Sek 622(21) Q12ms.

BUREAU OF MINES

MINES, FORESTS AND SCIENTIFIC SERVICES BRANCH

DEPARTMENT OF MINES AND RESOURCES Dept. Mines & Resources

OTTAWA, CANADA

GASOLINE SURVEY FOR SUMMER, 1947 OTTAWA, CAN

by

H. McD. Chantler, P. B. Seely and F. E. Goodspeed

TABLE OF CONTENTS

which is the second the second and the stand by press and the second second the second	
Introduction	1
Methods of Analysis	1
Results of Laboratory Examination	1
Knock Ratings	1
Maximum and Minimum Knock Ratings	1
Average Knock Rating	2
Change in Knock Rating	2
Tetraethyl Lead Content	2
Volatility	2
Vapour Pressure	2
Sulphur	2
Gum	2
Gravity	2
Corrosion	2
Colour	2
Summary and Conclusions	2
References	5 8
Tabulated Results	2-0

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale. MEMORANDUM SERIES No. 98 March, 1948.

Page

SEP 21 1948

LIBRARY

by

H. McD. Chantler, P.B. Seely and F.E. Goodspeed.

A study of the gasoline sold in Canada during the summer has been made annually since 1923 at the Fuel Research Laboratories of the Division of Fuels, Bureau of Mines, and reports from the results obtained have been prepared and published up to and including 1946(1). Over the period from July 8 to August 5 in 1947, 61 samples of gasoline were obtained from the nine principal distributing cities in eight provinces, namely static. New Brunewick, Outpace, Ontario, Manitoha, Saskatabayan, Alberta and Eritich Calmark 61 samples of gasofine were obtained from the nine principal distributing cities in eight provinces, namely Nowa Scotia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta and British Columbia. These samples represent 21 brands of motor fuel sold by 15 wholesale dealers and distributors. This report con-tains the results in detail of the analyses of these 61 samples of gasoline. The support and generous co-operation of the Food and Drug Laboratories of the Department of National Health and Welfare in the collec-

Method of Analysis

The characteristics of the gasoline were tested according to the latest revision of the methods⁽²⁾ of testing of the American Society for Testing Materials (A.S.T.M.) except as noted below. The distillation range was determined according to A.S.T.M. method D 86 and was reported on the "per cent evaporated" basis. The "per cent evaporated" at any temperature is the sum of the "per cent recovered" plus the distillation lines. The temperatures at selected percentages were estimated from graphs. The knock ratings of the gaso-Reid vapour pressure was determined according to A.S.T.M. method D 323. The sulphur content was determined determined by A.S.T.M. method D 90-34T, except that a modified apparatus⁽³⁾ was used. The gum content was the gum content was determined according to the procedure prescribed in Canadian Government Purchasing Stan-the gum content was determined according to the procedure prescribed in Canadian Government Purchasing Stan-sence of top cylinder lubricant". The difference between the amount of gum found by these two methods was dards Committee Specification. No. 3-GP-9(4) entitled: "Determination of gum content of gasoline in the pre-sence of top cylinder lubricant". The difference between the amount of gum found by these two methods was reported as "oil". The corrosion test was made according to A.S.T.M. method D 130. The specific gravity vas determined by means of the hydrometer at room temperature, according to A.S.T.M. method D 287 and the result calculated to 60°F., according to the National Standard Oil Tables(5). The equivalent degrees A.P.I. vas obtained from the same tables. The apparent colour of the gasoline was observed. The tetraethyl lead content was determined according to A.S.T.M. method D 526 using the volumetric molybdate method.

Results of Laboratory Examination.

The results of the laboratory examination of the gasolines collected in the summer of 1947 are shown by cities in Table I, and are arranged under two groups of samples, viz.; Group 1 and Group 2 gasolines. The table gives the A.S.T.M. octane number, tetraethyl lead content, distillation characteristics, specific and A.F.I. gravity, Reid vapour pressure, sulphur content, and gum content of all the samples. Averages for froup 1 and Group 2 gasolines are reported at the foot of each column in the table. Table 2 is a summary of the average analyses of the gasoline survey by cities for summer 1947 and shows the average of all samples in Group 1 and Group 2. It also gives the average of all samples tested in that summer. Table 3 gives the the summer of 1947. Table 4 shows the average results obtained by examination of samples of gasolines for average of all samples of gasoline in Group 1 and Group 2 for ten summers, 1937 through 1947 (except 1940). mitted. Figure 2 shows similar data for the Group 2 gasolines.

A general discussion of the significance of the laboratory tests, together with the relationship between these tests and the actual operation of the fuel in an engine will be found in the report on gasoline Surveys for 1930 and 1931(6). Intervening changes in the significance of tests on motor fuels were discussed in the Gasoline Surveys for 1935 and 1936(7). For further information on motor fuels, a report(8) entitled "The Significance of Tests of Petroleum Products", which was prepared by A.S.T.M. Committee D-2 of American So-cisty for Testing Materials; the "C.R.C. Handbook"(9), and other reports(10)(11)(12)(13)(14) should be con-sulted.

The purpose of this survey is not to ascertain whether the samples of motor fuel conform with a speci-fication, Dominion Government (15), Provincial or otherwise. It is intended as a means whereby information The purpose of this survey is not to ascertain whether the samples of motor fuel conform with a speci-fication, Dominion Government(15), Provincial or otherwise. It is intended as a means whereby information regarding the characteristics of gasoline actually being sold will become available. No effort, therefore, has been made to fit the results into predetermined groups; rather, it is desired that the actual analyses would define as clearly as possible the limits of the different groups of gasoline on the market.

Knock Ratings

The knock ratings of the samples tested in summer 1947 were determined in a Coordinating Fuel Research singine, known more briefly as the "C.F.R. Engine". The A.S.T.M. "motor" method, D 357-40 was used and the results are expressed in A.S.T.M. motor octane numbers. According to the knock rating only, the samples which were tested fell into two groups. The range in octane number of each group was as follows:

Group 1. Gasolines with octane numbers of 78 and above. Group 2. Gasolines with octane numbers between 77 and 70.

These two groups correspond to the grades which are known in the oil trade as "Premium" and "Regular" Baoline. Generally speaking, the major oil companies now tend to sell only Group 1 and Group 2 gasolines at their service stations. Accordingly, samples of Group 3 or "Third Grade" gasoline, with knock ratings below 70 octane number, were not collected for this survey. The knock ratings of individual samples are given in Table 1 and the group in which each sample falls is shown. Of the 61 samples of gasoline collec-ted in 1947, 24 samples were Group 1 gasoline and 37 samples were Group 2 gasoline.

