This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

	Dept Mines & Resources BUREAU OF MINES
	SEP 12 1939
1	LIBRARY
IES	OTTAWA, CANADA
	and the second se

BUREAU OF MINES

MINES AND GEOLOGY PRANCH

DEPARTMENT OF MINES AND RESOURCES

OTTAWA, CANADA

s coal for pulverized fuel purposes. By means of a standard grin-

eliterateristics of a coal and to indicate its relative value in com

bulyarizers in comparison with a standard opal, the standard opal, the standard opal.

GRINDABILITY INDICES OF TYPICAL CANADIAN AND OTHER COALS

AND THE RELATION OF GRINDABILITY TO FRIABILITY

between grindability and pulveriner capacity, the originator of this

R.E. Gilmore and J.H.H. Nicolls

is proportional to grindability up to about 10 grindability index.

pt. Energy, Miner& Resources MINUS BRANCH
AUG 1 1965
· AARY
TTAWA, CANADA.

Memorandum Series No. 70 May, 1939

Preface

For the use of coals in the pulverized form, the determination of their grindability, or the relative ease with which they can be pulverized, is of great importance. Grindability is considered as important a factor as calorific value in the selection of a coal for pulverized fuel purposes. By means of a standard grindability test, it is possible to predict the general pulverizing characteristics of a coal and to indicate its relative value in commercial pulverizers in comparison with a standard coal, the mill performance for which is known.

It is to be noted that the grindability tests reported in this paper were made by the Hardgrove-machine method, and that this method was developed by a commercial firm which manufactures and installs pulverized fuel boiler installations. As for the relation between grindability and pulverizer capacity, the originator of this method, after studying the results of tests in a large number of different sizes of pulverizers, has stated^a/ that pulverizer capacity "is proportional to grindability up to about 60 grindability index, but falls off at the higher grindabilities". This should be borne in mind when interpreting the results for the softer coals showing the higher grindability indices. The correlation of the indices by the Hardgrove-machine method with those of the Ball-mill method, both of which are standard A.S.T.M. tests, is also noteworthy.

a/ "The relation between pulverizing capacity, power, and grindability" by R.M. Hardgrove--A.S.T.M. Advance paper M.T.G. June 25 to July 1, 1933, and p. 370 A.I.M.E. Coal Division, 1936. See also "Correlation of Grindability with Actual Pulverizer Performance" by M. Frisch and G.C. Holder--Combustion, June-July, 1933. This report comprizes the results of routine grindability tests carried out at the Fuel Research Laboratories during the last seven years. The earlier determinations were made by H. P. Hudson, and those since 1936 by W. Kritsch. The reader solely interested in ascertaining the grindability indices of the coals tested is referred immediately to Table III, in which, it is of interest to note, about half of the samples listed pertain to coals collected as part of a Physical and Chemical Survey of coals from Canadian collieries. This survey is now complete for Nova Scotia and New Brunswick, which accounts for the preponderance of coals from the Maritime provinces. Coals from the producing fields in Alberta and British Columbia will be tested for grindability as the survey is extended to the western provinces.

> B. F. HAANEL Chief, Division of Fuels

GRINDABILITY INDICES OF TYPICAL CANADIAN AND OTHER COALS AND THE RELATION OF GRINDABILITY TO FRIABILITY

by R. E. Gilmore and J. H. H. Nicolls

The Grindability indices tabulated in this report were determined by the A.S.T.M.* "Hardgrove-machine" method $\frac{1}{}$. An alternative A.S.T.M. method is the "Ball-mill" method $\frac{2}{}$. At the end of the description of each of these methods, there is shown a table for converting the indices obtained by one method into those of the other method of test. Hence, for all indices obtained by the Hardgrove method and reported here, the equivalent Ball-mill indices have been derived and included.

In the section on "Scope", in the specifications of the Hardgrove-machine method, it is stated that the method is based on Rittinger's Law, namely: the work done in pulverizing is proportional to the new surface produced and that the method is used to "determine the relative grindability, or ease of pulverizing, of coals in comparison with a coal chosen as 100 grindability". By this method, a prepared sample receives a definite amount of grinding in a miniature pulverizer, the new surface being determined by sieving. In the Ball-mill method, the relative amounts of energy necessary to pulverize different coals are determined by placing a

¥	American Society For Testing Materials; below is a reference list of the A.S.T.M. Designations mentioned in this report.
	1/D 409-37T - Tentative Method of Test for Grindability of Coal
	2/ D 408-37T - Tentative Method of Test for Grindability of Coal
	2/ D 388-37 - Standard Specifications for Classification of Coals
	$\frac{4}{D}$ 388-38 - Standard Specifications for Classification of Coals
	5/ D 441-37T - Tentative Method of Tumbler Test for Coal.

Erratum

p. 2, first three lines should read:

"sample of each coal in a ball-mill, and finding the number of revolutions required to grind it so that eighty per cent of it passes a 74 (No. 200) A.S.T.M. sieve." ball-mill, and finding the number of revolutions required to grind it so that eighty per cent of it passes a 74 (No. 200) A.S.T.M. sieve.

Calculation of Results by Hardgrove-machine Method

In the latest revision of the A.S.T.M. method, namely: D 409-37T, which is still "Tentative" (T) rather than "Standard", the directions for "calculation of results" have been changed from those specified in the original A.S.T.M. draft, namely: D 409-35T. In the present report, these are known as the "old" or original, and the "new" or revised formulas for calculating the grindability index from the screen analysis of the pulverized material.

The original formula specified in the 35T (1935 Tentative) draft is as per (1) below, where the surface unit factor 1200 divided by $\frac{Y1 + Y2}{2}$ is used; Y1 and Y2 being the openings of the two screens limiting a given size of particles, expressed in microns.

- (1) Grindability = <u>New surface produced</u> New surface units of 100 grindability coal
- (2) Hardgrove grindability index = 13 + 6.93W

The latter, namely: (2), is the revised formula given in the 37T (1937 Tentative) draft, where W is the weight of material from a 50-gram sample passing the 74-micron (No. 200) sieve.

All investigators and other interested readers should consult the details as given in the A.S.T.M. publications referred to above. However, for ready reference, a comparison of the two methods of calculating the results may be outlined here, for which purpose the typical calculation shown in D 409-35T may be used.

De	signation	Grams of	Surface	Final
Micron Designation	U. S. Standard Sieve Series Number	Material Between the Two Sieves	Unit Factor	Surface Units
1190 to 590 590 to 250 250 to 149 149 to 105 105 to 74 74 to 62 62 to 44 44	No. 16 to No. 30 to No. 60 to 10 No. 100 to 14 No. 140 to 20 No. 200 to 23 No. 250 to 32 Passing No. 32	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.35 2.86 6.02 9.45 13.4 17.7 22.6 47.5	19.3 49.5 38.6 30.3 29.5 24.8 13.6 219.0
Total.		(50,0)		(424.6)

Weight passing 200-mesh sieve (weight of original sample minus weight of material retained on 74 micron sieve = 50 - 43.4 . 6.6

Hardgrove-machine Grindability Index: -

by	original	(D 499-35T) form	ula =	357.1 divided by	656	•	•	•	•	54.4
by	revised	(ひ 409-37T) form	ula =	13 + 6.93 x 6.6	• •	•	٠	٠	٠	58.7

Obviously, the advantage of the method using the revised calculation formula is that in screening the coal after pulverizing, it is necessary to use only one screen instead of seven as required by the original method for calculating the grindability index.

Grindability Indices and Analyses of Coals in Table III

The grindability indices of 228 coals are reported in Table III. In addition to a description of each coal, in terms of mine or trade designation, seam, and size or other description, its volatile matter and fixed carbon contents on the "dry basis" and its rank and grade classification are shown.

The symbols employed to indicate rank and grade follow those in A.S.T.M. Designation D $389-37^{2/}$. The data in parenthesis, e.g.: (65-154), represent respectively the fixed carbon percentage to the nearest whole number on the dry mineral-matter-free basis, and the B.t.u. per pound to the nearest hundred on the "as sampled" mineral-matter-free basis. It is observed in the footnote at the bottom of the first page of Table III that the B.t.u. values only roughly indicate the rank, since for this purpose the B.t.u. on the moist (capacity moisture) basis should be used. On this basis, the correct B.t.u. values to be employed for rank classification purposes might be less than those shown, as much as 400 B.t.u. For some of the higher rank coals the values would not change much, but they would be considerably lower for certain of the lower rank coals, due to the "capacity moisture" content being higher than that indicated on the "as sampled" basis.

An example of the symbols indicating grade is M1-138-A9-S4, where M1 is the moisture content percentage (on the "as sampled basis) to the nearest whole number, and 138 is the B.t.u. per pound value to the nearest hundred. Interpretation of the symbols A for ash and S for sulphur, is according to the following table.

				Sulph	ur								
Per cent Symbol inclusive				Symbol	Pc in	r c clus	ent ive	Symbol	Per cent inclusive				
A 4 A 5 A 6 A 7 A 8 A 9 A10 A11 A12	0.0 4.6 5.6 6.6 7.6 8.6 9.6 10.6 11.6	to to to to to to to to	4.5 5.5 6.5 7.5 9.5 10.5 11.5 12.5	A13 A14 A15 A16 A17 A18 A19 A20 A20+	12.6 13.6 14.6 15.6 16.6 17.6 18.6 19.6 20.6	to to to to to to to & h	13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 igher	S0.7 S1.0 S1.3 S1.6 S2 S3 S4 S5 S5+	0.0 0.8 1.1 1.4 1.7 2.1 3.1 4.1 5.1	to to to to to to to to to	0.7 1.0 1.3 1.6 2.0 3.0 4.0 5.0 gher		

The symbols for sulphur follow those in D $389-37^{3/2}$, A.S.T.M to which has been added S4 for the 3.1 to 4.0 range of sulphur percentages. The symbols for ash, it will be noticed, depart somewhat from those in D 389-37. This in reality means the reporting of the ash percentages to the nearest whole number, with one exception, namely: A20+.

The three temperatures recorded in the F.P.A. determination, namely: the Initial Deformation, Softening and Fluid Temperatures, are reported in full in Table III, instead of using symbols. These are important criteria in relation to the use of coal as pulverized fuel.

The grindability indices obtained by the Hardgrove-machine method are reported to the nearest whole number on two bases, namely: by the original and revised calculation formulas. The equivalent Ballmill method indices, shown also to the nearest whole number in the last column to the right in Table III, were derived by means of a curve obtained by employing the conversion data in the appendix of D 409- $37T^{1/2}$. These conversion data have been expanded to show the Ball-mill indices corresponding to each whole index number from 16 to 120 by the Hardgrove-machine method, and comprize Appendix of the present report.

