANDARD BIG	$2-\mathrm{S}$	VAR. F. \& S.

REFERENCE PHASE $\underset{A L L}{ }$ 2-S flying lead (blk/grn)

INTAR	$2-S$	INTAR	$2-P$	SYS. CTRL.
CLOCK	$2-S$	CLOCK (left)	$2-\mathrm{P}$	SYS. CTRL.
	$2-P$	terminated		
BV FRAME	$2-S$	BV FRAME	$2-P$	SYS. CTRL.
	$2-P$	BV FRAME	$2-S$	VAR. F. \& S.

PK WHITE 2-S flying lead (brn/blk)

UNDETECTED $2-S$ terminated
DETECTED DISPLAY 2-P DETECTED DISPLAY 2-S DISPLAY

SCANNER VIDEO BNC SCANNER VIDEO BNC SYS. CTRL.
DISPLAY VIDEO BNC DISPLAY VIDEO BNC DISPLAY

TIMING: System Control side

SMALL FRAME	2-S	STANDARD SMALL FRAME OUT	$2-\mathrm{P}$	SYS. CTRL.
BIG FRAME	2-S	STANDARD BIG FRAME OUT	$2-\mathrm{P}$	SYS. CTRL.
UNSYNC	2-S	UNSYNC	2-P	SYS. CTRL.
V TRIG	2-S	V TRIG	2-P	SYS. CTRL.
SYNC	2-S	SYNC	$2-\mathrm{P}$	SYS. CTRL.
SYNC +16	2-S	SYNC +16	$2-\mathrm{P}$	SYS. CTRL.
STORE	2-S	STORE	$2-\mathrm{P}$	SYS. CTRL.

Origin Name	Connector	Name	Destination Connector	Module
BLANK +10	2-S	BLANK +10	$2-\mathrm{P}$	SYS. CTRL.
H TRIG	2-S	H TRIG	$2-\mathrm{P}$	SYS. CTRL.
TIMING: Synchronization side				
SMALL FRAME	2-P	STANDARD SMALL FRAME	$\text { IN } \quad 2-S$	VAR. F. \& S.
BIG FRAME	$2-\mathrm{P}$	BLANK FRAME	2-S	2D AUTO DET.
UNSYNC	2-P	UNSYNC	2-S	STD. COMP.
V TRIG	2-P	V TRIG	2-S	VAR. F. \& S.
SYNC	2-P	SYNC	2-S	VAR. F. \& S.
SYNC +16	2-P	SYNC +16	2-S	DISPLAY
STORE	$2-\mathrm{P}$	STORE	2-S	STD. COMP.
BLANK +10	$2-\mathrm{P}$	BLANK +10	2-S	DISPLAY
H TRIG	$2-\mathrm{P}$	H TRIG	2-S	PROGRAMMER

MODULE: Function Computer (Function Comp.)

		NameDestination Connector Module			
Name \quad Origin \quad Connector					
INPUT NORMAL	$\begin{aligned} & 2-S \\ & 2-P \end{aligned}$	SIZING IN NORMAL terminated	$2-\mathrm{P}$	STD.	COMP.
MODIFIED +17	$\begin{aligned} & 2-S \\ & 2-p \end{aligned}$	MODIFIED +17 terminated	$2-P$	STD.	COMP.
FUNCTION OUT	20-S	FUNCTION IN 1	20-P	CFFI	
EXTERNAL DRIVE	20-P	EXT DRIVE	20-S	CFFI	
FUNCTION CONTROL	20-S	FUNCTION CONTROL	20-P	CFFI	
	20-P	FUNCTION CONTROL	20-S	STD.	COMP.
PROGRAMMER CONTROL	6-s	B-E	6-S	STD.	COMP.
CLOCK	2-S	CLOCK (right)	2-P	SYS.	CTRL
	2-P	CLOCK	2-S	STD.	COMP.
COMPUTER DISPLAY	$2-\mathrm{P}$	COMPUTER DISPLAY	2-S	STD.	COMP.
EXT BUSY	$2-P$	EXT BUSY TO PROG	2-S	CFFI	
RESET	2-S	```flying lead (org/grn)```	$2-\mathrm{P}$	CFFI	interface cable

origin			Name	Destination	
Name		Connector		Connector	Module
POWER	INPUT	3-S	plin	from cabinet	
LAMP		6-S	crosc	lamp	

MODULE: Auto Focus

Name	Origin
Connector	

Name Connector Module

START	2-S	$\begin{aligned} & \text { flying lead } \\ & (r d / g r n) \end{aligned}$	$2-\mathrm{P}$	CFFI interface cable
MASK	2-S	MASK	2-P	VAR. F. \& S.
	$2-\mathrm{P}$	SMALL FRAME	2-S	AUTO FOCUS
SMALL FRAME	2-S	MASK	$2-\mathrm{P}$	AUTO FOCUS
	$2-\mathrm{P}$	terminated		
END OF X	2-S	END OF X	2-P	STAGE X/Y CTRL.
	2-P	CALC 1	2-S	CFFI
EXT FROM SYST. CONT.	2-S	EXT BUSY	$2-\mathrm{P}$	SYS. CTRL.
BUSY TO PROG	2-P	EXT BUSY (right)	2-S	PROGRAMMER
POWER. INPUT	3-S	AC to plinth from	cabin	
MOTOR DRIVE	10-S	Amphenol cable to	stepp	stage
VIEDEO IN	BNC	SCANNER VIDEO	BNC	SYS. CTRL.

MODULE: Stage X/Y Control (STAGE X/Y CTRL.)

Origin			
Connector		Destination Connector	
Name Module			

APPENDIX XI

1000 REM
1010 REM
1020 REM
1030 REM
1035 REH *ZTHIS IS A FRINTOUT LISTING OF DUST.DOC
1036 REM \#\#dust.bas has most of the comhents removed
1040 REM AREA - REAL, PERIMETER; hax *MIN PRDJECTIONS AS INT (VAL * 10)
1050 REM COMMENTS, SCALE, NUMBER OF GRAINS, DATA, REJECTION INFO
IOEO REM NO CALCS. DURIHG AQUISITION
1070 CLS\$ = CHR $\$(27)+$ CHR\$ (12)
1080 REM
1090 REM SET INTERFACE ADDRESSES
1100 REH
1110 BASE = ZHEODO
$112000=$ BASE
$1130 D 1=$ BASE +1
$114002=8 A S E+2$
1150 D3 $=$ BASE +3
1160 D4 = BASE +4
1170 D5 $=$ BASE +5
1180 FLAG $=$ BASE +6
1190 LTRL $=$ BASE +7
1200 REM
1210 REM MISCELLANEOUS HOUSEKEEPING
1220 REM
1230 FOKE CTRL, O: REM FOCUS CAMERA
1235 REM HANDLE POSSIBLE EMPTY DISK SITUATION VIA ERROK CODE
1240 ON ERROR GOTO 2150
1250 PRINT CLS\$: FILES "B: \ddagger DAT"
1255 REM RE-ENABLE NORMAL ERROR HANDLING
1260 ON ERROR GOTO O
1270 PRINT: PRINT: PRINT
1275 REN PROMPT THEN SET UP OUTPUT FILE ON DRIVE C:
1280 INPUT "ENTER FILENAME TO BE CREATED ON DIVE C: ", fs
1290 F\$ = 'C: ${ }^{\prime}$ + F\$ + ". DAT"
1300 OPEN "0", 11, is
1305 REM PROMPT THEN SAVE COMMENTS
1310 INPUT 'ENTER COMHENTS: (date, tiat etc.) ", Cs
1320 PRINT 11 , CHR $\$$ (34); C $\$$; CHR $\$(34)$;
1325 REM PROMPT THEN SAVE SCREEN RESOLUTION AND NUMBER OF GRAINS
1330 INPUT "ENTER RESOLUTION OF SCREEN (um/pixel): ', SCALE
1340 INPUT "HOU MANY GRAINS? (MAX $=3000$) *, GRAINS\%
1350 PRINT 11 SCALE; GRAINS;

