

DEPARTMENT OF MINES AND TECHNICAL SURVEYS MINES BRANCH OTTAWA

GASOLINE SURVEY FOR SUMMER 1952

by

H. McD. CHANTLER, P.B. SEELY and R.G. DRAPER Fuels Division

MEMORANDUM SERIES No. 124 October, 1952

This document was produced by scanning the original publication.

۰.

Ce document est le produit d'une numérisation par balayage de la publication originale.

The quality of the gasoline sold in Ganada has been examined by the staff of the Division of Fuels of the Mines Branch each year since 1923, except 1940, 1949, and 1951. This was done by arranging for the collection of a number of samples from the principal centres of distribution in most of the provinces, and having them carefully analyzed by accepted methods at the Fuel Research Laboratories. The purpose of these surveys of quality was to make available to the Government, and to others who might desire it, reliable information regarding the characteristics of gasoline actually sold. Reports on the results obtained have been prepared and published from time to time and each year an effort has been made to increase the data and to present it in better form.

As with part surveys, inspectors of the Department of National Health and Welfare cooperated in the collection of the samples this year in the various cities, other than Ottawa, and the assistance of officials of that Department is gratefully acknowledged. The analytical work and the preparation of the report were under the supervision of Mr. H. McD. Chantler, and under the general direction of Mr. P.V. Rosewarne. In this report, the results of the analyses of one hundred and twelve samples of gasoline, collected in July of 1952, are given in detail. The analyses were made according to A.S.T.M. test methods and the characteristics tested included, colour, gravity, vapour pressure, volatility, per cent sulphur, corrosion tendency, gum content,knock rating, and amount of tetraethyllead added.

The knock-ratings were determined by two methods, namely, the A.S.T.M. mbtor method and the A.S.T.M. research method. Knock-ratings by the research method are included this year on account of the increasing use within the petroleum industry on this method of determining octane numbers. The results obtained by this method are seven or eight octane numbers higher for Group 1 gasolines than those obtained by the motor method. The average knock rating of both Group 1 and Group 2 gasolines by both methods was significantly higher in 1952 than in 1950, and is the highest on record in Canada. The changes in average knock ratings for the consecutive years can easily be followed on the graphs shown in the report. There has been comparatively little change in the volatility of either Group 1 or Group 2 gasolines since 1948 but what changes there are tend toward more volatile fuel.

> R. E. Gilmore, Chief, Division of Fuels.

TABLE OF CONTENTS

	Page
Introduction	ı
Methods of Analysis	ī
Results of Laboratory Examination	ī
Knock Ratings	ĩ
Maximum and Minimum Knock Ratings	1-2
Change in Knock Rating	2
Tetraethyllead Content	2
Volatility	5
Vapour Pressure	22
Sulphur.	5
Gum	2333
Gravity	4
Colour	4
Corrosion	2
	2
Summary and Conclusions	2
References	~ ⁴ .^
Tabulated Results	5-10

GASOLINE SURVEY FOR SUMMER 1952

by

H. McD. Chantler, P.B. Seely and R. G. Draper.

A study of the gasoline sold in Canada during the summer has been made annually since 1923 at the Fuel Research Laboratories of the Division of Fuels, Mines Branch, with the exception of the years 1940, 1949, and 1951, and from the results obtained reports have been published for the years 1923 to 1950 (1). From June 19 to July 17, 1952, 112 samples representing 38 brands of motor fuel sold by 20 wholesale dealers and distributors were obtained from representing of the stand distributors were obtained from ten principal, distributing cities, representing all provinces except Newfoundland and Frince Edward Island. The generous cooperation of the Food and island. The generous cooperation of the food and Island. The generous cooperation of the Food and Drug Divisions, Department of National Health and Welfare in the collection of the samples is gratefully acknowledged.

The purpose of this survey is not to ascertain whether the samples of motor fuel conform with any specification, either of the Government of Ganada (2), of any of the provinces, or of any other organization. It is intended as a means whereby information regarding the characteristics of gasoline actually being sold will become available. No effort, therefore, has been made to fit the results into predetermined groups; rather, it is desired that the actual analyses would define as clearly as possible the limits of the different groups of gaso-line on the market. However, in this survey as well as in the 1950 survey, it was found that the groups determined by the analyses correspond to the grades which are known in the oil trade as "premium" and "regular" gasoline.

Method of Analysis

Method of Analysis The characteristics of the gasoline were tes-ted generally according to the latest revision of the methods of testing (3) of the American Society for Testing Materials (A.S.T.M.). The distillation range was determined according to A.S.T.M. method D86 and is reported on the "per cent evaporated" basis. The "per cent evaporated" at any temperature is the sum of the "per cent evaporated" temperatures were obtained from a plotted graph. The knock characteristics of the gasolines were determined by both the motor method, A.S.T.M. method D357(4), and the research method, A.S.T.M. method D357(4), and the research method, A.S.T.M. method D957(4), and the research method, A.S.T.M. method D957(4), was used in this report, octane number unuber and research octane number. Unless otherwise qualified in this report, octane number means motor octane number. The Reid vapour pressure was determined according to A.S.T.M. method D323. The sulphur content was deter-mined according to A.S.T.M. method D90-34T, except that a modified apparatus (5), was used. The gum of the hydrometer at room temperature, according to A.S.T.M. method D267 and the result was calculated at 60°F. according to KAS.T.M. method D90-34T, the sense of the hydrometer at room temperature, according to A.S.T.M. method D267 and the result was calculated at 60°F. according to the National Standard 011 Tables(6). The equivalent gravity in degrees A.P.I. was obtained from the same tables. The apparent colour of the gasoline was observed. The tetraethyllead content was determined according to A.S.T.M. method D50-6-48T.

Results of Laboratory Examination

The results of the laboratory examination of the gasolines collected are shown by cities in Table I and the samples are divided into two separate groups, viz: Group 1 and Group 2 gasolines. This table gives the motor and research octane number, tetraethyllead content, distillation characteristics, specific and P I growthy Redd upper proceeded to the tetrate A.P.I. gravity, Reid vapour pressure, sulphur content, and gum content of all the samples. Averages for group 1 and Group 2 gasolines are reported at the foot of each column in the table. Table II is a summary of the

average of gasoline survey analyses by cities and shows the average of all samples in Group 1 and Group 2. It also gives the average of all samples tested. Table III gives the minimum, maximum, and average figures for each characteristic of Group 1 and Group 2 gasolines. Table IV is a summary of summer gasoline survey results for Group 1 and Group 2 from 1937 through 1950 (except 1940, 1949, and 1951). Table V shows the average results obtained by examination of gasoline for the summers of twenty-seven years, from 1923 to 1952, (except 1940, 1949, and 1951). Figures I and II show graphically the distillation range, motor and research octane numbers, Reid vapour pressure and sulphur content given in Table IV from the year 1938.

A general discussion of the significance of the laboratory tests, together with the relationship between these tests and the actual operation of the fuel in the engine will be found in the report on Gasoline Surveys for 1930 and 1931 (7). Intervening changes in the significance of tests on motor fuels were discussed in the Gasoline Surveys for 1935 and 1936 (8). For further information on motor fuels, a report (9) entitled the Significance of Tests of Petroleum Products, prepared by A.S.T.M. Committee D-2 of American Society for Testing Materials; the co-ordinating Research Council Handbook (10) and other reports (11) (12) (13) (14) (15) (16) (17) (18) should be consulted.