The relation of the indices obtained by these two methods on a set of five standard coals has been previously published $\frac{6}{}$ in connexion with the development of the methods by the A.S.T.M. Subcommittee on Grindability. In the report just referred to, the indices by the F.R.L. method, developed at the Fuel Research Laborateries, are also shown; this method, it may be noted, was a forerunner of, and similar to, the Ball-mill method developed by the U.S. Bureau of Mines. The relation of the indices by the F.R.L. method to those of both the Ball-mill and Hardgrove-machine methods on several typical Canadian coals has also been published $\frac{1}{2}$

Relation of Grindability to Friability

The relation of grindability to friability may be ascertained by comparing the friability results obtained on forty-eight

^{6/ &}quot;Check Determinations of Grindability of Coal by Various Methods" by W.A. Selving - R.I. 3301, U.S. Bureau of Mines. 7/ "The F.R.L. Method for Rating the Grindability or Pulverizability of Coal Correlated with the 'Cross' and 'Hardgrove' methods" by C.E. Baltzer and H.P. Hudson.

of the coals reported in Table III with their grindabilities. The friability tests were made in accordance with the A.S.T.M. Tumbler Test for Coal, D 441-37T⁵/. In this test, 1000 grams of 1 to $1\frac{1}{2}$ inch (square hole screen size) lumps are tumbled for one hour in a porcelain jar tumbler specially fitted with an iron frame with lifting shelves, and by means of a screen analysis of the tumbled coal the reduction in size is calculated and expressed as "friability per cent".

The friability percentages on the coals, on which both friability and grindability results are available, are given in Table I, where the grindability results reported are those obtained by the revised formula specified in the 1937 draft of the Hardgrove-machine method. The friability results, as mentioned above, are for the 1 to $l\frac{1}{2}$ inch lumps prepared on square hole screens, while the grindability indices are for either the 'domestic lump' size, composed mostly of lumps with varying amounts of fines, or for the -4 inch (round hole screen) composite including lumps, smalls, and fines. As will be noticed, the coals are arranged in five groups according to rank; and it each group according to increasing friability. The group designations here, as in Table II, follow those in the A.S.T.M. classification by rank⁴/. Under friability results, the abrasion (dust) index is shown for each coal, in addition to the friability per cent. This index is the percentage of "fines and dust" passing the 0.0117-inch (No. 48) mesh screen, and represents the proportion of the breakage occurring during the tumbler test that is considered to be due to attrition or abrasion rather than to shattering.

In a previous paper⁸/, limits were suggested for grouping coals according to friability per cent values obtained by the tumbler

^{8/ &}quot;Significance of Friability and Size Stability Tests on Coals" by R.E. Gilmore and J.H.H. Nicolls - A.S.T.M. Proceedings, Vol. 37 (1937), Part II.

TABLE I -	Comparison of Friabi	lity & Gnir	dability Resu	7. lts on 48 Coals
Laboratory Number and Rank	Dry Fixed Carbon to nearest whole number and As Rec'd B.t.u. to nearest hundred on the mineral matter-free basis	Friabilit on l to (square n Friability Per cent	y Results 1-1/2 inch mesh) Lumps Abrasion (dust) Index.	Grindability Index by the Hardgrove- Machine Method on the domestic lump, or minus 4-inch (composite) sizes
Semi-ant	hracite (Welsh and We	stphalian)		
16281	(92-150)	26.5	(18)	48
16141	(90-153)	34.0	(20)	54
Low and	Medium Volatile Bitur	linous	(17)	77
18853	(72-152)	21.5		81
18907	(70-151)	40.0		98
17455	(76-154)	43.0	(25)	88
High Vol	latile A Bituminous			
18947	(68-154)	26.5	(15)	76
19073	(66-147)	27.0	(12)	58
16459	(57-146)	27.0		60
18778	(66-145)	27.0	$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 4 \\ \end{array} \right\}$	70
10505	(50-147) (66-143)	29.0	(12)	62
14334	(59-149)	31.0	(15)	66
16400	(62-148)	31.0	(14)	65
19357	(61-152)	31.5		
14847	(61-140)	22.U		70
10140	(63-154)	33.0	$\left\langle 17 \right\rangle$	65
15217	(66-150)	33.0	(19)	85
18265	(60-141)	33.0	$\left(\begin{array}{c} 14\\ 3\pi \end{array} \right)$	61
19484	(64-155)	34.0	$\left\{ \begin{array}{c} 11\\ 16 \end{array} \right\}$	77
13245		<u> </u>		66
19002	(64-151)	35.5	(19)	66
14805	(60-148)	36.0	(16)	69
14046	(69-146)	36.2	(29)	71
15683	(64-153)	36.0		74
19608		36.5		73
19991 15799	(63-152)	38.0	(18)	78
19265	(61-152)	39.0	(19)	73
13687	(64-152)	39.0		
18377	(62-143)	39.0	$\left \right\rangle_{17}^{10} \left\langle \right\rangle$	66
10441		41.5		86
19689	(64-152)	41.5	(18)	80
19232	(68-150)	41.5	(17)	72
15519	(65-153)	43.0	(24)	70
16394	(65-154)	43.5		
15590		42.5 LL 0	(20)	75
18560	68-147	44.0	(19)	76
High Vo	latile B & C Bitumin	ous		
17829	(57-132)	1 24.0	(13)	62
19425	(59-134)	30.0	(12)	65
18011	(63-135)	32.0		02 60
14333	(56-131)	32.0		62
17925	(58-126)	20.0		
Lignite			(7)	54
10275	(57-81)	1 21.0	+ (1)	-1

test. These were:- below 20 for non-friable coals; 20 to 40 for medium friable; 40 to 50 for friable; and above 50 for very friable coals. Of the forty-eight coals reported in Table I, thirty-eight are in the medium friable group, with the remainder in the friable group. The non-friable and the very friable groups are not represented. The grindability indices for the nine coals with friability percentages well within the limits of the "friable" group are 71 to 88, in which range are to be found many of the "medium friable" coals. Over half of the coals in the latter group, however, have grindability indices below 71, ranging as low as 48, while one coal on the borderline between the medium friable and friable groups has a grindability index of 98.

In view of this overlapping, it is difficult to draw conclusions from the results reported in Table I. Casually, it would appear that, as expected, there is some relation between friability and grindability, but the relation is very general only and not at all specific. This conclusion is allowable if the coal with the highest grindability index is treated as an exception, and when keeping in mind that over half of the medium friable coals have grindability values below the lower limit of the coals in the friable group. Further data on a larger number of coals, and especially on a wider range in respect to friability, are required before any definite conclusions can be drawn.

In respect to rank, it is to be noted that both the friability percentages and grindability indices are generally low for the (two) semi-anthracites, high for the four low and medium volatile coals (with the exception that the two medium volatile coals have low friabilities), medium to high for the thirty-six coals in the high volatile A bituminous group, medium for the high volatile C bituminous

coals, and back to low for the single sample of lignite reported. A considerable overlapping of the values from one group of coals to another, and particularly for the three groups of bituminous coals, is noticeable.

For the thirty-six high volatile A bituminous coals examined, showing friability percentages ranging from 27 to 44 and grindability indices from 58 to 86, the general tendency was for the grindability indices to increase with the increase in friability values, but in specific cases this relation failed to hold. For example, for the three coals with 33.0 friability per cent, the grindability indices were 61, 65, and 85, while for the three coals with 41.5 friability per cent, the corresponding grindability indices were 72, 80 and 86.

The abrasion (dust and fines) indices, which generally increased as the friability per cent values became higher, failed to show a consistent and specific relation to the pulverizability of the coals as judged by their grindability indices.

The friability test, it may be reiterated, is made on lumps of coal larger than 1-inch, and the grindability test on coal previously reduced in size so that all of the sample passes a 16-mesh sieve and remains on a 30-mesh sieve; the fines and dust smaller than this being discarded. While the action upon the coal is somewhat similar in each test, namely: to materially reduce the particle size in the sample by standardized procedures, the friability test serves to ascertain the relative case of crushing the lumps of coal by shattering and abrasion, whereas the grindability test serves to ascertain the relative case of pulverization of the particles already considerably reduced in size. That is, the friability test serves to compare coal. in respect to general softness in the lump form, and the grindability test to compare them as to case of preparation for use as pulverized The above discussion on the relation of friability to grindability serves to emphasize the necessity of making grindability index determinations rather than relying on friability results to indicate relative pulverizability.

Variation of Indices for Standard Coal

Below are given the indices obtained for the "Emore" coal, originating from the Upper Kittaning Seam of the Jerome Mine, Somerset County, Pennsylvania, and used as standard at the Fuel Research Laboratories since the Hardgrove machine was installed in 1932.

Sample, and when tested	Grindability Index (Calculation Formula Used)					
	Original	Revised				
First (1-quart) sample received with machine Tested Nov. 1932Average of 2 determinations Tested Jan. 1938Average of 2 determinations	(98) (98)	104 103				
Second (25-pound) sample raceived later Tested Nov. 1933Average of 2 determinations Tested May 1934Average of 2 determinations Tested Jan. 1938Average of 2 determinations Tested Jan. 1939Average of 4 determinations	(102) (100) (102) (96)	109 109 107 97				

Appreciable differences between the indices for the two samples of the same "standard" coal, and especially the variation in the results obtained on the second sample are noticeable. For some reason not discernable at the time of the release of this report, the indices obtained in 1939, so far, have been much lower. Changes in the condition of the standard sample may account for this variation, namely: either deterioration by oxidation; too fine grounding during preparation for test, with consequent loss of (higher index) fines through the 30-mesh sieve; or a combination of these two factors. Other factors to be considered are: change in the sieves used; a change in the grinding balls and ball race; or even a change in the mounting of the machine during alterations of the laboratory bench on which it was operated.

In case of irregularities, such as tabulated above, changes in the machine may be discovered by testing the same sample, or samples, in two or more machines. Should the results of such tests fail to agree, the sieves should, if possible, be checked against standardized sieves. Both of these procedures are being followed at these laboratories in collaboration with other laboratories.

At this point may be mentioned the desirability of finding a mineral other than coal, that can be used as a standard material for which the grindability index obtained by a given method will not be subject to change by oxidation or other deterioration factor. Such a standard mineral could then be employed either alone or in conjunction with a standard coal sample.

Effect of Revision of Index Calculation Formula

Differences between the grindability values obtained with the "old" and "new" formulas were studied in some detail. It was found that, for the 228 coals reported in Table III, the differences between the old and new values ranged from as low as 0.1 to as high as 9.4. The average of these differences amounts to about 2.3, which agreement, or rather lack of agreement, between the old and new values is not quite as close as the agreement which is expected between two grindability determinations in the same laboratory.

Furthermore, it should be borne in mind that the indices by the Hardgrove-machine method, designated as "new" in Table III, are relative only one to another, and to the values obtained for the standard coal, ranging from 97 to 109. It should also be kept in mind that the new formula indices were used for deriving, by means of a curve, the Ball-mill equivalent indices.