REV. 1.6 MAY $3 / 33$

1360 REM
1370 REM AQUISITION LODP
1380 REM
1385 REH FOR EACH GRAIH
1390 FOR GRAIN = 1 TO GRAING\%
1395 REH FOR EACH FARAMETER (AREA, PERIMETER AND THO PROJECTIONS)
1400 FOR PARAH $=1$ TO 4
1410 IF PARAM = 1 THEN PRINT: PRINT USING "\#\#\# "; GRAIN;
1415 rem initiallile time-out variable and request data froh cffi hooule
1420 COUNT $=1:$ POKE CTRL, 2
1425 REH HAIT THEN READ FLAG HORD FROM CFFI
1420 FOR $N=15015$
1440 NEXT
1450 TEST $=\operatorname{PEEK}$ (FLAG)
1455 REH INCREMENT AND CHECK TIME-OUT VARIABLE (MAY NEED TO RE-FOCUS)
1460 COUNT $=$ COUNT $+1:$ IF COUNT $=500$ THEN FOKE CTRL, $1:$ 60TO 1420
1465 REH STRIP AND CHECK DATA READI BIT FROH FLAG WORD
1470 8ITTEST = IEST AND $1:$ IF BITTEST $=1$ THEN 1450
1475 REM STRIP SOFTHARE CODE FROM FLAG WORD AND SET EXFECTED SOFTCODE
1480 CODE $=$ TEST / 2: $\operatorname{LCODE}=$ PARAM +1
1485 REM COMPARE SOFTCODE AND EXPECTED CODE FOR AGREEMENT
1490 IF CODE 〈〉 LCODE THEN PARAK = 1: 60101410
1500 REH
1510 REM GET CURRENT VALUE
1520 REK
1525 REH READ DIGITS FROH CFFI
$1530 \quad T(1)=\operatorname{PEEK}(D 0): T(2)=$ PEEK (D1): $T(3)=\operatorname{PEEK}(D 2) ; T(4)=$ PEEK (D3)
$1540 \quad T(5)=$ PEEK (D4): $\Gamma(6)=$ PEEK (D5)
1545 REM HEIGHT AND SUM DIGITS FROH CFFI
1550 FOR DIGIT $=1$ TO G
$1560 \quad$ MAG $=$ DIGIT -1
1570 VALUE $=$ VALUE $+\left(\right.$ ($(D I G I T) \not 10^{\wedge}$ MAG)
1580 NEXT
1590 REM
1600 REM GRAIN SILE DISCRIMINATOR
1610 REM
1615 REM - CHECK FOR ZERO VALUE, INCREMENT COUNTER IF NECESSARY AND RESTART
1620 If VALUE $=0$ THEN LEROVAL $=$ ZEROVAL $+1:$ PARAM $=1!$ 6OTO l4lo
1625 REH CHECK FOR MINIMUH AREA, INCREMENT COUNTER IF NEC. AND RESTART
1630 IF PARAM $=1$ AND VALUE $\langle 3$ THEN SMALL $=$ SMALL $+1:$ PARAM $=1: 60701410$
1640 REH
LE50 REM TRANSFER DATA TO GRAIN PARAMETER
1660 REM
1 E65 REM SCALE DATA IN REQUIRED DIMENSIONS
1670 VALUE $=$ VALUE $\$$ SCALE
1675 REH FOR SINGLE DIMENSION PARAMETERS SHIFT DEC POINT TO CARRY 1 SIG. FIG.
1680 If PARAM $=1$ THEN AREA $=$ VALUE \div SCALE: PRVALUE $=$ AREA: GOTO 1740
1690 VALUE $=$ INT (VALUE $\$ 10$)
1695 REM ALLDCATE TD APPROPRIATE PARAMETER VARIABLE
1700 IF PARAH $=2$ THEN PERIM = VALUE: $60 T D 1730$
1710 IF PARAM $=3$ THEN VP $=$ VALUE: $60 T 01730$
1720 IF PARAMH $=4$ THEN HP $=$ VALUE
1725 REH PRINT VALUE TO SCREEN
1730 PRVALUE $=$ VALUE $/ 10$


```
1750 VALUE = 0
1760 NEXT
1770 REH
1700 REM SORT PROJECTIONS
1790 REM
1800 IF UP > HP THEN PMAX = VP: PMIN = HP: GOTO 1830
1010 IF HP > UP THEN PMAX = HP: PMIN = VP: GOTO 1830
1820 IF UP = HP THEN PMAX = HP: PMIN = HP
1825 REM CHECK FOR IMPOSSIBLE FROJECTION
1830 IF PMAX > PERIM / 2 THEN BADPROJ = BADPROJ + l: FRINT: GOTO 1400
1835 REM CHECK FOR UNLIKELY ELONGÄTION
1840 IF PMAX > 20 % FMIN THEN TOOLONG = TOOLONG + 1: PRINT: GOTO I4NO
1850 REM
1860 REM UPDATE MAXIMUM VARIABLES
1970 REM
1880 IF AREA > AMAX THEN AMAX = AREA
1B30 IF PERIM > PERHAX THEN FERMAX = PERIH
1900 IF PMAX > PMAXMAX THEN PMAXMAX = PMAX
1910 IF PHIN > FMINMAX THEN PMINMAX = PHIN
1920 REM
1930 REM OUTPUT DATA TO DISK
1940 REM
1950 PRINT 1, AREA; INT (PERIH); INT (PMAX); INT (PMIN);
1960 NEXT
1970 REM
1980 REM OUTPUT MAXIHUM VARIABLES TO DISK
1990 REM
2000 PRINT #1, AMAX; INT (PERMAX); INT (PMAXMAX); INT (PHINMAX);
2 0 1 0 ~ P R I N T ~ T
2015 REM print and OUTPUT REJECTION data anO print INFO TO SAVE data FILE
2020 BADVAL = IEROVAL + SMALL + BADPROJ + TOOLONG
2030 PRINT " ZERO READINGS = '; TAB(20); zEROUAL
2040 PRINT "SMALL GRAINS = '; TAB(20); SMALL
2050 PRINT 'BAD PROJECTIONS = "; TAB(20); BADFROJ
2060 PRINT 'TOO ELONGATED = "; TAB(20); TOOLONG
2070 FRINT "TOTAL REJECTIONS = "; TAB(20); BADVAL;
2080 PRINT TAB(35); "= '; (BADVAL / GRAINS\) # 100
2090 PRINT
2100 PRINT F;; " IS ON DRIUE 'C': ENTER SYSTEM LEVEL TO SAVE TO DISK"
2110 PRINT " i.e. PIP Bi= '; F$
2120 PRINT $1, ZEROVAL; SMALL; BADPROJ; TOOLONG; BADVAL; (BADVAL/GRAINS%) * 100;
2130 CLOSE 綡
2140 END
2150 A = ERR
2160 IF A = 53 THEN PRINT 'NO FILES ON DATA DISK': RESUME NEXT
2170 ON ERROR 60TO O
```


