Dept. Energy, Minse & Resources MINES BRANCH AUG 1 1969 LIBRARY OTTAWA, CANADA.

06)

MINES BRANCH DEPARTMENT OF MINES OTTAWA, CANADA

as m. Ederberti

to be board

has no the copies

GASOLINE SURVEY FOR 1930

EN

H. McD. Chantler

Memorandum Series No. 45 January, 1935.

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

MINES BRANCH DEPARTMENT OF MINES OTTAWA, CANADA

OF MERICAN CEPANEL CANALLY

GASOLINE SURVEY FOR 1930

by

which the "luter manber". The inter ambers shown in 5216 years

H. McD. Chantler

Memorandum Series No. 45, January, 1931.

62.2106) C212

MINES, BRANCH

DEPARTMENT OF MINES OTTAWA, CANADA.

Memorandum series

January 1931

No. 45

GASCLINE SURVEY FOR 1930

By

H. McD. Chantler

The annual survey of the gasoline sold in Canada has been conducted by the Division of Fuels and Fuel Testing of the Mines Branch during the past seven 2 years. This report covers a similar survey for the year 1930. During the early part of August, 124 samples were collected from wholesalers or distributors in the following cities: Halifax, St. John, Quebec, Montreal, Ottawa, Toronto, London, Winnipeg, Regina, Edmonton, Calgary, Vancouver and Victoria. The distillation range and specific gravity were determined for these samples.

The distillation range was tested according to the standard method designated as DS6-27 by the American Society for Testing Materials. From the results so obtained, a weighted index number was calculated after the method advocated by Gruse⁴. By this method the temperature readings at which 10, 20, 50, 70 and 90 per cent of the distillate has been recovered are added to the temperature reading at the end point of the distillation and the resultant sum is called the "index number". The index numbers shown in this roport: were calculated from the temperatures of the distillation range expressed in degrees Fahrenheit instead of in degrees Centigrade as was done by Gruse. The specific gravity was obtained by the use of the Chainomatic specific gravity balance at room temperature, and the result calculated to 60 . according to the National standard Petroleum Oil Tables, published by the United States Bureau of Standards standards⁵. The specific gravity has been expressed also according to a system in general use in the petroleum industry. This system used to be called the "Baume" scale, but, due to some uncertainty regarding the correct reference points, two slightly different scales came into use, both of then, unfortunately, being called Baume scales. The American Petroleum Institute with the comperation of U. S. Government departments and of the petroleum industry adopted one of these scales and described it in such a way that no ambiguity is possible. In order to avoid confusion the initials of the American Petroleum Institute were chosen to designate this scale, and it is therefore referred to as the A.P.I. scale. The scale is divided into 100 min divisions called degrees, the 10 degree point being equivalent to the specific gravity of pure water. The degrees A.P.I. have nearly the same value in specific gravity as the older Baume degrees. The greatest difference occurs at the upper end of the scale and is always less than one degree. The relation between degrees A.P.I. and specific gravity is expressed by the equation:

2.

The degrees A.P.I. shown in this report were obtained by converting the specific gravities according to National Standard Petroleum Oil Tables referred to above.

The results of analysis are given in Fable I and the average results of enalyses by cities are slown in Table II.

Significance of Tests on Gasoline.

Laboratory analyses are most valuable when they serve to indicate probable performance under operating conditions, hence an attempt is herewith made to interpret along that line some of the analytical results given below. The owner of the engine is the final judge of the quality of a motor fuel and he reaches his conclusions from the general responsiveness of the engine. It is obvious that the criteria for quality in motor fuels are changed just as rapidly as the engines are being changed. It appears to the writer that new and desirable characteristics in fuels must not only show at their best in the new engines, but they must also operate the old ones without serious difficulty.

Since the average life of an automobile is about five years, a satisfactory fuel from the standpoint of the general public must necessarily be somewhat different from the best fuel on the proving grounds of the motor manufacturer. The comments on quality of gasoline in relation to laboratory analysis given below, are, therefore, to be understood as being offered from the standpoint of the average owner of an automobile.

A good gasoline should possess the following characteristics: Should permit the engine to start easily; should permit the engine to develop maximum power; should allow the engine to run evenly when throttled down and should not stall; should not "knock"; should not evaporate toe readily at atmospheric temperatures: should not contain sufficient gum to cause sticking valves.