Discussion of Grindability Results

The grindability indices reported in Table III may be discussed in respect to size designation, rank and grade classification, and geographical origin. Nearly half of the indices are for thirtynine coals for which three different sizes were tested, namely: minus 4-inch composite, 3/4-inch slack, and minus 1/8-inch fines. For approximately half of these, there was a normal increase in the grindability index as the size designation decreased, that is, as the size of lumps became smaller. This increase averaged about four units as the difference between the index for the 3/4-inch slack and that for the minus 4-inch composite, and approximately the same difference for the 1/8-inch fines above that for the 3/4-inch slack.

This indicates that the minus 1/8-inch fines are softer and easier to pulverize than the larger sized particles and lumps. Whether or not this indicated greater ease of pulverization of the fines would be appreciable in connection with the commercial operation of paddle or impact mills is debatable, since, for such pulverizers, the optimum size composition of the feed is generally much coarser than 1/8-inch, 1-inch slack being a typical size designation of the coal used. For either ball-mill or roller-mill pulverizers, however, there seems to be no reason why the relatively high grindability of the 1/8-inch fines should not be a factor in their favour.

Although there are several coals reported in Table III, for which the ash content of the fines is the same as, or less than, that for the 3/4-inch slack, the large majority show appreciably higher ash values in the fines, which increase ranges as high as 6 and 8 per cent. The calorific values of these higher ash fines were, of course, correspondingly lower. The grindability indices of nine different sized lumps and fines of Princess (N. S.) and Hutchinson (Pa.) coals are

noteworthy. For these coals, the ranges of indices were 15 and 10 respectively, the indices being progressively higher as the size of lumps varied from the plus 4-inch to the minus 4-inch sizes. Higher indices for the smaller sizes are not, however, always the case, as several instances are to be found where the indices for the 1/8-inch fines are the same as, or lower than, those for the 3/4-inch slack. In practice, the grindability index, when considered in conjunction with the grade as indicated by the ash content and calorific value and also with the cost of the fuel, should serve to decide what coal and what size designation of it is best to select for use as pulverized fuel.

f

۰.

A summary of the results reported in Table III is given below as Table II, in which the coals are grouped according to geographical source, and according to rank from anthracites to lignite. In this table, the ranges of grindability indices by the Hardgrove-machine method are shown for the coals arranged according to producing area, and source in Canada, the United States, and elsewhere. The results for the samples designated as "minus 1/8-inch fines" are not included in Table II.

As mentioned above in referring to the relation of grindability to friability, there is considerable overlapping of the grindability indices in the different (rank classification) groups, but despite this, it is confirmed that the indices are relatively low for the anthracites, high for the low and medium volatile bituminous groups, medium to high for the high volatile A bituminous (Canadian and U.S.A.) coals, and relatively low for the Alberta high volatile C bituminous and sub-bituminous coals and for the two lignites. This observation as to the general relation of grindability to rank agrees with that reported $\frac{9}{}$ for a limited number of United States coals.

9/ "Ball-mill Grindability Indexes of Some American Coals" by H. F. Yancey and M. R. Geer -- R.I. 3409, U.S. Bureau of Mines. Therefore, although the grindability of a coal seems to be predictable, as being within a certain range, through a knowledge of the source, rank and grade of the coal, it appears to be necessary to make an actual grindability determination when detailed and exact information is desired in connection with plant operation.

TABLE II

Summary of Grindability Indices by the Hardgrove-Machine Method for Coals Grouped According to Rank and Geographical Source

Geographical Source	Number	Range of Grindability
and	of	Indices by Revised
Rank Classification	Samples	Calculation Formula
Anthracites		
Pennsylvania (anthracite)	4	29, 31, 32 & 52
French Indo-China (anthracite)	2	
Welsh (anthracite & semi-enthracite)	2	$1 \qquad 24 \qquad 24 \\ 48 \ to \ 58$
Westphalian (anthracite & semi-anthracite)	4	54, 54, 55 & 62
Low & Medium Volatile Bituminous		
Pa. & W.Va (Low volatile bituminous)	4	98, 98, 100 & 107
Pa (Medium volatile bituminous)	2	76 & 101
Alta. & B.C. (Medium volatile bituminous)	7	75 to 102
N.S-westville(Medium Volatile bituminous)	5	() to 04
High Volatile A Bituminous		
N.SSpringhill area, (Cumberland co.)	9	71 to 103
N.SSydney area (Glace Bay district)	20	61 to 81
N.S Inverness area (All districts)	1 12	$59 t_0 71$
N.SRiver Hebert area. (Cumberland co.)	7	66 to 76
N.SPictou area (Stellarton district)	13	58 to 81
N.SPictou area (Thorburn district)	4	57 to 62
N.BMinto area (All districts) B.CTelkus snep & Vancouven Island		05 to 91 71 to 83
Pa. & Ohiomiscellaneous	18	61 to 76
High Volatile B & C Bituminous		
Alta & B.C. miscollanous	6	46 to 63
Alba. & D.Umisterianetus		40 20 09
Sub-bituminous B		
Alta. & B.Cmiscellaneous	4	39 to 45
Lignite		
Saskatchewan & Northern Ontaric	2	54 & 49

16

	<u>+</u>		5005 111 -	Grindability II		(and	Analyse	es) o	i Canadian e	na Otne	r Coals		_		
• • - -		Sou	rce and		Dry	Basis	R	ank a	nd Grade	- Fu	sion P	oint	Grindability		
780 0-					Vola-	Fi-	<u> </u>	lassi	fication	Uf .	Ash (F.	P.A.)	Hardg	ruve	Equivalent
		Descript	ion of Sam	ple	tile	xed	(Key	to sy	mbols page 4) Ini-	Soft-	Fluid	Mach:	ine	Ball-mill
ratory	M	ine or		Size	Mat-	Cer-	Moistu	re, A	sh, Sulphur	& tial	ening		Meth	d b	Method
			Seam	or other	ter	bon	2nd B.	t.u.	figures are	on Temp	.Temp.	Temp.	Index	- b/	Index
NO •	Trade	Designation.		designation	/0	1/2	the cos	al as	sampled bas	is F.	°F.	°F.	(01d)	New	(New) $c/$
	•			NOVA SCOTIA	A – CA	PE BRI	ETON IS	LAND	COLLIERIES		•				
	Sydney	Area (Glace	Bay-New W	aterfurd Distri	icts):	- High	h Volgt:	ile A	Bituminous						
16394	Domini	on # 2	Pholen	Domestic Lump	32.6	58.5	(65-154	4) MI	-138-A 9-S4	. 1950	2030	2200	(69)	72	54
16371	11	<i>#</i> 2	**	Stoker nut	33.5	56.9	(64-15)	1) M3	-135-A 9-S4	. 1900	2010	2300	(65)	66	49
15652	11			Bridge slock	32.2	56.8	(65-146	6) 114	-129-A10-S3	. 1920	1980	2215	(78)	81	61
19512	11	(metallurgi	icel coal)	Slack	38.1	58.4	(61-148	B) M3	-143-A 4-S2	. 2000	2100	2270	(54)	56	41
19265	**	# 9	Harbour	-4" composite	37.4	57.7	(61-152	2) 112	-143-A 5-S3	. 1900	1960	2000	(71)	73	55
19268	11	#9	TT	-3/4" (slack)	36.9	57.6		MZ	-143-A 5-S3	. 1800	1910	1950	(75)	77	58
19270	· 11	# 9	11	-1/8" fines	34.0	58.4		112	-138-A 7-S4	. 1890	2000	2040	(82)	84	64
16400	**	<i>#</i> 10	Emery	Stoker nut	34.8	55.1	(62-148	3) M3	-132-A10-S3	. 1980	2100	2330	(64)	65	48
14023	11	<i>.</i> #11	11	-4" composite	33.6	58.2	64-147	7) 113	-134-A 8-S3	. 1930	20 75	2200	(75)	77	58
14025	11	#11	11	-1/8" fines	32.6	57.1	·	112	-133-A 9-S3	. 1980	2080	2100	(79)	84	64
13875	11	<u>_</u> 12	Herbour	Freshly mined	37.9	57.2	(61-152	2) M2	-144-A 5-S1	.3 1925	2050	2110	(89)	61	45
15073	77	#12	**	(Storage pile	37.4	57.1	•	M2	-141-A 5-Sl	.6 1930	2030	2170	(68)	72	54
15074	11	#12	**	(composite	36.8	57.6		1.12	-140-A 5-S1	.6 1930	2030	2080	(72)	75	56
15075	11	#12	**	(from different	38.5	58.0		M2	-145-A 4-S1	.3 1900	1970	2220	(67)	70	52
15076	11	#12	**	(parts in coal	37.5	57.7		M2	-142-A 5-S1	.6 1910	2050	2100	(70)	74	55
15077	11	#12	TT	(storage pile	36.9	57.7		M2	-142-A 5-S1	.6 1900	2035	2200	(72)	76	57
15138	11	#12	tt.	Bright coal	39.5	57.2	(59-149) M2	-143-A 4-SO	.7 2120	2300	2390	(69)	74	55
15072	**	#12	" Dull	l (splint) coal	41.0	50.5	(56-155	5) M1	-140-A 8-Sl	.0 2620	2700	2800	(46)	52	38
13687	11	<i>#</i> 16	Phalen	-4" composite	34.4	58.5	(64-152	2) M2	-140-A79-S3	. 1910	2030	2060	(72)	75	56
13689	11	#16	11	-1/8" fines	32.5	59.0	•	M3	-135-A 8-S4	. 1940	2040	2170	(77)	80	60
14187	11	# 24	Emery	-4" composite	34.3	56.2	(63-148) M3	-133-A 9-S3	. 1985	2110	2150	(66)	66	49
14190	17		17	-3/4" (slack)	33.3	57.2	• • • • • •	M3	-132-A 9-S3	. 1960	2060	2150	(73)	74	55
14192	11	#24	**	-1/8" fines	31.8	57.4		M4	-130-A10-S3	. 1980	2040	2120	(74)	75	56
15142	**	#24	" Dul	l (splint) coal	30.5	49.5	(64-146	5) M4	-115-119-54	. 2000	2150	2420	(59)	63	46

TT A 12 T 12

This and other values below, indicating B.t.u. per pound to the nearest 100. are on the basis of the coal as received ε./ in the laboratory and are for coal that may be partially sir-dried during transportation and handling rothern than on the moist (as mined) mineral-matter-free basis as required for Classification by Rank according to A.S.T.M. D 388-38. The values shown, however, do serve to indicate the relative position in the rank classification, and are applicable especially for coals not near the class and group borderlines. For the borderline coals, none other than the B.t.u. values on the moist (capacity moisture) mineral-matter-free basis should be used for detailed classification purposes. See footnote p. 22, namely: third to last page of this table. b/ & c/

- ALL DESCRIPTION OF THE PARTY OF

TABLE III (Cont.)