Knock Ratings

The knock ratings of the samples were determined in a Coordinating Fuel Research Engine (4), known more briefly as the "C.F.R. Engine". The knock ratings were determined by two methods, namely; the A.S.T.M. motor method D357 and the A.S.T.M. research method D908. The results are expressed in A.S.T.M. motor octane numbers and in A.S.T.M. research octane numbers. For purposes of brevity, throughout this report A.S.T.M. motor octane number is stated as motor octane number or simply as octane number and A.S.T.M. research octane number as research octane number. number.

According to the knock ratings, the samples fall into two groups, although there is some overlapping. The range in motor octane number of each group is as follows:

- Group 1. Gasolines with motor octane numbers of 79 and above. Group 2. Gasolines with motor octane numbers between 78 and 74.

The knock ratings of the individual samples are given in Table I and the group in which each sample falls is shown. Of the 112 samples of gasoline collected, 57 samples are Group 1 gasoline, and 55 samples are Group 2 gasoline.

Maximum and Minimum Knock Ratings

The maximum and minimum of the knock ratings as determined by the motor and research methods of the samples tested are shown in Table III. The range The range the samples tested are shown in Table III. The range in motor octane number of the group 1 gasoline is from a high of 84.8 to a low of 77.3. The corresponding range of group 1 gasolines in 1950 was from 84.7 to 76.0 motor octane numbers. For the group 2 gasoline samples the range in motor octane number is from a high of 82.1 to a low of 75.4. The corresponding range of group 2 gasolines in 1950 was from 80.5 to a low of 73.4 octane numbers. The range in research octane number of the group 1 gasolines is from a high of 90.7 to a low of 85.2 The corresponding range of group 1 gasolines in 1950 was from 91.2 to 82.5 research octane numbers. For the group 2 gasoline

samples the range in research octane numbers is from a high of 86.3 to a low of 79.6 research octane numbers. The corresponding range in group 2 gasolines in 1950 was from 86.0 to 77.4 research octane numbers.

Change in Knock Ratings

The average knock rating of the gasoline sold in Canada in thirteen summers, 1937 through 1952, excepting 1940, 1949, and 1951, are shown in Table IV and graphically from 1938, in Figure I for group 1 gasoline and in Figure II for group 2 gasoline. These results indicate that by the summer of 1941 the average knock rating of group 1 gasoline had risen to 79.0 motor octane number and for group 2 gasoline had risen to 73.6 motor octane number; For the years 1942 to 1945 war time restrictions (19) applied in Canada. Therefore by the summer of 1945, the average knock rating of group 1 motor fuel had fallen to 73.5 motor octane number and of group 2 motor fuel had fallen to 68.5 motor octane number.

Comparison of average knock ratings of motor fuels sold during the past summer with preceding summers since 1946 are as follows:-

Group 1 gasoline	Motor Octane number	Research <u>Octane number</u>
Summer 1946 Summer 1947 Summer 1948 Summer 1950 Summer 1952	77.8 79.2 79.0 80.0 80.9	87.2 88.7
Group 2 gasoline		
Summer 1946 Summer 1947 Summer 1948 Summer 1950 Summer 1952	73.6 75.0 75.0 77.6 78.7	- 82.4 84.0

The above indicates that since the war, the average knock rating of group 1 motor fuel had risen from 77.8 motor octane number in 1946 to 80.9 motor octane number in 1952. During this same period group 2 motor fuel has risen from 73.6 motor octane number in 1946 to 78.7 motor octane number in 1952. The average research octane number of group 1 motor fuel has risen from 87.2 in 1950 to 88.7 in 1952; and for group 2 has risen from 82.4 in 1950 to 84.0 in 1952. The average octane values, by both motor and research methods, of motor fuels sold at filling stations throughout Canada during the summer of 1952 are the highest in the history of these surveys.

The difference between the average knock rating of group 1 and group 2 motor fuels was 7.1 motor octame numbers in summer 1939, 5.4 in summer 1941, 4.0 in 1948, 2.4 in 1950, and only 2.2 motor octame numbers in summer 1952.

The average knock ratings of group 1 and group 2 motor fuels sold in the provinces of Sask-atchewan and Alberta were about 2 octane numbers lower than for similar grades of motor fuel sold in the other provinces in the past summer.

Tetraethyllead Content

Tetraethyllead is used to improve the knock rating of gasolines. The tetraethyllead content of the individual samples and the average tetraethyllead content of group 1 and group 2 samples from each city are given in Table I and are summarized in Tables II and III. The maximum tetraethyllead content of group 1 gasoline was 3.58 millilitres and the minimum was 1.24 millilitres per Imperial gallon. For group 2, the maximum tetraethyllead content was 3.37 milli-litres and the minimum was 0.86 millilitres per Imp-

erial gallon. The average tetraethyllead content of group 1 motor fuels was 2.44 millilitres in 1952 as compared with 2.78 in 1950, 2.80 in 1948, 2.61 in 1947 and 2.45 millilitres per Imperial gallon in the summer of 1946. In summer of 1952, the average tetraethyllead content of group 2 motor fuel was 2.02 millilitres as compared with 2.45 in 1950, 1.71 in 1948, 1.42 in 1947 and 1.40 millilitres per Imperial gallon in the summer of 1946.

The proportion of tetraethyllead used in both group 1 and group 2 motor fuels has shown a decided decrease in the summer of 1952 as compared with the summer of 1950.

Volatility

The volatility of the gasoline is indicated by the distillation range temperatures which are given in Tables I to V and are shown graphically in Figures I and II. The distillation temperatures are reported on the "per cent evaporated" basis, as was done in the gasoline survey reports between 1939 and 1950, rather than on the "per cent recovered" basis, as in gasoline survey reports previous to 1939. It is now accepted practice in the petroleum industry to report the distillation range of motor fuels on the "per cent evaporated" basis because these temperatures indicate more correctly the actual volatility of motor fuel as it occurs in engine operation.

The average volatility of the motor fuels was practically the same in the summer of 1952 as in the summer of 1950. The group 2 motor fuels showed a wider geographical variation in distillation range than the group 1 motor fuels. In 1952, group 1 gaso-lines had a higher average volatility than group 2 gasolines, as shown in Table III. The 10, 20, 30, and 50 per cent evaporation points in the distill-ation range of group 1 gasolines was approximately 3°F. lower than the same points in the distillation range of group 2 gasolines. Since 1946, the group 1 motor fuels have been more volatile than the group 2 motor fuels.

Vapour Pressure

The Reid vapour pressure for each of the samples tested is shown in Table I. The average Reid vapour pressure of all the samples tested in 1952 was 8.4 pounds. The average Reid vapour pressure in 1950, was also 8.4 pounds.

The range of vapour pressures was from a maximum of 10.8 pounds to a minimum of 6.6 pounds with 88 per cent falling between 8 to 10 pounds indicating a trend to more uniform vapour pressures for motor fuels. The average Reid vapour pressure for the group 1 motor fuels was 8.3 pounds and for the group 2 motor fuels was 8.4 pounds.

Sulphur

The sulphur content for each of the samples tested is shown in Table I. The average sulphur content of all the gasolines was 0.07 per cent by weight. In the four summers of 1945, 1946, 1947, and 1948, the average sulphur content for the motor fuels was also 0.07 per cent. The sulphur content in 1950 was 0.09 per cent. The sulphur content varied from a high of 0.16 per cent to a low of 0.03 per cent in 1952. Only one sample had a sulphur content exceeding 0.15 per cent. The average sulphur content of group 1 was 0.08 per cent and of group 2 motor fuels was 0.07 per cent. The notor fuels sold in the maritime provinces of Nova Scotia and New Brunswick, and in the Province of British Columbia, had a higher average sulphur content than the motor fuels in the other provinces of Canada. There was a decrease in the sulphur content of motor fuels in 1952, as compared with 1950.