-3--

Relation of distillation range data to easy starting, waximum power, and idling.

A gasoline that permits an engine to start readily should have a reasonably low initial boiling point, about 100°F. is satisfactory under normal atmospheric temperatures, and the temperature at which 10% has been recovered, as indicated by the distillation range data, should also be reasonably low, about 150°F. would probably give good results. This provides for a reasonable quantity of highly volatile vaterial that will ignite easily.

Maximum power will be secured from an engine when the carburetor supplies it with an even mixture of gasoline vapour and air which can be, and is, properly burned. The gasoline vapours should not carry too much material of high boiling point because such material is usually more difficult to ignite. Noither should it contain too much low boiling material because such material will burn so rapidly that the engine cannot convert it efficiently into useful work. Therefore, the paseline should be composed of a series of constituents with gradually increasing boiling points, as indicated by a smooth, gradually rising, distillation range curve. A gasoline that will permit an engine to stark readily should also permit satisfactory power development provided the distillation range shows 70% over at about 500°F. In addition, the end point should not be too high.

Smooth running at low speed is seemingly more dependent on the design and condition of the engine and accessories than on the fuel used. However, the volatility of the fuel as a whole should not be so high as to cause it to vaporize or boil in the guadine lines or carburetor. Obviously, the placing of the parts, the temperature of the engine, and the temperature of the atmosphere will have considerable effect.

Index number and specific gravity

The index number may be used as a convenient indicator of the volatility of a gasoline, since it is the sum of several points in the distillation range. Generally speaking, the smaller the index number the greater the volatility of the fuel. Gasolines may be classified with more or less arbitrary dividing lines, according to their index numbers, into three groups, viz., (a) those with values less than 1650 with comparatively high volatility, (b) gasolines with average volatility coming between 1650 and 1725, and (c) the low volatile gasolines having index numbers greater than 1725.

Although the specific gravity of gasoline has been used for many years as a test of its quality, at the present time it is not of very much value, because gasolines may be so mixed or blended as to give widely varying desired qualities. It may be used as an aid, however, in interpreting the results of the distillation range test, particularly with the increased use of gasoline from natural gas and cracked gasoline for blending.

Antiknock qualities

Some fuels have mixed with then certain chemicals such as tetra-ethyl lead, that lessen the tendency of the firel to cause "knocking". These firels require elaborate equipment to determine the actual antiknock value, the results from which equipment were not available for this report. Other fuels that have not been prepared by the addition of antiknock compounds show rather wide variations in this respect. Generally speaking, it may be assumed that gusolines having a high percentage of aromatics and unsaturates ⁶ will knock less than fuels having a J_xw percentage, providing the gusolines contain no artificially mixed antiknock compounds.

Evaporation and gum

The readiness with which a gasoline evaporates is indicated by the amount of the recovery after distillation. When the recovery is less than 95% the evaporation loss islikely to be excessive. It is very difficult to determine the emount of gum in gasolines in such a manner that definite limits can be set. This is due to the dark that the character and amount of the gum varies greatly in different gasolines. A geochine may show no gam formation when freshly distilled, but at some later time definite gamy deposite may be obtained. The time and the conditions required for the gum deposite to form also vary greatly. It is believed that unsaturates are more likely to cause gum than any of the other constituents.

The writer desires to emphasize again that the opinions expressed above regarding desirable characteristics for gasoline when used for motor fuel are from the standpoint of the average motor car owner during the summer. It is understood, of course, that atmospheric changes of temperature and pressure would cause considerable modification of the figures.