Maximum and Minimum Knock Ratings

The minimum and maximum knock ratings of the samples tested in 1947 are shown in Table 3. The minimum and maximum knock ratings of the samples tested in 1947 are shown in Table 3. The range In rating of the Group 1 gasolines was from a high of 82 to a low of 76 octane numbers. In 1946, the cor-responding range of Group 1 gasolines was from 81 to 75 octane numbers. For the Group 2 gasoline samples, the range in knock rating was from a high of 77 to a low of 72 octane numbers in 1947. The corresponding range of Group 2 gasolines in 1946 was from 76 to 70 octane numbers.

Average Knock Rating

The average knock ratings of the gasoline sold in Canada in ten summers, 1937 through 1947, excepting 1940, are shown in Table 5 and graphically in Figure 1 for Group 1 gasoline and in Figure 2 for Group 2 ga-soline. The average knock ratings of the samples in Group 1 for these ten summers were 77.6 octane number in 1937, 77.8 in 1938, 77.4 in 1939, 79.0 in 1941, 76.9 in 1942, 75.7 in 1943, 74.8 in 1944, 73.5 in 1945, 77.8 in 1946 and 79.2 in 1947. The average knock ratings of the samples in Group 2 for these same summers, excepting 1940 and 1943, were 70.1 octane number in 1937, 70.2 in 1938, 70.3 in 1939, 73.6 in 1941, 67.1 in 1942, 68.6 in 1944, 68.5 in 1945, 73.6 in 1946, and 75.0 in 1947.

Change in Knock Rating

1

W t 0

ti gu 88 gi We

T fu co

19 de 3, fr pe or

Th re to

th

19 ye

La pl Ve

Va du

an

te at 2

be ga ra fu

ag 4. in to

pe

ti

The above results indicate that by the summer of 1941, the average knock rating of Group 1 gasoline has risen to 79.0 octane number and for Group 2 gasoline had also risen to 73.6 octane number. For the year 1942 to 1945, wartime restrictions applied in Ganada according to the Orders of the Oil Controller(15)[1]. Therefore during these four summers the average knock rating of Group 1 motor fuel decreased progressively to a low of 73.5 octane number in 1945. In the same period, the average knock rating of Group 2 motor fuel fell and remained fairly constant atabout 68 octane number. This decrease in knock rating of Group 1 and Group 2 gasolines was mainly due to the shortage of tetraethyl lead. When the wartime restrictions were lifted in August 1945 and more tetraethyl lead became available, the average knock rating of the gasolines rose in 1946 to 77.8 for Group 1 and to 73.6 octane numbers and in 1947 the average knock rating of Group 2 motor fuel was 75.0, a rise of 1.4 octane numbers and in 1947. This indicates a steady improve-ment in knock rating of Group 1 and Group 2 gasolines marketed since the end of the wartime restrictions. The difference between the knock rating of Group 1 and Group 2 motor fuels was 7.1 octane numbers in summer 1959, 5.4 in summer 1941 and 4.2 octane numbers in both the summers of 1946 and 1947. In the summer of 194 the knock rating of Group 1 and Group 2 motor fuels sold in the other provinces.

Tetraethyl Lead Content

Tetraethyl lead is used to improve the knock rating of gasolines. The tetraethyl lead content of the individual samples, and the average tetraethyl lead content of Group 1 and of Group 2 samples in each city is given in table 1 and also, in table 2. As shown in table 3, the maximum tetraethyl lead content of Group 1 gasoline was 3.39 millilitres and the minimum was 1.75 millilitres per Imperial gallon. In Group 2, the maximum tetraethyl lead content was 2.89 millilitres, and the minimum was 0.51 millilitres per Imperial lon for those samples that contained tetraethyl lead. It should be noted that in the summer of 1947 three samples of Group 2 motor fuel did not contain tetraethyl lead. These samples were from the cities of Motme al, Ottawa and Toronto. In summer of 1947, the average tetraethyl lead content of Group 1 gasoline was 2.45 millilitres and of Group 2 gasoline was 1.42 millilitres per Imperial gallon; whereas in the summer of 1946 the average tetraethyl lead content of Group 1 gasoline was 2.45 millilitres and of Group 2 gasoline was 1.45 millilitres.

Volatility.

The volatility of the gasoline is indicated by the distillation range temperatures which are given in Tables 1 to 5 and are shown graphically in Figures 1 and 2. The distillation temperatures are reported on the "per cent evaporated" basis, as was done for the Gasoline Surveys for Seven Summers between 1939 and 1946(1), rather than on the "per cent recovered" basis, as in Gasoline Survey reports previous to 1939. It is now accepted practice in the petroleum industry to report the distillation range of motor fuels on the "per cent evaporated" basis, because these temperatures indicate more correctly the actual volatility of motor fuel as it occurs in engine operation.

There was a slight increase in the average volatility of the motor fuels in summer 1947 as compared with summer 1946, which was due to a drop of approximately 1°F. in the 20,50,70 and 90 per cent evaporated points in the distillation range, as shown in table 4. In 1947, Group 1 gasoline had a higher average vola tility than Group 2 gasoline, as indicated by a drop of approximately 5°F. in the 20,20,50,70 and 90 per cent evaporated points in the distillation range, as shown in table 3. As shown in table 2, the gasoline sold in the Maritime Provinces of Nova Scotia and New Brunswick during the summer of 1947 was lower in average vola-tility than that sold in the other provinces of Canada.

Vapour Pressure

The Reid vapour pressure for each of the samples tested in 1947 is shown in table 1. The average va-pour pressure of all the gasolines in 1947 was 8.6 pounds per square inch and for 1946 was 8.4 pounds. The highest vapour pressure, namely 10.4 pounds, was obtained from a Group 1 gasoline from Ottawa. The lowest vapour pressure, namely 6.9 pounds, was obtained from a Group 2 gasoline, also from Ottawa. Four samples of 7 per cent of the samples had a vapour pressure over 10 pounds in 1947. The average vapour pressure of Group 1 motor fuels was 8.7 pounds and for Group 2 motor fuels was 8.5 pounds in 1947. In the summer, from 1977 1939 there was a definite trend towards higher, and more uniform vapour pressures for the gasolines being sold. This trend in the vapour pressure characteristics of motor fuels started again in 1946 and has conti-nued during 1947. nued during 1947.