APPENDIX XII

1000 REM
1010 RE.
1020 REM
1030 REM
1040 REM
1045 REM
104E REM
1050 REM
1055 REM SET UP CHARACTER TO CLEAR SCREEN AND FORH FEED PRINTER
$10 E 0$ CLS $\$=$ CHR\$(27) + CHR\$(12): FFEED $\$=$ CHRS(12)
1065 REM DISFLAY DISK FILES AND PROMFT A SELECTION
1070 PRINT CLSS: FILES 'B: $⿻ 肀$. DAT": PRINT: PRINT: FRINT
1080 INPUT *ENTER FILENAME TO DUTPUT: ', F\$

1100 PRINT "SET PRINTER TO TO OF PAgE THEN HIT ANY KEY"
$1110 \mathrm{Hs}=$ INKEYs: IF LEN (Hs) $=0$ THEN 1110
1115 REM PRINT FILE SELECTION AND PARTICULARS ON TO OF PAGE
1120 LPEINT F\$;
1130 OPEN 'I', 11 , F
1140 COUNT $=1$
1150 INPUT 11, COMMENTS, RES, GRAINS\%
1100 LPRINT " resolution $=$ ';
1170 LPRINT USING **. $\begin{aligned} & \text { \#\#'; } \\ & \text { RES; }\end{aligned}$
1180 LPRINT " un / pixel";
1190 LPRINT " "; COMMENTs
1200 LPRINT CHR\$ (15);
1210 PIE $=3.14159$
1220 CONST $=(4 * 3.14159) /\left(3 * 2^{\wedge} 3\right)$
1230 FOR GRAIH $=1$ TO GRAINSK +1
1240 INPUT Wh, AREA, PERIM, PROJMAX, PROJMIN
1250 PERIH = PERIM / 10: PROJMAX = PROJMAX / 10: PROJHIN = PROJMIN / 10
1255 REM IF FIRST GRAIN ON A PAGE PRINT HEADINGS
1260 IF COUNT < > 1 THEN 1300
1270 LFRINT "GRAIN AREA PERIM PROJMAX FROJHIN RATIO MAJOR";
1280 LPRINT: MINOR DIAK 1 VOL 1 VOL 2 ROUNDNESS"
1290 LPRINT
1295 REM CALCULATE RATIO, DIAMETERS, VOLUMES AND ROUNDNESS
1300 RATIO = PROJMAX / PROJMIN
1310 MAJOR $=2 \ddagger(($ AREA \ddagger PROJMAX) $/$ (PIE \ddagger PROJHIN) $) * .5$
1320 MINOR $=2$ ((AREA / PROJMIN) / (FIE $/$ PROJMAX)) *. 5
1330 DIAL $=2$ (AREA / PIL) *. 5
1340 YOLI $=$ CONST \ddagger DIAL ${ }^{\wedge} 3$
1350 VOL2 $=$ CONST * HAJOR * HINOR * 2
1360 ROUND $=$ PERIM ^ $2 /(4 \pm$ PIE \ddagger AREA $)$
1365 REM . IF NOT 'MAXIMUMS GRAIN' THEN PRINT INFD
1370 IF GRAIN = GRAINS\% + 1 THEN 1550
1380 LPRINT USING ":AA! : GRAIN;
1390 LPRINT USING "ititi: "; AREA; PERIM;
1400 LPRINT USING aAA.1 "; PROJMAX; FROJMIN;
1410 LPRINT USING *H.t "i RATIO;
1420 LPRINT USIKG *TH.: "; MAJOR; MINOR; DIAI;

1440 LPRENT USING " $\mathrm{T}_{4} . \mathrm{It}^{\prime}$; ROUND

```
1445 REM UPDATE CALCULATED MAXIMUMS
1450 If RATIO > RATHAX THEN RATHAX = RATIO
1460 IF HAJOR > MAJRMAX IHEN MAJRMAX = .TAJOR
1470 IF HINOR ; MINRMAX THEN MINRMAX = MINOR
148O IF DIAL ) DIMAX THEN DIMAX = DIA!
1430 IF VOL! > VIMAX "IEN VIMAX = VOLI
1500 IF VOL2 > V2MAX THEN V2MAX = VOL2
1510 IF ROUND > RNOMAX THEN RNDMAX = ROUND
1515 REM CHECK FOR END OF PAGE
1520 IF COUNT <> 50 THEN 1540
1530 LPRINT FFEED$: COUNT = 0
I535 REM INPUT AND PRINT REJECTION DATA
1540 CDUNT = COUNT + 1
1550 NEXT
I555 REM PRINT MAXIHUMS
1560 LPRINT USING '#At& "; GRAIN - 1;
I570 LPRINT USING '知H.f "; AREA; FERIn;
1580 LPRINT USING 'HEt.& "; PRDJMAX; PROJMIN;
&590 LFRINT USING "&#.# "; RATMAX;
1600 LPRINT USING "HIE. "; HAJRMAX; MINRMAX; DImAX;
IGIO LPRINT USING "$E.#f^A^A "; VIMAX; V2MAX;
1620 LPRINT USING "H.&&"; RNDMAX
1630 LPRINT
I640 INPUT #1, ZEROVAL, SMALL, BADPROJ, TOOLONG, BADVAL, PCT
1G50 LPRINT "IERO READINGS = '; TAB(20); ZEROVAL
lG60 LPRINT "SHALL GRALNS = '; TAB(20); SMALL
1670 LPRINT "BAD FROJECTIONS = "; TAB(20); BADPROJ
IGBO LPRINT "TOO ELONGATED = "; TAB(20); TOOLONG
1670 LPRINT "TOTAL REJECTIONS = '; TAB(20); BADVAL; " = '; PCT; "%"
1700 CLOSE $1
1710 END
```