-6-

Sample No.	Brand	r Com-	lst drop Ogie		20%	50%	70%	AN GI	point		Resi+ due	Distil- lation loss	Index No. ^O F.	Spec. grav.	Deg. API.	,
•		· · · ·	· · · ·		•			×.	HALIFA	X, N.S			•		". •	
1.	Sunoco	(a)	97	156	197	281	333	389	423	97.0	1.2	1.8	1779	0.762	54.2	
2.	Primrose	(b)	ି ହେ	3.37	163	258	512	36C	401	97.0	1.0	2.0	1640	0.741	59.5	
· 3.	Premier	(c)	97	167	197	2:12	314	355	395	96.5	1.0	2.5	1710	0.747	57.9	
4.	White Rose	(a)	98		179				412	97.0	1.2	1.8	1636	0.733	61.5	
5.	Cyclo	(e)	98		177	-		387	419	97.5	1.2	1.3	1725	0.757	55.4	
· .	Average:		96	151	184	265	316	372	410	97.0	1.1	1.9	1698	0.748	57.7	
	•							•	ST.JOH	N, N.B	•	* • • • • • • • •				
6.	Fundy	(f)	103	173	199	267	307	358	393	96.5	1.0	2.5	1697	0.747	57.9	
7.	No-Nox	(g)	98	148	171			313	365	97.5	1.0	1.5	1488	0.730	62,3	1
8.	Premier	(b)	100	170			305		392	97.0	1.1	1.9	1686	0.746	58.2	
9.	Marathon H.T.	(e)	106	169			306	356	. 393	98.0	1.1	0.9	1693	0.747	57.9	
10.	White Rose	(a)	95	149			296		400	97.5	1.0	1.5	1633	0.735	61.0	
	Average:	4	100	162	190	256	295	347	389	97.3	1.0	1.7	1639	0.741	59.5	
	:								QUEBEO	, QUE.				• •		
11.	Super Shell	(h)	95	141	168	248	308	374	413	97.5	1.0	1.5	1652	0.738	60.2	
12.	Super Power	(1)	100		193				410	97.5	1.2	1.3	1702	0.748	57.7	
13.	Premier	(c))	103		200				390	97.5	0.9	1.6	1675	0.748	57.7	
14.	White Rose	(d)	94	138	163	248	299	368	413	97.0	1.1	1.9	1629	0.736	60.8	
15.	Peerless	(1)	93	135	160	230	279	348	385	96.5	1.1	2.4	1537	0.720	65.0	
16.	Imperial Ethyl	(c)	100	159			301		405	97.5	1.1	1.4	1667	0.750	57.2	
	Average:	,	97	152	179	251	299	361	402	97.3	1.1	1.6	1644	0.740	- 59 - 8	

Contraction presidents

14-11-4-19

والمراجع والمستعلم وككب

4

تحريرونه البها التهابي المراجع

•

TABLE 1	Ι		RESULTS	\mathbf{OF}	ANALYSIS	(Cont'd)	
---------	---	--	---------	---------------	----------	----------	--

•									End			Distil-	Index			
Sampl No.	.e Brand	Com- pany				50% °F•				Reos-		lation loss	°F•	grav.	Deg.	
	、 · · · ·		•						MONI	REAL,	QUE .				· ·	
	Como m. Domo m	. (1)	100	769	194	263	305	360	412	97 E	10	1.5	1000	0.040	58 0	
.8•	Super Power Imperial Ethyl	(c)				267			412	97.5 97.0	1.0	2.0	1706	0.747	57.9	an a
	Premier	(c)				275			415	97.0	1.1	1.9		0.754	56.2	•
19.	Marathon	(c) (e)				264			418	98.0	1.2		1753	0.750	57.2	
	Blue Sunoco					281			423	97.5	1.0	0.8	1737 · 1780	0.743	58.9	
		(a) (e)				282				97.0	1.1	1.5		0.761	54.4	
	Cyclo					238				97.0	1.1	1.9	1779	0.772	51.8	
23.	Super Shell Shell	(h) (h)				293				96.5		1.9 2.5	1602 1821	0.734	61.3	
	Peerless	(1) (1)				249			418	96.5	1.1	2.4	1669	0.750	57.2	
25. 26.	Supertest	(j)							410	97.0	1.2	1.8	1753	0.732	61.8	
.O +	Superiest	())	104	TON	730	212	020	010	. 410	31.00	196 J	T ●O	1100	0.757	55.4	• "
A	verage:		.101	159	189	269	320	380	416	97.1	1.1	1.8	1733	0.750	57.2	•
(a) (b) (c) (d) (c) (f) (f) (h) (1)	Company Sun Oil/of Canada Irving Oil Compar Imperial Oil, Lin Canadian Oil Comp McColl-Frontenac Canadian Independ Gulf Refin in g (Shell Company of British American	ny, Lin nited panies Oil Co lent O: Company Canada	Lim pompari il, Li y, Liu	• ited y, L imite nited	imite ed. 1. 1.			(r) (s) (t) (u) (v) (w) (x) (y) (z)	Eric Thay Prai Nort Puri Unio Mapl	0il C ers Lin rio Ci h Star tan Oi n Oil (o Leaf	ompany nited. tics 0 011 & 1 Company Oil &	il Compar Rofining any, Limi y of Cans Refining	l. ny, Limi g Compan ited. ida, Lim g Compan	ted. y, Limited	1.	trimtors
-	Supertest Petrole							(aa)				Canada,			502 220	UL LUQUUL D
j) k)	Beach Motors, Lin		pora	0.2011		÷.,		(00)		Snew		Contractory	TITUT OC C	•		
1)	Super Service Gas		Com		T.in	niteó		(cc)				pany, Lir	ited.		•	1 w 1
1) m)	Domestic Storago							(aa)				stributor		ted.	`	1
n)	Cities Service Of							(ee)				C alifor				
0)	Perfection Petrol							(ff)				itors, Li				
p)	High Grade Oil Co							(gg)				any, Limi		- 1		×