New Second + Buch States Branches

	1		Sou	rce and		Dry	Basis	Ran	k ar	d Grad	e	Fus	ion P	oint	Gri	ndal	ility
Lobo-						Vola-	Fi-	Cla	ssif	licetio	n	of A	sh (F.	P.A.)	Hardgr	ove	Equivalent
			Descript	ion of Sam	nple	tile	red	(Key to	syr	bols p	age 4)	Ini-	Soft-	Fluid	Machi	ne	Ball-mill
ratory	· M	line	or	1	Size	Mat-	Car	Moisture	, As	h, Su	lphur &	tial	ening		Metho	d	Method
-				Seam	or other	ter	bon	2nd B.t.	u. f	igures	are on	Temp.	Temp.	Temp.	Index	ъ/	Index
No.	Trade	Des	ignation		designation	%	%	the coal	85	sample	d besis	°F.	°F.	°F.	(01d)	New	(New) <u>c</u> /
19357	Domini	\n!!o	Noil Dit	Condinon	All aumnosita	75 7	51 T	(62 246)	MZ	A 31 _ A	00%	1000	9010	9940	(70)	771	53
19360	**	511-14C	Hell Fil	uarumer 1		30. F	57 9	(01-140)	Mid)		, J~, J, J + , J	1050	2010	2240	(70)	67	50
10360	41		11 11	11	-3/4" (S180K)	0440	- D1+22 = 17 17		1 STZ	-TOT-W	17 01	1920	2000	0050	(00)	07	50
1990%					-1/8" 11nes	28.9	5/•/		MO	-12 <i>C</i> -A	19-94•	1990	2020	2200	(α)	60	60
	Sydney	Area	(Sydney	Mines Dis	strict):- High W	olati	le A	(and B) B	itum	inous				ι.			
14911	Prince	288		Harbour	+4" lumns				M3	A	4-				(59)	58	43
14912	11			11	3 - 4" size				M2	A	4-				(62)	62	45
14913	· ••			Ŧt	2 - 3" size			•	M2	A	4-				(62)	63	47
14914	11			11	1 1 - 2" size				M2	A	4-				(64)	65	48
14915	**			11	$1 - 1\frac{1}{2}$ " size				M3	A	5				(66)	68	50
14916	**			11	3/4 - 1" size				M3	A	5-				(66)	68	50
14917	11			**	1/2 - 3/4" siz	e			M2	A	7-				(67)	69	51
14918	11			**	1/4 - 1/2" siz	ze			M3	A	6-				(68)	70	52
14919	11			**	-1/4" fines				M3	A	6				(70)	73	54
14805	11			**	-4" composite	38.1	56.5	(60-148)	МЗ-	-139-A	5-S1.6	1950	2040	2150	(67)	69	51
14808	11			TT	-3/4" (slack)	37.0	57.4	,,	M3	-138-A	5-S2.	1890	2060	2300	(74)	76	5 7
14810	71			11	-1/8" fines	35.4	57.4		M3	-135-A	7-52.	1830	1930	2060	(76)	79	6 0
14334	*1			11	Domestic lump	39.1	55.9	(59-149)	M2	-141-A	5-S3.	1940	2020	2205	(66)	63	49
14847	Florer	nce		**	-4" composite	37.6	57.0	(61 - 145)	MЗ	-136-A	5-S2.	1970	2040	2150	(70)	72	54
14850	11			11	-3/4" (slack)	37.5	56.9	,	M4	-136-A	5-S2.	1960	2085	2190	(75)	78	59
14852	11			**	-1/8" fines	34.8	56.0		M4	-130-A	9-S3.	1960	2070	2215	(77)	81	61
18146	Indian	Cove	(Tompit)	Indian or	-4" compusite	35.6	49.4	(60 - 142)	M3	-118-A	14 - \$5+	1890	1990	2090	(69)	70	52
18149	11	11	11	Greener	-3/4" (slack)	35.3	48.6	• - · · •	MЗ	-115-A	15 - S5+	1940	2070	2150	(71)	73	54
18151	11	11	**	17	-1/8" fines	33.3	45.7		М3	-107-A	20 S5+	1920	2040	2120	(71)	73	55
18265	11	"(5	ulliven)	Crawley o	r -4" composite	36.6	53.6	(60-141)	M4	-125-A	9-\$5.	1920	2030	2260	(61)	61	45
18268	**		11	Frazer	-3/4" (slack)	35.2	53.9		M4	-125-A	10-S5.	1.900	1970	2070	(60)	61	45
18270	**	17	11	11	-1/8" fines	31.2	52.6		MЗ	-115-A	16 - S5+	1960	2110	2370	(67)	70	52
13842	11	11		Indian	Domestic lump	35.4	49.6		M4	-119-A	14-S5+	1910	2060	2160	(70)	73	54
18377	Bras d	i'Or	(Culo-	Cullins	-4" composite	34.9	55.4	(62 - 143)	MЗ	-127-A	9-S5+	1900	2100	2320	(68)	68	50
18380	11	11	niel #1	11	-3/4" (slack)	33.3	55.4		M4	-124 - A	11-S5+	2040	2160	2400	(65)	66	<u>י</u> ן 49
18382	11	**	11	11	-1/3" fines	31.3	52.5		MЗ	-115-A	16-S5+	1990	2210	2330	(72)	74	55 -7
15337	*1	11	11	**	Ran-of-Mine	37.1	54.5		M5	<u>A</u>	8-				(73)	74	55
14953	**	21	**	11	Culm	51.7	52.0		MA	-113-A	<u>1635+</u>	1960	2110	2200	(83)	88	68

TABLE	III	(Cont.)	
-------	-----	---------	--

and the second second

a marter and a second

Labo-Description of SampleDry Basis Vola-Fi-Rank and Grade ClassificationFusion Point of Ash (F.P.A.)Grin HardgronatoryMine orSizeNat-Car-Moisture, Ash, Sulphur & tielIni-Soft-Fluid MethodMachin	ability C Equivalent Ball-mill Method
Labo- Description of SampleVola- Fi- tileClassification (Key to symbols page 4)of Ash (F.P.A.) Ini- Soft- FluidHardgro MachinratoryMine orSizeNat- Car- 	e Equivalent Ball-mill Method
Description of Sample tile xed (Key to symbols page 4) Ini- Soft-Fluid Machin ratory Mine or Size Mat- Car- Moisture, Ash, Sulphur & tial ening Method	Ball-mill Method
ratory Mine or Size Mat- Car- Moisture, Ash, Sulphur & tial ening Method	Method
	Tudor
Seam or other ter bon 2nd B.t.u. figures are on Temp. Temp. Index	I THUGY
No. Trade designation designation % % the coal as sampled basis F. OF. (Old) N	w (New)
	······
Inverness Area (Inverness-Chimney Corner and Port Hood districts):- High Volatile C (and B) Bituminous	
17829 Inverness #1 Seven Ft4" composite 38.6 47.6 (57-132) M5 -112-A13-S5+ 1900 2020 2040 (62)	2 46
17832 " #1 " $-3/4$ " (slack) 38.5 47.7 M5 -113-A13-S5+ 1930 2020 2075 (59)	0 44
17834 " #1 " -1/8" (fines) 34.2 46.6 M5 -104-A18-S5+ 1980 2100 2200 (61)	2 46
14333 " #1 " Domestic lump 39.8 47.3 (56-131) M6 -112-A12-S5+ 2005 2100 2240 (59)	9 43
17925 " #4 Thirteen" -4" composite 38.4 49.6 (58-126) M8 -109-A11-S5+ 2100 2260 2450 (61)	2 46
17928 " $\frac{4}{4}$ " " $-3/4$ " (slack) 28.1 48.8 M7 -109-A12-S5+ 1900 2000 2200 (66)	6 49
17930 " #4 " "-1/8" fines 33.7 46.1 M6 -101-A19-S5+ 1890 1915 2010 (69)	9 51
19425 St. Rose -4" composite 36.8 50.5 (59-134) M5 -115-A12-S5+ 1950 2050 2090 (63)	5 47
19428 " $-3/4$ " (slack) 37.0 50.3 M5 -115-A12-S5+ 1830 1950 2030 (65)	8 50
-1/8" fines 36.4 47.7 M5 -108-A15-S5+ 1830 1900 1970 (68)	1 53
18011 Port Houd Main $-4"$ composite 35.3 49.4 (60-135) $14 - 113 - A15 - S5 + 1890 1965 2000 (59) /$	2 46
18014 " " $-3/4$ " (sisck) 35.5 49.3 14 -112-A14-S5+ 1980 1920 2000 (60)	1 45
18016 " " $-1/8$ " fines 36.0 47.6 M4 -110-A16-S5+ 1840 1900 1950 (60)	1 45
19522 " " Doméstic lump $35.346.1(59-132)$ M5 $-105-A18-S5+$ 1880 2000 2080 (63)	5 47

NOVA SCOTIA - MAINLAND COLLIERIES

Springhill Area (Cumberland County): - High Volatile A Bituminous.

....

15217	Springhill	#2	No. 1	-4" composite	31.9 58.7	(66-150)	M2	-134-A 9-S3.	2030	2130	21 80	(82)	85	65	
15220	ิท 🎽 👘	#2	11	-3/4" (slock)	31.8 55.8		M1	-130-A12-S3.	1950	2 040	212 0	(84)	89	69	
15222	**	#2	11	-1/8" fines	32.1 57.6		M2	-133-A10-S2.	1970	2 080	2200	(85)	91	71	
15165	**	#2	No. 2	-4" composite	30.7 61.1	(67-152)	M2	-138-A 8-S1.3	2040	2 160	2210 ((83)	86	66	
15163	11	# 2	11	-3/4" (slack)	31.0 60.3		MI	-136-A 9-S1.3	2060	21 40	22 00	(93)	103	83	
15170	**	#2	† 1	-1/8" fines	31.3 59.6		M2	-136-A 9-S1.3	2 040	21 60	225 0	(94.)	(100	80	
13948	11	#2	11	Domestic lump	31.1 59.0	(66-152)	M2	-135-A10-S2.	2100	2230	2365	(82)	·84	64	
15590	11	<i></i> #6	No. 6	-4" composite	32.7 55.2	(64-143)	MЗ	-125-A12-S2.	2020	2150	2210	(71)	71 -	53	
15593	**	<i>#</i> 6	11	-3/4" (slock)	30.9 52.6		113	-116-A16-S3.	2030	2120	22 10	(70)	71	.53	
15595	**	<i>#</i> 6	t7	-1/8" fines	29.9 52.1		MЗ	-113-A17-S3.	2060	2110	22 60	(70)	70	52	
15519	11	#7	No. 7	-4" composite	30.6 58.4	(67-143)	М2	-130-A11-S1.6	2070	2190	2400	(75)	76	57	سر
15522	17		11	-3/4" (slack)	30.7 55.4		M2	-126-A14-S2.	2055	2 190	23 80	(80)	82	62	8
15524	11	#7	**	-1/8" fines	30.8 56.7		M2	-128-A12-S2.	2085	2215	2350	(88)	90	70	