Sulphur

The sulphur content for each of the samples tested in 1947 is shown in table 1. The average sulphur content of all the gasolines was 0.07 per cent by weight in 1947. In the summers of 1945 and 1946 the ser-age sulphur content for the motor fuels was also 0.07 per cent. The sulphur content varied from a high of 0.20 per cent to a low of 0.01 per cent in 1947. Fifteen samples, or 25 per cent of the 61 samples tested in 1947, had a sulphur content exceeding 0.10 per cent. Only 4 samples, or 7 per cent of the samples tested had a sulphur content exceeding 0.15 per cent. Two of the above samples of motor fuel were received from Halifax with sulphur contents of 0.17 and 0.16 per cent; and two samples were from Vancouver with sulphur contents of 0.20 and 0.19 per cent. The average sulphur content was 0.07 per cent for both Group 1 and contents of 0.20 and 0.19 per cent. The average sulphur content was 0.07 per cent for both Group 1 and Group 2 motor fuels in 1947. As shown in table 2, in 1947 the Group 1 and Group 2 motor fuels sold in the Maritime Provinces of Nova Scotia and New Brunswick had a higher average sulphur content than the motor fuels sold in the other provinces of Canada with the the the fuel of the second s sold in the other provinces of Canada, with the exception that Group 2 motor fuels sold in British Columbia had also a high average sulphur content.

- 3 -<u>Gum</u>

g

8, 1n

had

J

B D

er 947

oup

ne galee 2.61 946,

in ed and

It

ed ols-

d in olar

a-The st s or

Grou 37 t 8 tti-

ver of ed stee

1

r fuel bis The existent gum in the samples of gasoline was determined by the air-jet evaporation method, A.S.T.M. p 381-46. With this method the gum is deposited as a hard, varnish-like, or as a tacky residue. If the gasoline contains nonvolatile lubricating oil, such as solvent oil, the gum is deposited as an oily residue, because it is gum plus oil. In all cases where the gum was "oily", the gum was determined again according to the method prescribed in Canadian Government Furchasing Standards Committee Specification Mo. 5-GP-9(4), entitled "Determination of Gum Content of Gasoline in the presence of top-cylinder lubricant". By this method the oil is extracted from the gum with A.S.T.M. precipitation Naphtha⁽²⁾, and the oil-free residue is reported as gum. The difference between the amount of gum determined by A.S.T.M. method D 381-46 and amount of gum content is stated, it refers only to "oil-free" gum. Oil, if present is shown in brackets in table 1. For example: "Gum, 5(2)" means that the gasoline contains 5 milligrams of gum plus 2 milligrams of oil per 100 millilitres of gasoline.

The gum content for each of the samples examined in 1947 is shown in table 1. The average gum content of all the samples was 4 milligrams per 100 millilitres of gasoline. In each of the three summers of 1944 to 1946 the average gum content for the motor fuels was also 4 milligrams. In 1947 the gum content varied from 17 milligrams to only a trace of gum. It is now generally accepted (15) that not over 7 milligrams of gum should be present in 100 millilitres of motor fuel. Only four samples, or 7 per cent of the samples tested in 1947, had a gum content exceeding 7 milligrams. These four samples were Group 2 gasoline; one sample from Halifax had a gum content of 17 milligrams, two samples from Saint John had 17 and 13 milligrams, and one sample from Ottawa had 9 milligrams of gum. The average gum content for Group 1 gasolines was 3 milligrams and for Group 2 gasolines was 4 milligrams.

In 1947 several of the oil companies added solvent oil, as a top-cylinder lubricant to their motor fuels. The gum residue of these samples was therefore "oily". Twenty-eight samples, or 46 per cent of the motor fuels tested, contained oil. The average oil content of the above samples was 9 milligrams. The highest oil content was 32 milligrams and the lowest was 2 milligrams per 100 millilitres of gasoline.

Gravity

The specific gravity at 60°F., and gravity in degrees A.P.I. at 60°F. for each sample tested in summer 1947 is shown in table 1. The average specific gravity of all the gasolines collected was 0.736 or 60.8 degrees A.P.I. This is equivalent to a weight of 7.36 pounds per Imperial gallon. As indicated in table 3, the overall variation in specific gravity of the gasolines examined in 1947 was from 0.721 to 0.749, or from 64.8 to 57.4 degrees A.³.I. This is equivalent to a variation in weight of 7.21 pounds to 7.49 pounds per Imperial gallon for summer motor fuel. The average specific gravity of Group 1 motor fuels was 0.734 or 61.3 degrees A.P.I. and for Group 2 motor fuels was 0.737 or 60.5 degrees A.P.I.

Corrosion

The corrosion test for motor fuels is made by immersing a strip of polished copper for three hours in a sample of gasoline heated to 122°F. according to A.S.T.M. method D 130-30 and observing the tarnish, or corrosion, that takes place. The copper strip should not show more than "extremely slight discolouration". The corrosion test was made on all of the samples collected in 1947, but in order to conserve space was not reported in any of the tables 1 to 5. None of the 61 samples gave a positive test for corrosion according to the above procedure.

Colour

The apparent colour of the gasoline was observed in all samples but has not been reported in any of the tables 1 to 5. All of the samples of motor fuel in Group 1 and Group 2 were artificially coloured in 1947. All of the Group 1 motor fuels were dyed red. The majority of the Group 2 motor fuels were coloured yellow or orange.

Summary and Conclusions

This gasoline survey comprises the analyses of 61 samples of motor fuel collected for the Fuel Research Laboratories during the period from July 8th to August 5th in 1947, from nine cities in Canada. These samples represent 21 brands of motor fuel sold by 15 wholesale dealers and distributors. As the above samples were collected from eight provinces, namely Nova Scotia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchevan, Alberta and British Columbia, they may be accepted as representative of the motor fuels sold in Canada during the summer of 1947. For convenience and easy reference, summaries of the data obtained are tabulated and a comparison of gasoline characteristics is shown graphically.

Only Group 1 and Group 2 gasolines were tested in 1947. Samples of Group 3 gasolines were not collected. Since the war, it has become general practice not to sell Group 3 gasoline, except by special order, at the service stations of the major oil companies in Canada. Group 1 is usually known as "Premium", Group ² as "Regular" and Group 3 as "Third Grade". These three groups differ principally in knock rating.

The average knock rating of Group 1 gasolines sold in summer 1947 was 79.2 A.S.T.M. motor octane number. In summer 1946 the average knock rating was 77.8 octane number. The average knock rating of Group 2 gasolines sold in summer 1947 was 75.0 A.S.T.M. motor octane number. In summer 1946, the average knock rating was 73.6 octane number. There has been a definite rise in knock rating for the Group 1 and Group 2 motor fuels sold in Canada since wartime restrictions were lifted in August 1945. The difference between the average knock rating of Group 1 and Group 2 motor fuels sold in Canada in both of the summers 1946 and 1947 was '2 octane numbers. In the summer of 1947, the knock rating of both the Group 1 and Group 2 motor fuels sold in the provinces of Saskatchewan and Alberta was about 2 octane numbers lower than for similar grades of motor fuel sold in the other provinces.

The average tetraethyl lead content of the gasolines sold in Canada in summer 1947 was 2.61 millilitres Imperial gallon for Group 1 motor fuels and 1.42 milliliters per Imperial gallon for Group 2 motor fuels.