.

1	Samp] Ne		Com- pany	lst drop _{OF}	10%	STILI 20% OF,	50%	70%	90%	Enc point OF.	Reoo-	Resi- due	Distil- lation loss	Index No. OF.	Spec.	Deg. API	
		ана н								OTT	AWA, O	NT.	•				•
• • • • • •	37. 38. 39. 40. 41.	Super Power Peerless B. A. Ethyl Supertest Supertest H.C. Blue Sunoco Super Quality Super Service C hampion Domesti Noxless Champion Ethyl. Shell Super Shell Cities Service Koolmotor	(m) (h) (h) (h) (n) (n)	97 98 100 94 99 92 101 92 92 98 106 95 90	$138 \\ 168 \\ 154 \\ 130 \\ 156 \\ 124 \\ 149 \\ 132 \\ 132 \\ 160 \\ 164 \\ 140 \\ 152 \\ 124 \\$	154 157 188 196 163 183 146	243 260 274 225 281 215 236 235 248 258 258 258 290 241 265 218	303 304 322 277 332 276 284 316 307 344 294 320 269	382 368 376 347 391 346 393 368 393 368 394 364 380 329	412 423 409 399 421 398 366 394 419 412 426 408 408 374	97.0 96.5 97.0 97.0 97.0 97.0 96.5 97.0 96.5 97.5 97.5 97.5 97.5 97.5 97.5	1.0 1.1 -100 1.1 1.2 1.2 1.1 1.2 1.1 1.1 1.2	2.0 2.4 2.0 1.9 1.8 1.8 2.4 1.9 2.5 2.3 1.3 1.3 1.7 1.5 2.3 2.0	1739 1654 1706 1724 1530 1774 1499 1521 1545 1665 1693 1814 1610 1708 1460	0.751 0.729 0.753 0.754 0.754 0.720 0.765 0.719 0.716 0.722 0.738 0.747 0.752 0.735 0.736 0.722	56.9 62.6 56.4 56.2 65.0 53.5 65.3 66.1 64.5 57.5 56.7 61.0 60.8 64.5	
	45• 1 46• 47• 48•	Fremier Imperial Ethyl Marathon Cyclo Red Seal White Rose Canadian Ethyl	(c) (c) (e) (d) (d) (d)	106 112 110 104 95 104	160 170 164 148 134 148	191 195 193	262 261 284 262 251 252	314 309 340 312 308 300	374 391 374 372 368	413 412 418 418 414 409 413 408	97.0 97.5 97.0 97.0 97.0 97.0 97.0 97.0	1.1 1.2 1.2 1.0 1.0 1.2 1.0	1.9 1.3 1.8 2.0 2.0 1.8 2.0 1.9	1727 1711 1727 1790 1690 1634 1656	0.750 0.752 0.743 0.784 0.784 0.735 0.743 0.741	57.2 56.7 58.1 49.0 58.7 61.0 58.1	

TABLE I - RESULTS OF ANALYSIS (Cont'd).

.