TABLE :	III (Cont.)	
---------	-------	--------	--

a state and the state of the second states

	1		Sour	ce and		Dry	Basis	Ran	k oj	nd Grade	Fusi	on Po	int	Gr	indal	oility
Labu-		Des	cripti	on of Sam	ple	Vola-	Fi-	Cla	ssi:	fication	of A	sh (F.)	P.A.)	Hardg	rbve	Equivalent
						tile	red	(Key to	з јл	nbols page 4)	Ini-	Suft-	Fluid	Mach	ine	Ball-mill
ratory) I	Mine or			Size	Mat-	Car-	Muisture	, A:	sh, Sulphur &	tial	ening	· ·	Meth	od	Method
				Seam	or other	ter	bon	2nd B.t.	u. :	figures are on	Temp.	Temp.	Temp.	Inde	x	Index
No.	Trade	design	ation.		designation	%	%	the coal	ឧទ	sampled basis	OF.	oF.	of.	(01d)	New	(New)
	River	Hebert	Aren ((umberlan	d County):- Hi	gh Vola	atile	À (end B) B:	ituminous						
18441	Strat	hcona #1			-4" composite	35.3	50.3	(60-145)	M2	-122-A14-S5+	1950	2010	2120	(64)	66	49
19444	11	#1			-3/4" (slack)	35.6	48.8		M2	-120-A15-S5	1950	2010	2110	(66)	68	50
18446	17	#1			-1/8" fines	39.8	46.9		M2	-112-A20-S5	2000	2080	2210	(70)	72	54
18560	Victo:	ria #4	Jogg:	ins Ben <mark>c</mark> h	-4" composite	34.9	45.3	(58-147)	M2	-115-A19-S5+	1940	2040	2150	(71)	76	57
18563	11	#4	11	11	$-3/4^n$ (sleck)	33.7	44.5		M2	-110-120+-55+	1940	2090	2200	(72)	74	55
18565	**	#4	**	11	-1/8" fines	32.8	41.8		112	-105-A20++ \$5	2030	2150	2200	(71)	74	55
12277	· 11	#4	11	**	Domestic lump	31.4	37.8	•	M3	A20++\$5	2300	2360	2450	(72)	75	56
18648	Maple	Leaf #4	11	**	-4" composite	34.2	45.9	(59-145)	M2	-113-A19-S5	1920	2010	2100	(72)	75	56
18651	**	" #4	**	**	-3/4" (slack)	33.6	46.2		M2	-113-A20-S5	2010	2060	2140	(71)	74	55
18653	**	" #4	,,	**	-1/8" fines	32,8	42.3		M2	-105-A20+-S5	1990	2100	2250	(73)	78	5 9
	Pictor	1 Area (1	Westvil	le Distr	ict):- Medium '	Volati:	le Bi	tuninous								

Intercolonial - Drummond coals

19. 19. 19

Sec. Carnes

1. 1. 1. 1. 1.

18853	Drummor	nd #2	-4" composite	23.5 54.0 (72-152)	MI -114-A20+-S1.6 2480	2570 2620	(73)	78	5 9
18856	11	#2	-3/4" (slack)	24.0 55.5	M1 -116-A20+-S1.6 2400	2450 2500	(71)	77	58
18858	11	#2	-1/8" fines	24.4 55.8	M1 -118-A20-S1.4 2240	2340 2450	(74)	77	58
18907	11	#1 & #5	-4" composite	26.6 59.5 (70-151)	M2 -128-A14-S1.0 2240	2300 2400	(79)	84	64
18910	**	#1 & #5	-3/4" (slack)	26.5 57.4	M2 -124-A16-S1.3 2270	2350 2420	(79)	82	62
18912	11	#1 & #5	-1/8" fines	26.1 55.9	M2 -121-A18-S1.3 2250	2340 2400	(77)	80	60
13922	**	#1 & #2	Domestic lump	25.4 57.4 (71-152)	M2 -124-A17-S1.0 2900	2430 2550	(80)	83	6 3