The average volatility of motor fuels sold in Canada in 1947 was slightly higher than the average volatility of motor fuels sold in 1946. Group 1 gasolines had a higher average volatility than Group 2 gasolines in summer 1947. The average Reid vapour pressure of the motor fuels tested in summer 1947 was 8.6 pounds as compared with 8.4 pounds in summer 1946. Four samples had a Reid vapour pressure over 10 pounds in summer 1947.

The average sulphur content of the gasolines sold in Canada was 0.07 per cent in summer 1947 and was also 0.07 per cent in the previous two summers 1945 and 1946. Four samples, two from Nova Scotia and two from British Columbia had a sulphur content exceeding 0.15 per cent in summer 1947. The Group 1 and Group 2 motor fuels sold in the Eastern Maritime Provinces in summer 1947 had a higher average sulphur content than the motor fuels sold in the other provinces of Canada, with the exception that Group 2 gasolines sold in British Columbia also had a high average sulphur content.

The average gum content c) all the gasoline tested in summer 1947 was 4 milligrams per 100 millilities of motor fuel and it was also 4 milligrams in the summers 1944 through 1946. The average gum content for Group 1 gasolines was 3 milligrams and for Group 2 gasolines was 4 milligrams. Only 4 samples of Group 2 motor fuel exceeded the usually accepted limit of 7 milligrams of gum per 100 milliliters of motor fuel. Twenty-eight samples, or 46 per cent of the motor fuels tested in summer 1947, contained oil. These samples gave a gum residue which was "oily". The average oil content was 9 milligrams per 100 millilitres of motor fuel.

The average specific gravity of the gasolines tested in summer 1947 was 0.736, or 60.8 degrees A.P.I.

None of the motor fuel samples tested in summer 1947 gave a positive test for corrosion with a copper strip.

All of Group 1 and Group 2 motor fuels tested in summer 1947 were artificially coloured; all of Group 1 gasolines were dyed red and the majority of Group 2 gasolines were dyed yellow or orange.

References

- Gasoline Surveys for Seven Summers between 1939 and 1946. F.V. Rosewarne, H. McD. Chantler and P.B. Seely, Bureau of Mines, Mines and Geology Branch, Department of Mines & Resources, Canada. Nemorandum Series No. 93.
- 2. A.S.T.M. Standards on Petroleum Products and Lubricants prepared by Committee D-2, 1940 to 1947, issued annually. American Society for Testing Materials.
- Industrial and Engineering Chemistry, Analytical Edition Vol.2, No.1 (January 15, 1930) pp.104-106.
- 4. Canadian Government Purchasing Standards Committee Specification (Tentative) No.3-GP-9. "Procedure for the Determination of Gum Content of Gasoline in the Presence of Top Cylinder Lubricant". National Research Council, Ottawa, Canada.
- National Standard Petroleum Oil Tables. Circular C410, United States National Bureau of Standards.
- Gesoline Surveys for 1930 and 1931.H.McD.Chantler, Investigations of Fuels and Fuel Testing, Mines Branch,Department of Mines, Canada. Report No.725, pp. 149-162.
- Gasoline Surveys for 1935 and 1936. P.V.Rosewarme and H. McD. Chantler. Bureau of Mines, Mines & Geology Branch, Department of Mines and Resources, Canada. Report No. 787.
- 8. The Significance of Tests of Petroleum Products. A report prepared by A.S.T.M. Committee D-2 on Petroleum Products and Lubricants, Reprint 1943, American Society for Testing Materials.

9. C.R.C. Handbook. 1946 Edition. Compiled by the Coordinating Research Council, Inc. p] No

Av

Av

Av

1

Av

Av

Ave

- Gasoline, by T. A. Boyd. Evaluation of Petroleu Products. A Resume of Present Information Spon sored by Sectional Committee Z11 on Petroleum Products and Lubricants, pp. 19 - 28. American Society for Testing Materials.
- What is Octane Number? Ethyl News, March 1947, pp. 15-18.
- National Mator-Gasoline Survey, Summer 1947, b O. C. Blade. Report of Investigations, No.424 United States Bureau of Mines.
- 13. The Procedures and General Information in Curr Use in the Development and Utilization of Avistion, Motor and Automotive Diesel Fuels. Couple by the Cooperative Fuel Research Countie (May, 1941).
- 14. "Gasoline Past, Present and Future", by Grams Edgar. A.S.T.M. Proceedings Vol.42,1942, pp.499 512.
- 15. Canadian Government Purchasing Standards Committee Specification for Gasoline No. 3-0P-1. National Research Council, Ottawa, Canada.
- 16. Oil Control. A Consolidation as of July 1,1⁴⁴ of Orders in Council relating to and orders as by the Oil Controller. Department of Munitim & Supply. Canadian War Orders and Regulations Ottawa, Canada, 1944.

- 5 -	
TABLE	I

1

a o up ld res r 2 mple otor . I. oer

the leun Sponum ican

947, , by 4243, vispile ttes shan 499-104 105, 005, GASOLINE SURVEY ANALYSES BY CITIES FOR SUMMER 1947.

.