1. A. M.

Samp No		Com- pany	lst drop °F.	10%	ISTII 20% °F•	50%	70%	90%	E End point ^o F.	Reco- very	Resi- duc	Distil- lation loss	Index No. oF.	Spec. grav.	Deg. API.
	· · · · ·	•							TORONTO	, ONT.				•	
49.	Premier	(c)	98	160	192	274	320	376	410	97.5	1.1	1.4	1732	0.743	58.9
50 .	Domestic	(m)	96	143	170	236	282	349	396	96.5	1.0	2.5	1576	0.726	63.4
51.	Cities Scrvice	(n)	97	140	167	248	304	375	404	97.0	1.0	2.0	1638	0.729	62.6
52.	Perfection	(0)	104	158	194	283	334	392	42 0	97.0	1.2	1.8	1781	0.747	57.9
53.	Super High Grade	(p)	104	148	_	218		295	364	97.5	1.0	1 . 5	1441	0.721	64.8
54.	Shell	(h)	107		198		-	371	393	97.0	1.2	1.8	1714	0.746	58.2
55.	Trail Gas	(g)	104	160	186	257	310	378	421	97.5	1.0	1.5	1712	0.739	60.0
56.	Marathon	(c)	101	150	182	273	332	392	412	96.5	1.1	2.4	1741	0.738	60.2
57.	Super Power	(1)	100	157	185	256	305	365	398	96.5	1.0	2.5	1666	0.736	60.8
58.	Red Scal	(ā)	105	165	189	256	301	366	416	97.0	1.4	1.6	1693	0.736	60.8
	Average:	•	102	154	183	258	305	366	403	97.0	1.1	1.9	1669	0.736	60.8
. •											н 		••	t = 1	
									LONDON,	ONT.	•			•	1. AL
59.	Bitue Sunoco	(a)	104	168	200	284	332	390	424	97.0	1.2	1.8	1798	0.765	53.5
60.	Regular	(r)	92	136	160	234	279	350	402	96.5	1.1	2.5	1561	0.721	64.8
61.	Super Shell	(h)	92	142	168	244	286	340	378	97.0	1.0	2.0	1558	0.736	8.03
62.	Marathon	(e)	96	146	173	245	299	375	415	97.0	1.2	1.8	1653	0.732	61.8
63.	Erie Oil Co.	(s)	105	175	212	292	331	377	416	97.0	1.0	2.0	, 1803	0.750	57.2
64.	Super Power	(1)	108		190	266			410	97.0	1.1	1.9	1713	0.740	59.7
65.	Premier	(0)	102	164	196	274	324	376	408	97.0	1.0	2.0	1742	0.741	59.5
66.	Standard	(t)	100	160	190	260	302	360	400	97.0	1.0	2.0	1672	0.738	£0.03
	Average:		100	157	186	262	308	368	40 7	96,9	1.1	2.0	1688	0.740	59.7

TABLE I - RESULTS OF ANALYSIS (font'd).

TABLE I - I	RESULTS	OF	ANALYSIS	(Cont'd).	

Semp No		Com- pany	lst drop ^o F.	10%	20%	BO% °F.	70%	90%	End point ^o F.	Re co- very	Resi- due	Distil- lation loss	Index No• ^O F•	Spec. grav.	Deg. API.
		•							•		:			÷	
·	•				,			•	WINN	IPEG, 1	JAN.		•		•
62.	Red Seal	(ā)	102	168	200	273	322	376	414	97.5	1.0	1.5	1753	0.743	58.9
68	Marathon	(e)		138	164				392	97.0	1.0	2.0	1545	0.721	64.8
69.	Imperial Ethyl	(c)	96	155	182	252			398	97.5	1.0	1.5	1631	0.733	61.5
70.	Super Power	(1)		170		277			414	97.0	1.1	1.9	1759	0.745	58.4
71.	Electro	(u)	104	156	176	232	270	324	376	98.0	1.0	1.0	1534	0.724	63.9
72.	North Star Ethyl	(v)	110	169	197	261	301	356	405	98.0	1.2	0.8	1689	0.745	58.4
	Average:		101	159	187	255	297	354	400	97.5	1.1	1.4	1652	0.735	61.0
								•			•				an di ang
	•	•					•		REGI	NA, SAS	K.	•		•	
73.	Marathon	(e)	100	143	166	230	272	335	390	97.0	1.0	2.0	1536	0.722	64.5
74.	Premier	(c)	100		190	-			398	97.5	1.0	1.5	1682	0.739	0.03
75.	White Rose	(a)	104			259			410	97.5	1.0	1.5	1698	0.739	60.0
76.	Maple Leaf	(w)	105		170				5 70 ·	97.0	1.0	2.0	1507	0.717	65.9
77.	Super Power	(1)	106			268			400	97.0	1.0	2.0	1700	0.740	59.7
	Average:	,	103	157	183	249	291	350	395	97.2	1.0	1.8	1625	0.731	62.0