HSTOGRAK. BAS APPENDIX XIII
1010 REM
REV. 2.1 JUNE 14/89
1020 REM
1030 REM USE OF RAH DISK AND MULTI ZOOM OPTIDNS
1035 REM $\$$ THIS IS A PRINTOUT LISTING OF WORKING. BAS
1036 REM HSTOGRAM.BAS HAS MOST OF THE COMMENTS REHOVED
1040 REM
1050 REM FILES/HOUSE KEEPING
1060 REM
1065 REM DEFINE MOST USED VARIABLES AND CONSTANTS (Ist IN LIST FOR SPEED)
1070 TEMP $=0:$ TEMPY $=0:$ GRAIN $=0:$ GRAINS\% $=0$
1080 PIE $=3.1415:$ RNDCNST $=12.57:$ VOLCNST $=.5236$
1090 DIM 200M (7, 10, 2)
1095 REM CLEAR SCREEN AND FORH FEED CHARACTERS
1100 CLS $=$ CHR $\$(27)+$ CHR (12)
1110 FFEEDS $=$ CHRS (12)
1115 REM handle possible EMpTY DISX situation via error code
1120 ON ERROR GOTO 5500
1130 PRINT CLS\$: FILES "Bit.DAT"
1140 ON ERROR GOTO O
1145 REM RE-ENABLE ERROR HANDLING
1150 OPTNS (1) = ${ }^{\text {AREA }}$
1155 REM DPTION MENU VARIABLE
1160 OPTN (2) = 'PERIMETER'
1170 OPTKS (3) = "DIAMETER $1 "$
1180 OPTN (4) = "ELONGATION"
1130 OFTNS (5) = "ROUNDNESS"
1200 OPTNs (6) = "VOLUMES vs. DIAMETER L"
1210 DPTNS (7) = "AREA vs. DIAMETER I"
1220 DPTN\$ (8) = "RUN"
1230 OPTNS (9) = 'QUIT"
1240 PRINT: PRINT: PRINT
1250 INPUT EENTER FILENAME TO PLOT: ' 1 , fs

1270 PRINT "SET PRINTER TO TOP OF PAGE THEN HIT ANY KEY"
$1280 \mathrm{H}=$ I IMKEY $:$ IF LEN (H\$) $=0$ THEN 1280
1290 REM
1300 REM . LOOM ND ZOOH
1310 REM
1320 IMPUT "ARE YOU 2OOMING? (y/n): ", H\$

1350 60TO 1320
1355 REM INIIIALLILE NUMBER OF ZOOMS VARIABLE
1360 200HS $=0$
1365 REM CLEAR SCREEN AND PRINT MENU
1370 PRINT CLS\$
1380 PRINT " 200 M OPTION"; TAB(30); " MAX MIN INTERVAL*
1390 PRIMT
1400 FOR MENU $=1$ TO 9
1410 PRINT USING ${ }^{11}$ "; MENU;
1420 PRIMT OPTM\$ (MENU);
1430 IF MENU > 7 THEN 1540
1435 REM CYCLES VARIABLE IS NUHBER OF ZOOMS FOR EACH OPTION

```
1440 CYCLES = ZOOH (MENU, 0,0)
1450 IF CYCLES = 0 THEN PRINT
14EO FOR CYCLE = 1 TO CYCLES
1470 MAXIND = 2OON (MENU, CYCLE, O)
1490 MININD = 200H (MENU, CYCLE, 1)
1490 INTVAL = 20OH (HENU, CYCLE, 2)
1500 PRINT TAB(30);
15IO. PRINT USING "&###.At "; HAXIND; MININD; INTVAL
1520 NEXT
1530 GOTO 1550
1540 PRINT
1550 NEXT
1555 REM UPDATE NUMBER OF LOOMS SELECTEO AND PROMPT NEXT ZOOM
l560 PRINT
1570 PRINT USING '$4 "; 200H5;
1580 PRINT '200MS SELECTED: MAX = 10'
1590 PRINT
I600 INPUT "ENTER ZOOM FUNCTION: ", OPTN
1610 IF OPTN < O OR OPTN > 9 THEN }160
1620 OPTN = INT (DFTN)
1625 REH EXIT, RUN OR INPUT ZOOM RANGE?
1630 IF OPTH = 9 THEN 5490
1640 IF OPTN = 8 THEN 1770
1650 ZOOMS = 200MS + 1
1655 REM PROMPT FOR MAXIMUM AND MINIMUH INDEPENDANT VARIABLE VALUES FOR 2OOH-
1660 INPUT MAXIGUH: "; MAXIND
1670 INPUT "HINIMUM: "; MININD
1680 INTVAL = (MAXIND - MININD) / 20
1685 REM UPDATE NUHBER OF CYCLES FOR SELECTED ZOOH OFYION
1690 CYCLES = 2OOM (OPTN, 0, 0) + 1
1695 REM STORE INFORMATION IN ZOOM AREAY (HENU OPIION, CYCLE NUMEER, PARAM)
1700 200H (OPTN, 0, O) = CYCLES
1710 20OH (OPTN; CYCLES, 0) = MAXIND
1720 20OM (OPTM, CYCLES; 1) = MIKINO
1730 200M (OPIN, CYCLES; 2) = INTVAL
1735 REK IF NUMBER OF ZOOHS = MAX EXIT MENU TO PLOT
1740 If 200MS = 10 THEN 1770 ELSE 1370
1750 RE.H -
1760 REM LDAD DATA FROH FILE INTO RAM DISK IF NOT ALREADY LOAOED
1770 REM
1780 IF LOADED = 1 THEN 2070
1790 PRIMT
1800 PRIHT "LOADING DATA"
1810 OPEM 'l', 11, Fs
1815 REH 'gET DATA FILE COHMENT, SCREEN RESOLUTION AND NUMBER OF GRAINS
1820 INPUT $1, COMMENTS, RES, GRAINS%
1925 REM SET UP A RAM DISK COFY OF DATA FILE
1830 RAMS = "C:TEMP.DAT"
1840 DPEN "D", 12, RAMs
1850 FOR GRAIN = 1 TO GRAINSI + 1
1860 IMPUT II, AREA, PERIM%, PROJMAYY, PROJHINZ
```

1875 REM FOR ALL BUT LAST ENTRY (MAXIMUMS) STORE COPY TO RAK DISK
1880 IF GRAIM) GRAINSI THEM 1900
1890 PRIKT 12, AREA; PERIMz; PROJMAXY; PROJMINZ;
1900 NEXT
1305 REM GET DATA FILE REJECTION INFJRMATION AND CLOSE FILES
1910 INPUT II, IEROVAL, SMALL, BADPROJ, TOOLONG, BADVAL, PCT
1920 CLOSE \#1: CLOSE \$2
1925 REM SET DATA LOADED INDICATOR
1930 LOADED $=1$
1940 REH
1350 REH MORE FILE/HOUSE KEEPING
1960 REM
1965 REM IF ZOOHING SKIP
1970 IF OPTM 〈 0 THEN 2070
1975 REM FIND AREA AND FERIMETER MAXIMUMS AND INTERVALS
1980 AMAX = AREA
1990 PERHAX = PERIHZ / 10
2000 AINT $=1.0001$ * AMAX / 20
2010 PERHINT $=1.0001 *$ PERMAX $/ 20$
2020 IOOH $(1,1,2)=$ AIHT
2030 100H ($2,1,2$) = PERMINT
2035 REM SET EACH OPTION CYCLE COUNT TO 1
2040 FOR $X=1$ TO 7
2050 200月 $(x, 0,0)=1$
2060 NEXT
2065 REM Find maximun value of cycles
2070 FOR $X=1$ TO 5
2080 CYCLE $=200 \mathrm{H}(\mathrm{X}, 0,0)$
2090 IF CYCLE $>$ CYCLMAX THEN CYCLMAX = CYCLE
2100 NEXT
2105 REM SET UP HISTOGRAA INTEAER DATA ARRAY (CYCLE, BAR NUH, MENU OPTIOM)
2110 DIM HISTZ (CYCLMAX, 20, 5)
2120 REM
2130 REM AREA HISTOGRAM
2140 REM
2150 PRINT "bar lengith calculations
2155 REM IF ND AREA CYCLES SKIP TO PERIHETER
2160 CYCLES $=200 H(1,0,0)$
2170 IF CYCLES $=0$ THEN 2360
2180 PRIMT * AREA*
2190 FOR CYCLE $=1$ TO CYCLES
2200 HININD $=$ 2OOM (1, CYCLE; 1)
2210 INTVAL = ZDOM (1, CYCLE, 2)
$222^{\circ} 0$ DPEN "I", 12 , RAMs
2230 FIR GRAIM $=1$ TO GRAING\%
2240 IMFUT 12, AREA, WASTES, WASTE2, WASTE3
2250 TEMP $=($ AREA - MININD $) /$ IMTVA
2260 IF TEMP < O OR TEMP $\Rightarrow 20$ THEN 2290
2270 TEMPZ $=$ INT (TENP) +1
2280 HISTY (CYCLE, TEMPY, 1) = HISTY (CYCLE, TEMPY, 1$)+1$
2290 NEXT
2300 CLOSE 12
2310 NEXT