Sam-		A.S.T.M.	Tetra					llati Cent						Reco-				Deg-		Sul-	
ple (Group	Octane No.	Ethyl Lead**	I.B.P.	5	10	20	30	50	70	90	95	End Pt.	very	due %	Loss	Gr. 60°F.	rees A.P.I.	V.P. 1b.	phur %	Gum**
100			LAN 2	P. A			R. 24	2.38	HA	LIFAX	, N.S						1. 20 M	1999 - S	¢ 3		
1 2	I	79.4 79.8	2.65 2.53	91 94	115 115	137 132	172 165	206	265 253	307 302	365 359	387 384	429 428	97.0 97.0	1.3 1.2	1.7	0.748		9.5 9.4	0.17 0.13	5(2)* 7
vera	ge	79.6	2.59	92	115	135	169	203	259	304	362	385	428	97.0	1.2	1.8	0.746	58.2	9.4	0.15	6
345	II II II	76.0 74.6 74.8	1.46 0.83 0.78	96 94 95	120 115 113	140 137 135	167 173 170	197 207 204	250 267 260	298 315 310	355 362 366	379 390 387	413 425 420	97.3 97.0 96.0	1.2 1.4 1.2	1.5 1.6 2.8	0.742 0.749 0.747		9.1 9.4 9.6	0.11 0.16 0.15	
vera	ge	75.1	1.02	95	116	137	170	203	259	308	361	385	419	96.7	1.3	2.0	0.746	58.2	9.4	0.14	9
									SAIN	T JOH	N, N.	<u>B</u> .					-4 .0			118	
67	I	80.1 79.5	2.92 2.35	104 98	121 115	137 131	159 162	180 196	220 254	· 262 307	330 367	361 392	399 427	97.0 96.5	1.0	2.0	0.729		8.7	0.08	56
lvera	ge	79.8	2.63	101	118	134	160	188	237	284	349	376	413	96.8	1.0	2.2	0.735	61.0	9.3	0.11	6
8 9 10	II II II	74.8 75.5 75.1	1.02 0.66 0.91	103 100 102	116 114 121	134 131 140	165 160 168	196 191 196	251 248 249	303 299 299	360 359 359	384 384 381	426 423 421	96.5 96.5 97.5	1.1 1.1 1.0		0.742 0.740 0.744	59.7	9.52 2	0.12	17(8) 2(7) 13(29
Avera	ge	75.1	0.86	102	117	135	164	194	249	301	360	383	423			2.1	0.742		9.0	0.12	11
									MON	TREAL	, QUE										
11 12 13	III	80.0 79.4 79.8	2.99 2.94 2.24	102 98 102	115 112 120	131 131 135	160 159 159	189 184 185	234 234 240	275 281 289	324 344 335	345 370 355	373 397 388	96.5 96.5 97.0	1.1 1.1 1.0		0.732 0.730 0.731	62.3	9.0	0.06	6(5)
Avera	ge	79.7	2.72	101	116	132	160	186	236	282	334	357	386	96.6	1.1	2.3	0.731	62.1	8.9	0.06	5
14 15 16 17 18	II II II II II	77.3 75.5 75.9 76.0 74.5	n111/ 1.58 1.05 1.79 1.82	100 102 105 104 106	118 120 123 125 127	134 143 141 143 145	161 176 166 169 177	186 203 187 194 206	236 246 232 238 252	289 284 274 279 292	· 364 329 333 327 343	392 345 356 347 367	417 372 394 384 409	97.0 97.0 97.0 97.0 97.0	1.2	1.9 2.0 1.8 2.0 1.6	0.747 0.739 0.736 0.733 0.738	60.0	8.4 0.8 3	0.02 0.08 0.06 0.03 0.11	5(4
Avera	ge	75.8	1.56	103	123	141	170	195	241	284	339	361	395	97.0	1.1	1.9		2		0.06	3
									01	TAWA,	ONT.										
19 20 21 22 23 24	I I I I I I I	79.3 79.6 79.2 79.8 79.3 79.3	2.82 3.25 2.29 2.76 1.99 2.29	93 99 103 99 97 104	107 120 128 125 111 130	127 140 144 139 127 143	157 168 168 163 150 168	184 192 189 184 174 189	232 233 230 219 228 231	269 268 273 251 276 274	316 313 334 299 333 338	337 340 367 325 355 368	367 382 398 375 390 396	95.5 96.5 97.0 97.5 96.5 98.0	1.1	3.6 2.4 6 1.4 2.5 0.7	0.729 0.738 0.741 0.728 0.726 0.739	60.2 59.5 62.9 63.4	8.54	0.06 0.11 0.05 0.07 0.02 0.02	2 3(2 0.5
Avera	ge	79.4	2.57	99	120	137	162	185	229	268	322	348	385	96.9	1.1	2.0	0.733	61.5	8.8	0.06	2
29 30 31	II II	7.4.8 75.8 75.0 75.3 76.0 76.7 75.0	1.79 2.89 1.12 1.23 2.40 nill/ 0.80	100 102 103 99 108 99 102	118 127 120 123 135 121 124	139 141 137 138 154 137 140	171 168 161 162 180 162 163	203 193 185 184 206 187 187	248 233 228 225 249 237 228		327 322 335 323 328 367 333	345 345 361 347 350 391 357	370 384 399 390 384 417 394	98.0	1.0 1.2 0.9 1.0	2.5581.558	0.737 0.738 0.738 0.738 0.738 0.738 0.738	60.2 60.3 61.5 60.0 57.7	7.8	0.08	9(33 0.5 2
Avera	lge	75.5	1.71	102	124	141	167	192	235	277	333	357	391	97.2	1.0	1.8	0.739	60.0	8.0	0.06	5 4
70									TO	DRONTO), ONT	•									
32	I	78.8 79.6	2.26 3.20	100 106	119 126	140 142	163 165	185 188	227 227	272 267	337 322	368 349	399 385	96.5 97.0	1.5	2.0	0.737	60.5 61.3	8.5	0.04	
Avera		79.2	2.73	103	122	141	164	186	227	269	330	358	392	96.8	1.3	1.9	0.735	5 61.0	8.3	0.06	5 2
54 35 36 37 38 39	II II II II II II	74.5 74.5 73.6 74.0 75.9 77.2	2.38 1.29 0.69 1.03 2.03 n11	105 96 99 102 104 105	127 116 121 124 130 120	145 130 138 142 148 136	170 154 165 167 175 162	195 176 188 190 199 188	235 216 232 229 243 239	286	325 311 347 323 338 374	347 340 376 345 367 400	380 379 426 388 389 424	97.5 97.5 98.0 97.5	1.2	2.0 1.3 1.3 0.9 1.4	0.729 0.729 0.739 0.739 0.739 0.739	64.8 60.0 61.5 60.8	9.822	0.0	5 1(6
Avera	age																				
ga	allon.	75.0 12 per 10 1/ Not	00 milli include				ition	* 00	ontain	ns mil	ligra	ums of	1 -	in bra	ckets	. **	111111	ltres p	er Imp	perial	1

- Sara		TAB	LE	Cont:	inue	1)	
GASOLINE	SURVEY	ANALYSES	BY	CITIES	FOR	SUMMER	1947.