Gum

The existent gum in the samples of gasoline was determined by the air-jet evaporation method, A.S.T.M. D381 (3). With this method the gum is deposited as a hard, varnish-like substance, or as a tacky residue. If the gasoline contains non-volatile lubricating or solvent oil, the residue is oily rather than tacky, because it is gum plus oil. In all cases where the gum was oily, the veight in milligrams per loo millilitres was recorded, with the following foot-note - "denotes an oily gum and is not included in average".

The gum content of each of the samples exam-ined is shown in Table I. The average gum content of the samples was 3 milligrams per 100 millilitres. This average does not include the oily gum found in 17 of the 112 samples tested. For the five summers of 1944 to 1948, the average gum content for the motor fuels was 4 milligrams; and in the summer of 1950 it was 5 milligrams per 100 millilitres. It is now generally accepted (2) that not over 7 milligrams of gum should be present in 100 millilitres of motor fuel. Nine samples had a gum content exceeding 7 milligrams and all of these samples were group 1 motor fuels. The highest gum content was 24 milligrams and the lowest was 1 milligram. The average gum content for group 1 gasolines was 4 milligrams and for group 2 was 5 milligrams per 100 millilitres.

In 1952, as in previous years, several of the oil companies added "solvent oil" to their motor fuels as a top-cylinder lubricant. The gum residue of these samples was therefore oily. Seventeen samples, or 15 per cent of the motor fuels tested in 1952 contained oil. The highest oily gum was 17 milligrams per 100 millilitres and the average oily gum content of the 17 samples was 6 milligrams per 100 millilitres of motor fuel. motor fuel.

Gravity

The specific gravity at 60° F., and the equivalent gravity in degrees A.P.I. at 60° F., for each sample tested are shown in Table I. The average specific gravity of all the gasolines collected was 0.737, or 60.5 degrees A.P.I. This is equivalent to a weight of 7.37 pounds per Imperial gallon. The overall variation in specific gravity of the gasolines was from 0.721 to 0.750 or from 64.8 to 57.2 degrees A.P.I. The average specific gravity of group 1 motor fuels was 0.737, or 60.5 degrees A.P.I., and for group 2 motor fuels was 0.736, or 60.8 degrees A.P.I.

Colour

The apparent colour of the gasoline was observed in all samples but is not reported in any of the tables. All of the samples of motor fuel in group 1 and group 2 were artificially coloured in 1952. Fifty-five of the 57 samples of group 1 motor fuel were dyed red and the other two samples were dyed blue. The group 2 motor fuels were dyed yellow or orange, - except for two samples which were dyed pink.

<u>Corrosion</u>

The corrosion test was made on all the samples collected but is not reported in any of the tables. None of the 112 samples gave a positive test for corrosion with the copper strip.

Summary and Conclusions

This gasoline survey comprises the analyses of 112 samples of motor fuel collected for the Fuel Research Laboratories during the period June 19, to July 17, 1952. The samples represent 38 brands of motor fuel sold by 20 wholesalers and distributors in ten principal distributing cities representing

all provinces except Newfoundland and Prince Edward Island. The samples may therefore be accepted as representative of the motor fuels sold in Canada during the summer of 1952.

For convenience and easy reference, summaries of the data obtained are tabulated and a comparison of gasoline characteristics is shown graphically. Group 1 is usually known as premium grade, and group 2 as regular grade motor fuel. These two groups differ principally in knock rating.

The knock ratings of the 1952 gasoline survey samples were determined by two methods, namely, the A.S.T.M. Motor Method and the A.S.T.M. Research Method. According to the motor method, the average knock rating of group 1 gasolines was 80.9 octane number, while in 1950 it was 80.0 The average knock rating of group 2 gasolines was 78.7 motor octane number in 1952, while in 1950 it was 77.6. According to the research method, the average knock rating of group 1 gasolines was 88.7 research octane number and for group 2 gasolines was 84.0 research octane number. The average octane values, by both the motor and research methods, of motor fuels sold at filling stations throughout Canada during the summer of 1952 are the highest in the history of these surveys.

The difference between the average knock The difference between the average knock rating of group 1 and group 2 motor fuels was only 2.2 motor octane numbers in the summer of 1952, dr practically the same as in the summer of 1950. In 1952 the knock rating of group 1 and group 2 motor fuels sold in the provinces of Saskatchewan and Alberta was about 2 motor octane numbers lower than for similar grades of motor fuel sold in other provinces.

The average tetraethyllead content of the gasolines tested was 2.44 millilitres per Imperial gallon for group 1 motor fuels, and 2.02 millilitres per Imperial gallon for group 2 motor fuels.

The average volatility of the motor fuels sold in Canada was practically the same as the average volatility of motor fuels in the summer of 1950. Group 1 gasolines had a higher average volatility than Group 2 gasolines.

The average Reid vapour pressure of the motor fuels tested was 8.4 pounds in 1952 which is the same as in 1950. The average Reid vapour pressure of the group 1 motor fuels was 8.3 pounds and of group 2 was 8.4 pounds.

The average sulphur content of the gasolines The average sulphur content of the gasolines was 0.07 per cent weight. The average sulphur content of the group 1 motor fuels was 0.08 per cent and of group 2 was 0.07 per cent. There was a decrease in the sulphur content of motor fuels in 1952, as compared with 1950. The motor fuels sold in the maritime provinces of Nova Scotia and New Brunswick and also in the province of British Columbia had a higher average sulphur content than the motor fuels in the other provinces of Canada.

The average gum content of all the gasolines not containing oil was 3 milligrams per 100 milli-litres. The average gum content of the group 1 gasolines was 4 milligrams, and for group 2 gasolines was 3 milligrams.

Seventeen samples, or 15 per cent, of the motor fuels contained oil. These samples gave a gum residue which was "oily". The average oily gum con-tent of these seventeen samples was 6 milligrams per 100 millilitres of motor fuel.

The average specific gravity of the gasolines was 0.737, or 60.5 degrees A.P.I. All the group 1 and group 2 motor fuels were artifically coloured.

None of the motor fuels tested in summer 1952 positive test for corrosion with the copper 8. gave strip.

References

- 4 -

- Chantler, H. McD., P.B. Seely and R. G. Draper, Gasoline Survey for Summer 1950. Mines Branch Memorandum Series No. 112. Department of Mines and Technical Survyes, Canada, 1951.
- Canadian Government Specifications Board, Specification for Gasoline, Automotive No. 3-Gp-la. National Research Council. Ottawa, Ganada. 1950.
- Committee D-2. A.S.T.M. Standards on Petroleum Products and Lubricants, American Society for Testing Materials, Philadelphia. 1934 to 1951, inclusive.
- A.S.T.M. Manual of Engine Test Methods for Rating Fuels 1948 and 1950 Appendix. American Society for Testing Materials. Philadelphia. 1951.
- Edgar, G. and G. Calingaert. Determination of Sulphur in Gasoline. Industrial and Engineering Chemistry, Analytical Edition 2: pp. 104-106. 1930.
- National Standards Petroleum Oil Tables. Bureau of Standards Circular C 410. Department of Commerce, Washington, D.C. 1936.
- Chantler, H. McD. Gasoline Surveys for 1930 and 1931. Report of Investigations of Fuels and Fuel Testing, No. 725, pp. 149-162. Department of Mines, Ottawa, Canada. 1933.
- Rosewarne, P.V. and H. McD. Chantler, Gasoline Surveys for 1935 and 1936. Bureau of Mines, Report No. 787. Department of Mines and Resources. Canada.
- Committee D-2 on Petroleum Products and Lubricants. The Significance of Tests of Petroleum Products. American Society for Testing Materials, Philadelphia, 1943.
- Coordinating Research Council, C.R.C. Handbook, 1946 Edition. Coordinating Research Council, Inc., New York. 1946.