2315 REM ARE ALL ZOOMS DONE?
2320 200M = CYCLES
2330 IF 200h = ZOOMS THEN 3770
2340 REM
2350 REM PERIHETER HISTOERAM
2360 REA
2365 REM If NO PERIMETER CYCLES SKIP TO EXTENOED CALCULATIONS
2370 CYCLES $=200 \mathrm{H}(2 ; 0,0)$
2380 IF CYCLES $=0$ THEN 2570
2390 PRINT" PERIHETER'
2400 FOR CYCLE $=1$ TO CYCLES
2110 MININD $=$ IOOH $(2$, CYCLE, 1$)$
2420 INTVAL $=200 \mathrm{~B}(2$, CYCLE, 2$)$
2430 OPEN 'I', \$2, RAM's
2440 FOR GRAIN = 1 TO GRAINS\%
2450 IMPUT 2, UASTEL, PERIH, HASTE2, HASTE3
$24 E 0$ TEMP $=((P E R I M /$ 10) - MININD) / INTVAL
2470 IF TEMP $\{0$ OR TEMP $\Rightarrow 20$ THEN 2500
2480 TEHPK $=$ INT (TEMP) +1
2490 HISTZ (CYCLE, TEKPZ, 2) $=$ HISTZ (CYCLE, TEMP\%, 2) +1
2500 NEXT
2510 CLOSE $\$ 2$
2520 NEXT
2525 REM AREA ALL ZOOMS DONE?
2530 200M $=200 \mathrm{H}+$ CYCLES
2540 IF $200 M=$ IOOHS THEN 3770
2550 REH
2560 REH CALCULATE OIAMETERS; ROUNDNESS, ELCNGATION RATIO AND VOLUMES
2565 REM IF NOT ALREADY DONE
2570 REM
2580 IF CALCLTO $=1$ THEN 2820
2590 PRINT "EXTENDED CALCULATIONS
2595 REH prepare a rah disk file for calculations and open difut file
2500 CALC $=$ "CiCALC. DAT"
2610 OPEN "I", 2 , RAM\$
2520 DPEN " 0 ", $\$ 3$ CALC
2630 FOR GRAIN $=1$ TO GRAINS\%
2640 IMPUT 12, AREA, PERIM, PROJHAX, PROJMIN
2650 PERIH = PERIM / 10: PROJMAX = PROJMAX / 10; PROJMIN = PROJMIN / 10
2650 DIAL $=2 \ddagger($ AREA / PIE) ^. 5
2670 DIA2 $=2$ ((AREA * PROJMAX) / (PIE * PROJMIN)) ^. 5
2680 DLA3 $=2$ ((AREA \ddagger PROJMIN) $/($ PIE \ddagger PROJHAX $)$) .5
2685 REM SHIFT DEC POINT IO CARRY 3 SIG FIGS THRGLGH TRUNCATIUN \& STDRAGE
2690 ELOMg: $=($ PROJKAX / PROJMIN) - $11 \$ 1000$
2700 RHDNESS $=(($ PERIK ^ $2 /($ AREA + RHOCNST $))-1) \$ 1000$
2710 VOLI = DIAI * $3 \ddagger$ VOLCNST
2720 VOL2 $=$ DIA2 $*$ OIA3 ~ 2 *VOLOHST
2725 DEA STORE TO RAB OISK AND UFDATE MAXIMUNS
2730 PRINT (3, INT(DIA1 * 10); INT(ELONG); INT(VOL1); INT(VOL2); INT(ENONESS);
2740 IF DIAL > DIAKAY THEN DIAKAY = DIAL
2750 IF ELONG > ELONGHX THEN ELDNGMX = ELONG
2760 IF RHDMESS > RHDHAX THEN RNDHAX = RNDNESS
2770 NEXT

2775 ren close files and set calulations conpleted flag
2780 CLDSE 12: CLDSE 43
2790 CALCLTD $=1$
2900 REM
2810 REM DIAMETER, ELONGATION AND ROUMDNESS HISTOGRAMS
2820 REM
2 2b30 Print 'bar lemgth calulations'
2840 IF DPTM $<>0$ THEN 2950
2850 DIAINT $=1.0001 *$ DIAMAX $/ 20$
2855 reh shift dec point to return 3 sig fig after dec point
2860 ELNGINT $=1.0001 \ddagger$ ELONGKY $/(20 \ddagger 1000)$
2870 RNDINT $=1.0001 \ddagger$ RNDHAX $/(20 \ddagger 1000)$
2880 100M $(4,1,1)=.9999$
2890 200M $(5,1,1)=.9999$
2900 200M $(3,1,2)=$ DIAINT
2910 200M $(4,1,2)=$ ELNGINT
$2920 \operatorname{l20M}(5,1,2)=$ RNDINT
2930 200M $(6,1,2)=$ DIAINT
2940 LIOOM $(7,1,2)=$ DIAIIT
2950 print - diameter, elongation and roundeness
2960 OPEN "I', 3, CALCs
2970 FOR GRAIM $=1$ TO GRAINS\%
2980 IMPUT 13, dIal, ELONG, hastel, haste2, Rhdeess
2990 REM
3000 REM DIAMETER
3010 REM
3015 REM IF ND DIAMETER CYCLES SKIP to ELOMGation
3020 CYCLES $=200 M(3,0,0)$
3030 IF CYCLES $=0$ THEN 3140
3040 FOR CYCLE $=1$ TO CYCLES
$3050 \quad$ HININD $=$ ZOOM $(3$, CYCLE 1$)$
3060 INTVAL $=$ ZOOM (3, CYCLE, 2)
3070 TEMP $=($ (DIAL $/(0)-$ MININD $) /$ INTVAL
3080 IF TENP < O DR TEAP $\Rightarrow 20$ THEN 3110
$3090 \quad$ TEMPZ $=$ INT (TEMP) +1
3100 HISTL (CYCLE, TEHPK, 3) $=$ HISTK (CYCLE, TEMPY, 3) +1
3110 NEXT
3120 REM
3130 REA ELOMEATION
3140 REM
3145 ren if mo elongation cycles skip to roukdess
3150 CYCLES $=200 \mathrm{M}(4,0,0)$
3160 IF CYCLES $=0$ THEN 3280
3170 ELONG ; ELONG / 1000
$3180 \quad F O R$ CYCLE $=1$ TO CYCLES
$3190 \quad$ MININD $=200 \mathrm{M}(4$, CYCLE, 1$)$
3200 IMTVAL $=2004$ (4, CYCLE, 2)
3210 TEAP $=($ ELDMG - MININD +1$) /$ INTVAL
3220 IF TEAP < 0 OR TEMP $\Rightarrow 20$ THEN 3250
$3 \therefore 30$ TEMPI $=$ INT (TEMP) +1
3240 HISTZ (CYCLE, TEHPY, 4) = HISTY (CYCLE, TEHPY, 4) +1
3250 NEXT