Sant Tare and state a

- 6 -

Hal Sai Mon Ott Tor Win Reg Edn Van

Ave

Hal Sai Mon Ott Tor Win Reg Edm Van

Ave Ave Sam **M

Sabrevh & eitestat

Sam-		A.S.T.M.	Tetra			18 - 19 19		llat: Cent		oorate	°F.	ie ie i		Reco-	Resi-		Sp.	Deg-	Reid	Sul-	
ple No.	Group	Octane No.	Ethyl Lead*#	I.B.P.	5	10	20	30	50	70	90	95	End Pt.	very %	due %	Loss	Gr.	rees A.P.I.	V. P.	phur	Gum#+
			A STA						WIN	INIPEG	, MAN							13			Sep.
40 41	I	79.7 79.6	3.13 2.33	96 106	115 118	132 137	159 162	183 185	227 228	268 273	325 337	349 361	384 392	97.0 96.5	1.2 1.2	1.8 2.3	0.728	62.9 60.2	10.1 8.1	0.05	3 2 (16)
Avera	ige	79.7	2.73	101	116	135	160	184	228	270	331	355	388	96.8	1.2	2.0	0.733	61.5	9.1	0.05	2
42 43 44 45	II II II II	74.8 74.6 74.5 72.8	1.48 0.51 1.09 2.26	100 102 105 101	118 121 121 123	135 136 138 143	162 161 164 172	186 184 186 200	230 226 229 248	270 269 271 292	321 333 335 340	343 359 365 360	382 390 396 380	97.0 97.0 97.0 97.5	1.1 1.2 1.0 1.1	1.9 1.8 2.0 1.4	0.727 0.736 0.737 0.729	63.1 60.8 60.5 62.6	8.6 8.2 8.7	0.05 0.05 0.04 0.06	2(8)*
Avera	ge	74.2	1.34	102	121	138	165	189	233	276	332	357	387	97.1	1.1	1.8	0.732	61.8	8.4	0.05	2
									RE	GINA,	SASK										
46 47	I	76.0	2.46 2.48	99 103	117 124	133 137	161 160	187 190	238 240	283 285	337 341	360 368	402 411	97.0 97.3	1.3 1.1	1.7 1.6	0.730	62.3 62.3	8.8		3(17) 2(7)*
Avera	ge	76.0	2.47	101	120	135	160	188	239	284	339	364	407	97.2	1.2	1.6	0.730	62.3	8.7	0.09	2
48 49 50	II II II	72.4 72.4 73.6	1.62 0.55 1.75	101 93 103	120 111 122	141 127 139	172 155 165	198 184 190	240 234 236	281 282 281	332 339 338	351 359 362	376 377 408	97.0 97.0 97.5	1.0 1.0 1.0	2.0 2.0 1.5	0.730 0.729 0.728	62.3 62.6 62.9	8.9 10.2 8.7	0.05	
Avera	ge	72.8	1.31	99	118	136	164	191	237	281	336	357	387	97.2	1.0	1.8	0.729	62.6	9.3	0.06	1
									EDM	ONTON	, ALT	<u>A</u> .						.6			
51 52 53	IIII	77.6 77.2 77.9	3.39 2.28 2.69	104 103 106	125 119 130	143 135 147	167 159 173	191 184 196	239 232 243	286 282 286	344 341 340	367 362 362	392 392 388	97.0 97.0 97.8	1.3 1.3 1.2	1.7 1.7 1.0	0.732 0.731 0.738	61.8 62.1 60.2	7.8 8.7 7.1	0.06 0.04 0.10	Tr. (7
Avera	ge	77.6	2.79	104	125	141	166	190	238	285	342	364	391	97.3	1.3	1.4	0.734	61.3	7.9	0.07	3
54 55	II II	73.6 74.4	1.40 1.86	110 104	130 120	147 136	169 160	192 186	237 234	284 280	340 338	363 359	392 388	97.5 97.0	1.2	1.3 1.6	0.731 0.729	62.1 62.6	7.3	0.05	6 Tr.(1
Avera	ge	74.0	1.63	107	125	141	165	189	236	282	339	361	390	97.3	1.2	1.5	0.730	62.3	7.9	0.04	3
									VAN	COUVE	R, B.	<u>C</u> .									
56 57	I I	81.9 82.2	2.75	100 95	118 109	136 126	163 151	184 176	221 219	255 264	308 323	333 346	387 378	96.5 97.0	1.2	2.3	0.733 0.735	61.5 61.0	8.2 8.5	0.06	Tr.(8 1
Avera	ge	82.0	2.25	97	113	131	157	180	220	260	315	339	382	96.8	1.1	2.1	0.734	61.3	8.3	0.05	1
58 59 60 61	II II II II	75.4 77.0 76.0 76.5	1.59 1.66 1.28 1.65	103 103 102 102	120 121 120 112	139 138 136 136	170 164 165 170	198 189 192 202	239 230 239 247	275 270 280 285	313 328 338 332	332 359 358 355	364 398 385 389	96.3 97.0 97.0 96.0	1.0 1.1 1.1 1.1	2.7 1.9 1.9 2.9	0.736 0.735 0.738 0.744	60.8 61.0 60.2 58.7	8.6 8.7 8.6 8.6	0.12 0.06 0.19 0.20	Tr. (4 7
Avera	ge	76.2 s per 100	1.55	103	118	137	167	195	239	278	328	351	384	96.6	1.1	2.3	0.738	60.2	8.6	0.14	3

gallon. Tr. means Trace.

- 7 -	-
TABLE	II

AVERAGE OF GASOLINE SURVEY ANALYSES BY CITIES FOR SUMMER 1947.

1:

CITY	No. of Samples	Group	A.S.T.M. Octane No.		Dis I.B.P.	tills Per 10	Cent	Eve		ted	End Pt.	Reco- very	Resi- due	Loss	Gr.	Deg- rees A.P.I.	V.P.	phur	Gum**
Halifax, N.S. Saint Joh, N.B. Montreal, Que. Ottava, Ont. Toronto, Ont. Winnipeg, Man. Regina, Sask. Edmonton, Alta. Vancouver, B.C.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ІННИННИ	79.6 79.8 79.7 79.4 79.2 79.7 76.0 77.6 82.0	2.59 2.63 2.72 2.57 2.73 2.73 2.47 2.25 2.47 2.25	92 101 101 99 103 101 101 104 97	134 132 137 141 135 135 141	160 160 162 164 160 160 160	236	284 282 268 269 270 284 285	349 334 322 330 331 339 342	386 385 392 388 407 391	96.8 96.9 96.9 96.8 96.8 96.2 97.3	1.2 1.0 1.1 1.3 1.2 1.2 1.3 1.1	1.822.092.6142.1	0.746 0.735 0.731 0.733 0.735 0.735 0.735 0.730 0.734 0.734	58.2 61.0 62.1 61.5 61.5 61.5 61.3 61.3	9.98 8.8 9.1 7	0.15 0.11 0.06 0.06 0.05 0.09 0.07 0.05	6 5 8 8 8 8 B
Average	(24)	I	79.2	2.61	100	136	162	234	277	334	394	96.9	1.2	1.9	0.734	61.3	8.7	0.07	3
Halifax, N.S. Saint John, N.B. Montreal, Que. Ottava, Ont. Toronto, Ont. Vinnipeg, Man. Regina, Sask. Edmonton, Alta. Vancouver, B.C.	775764 724		75.1 75.8 75.5 75.0 74.2 72.8 74.0 76.2	1.02 0.86 1.56 1.71 1.48 1.34 1.31 1.63 1.55	95 102 103 102 102 102 102 99 107 103	135 141 141 140 138 136	164 170 167 166 165 164	249 241	301 284 277 276 276 281 282	360 339 333 336 336 339	423 395 391 398 397 398 387 390	97.0 97.2 97.5 97.1 97.2 97.3	1.3 1.1 1.1 1.0 1.1 1.1 1.0 1.2 1.1	2219848855	0.746 0.742 0.739 0.739 0.734 0.732 0.732 0.729 0.730 0.738	59.2 60.0 61.3 61.8 62.6 62.3	98888897	0.14 0.12 0.06 0.06 0.04 0.05 0.06 0.04 0.05	1134 3213
Average	(37)	II	75.0	1.42	102	139	166	239	283	339	396	97.1	1.1	1.8	0.737	60.5	8.5	0.07	4
Average of all Samples **Milligrams per		1&11	- 12:8-		101 s per 1	138 mper:				337	395	97.0	1.1	1.9	0.736	60.8	8.6	0.07	4