- Boyd. T. A. Gasoline. An Evaluation of Petroleum Products. pp. 19-28. American Society for Testing Materials, Philadelphia. 1940.
- What is Octane Number. Ethyl News. pp. 15-18. Ethyl Gasoline Corporation, New York, March, 1947.
- Blade, O.C. National Motor-Gesoline Survey Summer 1951. United States Bureau of Mines Report of Investigations 4854. Department of Interior, Washington, January 1952.
- 14. Cooperative Fuel Research Committee. The Procedures and General Information in Current Use in the Development and Utilization of Aviation, Motor, and Automotive Diesel Fuels, Coordinating Research Council, Inc. New York. May 1941.
- Edgar, G., Gasoline, Past, Fresent, and Future. A.S.T.M. Proceedings, 42: pp. 499-512. American Society for Testing Materials, Philadelphia. 1942.
- Charlesworth, J.S. and E. Tipman. Alberta Motor Gasoline Surveys 1951 Research Council of Alberta Mimeographed Circular No. 11. University of Alberta. Edmonton, Alberta. 1951.
- 17. Survey of Gasoline Quality at Service Stations Summer 1950. Ethyl Corporation. New York, N.Y.
 - Collected Technical Papers of the Ehtyl Corporation Research Laboratories, 1951, Ethyl Corporation, Detroit, Mich.
 - Oil Control. A Consolidation, as of July 1, 1944, of Orders-in-Council relating to and orders made by the Oil Controller. Department of Munitions and Supply. Ottawa, Canada. 1944.

- 5 -

TABLE I

GASOLINE SURVEY ANALYSES BY CITIES FOR SUMMER 1952

Sam-			tane	Tetra-				DIS	TIL	ATI	ON RA	NGE,	•F	•			GRA	VITY			
ple	Group	Nu	mber	ethyl-	Ι.		Pe	or Ce	nt T	 7	moto				Res- idue	Loss	Spec-	Deg. A.P.I.	Reid V.P.	Sul- phur	
No.		Motor	Research	1980	в. Р.	5	10			50			95	10.	\$	%			іь.	*	
										FAX		-									
1	I	80.9 80.8	88.5 89.4	1.81 1.75	99 95	113 112	130 131	160 160	186 185	236	284 276	344 341	374 378	410 410	1.2 1.0		0.739	60.0 60.2	8.8 8.6	0.09 0.08	9 4
34	I	80.8 80.9	87.6 89.9	2.78	- 98	117	135	164	192	243	287	347	376	410	1.2 1.0	1.8	0.742 0.737	59.2 60.5	8.5	0.13 0.08	7
5	ī	81.5	89.5	3.02 3.12	98	1 16	ĩ <u>3</u> 4	i62 160	186	236	284	343	374	404	1.2	ī.8	0.738	60.2	7•5 8•5	0.11	10
Avers	ge	81.0	89.0	2,50	98	116	133	161	187	236	282	344	374	405	1.1	1.7	0.739	60.0	8.4	0.10	7
67	II II	78.8	86.2 85.6	2.16 2.63	93 98	111 118	127 137	154 167	184 195	242 245	287 288	349 348	376 374	410 406	1.0 1.2	2.5	0.740	59.7 59.5	10.1 8.9	0.16 0.14	3
7 8 9	II II	78.9 77.9	86.2	2.73	100	116	134	165	193	244	287	345	372	407	1.0	2.0	0.741	59.5 61.0	8.3 7.7	0.14	37
10	îî	79.0	85.9 85.9	2.53	9 8	114	136	165 168	195	250	295	353	376	408	1.0		0.743	58.9	9.3	0.14	3
Avera	ge	78.7	86.0	2.33	98	117	135	164	191	243	288	347	373	405	1.0	1.9	0.740	59.7	8.9	0.13	4
								SATI	۲T J	กราง	N.)	2									
11	I	81.4	90.0	1 72	08	110	734	162					766	303	1.0	~ ^	0.780	50 7	• •	0.06	2
12	I	81.5 81.8	90.0	1.74	- 99	112	130	158	182	228	274	338	-367	406	1.0	2.0	0.740	61.0	9.1 10.2	0.09	3
13 14 15	I I I	80.9 81.6	89.5 89.6 89.6	2.39 2.61 2.25	100	124	120	154 165 154	188	234	282	348	373	408 398 404	1.3	1.0	0.739	60,8	9.8 6.7 9.4	0.09	11
Avera		81.4	89.0	2.32				159								-	0.736		9.4 9.0	0.08	2
16	II	80.5		1.58		-	-			-	• •		-			-	0.737			0.04	5 2
17 17 18	II	80.4 80.0	85.9 86.2 85.4	2.81	100	117	136	165	198	250	293	348	375	388 408	1.0	2.0	0.734	58.9	9.1 8.6	0.14	2
10 19 20	II	78.6 80.2	85.8	2.56	108	130	145	161 168 171	190	235	281	339	365	398	1.2	0.8	0.740	61.3	9.7	0.15	24
	II		85.9 or o													-	0.743		8.7	0.13	2
Avers	'Be	79.9	85.8	2.33	105	15.1	199	166	195	242	285	342	308	402	1.1	2.0	0.739	60.0	8.6	0.11	2
								MO	TRE	AL,	QUE.										
21	I	81.3 81.1	90.0	1.86	102	122	140	168	193	235	277	330	355	390	1.0		0.743	58.9	7.7 9.4	0.06	3
22 23	I	82.0	89.8 89.8	1.81	100 98	114 117	132 136	168 160 166	187	235	278	339 335	371 366	412 404	$1.1 \\ 1.2$	1.8	0.738	60.5	8.7	0.06 0.07	1 2
24 25	I	80.9 81.8	89.9 89.6 89.9	2.86 1.86	104 98	115 106	136 124	163 152	187 180	234	284 273	335 334	355 368	396 412	$1.1 \\ 1.1$	3.4	0.737	61.3	8.0 10.8	0.08	5 1
26 27	I	81.4 81.4	89.9 90.2	1.74 1.63	96 101	117 122	140 141	163 152 169 170	194 195	234 236	274 277	340 337	369 366	402 404	$1.2 \\ 1.2$	2.8	0.742	59.2 59.2	8.2 8.4	0.08 0.08	6 3
Avera	age	81.4	89.9	2.02				164								2.4	0.739	60.0	8.7	0.07	3
28	II	78.4	85.4	1,49				176									0.739		6.9	0.05	4
29 30	II II	78.9 80.1	85.4 85.4 85.4 85.4 85.4	1.44 1.78	100	123	142	169 170	194	232	268	326	350	394	1.2	1.8	0.736	60.8	8.2 8.3	0.05 0.05	5' 3
31 32	II II	78.7 79.2 80.5	85.4 85.4	1.32 1.31	- 95	108	126	166 158	185	230	268	328	- 364	406		2.4	0.736	61.8	6.7 9.8 8.7	0.06	5
32 33 34	II II	80.5 80.5	85.4 85.4	$1.75 \\ 1.67$	104	124	143	173 172	196	236	270	326	358	395	1.2	1.8 1.8	0.737	60.5 60.8	8.7 8.1	0.06 0.06	1 1
Avers	ge	79.5	85.5					169	-	-	•				1.2		0.736		8.1	0.06	3
				-														<u></u>			