3260 REH
3270 REH ROUMDESSS
3280 REH
3285 REM IF NO ROUNDNESS CYCLES SKIF TO YOLUME
3290 CYCLES $=200 \mathrm{M}(5,0,0)$
3300 IF CYCLES $=0$ THEN 3410
3310 RNDMESS $=$ RHDHESS $/ 1000$
3320 IF RNDNES5 < O THEN NOROUND $=$ NOROUND $+1: 60 T 03410$
3330 FOR CYCLE $=1$ TO CYCLES
3340 KININD $=200 \mathrm{M}(5$, CYCLE, 1$)$
3350 INTVAL $=$ 2OOM (5, CYCLE, 2)
3360 TEMP $=$ (RNDNESS - HININD + 1) / INTVAL
3370 IF TEAP $\leqslant 0$ OR TEKP $\Rightarrow 20$ THEN 3400
3380 TEMPK $=$ INT (TEMP) +1
3390 HIST\% (CYCLE, TEMF\%, 5) = HISTK (CYCLE, TEMP\%, 5) +1
3400 NEXT
3410 NEXT
3415 REM CLOSE FILES AKD CHECK IF ALL 200 HS DONE
3420 CLOSE 13
$3430200 K=200 M+200 M(3,0,0)+200 M(4,0,0)+200 M(5,0,0)$
3440 IF $200 \mathrm{H}=$ 200MS THEN 3770
3450 REM
3460 REM VOLUME I, VOLUME 2 AND AREA v5, DIAMETER 1 HISTOGRAHS
3470 REH
3475 REH FIND MAXIMUM NUMBER OF CYCLES
3480 CYCLEL $=$ 200M $(6,0,0)$
3490 CYCLE $2=200 H(7,0,0)$
3500 IF CYCLE1 > CYCLE2 THEN CYCLHAX = CYCLEI ELSE CYCLMAX = CYCLE2
3510 PRINT * VOLUME 1 , VOLUME 2 AND AREA"
3515 REM SET UP HISTOGRAM REAL DATA ARRAY (CYCLE, BAR NUMBER, HENU OPTION)
3520 DIM HIST (CYCLHAX, 20, 3)
3530 FOR CYCLE $=1$ TO CYCLMAX
3540 MININDI $=$ 200M $(6$, CYCLE 1$)$
3550 MININD2 $=200 \mathrm{H}$ (7, CYCLE, 1)
3560 INTVALI $=$ ZOON $(6$, CYCLE, 2$)$
3570 INTVAL2 $=$ 2OOH (7, CYCLE, 2)
3580 OPEN "I", 12, RAM\$
3590 OPEM "I", 13 , CALC $\$$
3500 FOR GRAIK = 1 TO GRAIMS\%
3610 IMPUT 2, RREA, WASTEL, WASTE2, HASTE3
3620 IMPUT 3 3, DIAI, HASTE1, VOLI, VOL2, HASTE2
3630 TEMP $=($ (DIAL / 10) - MININDI) / IMTYALI
3640 IF TEMP (O OR TEMP $\Rightarrow 20$ THEN 3680
3650 TEMPZ $=$ IMT (TEMP) +1
3660 HIST (CYCLE, TEHP\%, 1) $=$ HIST (CYCLE, TEMP\%, 1) + VOLI
3670 HIST (CYCLE, TEMP\%, 2) = HIST (CYCLE, TEMP\%, 2) + YOL2
3680 TEMP $=($ (DIAL $/ 10)-$ MININD2 $) /$ IMTVAL2
3690 IF TEMP < O OR TEMP $\Rightarrow 20$ THEN 3720
3700 TEMPZ $=1 N T($ TEMP $)+1$
3710 HIST (CYCLE, TEMP\%, 3) $=$ HIST (CYCLE, TEHF\%, 3) + AREA
3720 NEXT
3730 CLOSE 12: CLOSE 3
3740 NEXT

3750 REM
3760 ren plot area，perimeter，diameter，elongation and roundness histograns
3770 REM
3780 200h＝ 0
－790 FRINT＂PLOT HISTOGRAMS＂
3795 REM SET PRINTER FOR COMPRESSED MDDE AND SET PLITS FER FORH FEED COUNTER
3800 LFRINT CHR（15）；
3810 FEED $=0$
$3 E I S$ REM FOR AREA，FERIMETER，DIAMETER，ELONGATION AND ROUNDNESS
3620 FOR PLT $=1$ TO 5
3825 REM IF NO CYCLES FOR THIS PLOI GO TO NEXT PLOT
3830 CYCLES $=200 \mathrm{H}$（PLT，O，O）
3040 IF CYCLES $=0$ THEN 4710
3850 LOOM $=$ 200K + CYCLES
3860 PRINT＊${ }^{\circ}$ ；OPTHS（PLT）
3870 FOR CYCLE $=1$ TO CYCLES
3880 FEED $=$ FEED $+1:$ SCALE $=0:$ RUNTOT $=0:$ HISTTOT $=0$
3885 REM FIND TOTAL FOR CUMULATIVE PERCENT CALCULATIONS
$3890 \quad$ FOR BAR $=1$ TO 20
3900 IF HISTY（CYCLE，BAR，PLT）＞SCALE THEN SCALE＝HIST\％（CYCLE，BAR，FLT）
3910 HISTTOT＝HISTTOT＋HISTZ（CYCLE，BAR，PLT）
3920 NEXT
3930 MININD $=200$（PLT，CYCLE，1）：INTVAL $=200 \mathrm{M}$（PLT，CYCLE，2）
3935 REM IF NOT LOOMING OR ROUNDNESS
3940 IF OPTN＝ 8 OR PLT 〈〉5 THEN 3970
3950 IF NOROUND＞SCALE THEN SCALE＝NOROUND
3960 HISTTOT＝HISTTOT＋NOROUND
3965 REK FIND SCALE FACTOR TO SCALE BARS TO PAGE
3970 If SCALE＜ 100 THEM SCALE $=1$ ELSE SCALE $=$ SCALE $/ 100$
3975 REM PRINT PLOT IITLE HEADINGS EIC．
3980 LPRINT＂DATA SET：＂；Fs；＂－＂；OPTNS（PLT）；＂－grains＝＂；
3990 LPRINT USING＂IAI\＃；GRALNS\％；
$\$ 000$ LPRINT＂，resolution $=\mathbf{\prime} ;$
4010 LPRINT USING＊I．IA＂；RES；
4020 LPRINT＂un／pixel＂；
4030 LPRINT＂＂；COMMENTS
4040 LPRIAT
4050 IF PLT $=1$ THEN LPRINT＂sq，uhn
4060 IF PLT＞ 1 AND FLT＜ 4 THEN LPRINT
4070 IF PLT＞ 3 THEN LPRINT－RATIO＂；
4080 LPRINT TAB（45）；
4690 LPRINT＂EACH REPRESENTS＂；
4100 LPRINT USING＂AEt＇；SCALE；
4110 LPRINT＂GRAIN（S），（ $*$－LESS） ；
4120 LPRMT TAB（114）；
4130 LPRINT＂GRAINS SUM χ^{4}
4140 LPRINT
4145 REH IF ZOOMING OR NOT ROUNDNESS
4150 IF OPTN＝ 8 OR PLTく5 THEN 4380