* *

7)*

)*

(7)

(15

(8)

(4)

TABLE III

SUMMARY OF DATA OF GASOLINE SURVEY ANALYSES FOR CANADA FOR SUMMER 1947

Test	Instance	GROUP I No. 78 an	d abova)	GROUP II (Octane No. 77 to 70)				
1080		Average			Average	Maximu		
Specific Gravity at 60°F	0.726	0.734	0.748	0.721	0.737	0.749		
Gravity, Degrees A.P.I	63.4	61.3	57.7	64.8	60.5	57.4		
Reid Vapour Pressure, 1b	7.1	8.7	10.4	6.9	8.5	10.2		
Sulphur, Per Cent Gum, milligrams per 100	0.02	0.07	0.17	0.01	0.07	0.20		
millitres Tetraethyl Lead, millilitres	Trace	3	7	Trace	4	17		
per Imp. gal	1.75	2.61	3.39	nil	1.42	2.89		
A.S.T.M. Octane Number	76.0	79.2	82.2	72.4	75.0	77.3		
Distillation Range			1.01		1000	17.52 5		
Initial Boiling Point, "F.	91	100	106	93	102	110		
5% Evaporated, F	107	119	130	111	121	135		
10% Evaporated, °F	126	136 162	147	127 154	139 166	154 180		
20% Evaporated, °F 30% Evaporated, °F	150 174	188	173 206	176	193	207		
50% Evaporated, °F	219	234	265	216	239	267		
70% Evaporated, °F	251	277	307	255	283	315		
90% Evaporated, °F	299	334	367	311	339	374		
95% Evaporated, F	325	359	392	332	362	400		
End Point, °F	367	394	429	364	396	426		
Recovery, Per Cent	95.5	96.9	98.0	96.0	97.1	98.5		
Residue, Per Cent	0.9	1.2	1.5	0.9	1.1	1.4		
Distillation loss, Per			- 1					
Cent	0.7	1.9	3.6	0.5	1.8	2.9		
Number of Samples		24			21			

Martin M. 2007, 375(798, 1212

manual Antiping Malant

many in so is being an is

- 8 -	
TABLE	IV

AVERAGE OF GASOLINE SURVEY ANALYSES FOR CANADA FOR SUMMERS, 1923 THROUGH 1947. (EXCEPT 1940)

Year	I.B.P.	Distil	lation Per Cer	Range, nt Eva	°F.	4	End	Reco-	Resi-		Sp.	Deg-	Reid	Sul-
Icar	1.0.1.	10	20	50	70	90	pt.	very %	due %	Loss	Gr. 60°F.	rees A.P.I.	V.P. 1b.	phur %
1923 1924 1925 1926 1927 1930 1931 1932 1933 1934 1935 1935 1937 1938 1939 1939	120 113 116 107 107 107 102 101 104 102 101 101 101 101 101 101 98 99 99 99	1639 1688 1586 1555 147 1491 151 1474 1455 1445 1445 1445 1445 1445	189 192 195 187 184 182 176 178 181 181 176 172 171 173 174 173	2546435510041994028889	294 285 2956 2994 2997 2997 2997 2997 2881 2833 2991 292 292	3511 3555 35556 35556 35556 35557 35566 3544 3553 3544 3553 3544 3553 3544 3553 35555 35555 35555 35555 35555 35555 35555 35555 35555 35555 35555 35555 35555 35555 355555 355555 355555 355555 355555 355555 3555555	423 412 412 410 410 406 408 395 398 395 393 393 393	97.1 97.4 97.4 97.3 97.9 97.9 97.9 97.9 97.5 97.5 97.6 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5	1.1* 1.1* 1.1* 1.1* 1.1* 1.1* 1.1* 1.1 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.0 1.0 0.9 0.9	1.859596978933354961 1.1.1.1.0.1.1.54961	0.737 0.736 0.739 0.739 0.741 0.741 0.742 0.742 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.741 0.736 0.741 0.736 0.741 0.736 0.741 0.736 0.741 0.736 0.741 0.742 0.736 0.736 0.741 0.736 0.741 0.736 0.736 0.741 0.736 0.736 0.741 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.739 0.736 0.739 0.736 0.739 0.736 0.736 0.739 0.736 0.739 0.736 0.739 0.736 0.739 0.739 0.736 0.739 0.736 0.739 0.736 0.739 0.740 0.740	60.58000558855580020 6000556855580020 59990021080777		0.07
1940 1941 1942 1943 1944 1945 1946 1947	101 97 100 100 103 99 101	143 135 140 142 144 137 138	172 161 170 177 175 166 165	243 234 246 257 238 237	285 277 287 298 289 289 280	338 333 339 352 345 338 337	392 390 391 401 394 395	97.2 97.0 97.3 97.1 97.1 97.0 97.0	0.9 1.0 1.2 1.2 1.2 1.1	1.92.07 1.77 1.7 1.8	0.741 0.733 0.741 0.743 0.740 0.737 0.736	591.55 598.7 598.7 598.0 598.0 559.5	898.19946	0.06 0.05 0.08 0.06 0.07 0.07