La minute all and an and a second

TABLE	TTT	(Cont.)
TWDDD	T T T	(((((((((((((((((((

Charles Bart Bart Martin Barters

. State

٠

•

.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	vel Equivalent
No. Trade Designation Seem Size Later or other Later bon Construct of the coal as sampled basis CF. CG. CF. CF. CG. CG.	e Ball-mill
No.TradeDesignationSeamOrotherterfor $2\pi a$ $5\pi c$ $5\pi c$ $0r c$ $0r c$ $1nde$ PictouArea(Stellarton District):-High Volatile A Bituminous19002Albion (Acadia)Third-4" composite 28.6 58.8 $(68-150)$ $M2 - 130 - A12 - S1.3$ 2420 2510 2600 (64) 19005""" $-3/4$ " (slack) 29.0 58.6 $M2 - 130 - A12 - S1.6$ 2210 2380 2500 (65) 19007""" $-1/6$ " (fines) 27.8 60.0 $M2 - 130 - A12 - S1.6$ 2210 2460 2550 (65) 19073Albion-Allen & #7 Cage-4" composite 30.2 56.2 $M2 - 130 - A12 - S1.6$ 2210 2460 2550 (56) 19076"""" $-1/6$ " (fines) 27.8 60.0 $M2 - 125 - A13 - S1.6$ 2210 2460 2550 (58) 19078""" $-1/6$ " (fines) 27.5 55.6 $(66 - 147)$ $M2 - 126 - A17 - S1.6$ 2210 2350 2450 (58) 19078""" $-1/6$ " (fines) 27.5 55.6 $(68 - 154)$ $M2 - 126 - A17 - S1.6$ 2100 2350 2740 (72) 18950""" $-1/6$ " (fines) 27.5 55.6 $(68 - 154)$ $M2 - 126 - A17 - S1.6$ 2250 2620 2720 (74) 18952"" <td>Method</td>	Method
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Index
Pictou Arec (Stellarton District):- High Voletile A Bituminous19002Albion (Acadia)Third-4" composite28.658.8(68-150)M2 -130-A12-S1.3242025102600(64)19005"""-3/4"(slack)29.058.6M2 -130-A12-S1.6221023802500(65)19007"""-1/8"(fines)27.860.0M2 -130-A12-S1.6224023102470(72)19073Albion-Allen & #7 Cage-4" composite30.055.9(66-147)M2-124-A14-S1.6221024602550(56)19076""""-3/4"(slack)30.256.2M2 -125-A13-S1.621002450(56)19078"""-1/8"(fines)29.656.7M2 -124-A13-S1.6215022202300(59)18977Nllon (Acadia)Foord-4" composite27.555.6(60-154)N2 -126-A17-S0.7252026302740(72)18950"""-1/6"(fines)27.750.9M2 -127-A15-S1.0227024702560(37)18952"""-1/8"(fines)27.750.9M2 -126-A17-S1.0227024702560(37)18952"""-1/6"(fines)27.750.9M2 -126-A17-S1.0227024702560(37)19177""-6 </td <td>ew, (New)</td>	ew, (New)
19002Albion (Acndia)Third-4" composite 28.6 58.8 $(68-150)$ $M2$ $-130-A12-S1.3$ 2420 2510 2600 (64) 19005"""""" $-3/4$ " (sleck) 29.0 58.6 $M2$ $-130-A12-S1.6$ 2210 2380 2500 (65) 19007"""""" $-1/8$ " (fines) 27.8 60.0 $M2$ $-130-A12-S1.6$ 2240 2310 2470 (72) 19073Albion-Allen & #7Cage -4 " composite 30.0 55.9 $(66-147)$ $M2-126-A13-S1.6$ 2200 2350 2450 (56) 19076"""""""""""""""""""""""""""""""""	
19005"" $-3/4$ " (slack)29.058.6M2 -130-A12-S1.6221023802500(65)19007""" $-1/8$ " (fines)27.860.0M2 -130-A12-S1.6224023102470(72)19073Albion-Allan & #7 Cage-4" composite30.055.9(66-147)M2-2124-A14-S1.6221024602550(56)19076"""" $-3/4$ " (slack)30.256.2M2 -125-A13-S1.6220023502450(58)19078""" $-1/8$ " (fines)23.656.7M2 -124-A13-S1.6215022202300(59)18947Allan (Acedia)Foord-4" composite27.555.6(68-154)M2 -127-A15-S1.0252026202720(74)18950""" $-3/4$ " (slack)27.856.9M2 -127-A15-S1.0227024702560(37)18950""-1/6" (fines)27.753.9M2 -131-A13-S1.0227024702560(37)18952""-1/6" (fines)27.753.9M2 -126-A17-S1.0227024702560(37)13086""-1/6" (fines)25.655.6(67-152)11-127-A15-S1.6215022502320(76)19177""-3/4" (sleck)29.857.0M1 -130-A13-S1.3220023002430(78)19182"-1/8" (fin	66 49
19007"" $-1/8$ " (fines)27.860.0M2 $-130-A12-S1.6$ 224023102470(72)19073Albion-Allen & #7 Cage-4" composite 30.0 55.9 (66-147)M2- $-124-A14-S1.6$ 221024602550(56)19076""""-3/4"(slack) 30.2 56.2 M2 $-125-A13-S1.6$ 220023502450(58)19078"""-1/8"(fines)29.6 56.7 M2 $-124-A13-S1.6$ 215022202300(59)18947Allan (Acadia)Foord-4" composite27.5 55.6 (68-154)M2 $-126-A17-S0.7$ 252026302740(72)18950""" $-3/4$ "(slack)27.8 56.9 M2 $-127-A15-S1.0$ 252026202720(74)18952""" $-1/8$ "(fines)27.7 53.9 M2 $-127-A15-S1.0$ 227024702560(97)13866""" $-1/8$ "(fines)27.7 53.9 M2 $-126-A17-S1.0$ 22702450250(97)19177"4Ft. Vale defines27.6 55.6 (67-152)H1 $-127-A15-S1.6$ 215022502320(78)19160""" $-3/4$ "(sleck)29.8 57.0 M1 $-130-A13-S1.3$ 220023002430(78)19182"" $-1/8$ "(sleck)29.8 57.0 M1	68 50
19073Albion-Allen & #7 Cage-4" composite $30.0 55.9 (66-147)$ M2- 124 -Al4-Sl.6 $2210 2460 2590 (56)$ 19076"""""""""""""""""""""""""""""""""	75 56
19076""" $-3/4$ " (slack) $30.2 56.2$ $M2 -125 - A13 - S1.6$ $2200 2350 2450$ (58)19078""" $-1/8$ " (fines) $29.6 56.7$ $M2 -124 - A13 - S1.6$ $2150 2220 2300$ (59)18947Allan (Acadin)Foord -4 " composite $27.5 55.6 (68 - 154)$ $M2 -126 - A17 - S0.7 2520 2630 2740$ (72)18950""" $-3/4$ " (slack) $27.8 56.9$ $M2 -127 - A15 - S1.0 2520 2620 2720$ (74)18952""-1/8" (fines) $27.7 53.9$ $M2 -131 - A13 - S1.0 2270 2470 2560$ (97)13886"6 Ft. Vrle Domestic lump $28.9 54.0$ $M2 -126 - A17 - S1.0 2270 2530 2670$ (75)19177"4 Ft. Vale -4 " composite $25.6 55.6 (67 - 152)$ $M1 -127 - A15 - S1.6 2150 2250 2320$ (78)19182"-1/8" (sleck) $29.8 57.0$ $M1 -127 - A15 - S1.6 2150 2250 2320 (78)$ 19182"" $-3/4$ " (sleck) $29.8 57.0$ $M1 -130 - A13 - S1.3 2200 2300 2430 (78)$ 19182""-1/8" (fines) 30.1 57.4 $M1 -130 - A13 - S1.3 2160 2250 2280 (79)$ 15060""" $Dull (splint) coal 27.7 40.5$ $M2 - 95 - A20 + -S1.3 2180 2250 2400 (62)$	58 42
19078""-1/8" (fines)29.656.7M2 -124-A13-S1.6215022202300(59)18947Allon (Acadia)Foord-4" composite27.555.6(68-154)M2 -126-A17-S0.7252026302740(72)18950""-3/4" (slack)27.856.9M2 -127-A15-S1.0252026202720(74)18952""-1/8" (fines)27.753.9M2 -131-A13-S1.0227024702560(87)13886""6Ft. Vele Domestic lump28.954.0M2 -126-A17-S1.0227025302570(75)19177"4Ft. Vale -4" composite25.655.6(67-152)M1 -127-A15-S1.6215022502320(76)19182""-3/4" (sleck)29.857.0M1 -130-A13-S1.3220023002430(78)19182""-1/8" (fines)30.157.4M1 -130-A12-S1.3216022502280(79)15060""Dull (splint) coal27.740.5M2 - 95-A20+-S1.3218022502400(62)	61 45
18947Allon (Acodin)Foord-4" composite27.555.6(68-154)M2-126-A17-S0.7252026302740(72)13950""" $-3/4$ " (slack)27.856.9M2-127-A15-S1.0252026202720(74)18952""" $-1/6$ " (fines)27.759.9M2-131-A13-S1.0227024702560(97)13806""6Ft. Vele Domestic lump28.954.0M2-126-A17-S1.0227025302570(75)19177"4Ft. Vale-4" composite25.655.6(67-152)M1-127-A15-S1.6215022502320(78)19180""-3/4" (sleck)29.857.0M1-130-A13-S1.3220023002430(78)19182""-1/8" (fines)30.157.4M1-130-A12-S1.3216022502280(79)15060""Dull (splint) coal27.740.5M2-95-A20+-S1.3218022502400(62)	62 46
13950"" $-3/4$ " (slack)27.856.9M2 -127-A15-S1.0252026202720(74)18952""" $-1/8$ " (fines)27.753.9M2 -131-A13-S1.0227024702560(37)13886""6Ft. Vrle Domestic lump23.954.0M2 -126-A17-S1.0227025302570(75)19177""4Ft. Vale -4" composite25.655.6(67-152)M1 -127-A15-S1.6215022502320(78)15160""-3/4" (sleck)29.857.0M1 -130-A13-S1.3220023002430(78)19182"-1/8" (fines)30.157.4M1 -130-A12-S1.3216022502280(79)15060""Dull (splint) coal 27.740.5M2 - 95-A20+-S1.3218022502400(62)	76 57
18952"" $-1/8$ " (fines)27.753.9M2 $-131-A13-S1.0$ 227024702560(37)13886""6Ft. Vrle Domestic lump28.954.0M2 $-126-A17-S1.0$ 227025302570(75)19177""4Ft. Vrle Domestic lump28.954.0M2 $-126-A17-S1.0$ 227025302570(75)19177""4Ft. Vrle -4 " composite25.655.6(67-152)M1 $-127-A15-S1.6$ 215022502320(78)15180"" $-3/4$ " (sleck)29.657.0M1 $-130-A13-S1.3$ 220023002430(78)19182"" $-1/8$ " (fines)30.157.4M1 $-130-A12-S1.3$ 216022502280(79)15060""Dull (splint)coal 27.740.5M2 $-95-A20+-S1.3$ 218022502400(62)	78 59
13886"6 Ft. Vrle Domestic lump28.954.0M2 -126-A17-S1.0227025302570(75)19177"4 Ft. Vale -4" composite25.655.6(67-152)11 -127-A15-S1.6215022502320(76)19180""-3/4" (sleck)29.857.0M1 -130-A13-S1.3220023002430(78)19182""-1/8" (fines)30.157.4M1 -130-A12-S1.3216022502280(79)15060""Dull (splint) coal 27.740.5M2 - 95-A20+-S1.3218022502400(62)	91 77
19177"4 Ft. Vale -4" composite25.655.6(67-152)M1 -127-A15-S1.6215022502320(78)15180"" $-3/4$ " (sleck)29.857.0M1 -130-A13-S1.3220023002430(78)19182"" $-1/8$ " (fines)30.157.4M1 -130-A12-S1.3216022502280(79)15060""Dull (splint)coal 27.740.5M2 - 95-A20+-S1.3218022502400(62)	78 59
15180" $-3/4$ " (sleck)29.857.0M1 $-130-A13-S1.3$ 220023002430(78)19182"" $-1/8$ " (fines)30.157.4M1 $-130-A12-S1.3$ 216022502280(79)15060""Dull (splint)coal 27.740.5M2 $-95-A20+-S1.3$ 218022502400(62)	81 61
19182 " -1/8" (fines) 30.1 57.4 M1 -130-A12-S1.3 2160 2250 2280 (79) 15060 " Dull (splint) coal 27.7 40.5 M2 - 95-A20+-S1.3 2180 2250 2400 (62) 10071 Dull (splint) coal 27.7 40.5 M2 - 95-A20+-S1.3 2180 2250 2400 (62)	81 61
15060 " Dull (splint) coal 27.7 40.5 M2 - 95-A20+-sl.3 2180 2250 2400 (62) 100(1) 112 - 95-A20+-sl.3 2180 2250 2400 (62) 112 - 95-A20+-sl.3 2180 2250 2400 (62)	81 61
	67 50
19061 Allan-Aloion Dull (splint) coal 26.8 46.7 MZ -105-AZ0+-S1.6 2035 2440 2550 (64)	68 50
19119 McGregor (Acadi) McGregor -4" composite 27.8 56.3 (68-150) M2 -124-A16-S1.3 2650 2745 2800 (60)	63 46
19121 " " -3/4" (sleek) 27.8 57.6 M2 -125-A16-S1.3 2500 2605 2690 (65)	67 50
19123 " " " -1/8" (fines) 27.6 59.0 M2 -126-A14-S1.3 2420 2580 2620 (60)	63 46
19232 " " Fleming4" composite 27.8 59.3 (69-151) M2 -128-A14-S1.3 2260 2550 2650 (69)	72 54
19235 " " " -3/4" (slack) 27.4 58.9 M2 -128-A14-S1.3 226C 247C 251C (71)	73 55
19237 " " " -1/8" (fines) 27.8 59.2 M2 -127-A14-S1.0 2330 2380 2490 (71)	74 55
Pictou Area (Thorburn District):- High Volatile A (and B) Bituminous	
18778 Acadia #3 & #8 6 Ft. Vale -4" composite 29.0 51.7 (66-146) M3 -115-A19-S0.7 2450 2640 2720 (57)	60 44
18781 " $-3/4$ " (slack) 27.5 51.7 M3 -112-A20+-S1.0 2560 264C 2740 (55)	5 7 42
18783 " " $-1/8$ " (fines) 24.7 52.9 M2 -109-A20+-S1.3 232C 24CC 2460 (64)	a 7 50
18715 Milford (Greenwood) -4" composite 29.8 53.6 (66-143) M4 -118-A16-S1.C 25CC 275C 285C (60)	52 4 6
$18718 \qquad " \qquad -3/4" (slack) 28.2 53.9 \qquad M3 -116-A17-S1.3 2480 2600 2785 (57)$	59 43
18220 " " -1/8" (fines) 26.1 53.9 M3 -112-A19-S1.3 2200 2360 (64)	57 50

٠

)
4

and a second second second second a second secon

	Sour	cce and		Dry	Basis	Rank a	and Gre	lde	Fus	ion Po	oint	Grindel	lity
Tupo-				Vola-	Fi-	Classi	ificati	ion	of A	sh (F.]	P.A.)	Hardgruve	Equivalent
	Descripti	ion of Sam	ple	tile	xed	(Key to sy	mbols	page 4)	Ini-	Suft-	Fluid	Machine	Ball-mill
ratory	Mine or		. Size	Mat-	Car-	Moisture,	Ash,	Sulphur	tial	ening		Method	Method
i		Seam	or other	ter	bon	and B.t.u.	figure	es are on	Temp.	Temp.	Temp.	Index	Index
No.	Trade designation	,	designation	%	%	the coal as	samp]	led basis	^o F.	°F.	°F.	(Old) New.	(New)

NEW BRUNSWICK

Minto Area (North Minto, South Minto, Newcastle Bridge and Chipman Districts) :- High Volatile A Bituminous