ı

1

Millilitres per Imperial gallon. Milligrams per 100 millilitres. *Denotes an oily gum (not included in average)

TABLE I (continued)

GASOLINE SURVEY ANALYSES BY CITIES FOR SUMMER 1952

- 6 -

Sam-		00	tane	Tetra-				DIS	FILL	ATIO	N RAI	WGE,	°F.				GRAY	VITY			
ple No.	Group	Nu	mber Research	ethyl-	· <u>1</u> . B.						orate				idue		Spec- ific	Deg. A.P.I.	Reid V.P.	Sul phur	Gun
					Ρ.	5	10	20	30	50	70	90	95		. %	%			1b.	%	<u> </u>
		•						9	OTTA	A,	ONT.										
35 37 37 37 37 37 37 37 37 41	I I I I I I	82.2 82.0 81.2 81.2 82.5 82.4	90.5 90.2 90.0 89.5 89.2 90.7 90.4	1.80 1.86 1.53 2.85 1.24 1.75 1.52	100 102 98 98 98	115 120 131 116 110	133 136 150 132 124	164 164 174 154 150	189 187 193 176 172	238 228 240 226 219	280 280 266 290 272 268 268 266	340 328 346 339 350	365 362 369 376 384	400 396 417 429	1.3 1.4 1.2 1.2 1.2 1.2	2.1 2.6 1.3 1.8 1.8	0.738 0.737 0.734 0.736 0.735 0.735 0.735	60.2 60.5 61.3 60.8 61.0 60.8 61.0	8.8 9.3 9.8 9.8 9.9 9.0	0.07 0.06 0.07 0.08 0.08 0.04 0.04	1
Aver	age	81.9	90.1	1.79	100	119	136	163	186	231	275	340	370	404	1.3	1.9	0.736	60.8	8.7	0.07	5
423 456 456 47	II II II II II II	79.5 79.9 81.8 78.6 80.5	85.4 85.0 86.3 86.3 84.5 85.9	1.35 1.51 2.62 1.52 1.48 1.50	98 106 110 104	116 121 121 114	137 140 140 133	166 166 164 166	192 190 187	236 230 235 239	272 275 268 284 276 258	328 318 344 331	355 352 368	387 396 391 398	1.4 1.1 1.2 1.5 1.2	2.358	0.732 0.731 0.732 0.736 0.730 0.731	61.8 62.1 61.8 60.8 62.3 62.1	9.40 9.00 7.85 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	0.04 0.04 0.06 0.07 0.06 0.05	4272
Aver	age	80.0	85.6	1.66	104	118	138	166	191	233	272	326	357	389	1.3	2.6	0.732	61.8	8.5	0,05	3
								Ţ	ORON	r0,	ONT.	-									
4890 552 555555555555555555555555555555555		82.0 81.2 80.2 79.9 80.8 81.2 81.8	88.8 89.6 89.6 88.6 88.6 89.8 89.8 89.8	2.00 1.63 2.95 2.95 2.25 1.54 1.40	102 100 106 99 106 100	118 126 131 120 128 109	140 143 147 136 142 128	168 165 167 159 167 156	190 188 185 181 192 180	237 234 217 230 243 229	276 280 276 251 280 292 270	337 336 307 348 350 336	362 360 338 373 371 362	396 391 380 397 394 401	1.2 1.2 1.2 1.3 1.3 1.1 1.1	2.3 0.3 1.7 1.3 2.9	0.736 0.738 0.736 0.730 0.739 0.741 0.738 0.738	60.8 60.2 60.8 62.3 60.0 59.5 60.8 60.2	99878798 79878	0.06 0.06 0.07 0.04 0.09 0.08 0.10 0.03	17
Aver	age	81.0	88.9	2.06	103	121	138	163	186	231	275	338	365	398	1.2	1.7	0.737	6 0.5	8.6	0.07	6
56 57 58 59 60 61	11 11 11 11 11 11	79.9 79.6 79.1 80.1 78.7 79.4	85.3 85.4 85.7 86.3 86.1 84.8	1.56 1.49 2.60 3.10 1.56 1.31	103 106 100 104	114 116 108 115	133 131 131 139	162 160 161 166	188 184 183 188	233 227 223 234	273 272 272 264 281 271	329 330 328 342	356 360 356 366	390 395	1.1 1.0 1.0 1.1 1.1	3.0 2.0 2.4 1.9	0.736 0.735 0.733 0.735 0.736 0.733	60.8 61.0 61.5 61.0 60.8 61.5	8.8 8.9 9.1 8.2 7.3 9.4	0.05 0.04 0.06 0.06 0.06 0.05	2 7 7
Aver	age	79.5	85. 6	1.94	103	114	134	162	187	230	272	331	358	392	1 .1	2.7	0.735	61.0	8.6	0.05	5

Nillilitres per Imperial gallon. Milligrams per 100 millilitres. *Denotes an oily gum (not included in average)

TABLE 1 (continued)

CASOLINE SURVEY ANALYSES BY CITIES FOR SUMMER 1952

-		0.4		Tetra-				DIST	TLL	TIO	(RA)	GE,	•r.				GRAV	ITY			
Sam- ple No.	Group	Num	ane aber lesearch	ethyl-		5					orate 70	ed 90	95		Res- idue %	Loss		Deg. A.P.I.	Reid V.P.	Sul- phur %	Gun
								<u>1</u>	/INN	IPEO,	MAI	۲.									
62 63 65 65 67	I I I I I	81.2 81.0 81.1 80.5 79.8 81.1	88.9 88.4 89.2 89.1 87.5 89.0	1.88 1.65 1.84 2.27 3.21 1.85	94 100 104 100	111 118	128 130 146 133	152 151 170 162	176 178 194 190	229 230 242 238	280 284 291 284	346 342 344 349 348 351	365 365 372 374	390 390 400 404	1.0 0.8 1.2 1.0	2.0	0.744	60.5 60.2 60.0 58.7	7.8 8.9 8.6 8.6 8.7 8.7	0.07 0.05 0.06 0.08 0.08 0.08	2771
Avera	age	80.8	88.7	2.12	99	120	135	160	185	235	285	347	370	397	1.1	1.6	0.739	60.0	8.2	0.07	2
68 69 70 71 72 73	II II II II II II	79.5 78.3 78.4 77.9 76.4 78.5	85.3 84.1 84.4 86.1 83.3 84.2	2.71 1.15 1.37 1.69 1.40 1.36	100 103 108 100	118 123 127 114	133 136 144 133	158 157 168 156	183 182 192 177	229 229 238 218	278 280 284 261	331 334 334 347 340 335	357 356 371 370	385 386 397 401	1.1 0.8 1.0 1.0	1.4 2.2 1.0 2.0	0.734 0.736 0.734 0.736 0.732 0.732	60.8 61.3 60.8 61.8	8.5 8.6 8.6 8.9 8.3	0.07 0.05 0.04 0.08 0.07 0.04	3
Aver	age	78.2	84.6	1.61	102	120	136	160	184	229	275	337	362	392	1.0	1.7	0.735	61.0	8.2	0.06	2
								ļ	REGI	NA,	SASK	•		,							
74 75 76 78 79	I I I I I	78.2 79.2 78.9 77.3 80.1	85.9 87.0 85.9 87.2 87.3	3.42 3.33 3.20 3.08 2.41 3.18	100 100 99 104	110 116 114 116	128 133 132 133	153 155 154 163	180 180 178 190	235 230 231 242	284 274 281 291	324 344 337 340 346 344	369 366 366 372	405 398 402 404	1.0 1.2 1.2 1.2	3.0 2.3 2.3 2.3	0.732 0.733 0.732 0.731 0.731 0.737	61.5 61.8 62.1 60.5	8.2 8.4 8.2 7.6 6.7 8.4	0.10 0.06 0.05 0.06 0.04 0.05	3 12 3 1
Aver	age	78.8	86.4	3.10	102	116	133	1 60	186	237	283	339	364	397	1.1	2.2	0.734	61.3	7.9	0.06	2
80 81 82 83 84 85	II II II II II II	77.8 77.9 78.0 77.9 75.4 77.1	82.5 80.4 80.7 80.2 79.6 81.0	3.37 2.72 2.70 2.71 2.39 1.72	100 98 98 98	118 120 115 114	135 134 133 137	160 160 158 171	182 182 181 200	220 220 220 251	271 256 255 253 301 304	305 308 308 362	336 337 338 386		1.2 1.0 1.2	1.3 2.0 1.8 3.0	0.731 0.722 0.721 0.721 0.721 0.741	2 64.5 L 64.8 L 64.8 L 59.5	7.6 8.9 8.8 8.8 7.9	0.09 0.05 0.04 0.05 0.04 0.05	נ נ נ
Aver	age	77.4	80.7	2.60	100	118	137	1 66	190	233	273	325	350	385	1.1	2.0	0.730	62.3	8.4	0.05	1