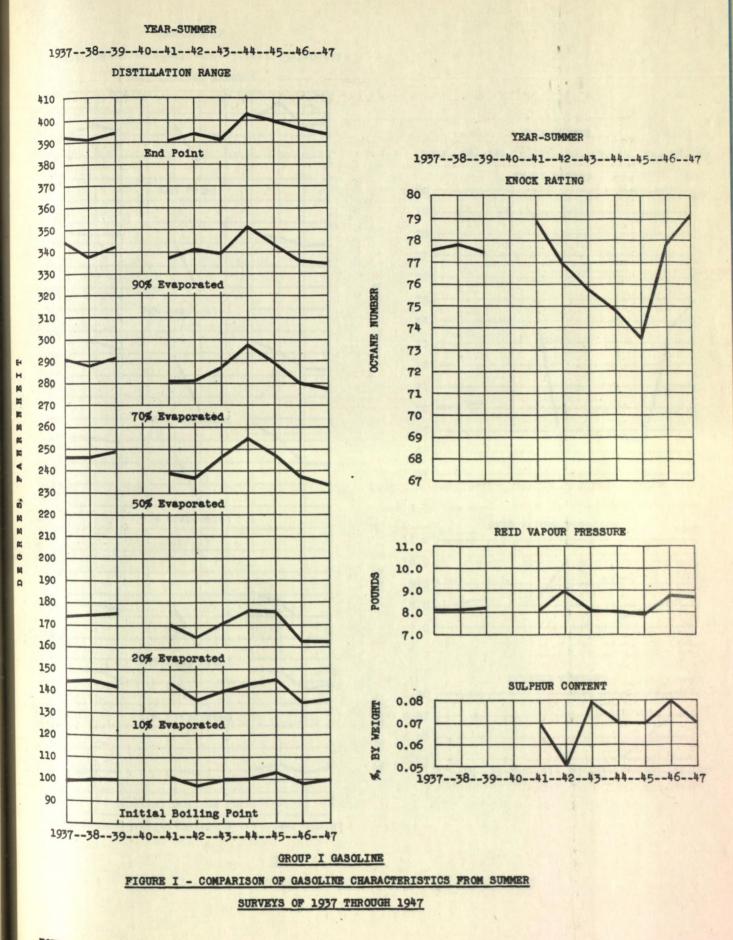

*estimated

TABLE V

SUMMARY OF DATA OF GASOLINE SURVEY ANALYSES BY GROUPS FOR CANADA FOR SUMMERS, 1937 THROUGH 1947. (EXCEPT 1940)

Year	Group	No. A.S.T.M. of Octane		Cent E	Range, °F. vaporated 0 70 90		Resi- due Los		Reid Sul- V.P. phur Gunt
1937 I (1938 I 1939 I (1941 I 1942 I (1943 I 1945 I 1945 I 1946 I 1947 I ((Octane No. 75 & above) (Octane No. 75 & above) (Octane No. 75 & above) (Octane No. 77 & above) (Octane No. 78 to 75) (Octane No. 78 to 75) (Octane No. 76 to 74) (Octane No. 77 to 73) (Octane No. 77 & above) (Octane No. 78 & above)	Samples No. 14 77.6 14 77.8 13 77.4 23 79.0 32 76.9 32 75.7 45 74.8 64 73.5 17 77.8 24 79.2	99 144 100 145 100 142 101 143 97 135 100 140 100 143 98 134 100 136	174 244 175 24 170 23 163 23 170 24 177 25 176 24 162 23	6 287 337 8 291 342 9 281 337 7 281 341 6 287 339 5 298 352 7 289 343 6 279 335	\$ 392 97.0 391 97.6 394 97.0 391 97.3 394 97.0 391 97.3 403 97.0 399 97.1 399 97.1 399 97.1 399 97.1 399 97.9 396 96.8 394 96.9	2 2 1.1 1.9 0.9 1.5 1.0 2.0 0.9 1.8 1.0 1.7 1.2 1.8 1.2 1.9 1.2 1.9	60° F. A.P.I 0.740 59.7 0.739 60.0 0.741 59.5 0.743 58.9 0.736 60.8 0.741 59.5 0.745 58.4 0.741 59.5 0.737 60.5 0.734 61.3	1b. % 8.2 - 8.3 - 8.1 0.07 - 9.0 0.05 - 8.1 0.08 4 8.0 0.07 3 8.8 0.08 4 8.7 0.07 3
1938 II 1939 II 1941 II 1942 II 1943 1944 II 1945 II 1946 II	(Octane No. 74 te 65) (Octane No. 74 te 65) (Octane No. 74 te 65) (Octane No. 76 te 70) (Octane No. 70 te 65) (Octane No. 70 te 66) (Octane No. 70 te 66) (Octane No. 70 te 66) (Octane No. 76 te 70) (Octane No. 77 te 70)	39 70.1 41 70.2 43 70.3 53 73.6 9 67.1 16 68.6 21 68.5 41 73.6 37 75.0	98 145 100 145 99 141 100 141 98 129 	175 25 173 24 173 24 155 22 181 25 177 25 166 23	1 295 344 9 292 344 4 288 341 0 263 317 8 296 345 1 290 343 9 283 339	394 97.0	1.0 1.9 1.0 1.6 0.9 2.1 1.0 1.9 0.9 2.4 1.2 1.6 1.4 1.7 1.2 1.8 1.1 1.8	0.741 59.5 0.741 59.5 0.739 60.0 0.741 59.5 0.721 64.8 0.738 60.2 0.739 60.0 0.738 60.2 0.737 60.5	7.4 0.05

*Milligrams per 100 millilitres.

NOTE: No Survey was made in 1940 for Group I.

Gunt

5

4

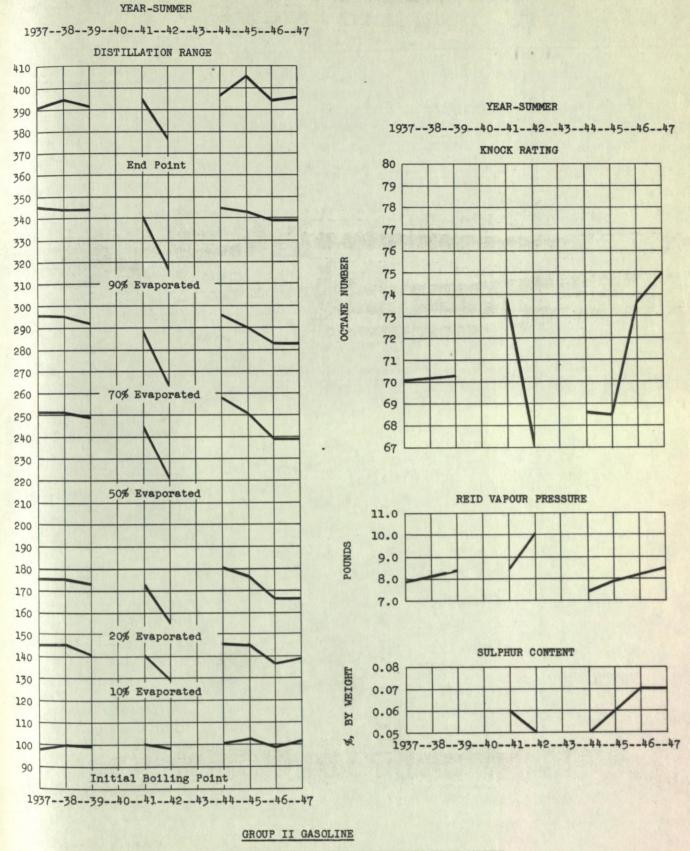


FIGURE II - COMPARISON OF GASOLINE CHARACTERISTICS FROM SUMMER

SURVEYS OF 1937 THROUGH 1947

NOTE: No Survey was made in 1940 and 1943 for Group II.

F

H

A

H

Z

田

œ

H

4

fr.

0

E

E

4

0

1

0