. . A Carl State and State and State

15799	Avon-Winterport	-4" composite	32.5 51.2	(63-152)	M1 -124-A16 -S5+	1920	1980	2000	(76)	78	599
15902	ty 99	-3/4" (slack)	32.3 49.5		M1 -118-A18 -S5+	1955	2015	2030	(87)	91	71
15804	11 IF	-1/8" (fines)	31.4 48.2		M2 -114-A20 -S5+	1885	1990	2010	(95)	98	78
19689	Avon-Shafts 26 & 28	-4" composite	31.0 51.7	(64-152)	M1 -122-A17 -S5+	1920	2000	2050	(77)	80	60
19692	11 11	-3/4" (slack)	30.8 50.3	•	M2 -118-A18 -S5+	1960	2040	2070	(72)	75	56
19694	11 11	-1/8" (fines)	30.1 49.5		M1 -115-A20 -S5+	1915	2020	2060	(82)	86	66
17621	Avon coal (marketed for pul	lverized fuel)			MI -122-A18 -S5+				(84)	86	66
19551	Benton-Evans (Rothwell)	-4" composite	32.6 51.9	(63-153)	ML -126-A15 -S5+	1940	2040	2060	(70)	73	55
19554	¥7 ¥9 ¥¥	-3/4" (slack)	32.4 50.8		M1 -122-A17 -S5+	1960	2050	2090	(74)	76	57
19556	19 19 19	-1/8" (fines)	31.0 48.1		MI -115-A20+-S5+	1900	2030	2100	(76)	79	60
19608	Minto-Tweedie Cl,C2,C3	-4" composite	31.8 52.8	(64-152)	MI -125-A15 -S5+	1955	2050	2075	(33)	74	55
19611	11 1 11 11	-3/4" (slack)	30.6 50.7		M2 -117-A18 -S5+	2000	2050	2070	(76)	79	60
19613	11 11 11	-1/8" (fines)	29.8 48.7		M2 -111-A20+-S5+	1960	2075	2110	(80)	83	63
19485	Minto-West Slope (P & C S)	-4" composite	30.9 50.0	(64-156)	MI -122-A19 -S5+	1900	2060	2090	(69)	70	52
19488	77 17 17 17	-3/4" (slock)	30.4 48.9		MI -119-A20 -S5+	1880	2000	2060	(73)	76	57
19490	77 77 79 79 71	-1/8" (fines)	27.1 42.0		-101-A20+-S5+	2040	2130	2220	(83)	86	6 6
15683	Minto- " " (R.O.M.)	-4" composite	32.2 52.9	(64-153)	MI -127-A15 -S5+	1890	1940	1960	(74)	77	58
15686	** ** ** **	-3/4" (slac)	31.7 50.8		<u>M1 -123-A17 -S5+</u>	1895	1960	1980	(74)	77	5 8 '
15688	YY 19 YY YY	-1/8" (fines)	28.3 45.4		MI -109-A20+-S5+	1950	2040	2350	(79)	81	61
12265	Minto coal (marketed for pu	lverized fuel)	32.0 54.8		M2 A13 - S5+	2000	2180	2300	(74)	79	60
14418	Miramichi coal (as marketed	1)R.O.M.	31.3 51.8		11A17 -S5+	1900	2000	2040	(79)	82	62
14419	11 11 11	Slack	30.9 47.8		M4 A20+ S5+	1930	2010	2045	(83)	86	66
13973	Welton & Henderson	Domestic lump	31.1 49.6	(64-155)	M1 -121-A19 -S5+	1950	2010	2140	(70)	72	54
19750	" " Kelley	-4" composite	33.3 53.6	(63-154)	MI -131-A13 -S5+	1900	2040	2070	(64)	65	48
19753	17 17 17	-3/4" (slack)	33.4 52.5		MI -130-A14 -S5+	1990	2040	2080	(69)	30	52
19755	97 77 8 9	-1/8" (fines)	31.6 50.0		1 -120-A18 -S5+	1940	2060	2100	(69)	71	53
19312	Burpee (Myles) Stripping	R.O.M.	34.4 59.0	(64-144)	13 -133-A 6 -S3	2270	2430	2610	(85)	82	65

21.

State School States

1012000	<u> Antonio antona anton</u>	Alta and a start of the start of	an a		100 - AL 1978		1.1.1	and the second second	NET TO A DESCRIPTION				is chiere	116 AG	
				TAT	BLE I	II (Cont	.)								1
_	Source	e and		Dry Basis Rank and Grade						Fus:	ion Po	int	Gr	indal	lity
Lap∩−				Vola-	Fi-	Cla	ficeti	on -	of As	sh (F.I	P.A.)	Hardgrovel		Equivalent	
	Description	a of Sam	ple	tile	ile xed (Key to symbols page				page 4)	Ini-	Soft-	Fluid	Machine		Ball-mill
ratory	Mine or		Size	Mat-	Car-	Moistur	e, ,	Ash, A	Sulphur	tial	ening		Meth	od	Method
		Seam	or other	ter	bon	and B.t.	u. :	figures	s are on	Temp.	Temp.	Temp.	Ind	ex	Index
No.	Trade Designation.		Designation	<u>%</u>	670	the coal	បទ	sample	ed basis	°F.	°F.	°F•	(01d)	New	(New)
			•		AI	BERTA									
	Luscar, Mountain Park and Crowsnest Districts:- Medium Volatile and High Volatile A Bituminous														
17455	Luscar (Locomotive fu	lel)	-4" composite	21.7	65.2	(76 - 154)	M1	-132-1	A13-S0.7	2280	2375	24 20	(85)	88	68
17458	11 11	11	-3/4" (slack)	21.0	66.C	. ,	MI	-132-4	A13-S0.7	2480	2680	2780	(96)	98	78
17460	TT TT	11	-1/8" (fines)	21.0	65.8		MI	-132-1	A13-SU.7	2650	28 50	2850+	(93)	96	76
16279	Mountain Park		Domestic lump	28.8	62.7	(69 - 152)	MI	-138-4	A 8-S0.7	2280	2365	2450	(74)	75	56
15297	Greenhill		Slack lump	23.8	65.0		ш	!	A10-	2700	2870	2870	(94)	97	77
	Prairie Creek, Coalsp	our, and	Saunders Areas	a:- Hie	zh Vol	atile B	ond	C Bitu	uminous						
15280	Hinton		Domestic lumn	35.9	47.6	(58 - 134)	117	-112-4	A15-S0.7	2205	2360	2440	(53)	55	40
16274	Cual Valley		Domestic lump	34.4	47.0	(59-122)	MB	- 99-1	A17-S().7	2100	2240	2375	(55)	55	40
18197	Alexu		Lump	35.0	57.3	(00 200)	M7	4	A 8-50.7	8200	2010	2012	(53)	52	38
16278	Lekeside		Domestic lumo	37.2	48.0	(57 - 121)	M9	-103-4	A13-SQ-7	2055	2160	2200	(45)	46	33
	Drumheller Area:- Sub	-bitumin	ious B			(2.00			~~~~~	~		()		••
16277	Rosedale		Domestic lump	38.1	52.2	(58 - 107)	MI 7	7- 98-A	A 8-50-7	2235	2330	2430	(39)	40	28
16596	77		Domestic egg	37.0	50.4	(58-)	M	5- 94-A	A10-S0.7	2050	2150	2320	(39)	39	28
				BF	RITISH	COLUMBI	A						()	-	
	Crowsnest and Telkwa:	Areesi .	Medium and Hig	h Vols	tile	A Bitumi	nous	3							
7222	Michel		R.O.M.	28.4	65.4	(70 - 153)	M2	-143-A	A 6-S0.7	1960	2030	2350	(96)	102	82
8920	Corbin		Birdseye	22.5	59.8	•,	M5	-116-A	A17-S0.7	2600	2700+	2700+	(92)	95	75
6768	Telkwa (Broughton & M	(cNeil)	Lump	31.6	55.3	(65-144)	M5	-124-A	A12-S1.3	2150	2170	2280	(71)	74	5 5
14046	11	•	Domestic lump	28.4	59.9	(69 - 146)	14	-128-A	A11-S1.0	2300	2390	2520	(71)	71	53
	Vancouver Island and	Nicola A	reas:- High Vu	latile	Aan	d B Bitu	ninc	ous							
7122	Comox (Dunsmuir)		Washed nea	31.1	53.9		115	-122-A	14-s1.6	2435	2460	2500	(74)	76	5 7
6722	Wellington #5 Mine		Washed slack	36.7	44.5		M8	-111-A	A17-S1.0	2070	2145	2320	(78)	81	61
6721	Reserve Mine - Nanaim	ω	Washed slack	38.4	46.9		M7	-117-A	14-51.0	2045	2225	2240	(75)	77	58
14052	TT 1T 1T		Domestic lump	40.7	46.1	(54 - 142)	113	-122-A	13-51.6	2150	2180	2210	(75)	77	58
7042	Cassidy (Granby)		Washed slack	38.2	48.9	,/	M5	-123-A	12-50.7	2270	2310	2340	(81)	83	63
6659	Coalmont (Nicola)		R.O.N.	36.8	49.1	(58-131)	148	-112-A	13-50.7	2080	2240	2460	(61)	63	46
16565	Middlesburu (Nicula)		R.O.M.	39.8	48.3	(55-130)	М9	-114-A	11-S0.7	2475	2590	2590+	(54)	53	38
b/ Thes	e are the (Old) and N	ew indic	es obtained by	the o	rigin	el and th	ie r	evised	calculo	tion f	ormula	s resp	ective	ely.	N

c/ The (revised) Hardgrove index was used to obtain the equivalent Ball-mill index by means of conversion table.

Ň

			Source and		Dry	Basis	Rar	k and	Grad	e	Fusi	ion Pe	int	Gri	ndat	ility
Labu-					Vola-	Fi-	Cla	ssifi	icatio	n •	of As	sh (F.1	?• ? • ?	Hardgi	ove	Equivalent
		Descr	iption of Sam	ple	tile	xed	(Key to	symt	ols p	age 4)	Ini-	Soft-	Fluid	Machi	ne	Ball-mill
ratory	Mi	ne or		Size	Mat-	Car	Moistur	e, As	h, Su	lphur,	tial	ening		Meth	pg þ	Method
			Seam	or other	ter	bon	and B.t.	ufi	gures	are on	Temp.	Temp.	Temp.	Inde	ex	Index
No.	Trade	Designati	lon	Designation	<u> </u>	<u>%</u>	the cual	89 5	ample	d basis.	°F.	<u> </u>	oF.	<u>(01d)</u>	New	(New)
				MI	SCELL.	ANEOU	S CANADIA	N COS	LS							
6470	Tulamee	n B.C.	Sub-bit. B	R.u.ni.	36.6	52.5	(60 - 104)	M21-	94-A	9-S0.7	1995	2120	2 200	(38)	39	28
6469	Pleasan	t Valley	H.C. "	Lump	34.4	49.1	(60- 96)	M24-	82-A	13-50.7	1995	2095	2260	(45)	45	32
16275	Bienfai	t. Sask.	Lignite	Domestic lump	40.3	51.6	(57-81)	M33-	76-A	5-S0.7	2315	2420	2 480	(54)	54	39
19524	Onakewe	na, Ont.	n	Air-dried lump	46.3	43.9		M21-	81-A	8-S1.0	2040	2180	22 60	(43)	49	35
		-		AMERICAN; BRI	19 15 H .	VIND O.	HER (EUR	OPEAN	I) ANTI	HRACITES	5					
3301-5	Pennsvl	vaniaSo	huvlkill Cou	ntv	3.0	87.6	(98 - 144)	M4 -	130-A	9-50.7				(38)	32	27
3301-4	11	N.	rthumberland	County	6.5	83.9	(94 - 151)	M3 -	135-A	9-S1.0				(52)	52	38
15314	**			•	6.5	83.6	(94 - 148)	M3 -	132-A	10-51.0	2840	2840+	-	(28)	29	20
13500	11				5.4	85.2	(95-148)	143 -	132-A	9-51.0	2710	2 865	2910	(29)	31	22
15316	French	Indo-Chir	anthracite		4.2	90.2	(96 - 140)	1.4 -	131-A	5-50.7	2040	2210	2350	(34)	35	25
17599	11	11	11	Stove size	3.0	92.3	(97 - 139)	M4 -	132-A	4-50.7	2000	2170	2440	(34)	34	24
17550	Russiar	anthraci	ite	Eug size	3.4	93.1	(97 - 140)	N4 -	135 - A	4-S1.3	1920	2 075	2280	(34)	34	24
17551	11	11		Stove size	3.7	92.0	(97-141)	14 -	135-A	4-S1.6	1930	2080	22 40	(34)	34	24
16281	Welsh a	nthrac ite	9	Cobbles size	8.1	88.9	•	MI -	-A	4-	2200	2 450	2650	(48)	48	34
16330	**	11		Cobbles size	8.5	85.0	(92 - 149)	M2 -	139 - A	6-S1.3	2040	2215	25 40	(50)	50	36
16375	11	11		Cobbles size	7.2	89.2		M2 -	-A	4-	2260	2340	2500	(51)	50	36
13975	tt	11		Cobbles size	8.0	87.5	(92 - 151)	M2 -	144-A	4-S1.0	2280	2400	2700	(58)	58	42
14361	tt	11		Nut size	8.1	87.5	(92-151)	M2 -	144-A	4-S1.C	21 80	2370	2515	(52)	52	38
15277	11	11		Buckwheat size	8.3	87.1	(92-151)	M2 -	143-A	4-S1.0	2250	2410	2540	(55)	54	39
15315	tt	**		Buckwheat size	8.9	86.6	(91-152)	M2 -	145-A	4-S1.0	2100	2385	2535	(54)	54	39
16143	tt	11		Buckwheat size	9.9	83.8	(90-)	M3 -	- A	6-				(55)	54	39
16376	11	**		Buckwheat size	9.7	84.4	()	M1 -	- A	6-	2070	2210	2575	(56)	56	41
16141	Westpha	lian anth	nracite	Cubbles size	9.8	85.2	(90-)	M2 -	-A	5-				(55)	54	39
16373	n –	11		Stove size	9.6	85.3	(90-153)	M1 -	145 - A	5-S1.0	2050	2170	2460	(55)	54	39
16374	11	**		Buckwheat size	10.4	83.8	(90-154)	м -	144 - A	6-Sl.3	2030	2150	2590	(56)	55	40
16142	11	**		Buckwheat size	9 . 1	85.9	(91-)	M4 -	-A	5-				(63)	62	46
						MIS	CELLANEOU	S								
19515	Petrole	um coke		Lump	16.8	81.2		M2 -	152-A	4-S3.	2600	2610	2615	<u> </u>	128	