Millilitres per Imperial gallon. Milligrams per 100 millilitres. * Denotes an oily gum (not included in average)

TABLE I (continued)

GASOLINE SURVEY ANALYSES BY CITIES FOR SUMMER 1952

am		0.	tane	Tetra-				DIS	TIL	ATI	ON RA	NOE ,	• F .				GRA	VITY			
	Group	Nu	mber Research	ethyl-	· Т. в.						orate				idue			Deg. A.P.I.	Reid V.P.	Sul- phur	Gum
-					P.	5	10	20	30	50	70	-90	95		\$	%				*	
								ģ	ALG	ARY,	ALT	<u>.</u>									
86 87 88 89	I I I I	78.4 77.8 78.3 81.4	85.9 86.3 86.9 87.3	3.58 2.76 3.30 3.15	100 102	123 115	143 128	171 148	193 172	234 232	278 275 288 296	324 345	344 364	373 385	1.0	2.0	0.734 0.735 0.735 0.735	61.0 61.0	7.7 8.2 8.1 7.8	0.10 0.06 0.09 0.05	5
vers	lgə	79.0	86.6	3.20	101	121	138	165	189	237	284	335	356	383	0.9	2.0	0.736	60.8	8.0	0.07	•
90 91 92 93	II II II II	75.5 75.7 76.3 77.7	81.7 80.4 80.4 80.2	1.17 2.23 2.88 2.02	- 99	119	133	162	192	247	269 272 289 305	337	356	- 384	1.1	2.2	0.728 0.737 0.735 0.746	60.5 61.0	9.9 7.9 9.2 7.7	0.08 0.05 0.06 0.05	,
vers	lge	76.3	80.7	2.08	103	120	138	167	195	243	284	332	350	377	1.0	2.2	0.737	60.5	8.7	0.06	5
								1	SDMO	TON	, AL/	<u>'A.</u>									
94 95 96	I I I	80.5 80.5 80.8	86.6 87.3 86.4	3.22 3.46 2.43	112	128	140	160	180	220	264 267 295	342	369	402	1.2	0.8	0.730 0.732 0.741	61.8	8.0 8.1 7.9	0.05 0.05 0.04	;
vera	lge	80.6	8 6.8	3.04	107	122	137	161	185	228	275	343	369	400	1.1	1.3	0.734	61.3	8.0	0.05	; ;
97 98 99 99	II II II II	76.4 76.8 75.9 76.8	80.8 81.3 80.4 80.4	1.96 0.86 1.93 1.96	98 106	113 132	129 150	154 172	181 189	231 238	288 279 288 302	345 348	373 373	408 399	1.0	2.0	0.737 0.733 0.738 0.745	61.5 60.2	7.6 9.9 7.9 8.6	0.04 0.08 0.05 0.03	3
vers	ıgə	76.5	80.7	1.68	103	122	140	166	191	241	289	349	374	401	1.0	2.0	0.738	60.2	8.5	0.05	; ·
								3	VANC	OUVE	R, B	<u>. c.</u>									
01 02 03 04 05 06	I I I I I	81.8 81.0 80.7 82.2 80.5 84.8	90.5 88.6 90.9 88.9 88.5	1.85 3.17 3.07 3.49 3.35 3.41	112 108 112 107	130 132 126 124	146 146 145 140	166 166 173 167	186 187 195 192	227 229 240 233	274 266 269 284 274 266	319 326 341 338	346 358 362 362	390 400 385 389	1.0 1.0 1.0 1.2	1.0 1.0 2.0 1.3	0.737 0.738 0.738 0.750 0.742 0.742	60.2 60.2 57.2 59.2	7.4 6.6 7.0 8.2 8.2	0.08 0.14 0.15 0.13 0.14 0.07	
Vore	age	81.8	89.2	3.06	108	126	141	164	186	229	272	331	358	392	1.1	1.3	0.740	59.7	7.3	0.12	!
07 08 09 10 11 12	11 11 11 11 11 11	77.3 80.5 79.7 80.0 77.9 82.1	81.5 82.6 84.5 83.1 83.0	2.07 2.48 3.27 2.74 2.09 2.22	104 110 111 100	128 128 127 125	148 147 144 146	178 177 173 175	202 203 199 199	239 247 248 236	276 274 285 294 270 273	325 344 343 320	356 372 367 341	394 400 396 368	1.1 1.1 1.0	1.4	0.739 0.741 0.747 0.748 0.738	58.7 57.9 57.7 60.2	8.0 7.1 7.5 7.2 8.0 8.7	0.15 0.08 0.14 0.14 0.10 0.04	3 1 1 2
vera	age	79.6	82.9	2.48	105	125	145	174	198	240	279	334	361	392	1.0	2.1	0.742	59.2	7.8	0.11	L

.

Millilitres per Imperial gallon Milligrams per 100 millilitres *Denotes an oily gum (not included in average)