4160	REM
4170	REA IMPOOSIBLE ROUNDNESS
4180	REM
4190	LPRINT " 0.00 ";
4200	COUNT = NOROUND
4210	IF COUNT $=0$ THEN 4300
4220	LOOPI = COUNT / SCALE
4230	LOOP2 = INT (LOOP1)
4240	If LOOP2 $=0$ THEN LPRINT ${ }^{\text {- }}{ }^{\prime \prime}$
4250	IF LOOP2 $=0$ THEN 4300
4250	FOR $X=1$ TO LOOP2
4270	LPRINT 'f';
4280	NEXT
4290	If LOMP1 \% LOOP2 THEN LPRINT ***
4300	LPRINT TAB(115);
4310	LPRINT USING "\#\#\#*; COUNT;
4320	RUWTDT = RUATOT + COUNT
4330	FCTTOT $=$ (RUNTOT / HISTTOT) $\geqslant 100$
4340	LPRINT TAB(123);
4350	LPRIMT USING *EAF, ¢'; FCTTOT
4350	REM
4370	REM ALL OTHER GRAINS
4380	REM
4385	REA FIND RESOLUTION FOR PRINT FORHATYING HEADING
4390	HEADRES $=20 *$ INTVAL + MININD
4400	HEADING = MININD
4410	
4420.	If PLT = 1 AND HEADRES < 100 THEN LPRINT USING 'H. Hi "; HEADINA
4430	
4440	IF PLT > 3 THEN LPrimi USIng 'Ifi, H\% '; HEADING
4445	REM PLOT BARS
4450	FOR BAR $=1$ TO 20
4450	COUNT = HIST\% (CYCLE, BAR, PLT)
4465	REM CALC CUMULATIVE PERCENT
4470	RUNTOT = RUNTOT + COUNT
4480	PCTTOT $=$ (RUNTOT / HISTTOT) $\ddagger 100$
4490	HEADING $=$ (BAR \ddagger INTVAL $)+$ MININD
4495	REN PRINT HEADIMG
4500	
4510	IF PLT = 1 AND HEADRES < 100 THEN LPRINT USING ' \#\#, \#\# '; HEADING;
4520	If PLT $=2$ OR PLT = 3 THEN LPRINT USING "HAti, '; HEADING;
4530	
4535	rem plot bar, value and cuatllative percent
4540	IF COUMT = 0 THEN 4630
4550	LPOPI = COUNT / SCALE
4560	LOOP2 = IWT (LOOP1)
4570	If LOOP2 $=0$ THEN LPRINT '\%';
4580	IF LOOP2 $=0$ THEN 4630
4590	FOR $X=1$ FOLOOP2
4600	LPRINT "E";
4610	NEIT
4620	IF LOOP1 > LOOP2 THEN LPRINT **";
4630	LPRINT TAB(115);

```
4E40 LPRINT USINg 'HAL'; COUNT;
4650 LPRINT TAB(123);
45EO LPRINT USING "WI.&"; PCTTOT
4 6 7 0 ~ N E X T ~
4675 REH SPACE BETHEEN PLOTS
4630 LPRINT: LPRINT: LPRINT
46Es reh if second plot on page guto next Faje
4690 IF FEED = 2 THEN LPR!NT FFEEDS: FEED = 0
4700 NEXT
4710 NEXT
4715 rem If no more plots Skif to rejection print
4720 IF LOOH = 2OONS THEN 5S80
4730 REH
4740 rem flot voluhe 1, volume 2, and area vs. diameter 1
4750 REM
4755 REH CURRENT PLOT HEADING varIABLE
4760) CURRENTS (1) = VOLUME I vs. CHMETER 1"
477) CLRRENT\ (2) = "VOLLIFE 2 vs. DIAMETER 1"
4780 CURRENT$ (3) = "AREA vs, DIAMETER 1"
4790 FOR PLT = 1 T0 3
4795 REL GET NUMEER DT CYCLES FOR VOLUHE 1 & 2 ELSE FOR AREA
```



```
4810 If CYCLES = O THEN 5350
4820 PRINT ' '; CURRENTS (PLT)
4830 FOR CYCLE = 1 TO CYCLES
4040 FEED = FEED + 1: SCALE = 0: RUNTOT = 0: HISTTOT = 0
4445 REM GET MINIMUM AND IntERVAL FOR INDEPENDANT VARIABLE
4850 If PLT < 3 THEN MININD = 200M (6, CYCLE, 1): INTVAL = 20OM ( 6, CYCLE, 2)
4BE0 IF FLT = 3 THEN MININD = 200K (7, CYCLE, 1): INTVAL = 200M (7, CYCLE, 2)
4865 REH FIND TOTAL FOR CUHULATIVE PERCENT CALCULATIOKS
4870 FOR BAR = 1 TO 20
4800 IF HIST (CYCLE, BAR, PLT) > SCALE THEN SCALE = HIST (CYCLE, BAR, FLT)
4890 HISTTOT = HISITOT + HIST (CYCLE, BRR, PLT)
4900 NEXT
4905 reh rind scale factor to scale bars to page
4910 IF SCALE ( 100 ThEN SCALE = 1 Else SCale = SCALE / 100
4915 REM PRINT PLOT TITLE, HEADINGS ETC.
4 9 2 0 ~ L P R I N T ~
4930 LPRINT 'DATA SET: "; Fs; " -"; CURRENTS (PLT); '- grains = ';
4940 LPRINT USING '####"; GRAINS*;
4950 LPRIMT ', resolution = ';
4960 LPRINT USING '&.ta' '; RES;
4970 LPRINT 'UM / pixel';
4980 LPRINT" "; COMHENTS
4990 LPRINT
5000 LPRINT ' UAN;
5010 LPRIMT TAB(45);
5020 LPRINT "EACH & RPRESENTS ';
5030 LPRINT USING '#a.#f^^^A"; SCALE;
So40 IF PLT < 3 THEN LP&INT ' cubic uh, (# - LESS)";
```