٠

TABLE III (Cont.)

	Sour	cce and	· · · · · · · · · · · · · · · · · · ·	Dry	Basis	Rank and	d Grade	Fus	ion Po:	int	Grindat	
Tapo-			•	Vole-	Fi-	Classif	ication '	of A	sh (F.P.	.1	Hardgrove	Equivalent
	Descripti	on of Sam	ple	tile	xed	(Key to symt	buls page 4)	Ini-	Soft-1	Fluid	Machine;	Ball-mill
retory	Mine or		Size	Mat-	Car-	Moisture, As	sh, Sulphur	tial	ening		Method	Method
		Seam	or other	ter	bon	and B.t.u. fi	igures are or	1 Temp.	Temp.	remp.	Index	Index
No.	Trade Designation		Designation	00	%	the coal as s	sempled besis	°F.	°F.	°F.	(Old) New.	(New)

TABLE III (Concl.)

MISCELLANEOUS AMERICAN BITUMINOUS COALS

	Low and	Medium Vo	lotile Bi	tuminous											
3301-1 19514	Pucahunt	asMcDow Rockl	ell Co. W	.VaNo. 3 Bed	18.5	76.1	(81 - 157)	ML	-147-A 5-SO.7	96 50 1	0050.		(103)	107	87
16202	11	Ol col	ey Seam Mino	Dumostia URaall	10.1	10.2	(01-152)	jubo D	-140-A 0-51.0	2020	2000+	9750	(92)	100	80
14239	Ruckhill	OTRO 1	MITHE	Domestic Leg	10.0	70.0	(53-156)	711	-100-A11-50.7	2720	2000	2050	(94)	90	70
16910	D.wol	-		pomestic lump	10+1	(4+4 67 1	(00-109)	ML	-142-A 9-51.0	0010	2000	200U+	(90)	90 101	0
19513	Kont				201	6/ 1	(74 - 150)	1.11	-142-A 0-51.0	2600	2630	2720	(90)	76	67 67
12010	Nemo		• • • • • • • • • • • • • • • • • • • •		23•T	04 • 1	(03-150)	1.71	-139-4 0-51.0	2000	2000	2140	(14)	10	57
	High Vol	atile A B	ituminous				•								
19511	Banning				33.2	59.8	(65-149)	MЗ	-138-A 7-S1.0	2580	2700	2850+	(60)	61	45
14725	Hutchins	lon -		Composite	33.8	59.0	(64-154)	M2	-142-A 7-S1.0	2800	2970	3000+	(71)	76	5 7
14725a	**		•	+4" lumps				M2	A 6-				(64)	6 7	50
14725d	11			3 - 4" lumps				M2	A 6-				(65)	6 7	50
14725c	**			2 - 3" lumps				M2	A 7-				(65)	6 7	50
14725d	11			$1\frac{1}{2} - 2"$ lunps			•	Н2	A 7-				(67)	69	51
14725e	11			$1 - 1\frac{1}{2}$ " lumps				M2	A 7→				(70)	72	54
14725f	11			3/4 - 1" lumps				M2	A 7-				(73)	7 6	57
14725g	TT			1/2 - 3/4"				142	A 7-				(73)	76	57
14725h	**			1/4 - 1/2"				M2	A 6-				(74)	76	57
14725i	11			-1/4" fines				M2	- <u> </u>				(75)	77	58
	Ohio (Ra	il & Rive	r) Coals -	- Belmont County											
14056	Rail & R	iver P	ittsburgh	#8 Domestic lump	41.5	50.2	(55-144)	113	-131-A 8-S4.	1900	2020	2040	(67)	6 7	50
16505	**	" #3 Min	e "	-4" composite	41.0	49.9	(56-147)	M2	-131-A 9-S5.	1970	20 55	2110	(68)	70	52
16508	**	11 11	**	-3/4" (slack)	39.1	50.3		M2	-129-A10-S5.	2000	2050	2100	(67)	68 -	50
16510	**	11 11	11	-1/8" (fines)	37.4	51.2		M2	-128-A11-S5.	1980	2045	2110	(71)	72	54
16459	**	" #4 Hine	8 11	-4" composite	40.6	51.4	(57-146)	M2	-133-A 8-S4.	1860	2070	2160	(67)	68	50
16462	11	77 77	91	-3/4" (sleck)	39.1	51.7		M2	-131-A 9-S4.	1990	2070	2120	(71)	73	5 5
16464	TT	17 17	11	-1/8" (fines)	37.9	51.7		M2	-128-A10-S4.	1960	2060	2160	(73)	68	57
16560	71	" #6 Min	8 11	-4" composite	40.1	50.6	(56-147)	M2	-133-A 8-S4.	1940	2080	2150	(65)	66	49
16563	tt	17 17	17	-3/4" (sleck)	40.0	50.7		M2	-130-A 9-S4.	1960	2080	2150	(72)	74	55
16505	11	11 11	11	-1/8" (fines)	37.3	51.6		M2	-127-A11-S4.	1920	2030	2160	(69)	69	51
				•							and the second sec		the second s		

Appendix	
----------	--

Approximate Conversions of Grindability Indices by the Hardgrove-Machine Method to Ball-Mill Method Indices

narogroveEquivalentHardgroveEquivalentGrindabilityBall-millGrindabilityBall-millGrindabilityGrindabilityGrindabilityGrindabilityIndexIndexIndexIndex	nt 1
Grindability Grindability Grindability Grindability Grindability Index Index Index Index	
Index Index Index Index	-⊥ -1 +
	тсу
15 (10.6) $-$ 11 ⁸ / $-$ 68 (50.1) $-$	
16 11 1 69 (51.3)	51
17 $(11.9) - 12$ 70 $(52.0) - 12$	52
18 $(12.6) - 13$ (71) $(52.9) - (52.9)$	53
19 $(13.2) - 13$ 72 $(53.8) -$	54
20 $(13.9) - 14$ 73 $(54.6) - 73$	55
$\overline{21}$ (14.5) - $\overline{15}$ 74 (55.4) -	55
22 (15.2) - 15 75 (56.3) -	56
23 (10.0) - 10 70 (57.2) -	57
24 (10.0) - 1/ 1 (/ (50.0) - 25 (17.3) 17 (78 (50.0) -	50
26 $(18.0) - 18$ 79 $(59.7) - 18$	60
27 (18.7) - 19 80 (60.4) -	60
28 (19.5) - 20 81 (61.4) -	61
29 (20.2) - 20 82 (62.4) -	62
30 (20.9) - 21 83 (63.4) -	63
31 (21.6) - 22 84 (64.4) - 26 84 (64.4) - 26 84 (64.4) - 27 84 (64.4) - 28 84 84 (64.4) - 28 84 84 84 8	64
22 (22.4) - 22 (05) (05.5) -	65
(23.9) - 24 $(00.9) - 34$ $(67.3) - 34$	67
35 (24.6) - 25 88 (68.2) -	68
36 (25.3) - 25 89 (69.2) -	69
37 (26.0) - 26 90 (70.1) -	70
38 (26.8) - 27 $\overline{91}$ (71.0) -	$\overline{71}$
39 $(27.5) - 28$ 92 $(72.0) - 28$	72
$\frac{40}{13}$ (28.2) - 28 93 (73.0) -	73
41 (29.4) - 29 (-94 (74.0) -	75
42 (29.0) = 50 (19.0) = 43 (30.5) = 31 (96) (76.0) =	76
44 (31.3) - 31 97 (77.0) -	77
45 $(32.1) - 32$ 98 $(78.0) -$	78 78
46 (32.9) - 33 99 (79.0) -	79
47 (33.7) - 34 100 (80.0) -	<u>80</u>
48 (34.5) - 34 101 (81.0) -	81
49 (35.2) - 35 102 (82.0) -	82
-50 (25.9) - 20 102 (02.0) -	0) 81
52 (37.5) = 38 (105 (85.0) = 38	85
53 (38.4) - 38 106 (86.0) -	86
54 (39.2) - 39 107 (87.0) -	87
55 (40.0) - 40 108 (88.0) -	88
56 (40.8) - 41 109 (89.0) -	89
$57 \qquad (41.7) - 42 \qquad 110 \qquad (90.0) -$	<u>90</u>
58 (42.4) - 42 (111 (91.0) - 42) (00.0)	91
59 (42.1) - 42 112 (92.0) - 60 (110) 113 (03.0)	92 03
61 $(44.8) - 45$ 114 (99.0)	94
$\vec{62}$ $(45.6) - 46$ 115 $(95.0) -$	95
63 (46.5) - 46 116 (96.0) -	96
64 (47.2) - 47 117 (97.0) -	97
65 (48.0) - 48 118 (98.0) -	98
$66 \qquad (48.9) - 49 \qquad 119 \qquad (99.0) -$.99
<u>67 (49.7) - 50 ! 120 (100.0) -</u>	_T00

a/ These are the equivalent Ball-mill indices to the nearest whole number. Note: The indices underlined are those given in Appendix of D 409-37T, A.S.T.M.