TABLE II

AVERAGE OF GASOLINE SURVEY ANALYSES BY CITIES FOR SUMMER 1952

	No.		Octar	1e	Tetra-		·	DIST	ILLA	TION	RAI	WGE,	F.			Lty at			
CITY	of Samples	Group ,	Numbe Motor Res		ethyl- lead*	I. B. P.		Cent	Eva 50	pora 70	ted 90	End Pt.	Res- idue %	L088		Deg. A.P.I.	Reid V.P. 1b.	Sul- phur \$	Gum*
Halifax, N.S Saint John, N.B Montreal, Que Ottawa, Ont Toronto, Ont Winnipeg, Man Calgary, Alta Edmonton, Alta Vancouver, B.C	5577866436	I I I I I I I I I I I I I I I I I I I	81.4 81.4 81.9 81.0 80.8 78.8 79.0 80.6	89.0 89.7 99.9 90.1 988.9 888.7 86.4 86.8 86.8 86.8 86.2	2.50 2.32 2.72 2.72 2.72 2.72 2.12 3.10 3.20 3.04 3.06	100 100 103 99 102 101 107	132 136 138 135 135 133 138 137	160 160	231 233 231 231 235 237 237 237 238	277 276 275 275 285 285 285 285 285 285	339 336 340 338 339 339 339	402 403 408 397 397 383 400	1.1 1.1 1.3 1.2 1.1 1.1 0.9 1.1 1.1	1.7 1.94 1.97 1.62 2.03 1.3	0.739 0.737 0.739 0.736 0.737 0.739 0.734 0.736 0.734 0.740	60.0 60.5 60.0 60.8 60.5 60.0 61.3 60.8 61.3 59.7	8.4 9.77 8.2 9.00 7.3	0.10 0.08 0.07 0.07 0.07 0.07 0.06 0.07 0.05 0.12	75558 2 2 51 1 2
Average Group I	(57)		80.9 8	88.7	2.44	102	136	162	233	278	339	398	1.1	1.8	0.737	60.5	8.3	0.08	4
Halifax, N.S Saint John, N.B Montreal, Que Ottawa, Ont Toronto, Ont Winnipeg, Man Regina, Sask Calgary, Alta Edmonton, Alta Vancouver, B.C	5576666446	II 11 11 11 11 11 11 11	79.9 79.5 80.0 79.5 78.2 77.4 76.3 76.5	86.0 85.5 85.5 885.6 885.6 888.5 80.7 80 80 80 80 80 80 80 80 80 80 80 80 80	2.33 2.55 1.566 1.94 1.61 2.68 2.08 1.68 1.68 2.48	103 101 104 103 102 100 103	139 141 138 134 136 137 138 140	162 160 166	242 2330 2230 2330 2333 22333 241	285 272 272 275 275 289 289	342 3306 3326 3331 3357 3357 3359 3349	402 395 392 392 392 392 392 392 392 392 392 392	1.0 1.1 1.2 1.3 1.1 1.0 1.1 1.0 1.0	1.9 1.7 2.7 1.0 2.7 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.740 0.739 0.736 0.735 0.735 0.735 0.735 0.737 0.738 0.742	59.7 60.8 61.0 61.0 61.0 60.5 2 60.5 2 59.2	9615624758 888888888 8888888888888888888888888	0.13 0.11 0.06 0.055 0.055 0.05 0.05 0.05 0.11	4 4 MM5a 176 a
Average Group II	(55)		78.7 8	84.0	2.02	102	138	166	236	278	334	393	1.1	2.1	0.736	60.8	8.4	0.07	3
Average of all Samples	(112)					102	137	164	234	278	337	396	1.1	2.0	0.737	60.5	8.4	0.07	3
*Millilitres per :	Imporial	l gall	.on. *	**M111	igrams	per	100 r	ni113	liti	·85 .									<u> </u>

TABLE III

SUMMARY OF DATA OF GASOLINE SURVEY ANALYSES FOR CANADA FOR SUMMER 1952

Test		GROUP I		N 1 0-	GROUP II	
1655	Minimum		Maximum	Minimum	tane No. Average	Maximum
Specific Gravity at 60°F	0.730	0.737	0.750	0.721	0.736	0.748
Gravity, degrees A.P.I	57.2	60.5	62.3	57.7	60.8	64.8
Reid Vapour Pressure, 1b	6.6	8.3	10.8	6.6	8.4	10.1
Sulphur, per cent by wt	0.03	0.08	0.15	0.03	0.07	0.16
Gum, milligrams per 100 millilitres Tetraethyllead, millilitres per	1	4	24	1	3	12
Imperial gallon	1.24	2.44	3.58	0.86	2.02	3.37
Octane Number, Motor	77.3	80.9	3.58 84.8	75.4	78.7	82.1
Octane Number, Research	85.2	88.7	90.7	79.6	84.0	86.3
Distillation range,						
Initial Boiling Point, F 5% evaporated, F	94	102	112	93	102	111
5% evaporated, F	106	119	132	107	120	134
10% evaporated, F	124	136	150	126	138	158
20% evaporated, F	148	162	177	150	166	192
30% evaporated, F	171	186	203	174	191	213
20% evaporated, °F 30% evaporated, °F 50% evaporated, °F 70% evaporated, °F 70% evaporated, °F	217	233	248	218	236	258
70% evaporated, F	251	278	296	253	278	305
90% evaporated. F	307	339	351	305	334	362
95% evaporated, "F	338	366	386	332	360	386
End Point, °F	373	398	429	362	393	418
Residue, per cent by vol	0.5	1.1	1.4	0.8	1.1	1.5
Distillation loss, per cent				0.8		
by volume	0.3	1.8	3.4	0.0	2.1	4.0
Number of samples	- .	57	-	-	55	-

- 10 -	
--------	--

TABLE	IV

SUMMARY OF DATA OF GASOLINE SURVEY ANALYSES BY GROUPS FOR CANADA FOR SUMMERS, 1937 THROUGH 1952

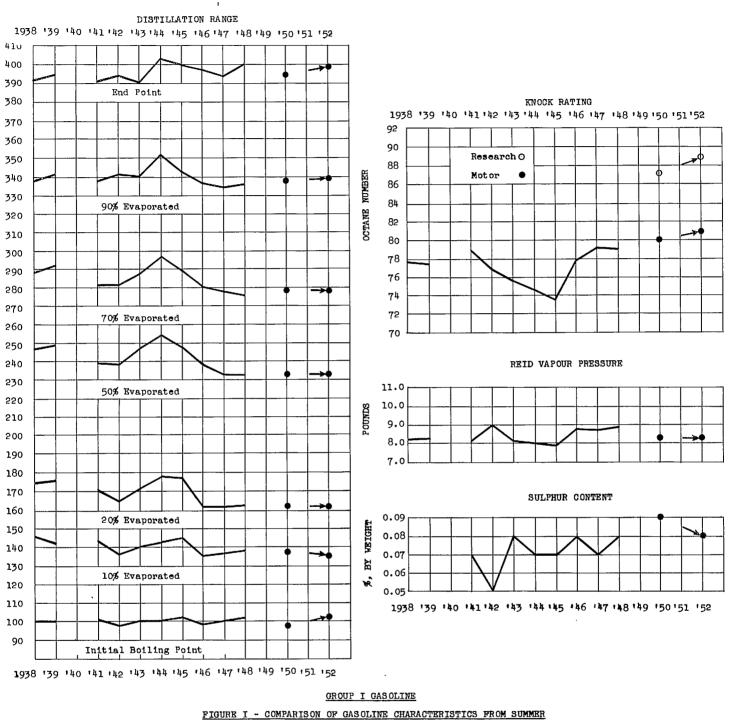
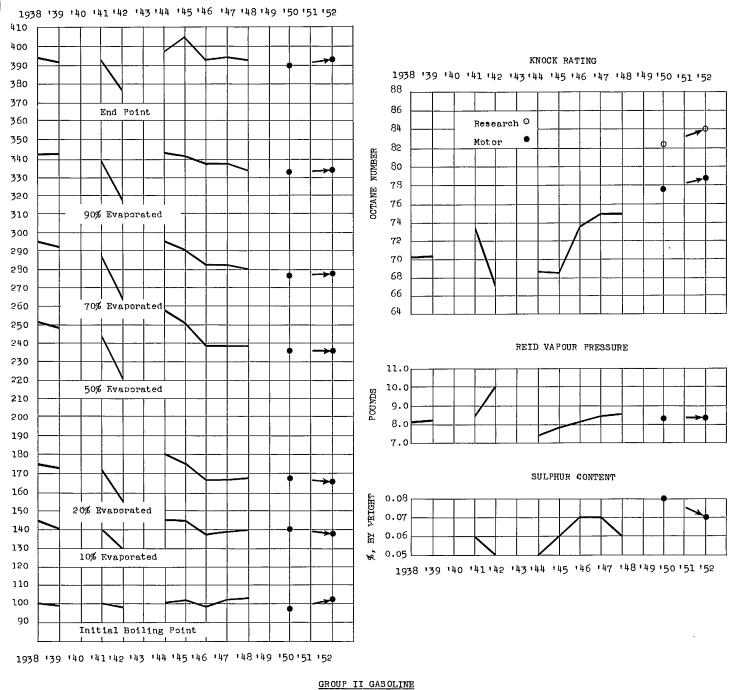
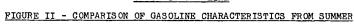