5050 IF PLI $=3$ THEN LPRINT " sq. uht (* LESS)"i
5060 LPRINT TAB(113);
5070 IF PLT < 3 THEN LPRINT "cubic un";
5090 IF PLT $=3$ THEN LPRINT ' sq. 山ll';
5090 LPRIWT TAB(125);
5100 LPRIMT "SUM \%'
5110 LPRIMT
5120 LPRINT USING 'a\#\#\#\# ': MININD
5125 REM PLOT GARS
$5150 \quad$ FOR BAR $=1$ TO 20
5140 COUNT $=$ HIST (CYCLE, BAR, PLT)
5145 REH CALCULATE CUMULLATIUE PERCENT
5150 RUNTOT $=$ RUNTOT + COUNT
5160 PCTTOT $=($ RUNTOT / HISTTOT $) ~ \$ 100$
$5170 \quad$ HEADING $=($ BAR $*$ INTVAL $)+$ MININD
5175 REM PRIMT HEADING
5180 LPRINT USIMG "E\#\#, ${ }^{2}$ '; HEADING;
5190 IF COUKT $=0$ THEN 5280
5201) LOOPI $=$ COUNT $/$ SCALLE
$5210 \quad$ LOOP2 $=$ INT (LDOPL)
5220 IF LOOP2 $=0$ THEN LPRINT 'f";
5230 IF LOOF2 $=0$ THEN 5280
5235 reh plot bar, value and cuhllative percent
$5240 \quad$ FOR $X=1$ TO LODP2
5250 LPRINT " ${ }^{2}$ ';
5260 NEXT
5270 IF LOOP1 > LDOP2 THEN LPRINT "*";
5280 LPRINT TAB(112);

5300 LPRINT TAB(124);
5310 LPRINT USING "HA.A"; PCTTOT
5320 NEXT
5325 REM SPACE BETHEEN PLOTS
5330 LPRINT: LPRINT: LPRINT
5335 reh if second plot on page go to next page
5340 If feed $=2$ Then Lprint ffeeds: feed $=0$
5350 NEXT
5360 MEXT
5365 reh erase volume and area histograh and clear screen
5370 ERASE HIST
5380 PRINT CLS $\$$
5385 REA PRINT REJECTION DATA
5390 LPRIMT 'ZERO READINGS = '; TAB(20); ZEROVAL
5400 LPRINT ;'SMALL GRAINS $=$ ' i TAB (20); SMALL
5410 LPRINT "bad projections = '; tab(20); badproj
5420 LPRINT "TOO ELOMGATED = "; TAB(20); TOCLONG
5430 LPRINT 'total rejections = '; tab(20); badyal; " = '; FCT $;$ " ,
5435 rem erase area perimeter etc. array and loon array, redihengion zook array
5440 ERASE HIST\%
5450 ERASE ZDOM
5460 DIM 2004 ($7,10,2$)

5470 2OOMS $=0$
546060101360
5485 REA RETURN TO IOOM GFTION MENU
5490 END
5495 REM ERRROR handling For EMfTY fata disk situation
$5500 \mathrm{~A}=E R R: B=E R L$
5510 IF A $=53$ THEN PRINT NNO FILES ON DATA DISK': RESUME NEXT
5520 ON ERROR $60 T 00$

APPENDIX XV

DATA		Origin		Card Row	Edge COL	$\begin{gathered} \text { Cable Connector } \\ \text { Pin \# } \end{gathered}$
Word	Param	Chip	Pin			
DO	0	U1	2	L	34	1
	1		4	K	34	2
	2		6	L	35	3
	3		8	K	35	4
D1	0	U1	11	L	36	5
	1		13	K	36	6
	2		15	L	37	7
	3		17	K	37	8
D2	0	U2	2	L	38	9
	1		4	K	38	10
	2		6	L	39	11
	3		8	K	39	12
D3	0	U2	11	L	40	13
	1		13	K	40	14
	2		15	L	41	15
	3		17	K	41	16
D4	0	U3	2	K	48	30
	1		4	K	42	18
	2		6	L	43	19
	3		8	K	43	20
D5	0	U3	11	L	44	21
	1		13	K	44	22
	2		15	L	45	23
	3		17	L	48	
FLAG	0	U4	2	K	50	29
	1		4	L	24	25
	2		6	L	26	26
	3		8	L	28	27
CTRL	EXECUTE	U4	9	L	50	31
	FOCUS		7	L	22	28
	RESET		5	L	20	24


```
141.5 1.32
244.5 3.15
347.5 23.4
40.5 34.6
5 53.5 56.2
656.5 113
7 59.5 136
8 62.5 95.3
965.5 80.5
10 68.5 76.7
11 71.5 28.1
12 74:5 30.1
13 77.5 28.2
14 80.5 20.2
15 83.5 21.7
16 86.5 23.5
17 89.5 19
18 92.5 20
19 95.5 0
20 98.5 7.41
```


VOLUME 1 VS DIAMETER WITHIN 325-400 FRACTION

```
141.5 0.036
244.5 0.094
75
347.5 0.749
450.5 1.18
5 53.5 2
56.5 4.29
759.5 5.42
82.5 3.98
965.5 3.51
10 68.5 3.49
11 71.5 1.34
12 74.5 1.48
13 77.5 1.46
14 80.5 1.08
15 83.5 1.2
16 86.5 1.36
17 89.5 1.13
18 92.5 1.22
19 95.5 0
20 98.5 0.48
```


DISTRIGUTION BY ROUNDNESS WITHIN 325-400 FRACTION

11.07520	
21.225100	77
31.37592	
41.52555	
51.67525	
61.82519	
71.97522	
82.12510	
92.27510	
102.425 .4	
112.5757	
122.7252	
132.8754	
143.0253	
153.1776	
163.3253	
173.4755	
$18 \quad 3.6254$	
193.7753	
203.9252	

DISTRIBUTION BY ELONGATION WITHIN 325-400 FRACTION

1	1.075	169		
2	1.225	105		
3	1.375	71		
4	1.525	45		
5	1.675	21		
6	1.825	20		
7	1.975	35		
8	2.125	2		
9	2.275	5		
10	2.425	1		
11	2.575	5		
12	2.725	4		
13	2.875	0		
14	3.025	7		
15	3.177	0		
16	3.325	2		
17	3.475	0		
18	3.625	0		
19	3.775	0		
20	3.925	0		

DISTRIBUTION BY DIAMETER WITHIN 325-400 FRACTION

DISTRIBUTION BY PERIMETER WITHIN 325-400 FRACTION

1	137	2		83
2	162	14		
3	187	37		
4	212	62		
5	237	50		
6	262	30		
7	287	15		
8	312	13		
9	337	2		
10	362	6		
11	387	7		
12	412	7		
13	437	5		
14	462	4		
15	487	1		
16	512	1		
17	537	1		
18	562	2		
19	587	1		
20	612	4		