					1		_	1	ISTI	LLA	ION	RAN		F.			VITY			-
Year	চ	GROUP	No. of Samples	Motor Octane No.	Research Octane No.	Tetra- ethyl- lead*	1. B. P.	Per 10	Cent 20	Ev a 50	70	ted 90	End Pt.	Res- idue	Loss %	At Spec- ific	<u>50°F.</u> Deg. A.P.I.	Reid V.P. 1b.	Sul- G phur \$	ш
1937 1938 1939 1940*	ī '	75 & above 75 & above 75 & above	14	77.6 77.8 77.4		 	99 100 100	145	173 174 175	246	287	337	392 391 394	1.1 0.9 1.0	1.9 1.5 2.0	0.740 0.739 0.741	59.7 60.0 59.5	8.2 8.2 8.3		
1941 1942 1943 1944 1945 1946 1947	I I I I I	77 & above 78 to 75 78 to 75 76 to 74 74 to 73 77 & above 78 & above	32 32 45 64 17 24	79.0 76.9 75.7 74.8 73.5 77.8 79.2		2.45 2.61	100 103 98 100	140 143 145 134 136	163 170 177 176 162 162	246 255 247 236 234	287 298 289 279 277	334		0.9 1.0 1.2 1.2 1.3 1.2	1.8 2.0 1.7 1.8 1.7 1.9	0.743 0.736 0.741 0.745 0.741 0.737 0.734	58.54 598.54 598.55 590.5 5000	8.1 9.0 8.1 8.0 7.9 8.7 8.7	0.07 0.05 0.08 0.07 0.07 0.08 0.07	64 34 35
1948 1949* 1950 1951* 1952	I	78 & above 79 & above 79 & above	62	79.0 80.0 80.9	87.2 88.7	2.80 2.78 2.44	102 97 102	138 137 136	164 163 162	-	279 -	~	-	1.4 1.2 1.1	2.0 0.9 1.8	0.737 0.738 0.737	60.5 60.2 60.5	8.9 8.4 8.3	0.08	5-6-4
1937 1938 1939 1940*	II	74 to 65 74 to 65 74 to 65 	39 41 43	70.1 70.2 70.3				145	175 175 173	251	295	345 344 344	391 395 392	1.0 1.0 0.9	1.9 1.6 2.1	0.741 0.741 0.739	59.5 59.5 60.0	7.9 8.2 8.4		
1941 1942 1943* 1944 1945 1945 1946 1947 1948 1949* 1950 1951* 1952		76 to 70 70 to 65 70 to 66 70 to 66 70 to 66 76 to 70 77 to 70 78 to 72 78 to 74	539 161 417 54 55	73.6 67.1 68.6 63.6 75.0 75.0 77.6 78.7	 	1.40 1.42 1.71 2.45 2.02	100 98 101 103 99 102 103 97	129 146 145 137 139 140	181 177 166 166 168 168	220 258 251 239 239 239 239 239	263 296 290 283 283 283 283 280 278	317 343 33333 3399 3399 33 33 33 33 33 33 33 3	377 397 405 394 396 393 390 -	1.0 0.9 1.2 1.4 1.2 1.1 1.2 1.1	1.9 2.4 1.6 1.7 1.8 2.0 1.0 2.1	0.741 0.721 0.738 0.739 0.738 0.735 0.735 0.735	59.5 64.8 60.2 60.2 60.2 60.2 60.5 61.0 61.0 60.8	8.4 10.1 7.4 7.9 8.2 8.5 8.5 8.4 8.4	0.06 0.05 0.05 0.06 0.07 0.06 0.07	

TABLE V

~


AVERAGE OF GASOLINE SURVEY ANALYSES FOR CANADA FOR SUMMERS, 1923 THROUGH 1952.

Year	Î. B. P.	DISTILLATION RANGE, *F.							GRAVITY				
		<u>Per</u> 10	Cent 20	<u>Ev</u> e 50	apor 70	ated 90	End Pt.	Res- 1due %	Loss %	At 6 Spec- ific	Deg. A.P.I.	Reid V.P. 1b.	Sul· phui K
1923	120	163	189			351	423	1.1	1.8	0.737	60.5	-	
1924	113	169			285	341	410	1.1	1.5	0.736	60.8	-	
1,925	116	168		254	295	352	412	1.1	1.9	0.739	60,0	-	
1926	110	158		253	296	354	410	1.1	1.5	0.739	60.0	-	
1927	107	156		255	299	359	416	1.1	1.9	0.741	59.5	-	
1928	107	155	182	251	294	353	409	1.1	1.6	0.737	60.5	-	
1929	102	147			296	355	411	1.1	1.9	0.736	60.8	~	
1930	101	149	178	250	297	356	406	1.1	1.7	0.741	59.5	-	0.07
1931	104	151			299	359	406	1.3	1.8	0.741	59.5	-	0.05
1932	102	151			297	357	408	1.2	0.9	0.742	59.2	7.4	
1933	101	147			292	345	396	1.2	1.3	0.739	60.0	6.9	
1934	101	144			287	346	395	1.2	1.3	0.738	60.2	7.5	
1935	101	143			281	337	393	1.1	1.5	0.735	61.0	7.7	0.06
1936	101	145			283	335	388	1.0	1.4	0.736	60.8	7.7	
1937	98	143			293	343	391	1.0	1.9	0.739	60.0	8.0	
1938	99	145			291	342	393.	0.9	1.6	0.740	59.7	8.2	
1939	9 9	142	173	249	292	343	393	0.9	2.1	0.740	59.7	8.3	
1940*	-	-	~	-	Ξ		-	-				-	
1941	101	143			285	338	392	0.9	1.9	0.741	59.5	8.2	0.06
1942	_ 97	135			277	333	390	1.0	2.0	0.733	61.5	9.2	0.05
1943	100			246	287	339	391	1.0	1.7	0.741	59.5	8.1	0.08
1944	100	142			298	352	401	1.2	1.7	0.743	58.9	7.9	0.06
1945	103	144		247	289	345	401	1.2	1.7	0.740	59.7	7.9	0.07
1946	99	137			282	338	394	1.2	1.8	0.737	60.5	8.4	0.07
1947	101	138		237	280	337	395	1.1	1.9	0.736	60.8	8.6	0.0
1948	103	139	166	237	278	335	396	1.3	2.0	0.736	60.8	8.7	0.07
1949*	-			~	-	-			~ ~			-	
1950	97	138	165	235	279	337	394	1.2	0.9	0.737	60.5	8.4	0.09
1951*				-	-	-			<u> </u>		·		
1952	102	137	164	234	278	337	396	1.1	2.0	0.737	60.5	8.4	0.07
*No sur	vey.	.		T		1	12		Mill	igrams	per 100	m111111t	res.



SURVEYS OF 1938 THROUGH 1952

NOTE: No Survey was made in 1940, 1949, and 1951, for Group I.

DISTILLATION RANGE

SURVEYS OF 1938 THROUGH 1952

NOTE: No Survey was made in 1940, 1943, 1949, and 1951, for Group II.

.