TABLE I -	RESULTS	OF	ANALYSIS	(Cont [*] d))•
-----------	---------	----	----------	-----------------------	----

	ample No• Brand	Com- pany	~	10%	20%	LATIO 50% °F.	70%	90%	point	Reco- very	Res i- due	Distil- lation loss	Index N c. o _F .	Spec. grav.	Deg. Api.
		•							CALG	RY, ALI	<u>A.</u>				· · · · · · · · · · · · · · · · · · ·
79 80 81 82 82 84 81 81 84 81 81 84 81 81 81 81 81 81 81 81 81 81 81 81 81	 8. Imperial Ethyl 9. Premier 0. White Rose 1. Red Seal 2. Canadian Ethyl 3. Union 4. Union Ethyl 5. Maple Leaf 6. Hyspd 7. Regal 8. Regal Ethyl 9. Super Power 0. B. A. Ethyl 1. Texnco 2. Texnco Ethyl 3. Energy 4. North Star 5. High Life Motor 	(c) (d) (d) (x) (y) (z) (1) (aa) (b) (v) (v)	98 108 102 115 108 105 110 112 96 97 100 104 100 104 99 102 96	158 146 154 162 165 162 166 163 140 142 150 158 158 158 159 148 152 139	185 172 176 189 190 188 189 192 156 159 172 188 190 165 176 159	259 3 250 2 242 2 250 2 250 2 250 2 266 3 207 2 209 2 244 2 260 3 275 3 277 3 219 2 248 2 248 2 213 2	308 3 3298 3 3298 3 3298 3 300 3 3298 3 3	364 371 372 364 360 337 348 378 348 376 336 377 348 376 358 372 358 372 358 372 358 372 358 372 358 372 358 372 358 372	407 407 423 422 414 404 399 394 410 412 396 419 405 400 396 424 420 393	97.5 97.0 97.0 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5	1.1 1.2 1.2 1.1 1.2 1.1 1.0 1.0 1.0 1.2 1.3 1.1 1.4 1.2 1.1 1.2 1.1 1.2	1.4 1.8 1.8 0.9 1.3 1.9 1.5 1.0 1.3 b .2 1.4 0.6 0.8 0.9 0.8 0.9 0.8 1.4 1.9	1671 1684 1656 1668 1665 1607 1637 1724 1507 1492 1652 1671 1722 1720 1579 1665 1506	0.747 0.735 0.735 0.736 0.749 0.753 0.748 0.737 0.748 0.737 0.742 0.717 0.720 0.720 0.749 0.749 0.749 0.741 0.725 0.737 0.737 0.720	57.9 57.9 61.0 60.8 57.4 56.4 57.7 60.5 59.2 65.9 65.9 65.0 61.7 57.4 59.5 58.7 63.7 60.5 65.0
	6. North Star Ethyl 7. Marathon H.T.	(v) (e)		158 154		263 3 246 2		364 351	408 396	97•0 97•0	1.2 1.1	1.8 1.9	1688 1618	0•748 0•733	57.7 61.5
	Average:		103	155	180	247 2	93 3	359	407	97.5	1.2	1.3	1641	0.738	60.2

TABLE I - RESULTS OF AN ALYSIS (Cont'd).

Sample No.	Brand	Com-	lst årop ^o F.	10%	20%	LATI 50% °F•	70%	90%	End point oF.	Reeo-	Resi- due	Distil- lation loss	Index Index ^O F.	Spec. grav.	Deg. API.
									EDMONT	ON, ALI	<u>¥.</u>			· . · ·	
98.	Regal	(z)	101	138	156	206	247	333	404	97.5	1.1	1.4	1484	0.718	65.6
99 🖌 🗉	Regal Ethyl	(z)	110		166				388	98.0	1.0	1.0	1466	0.723	64.2
100.	B. A. Ethyl	(1)	107			263			404	97.0	1.3	1.7	1693	0.750	57.2
101.	Super Power	(1)	110	155	176	245	300	374	420	97.0	1.2	1.8	1670	0.737	60.5
102.	Premier	(c)	106	161	187	262	303	362	407	97.0	1.1	1.9	1680	0.747	57.9
103.	Imperial Ethyl	(c)	104	161	190	264	310	366	404	96.5	1.1	2.4	1695	0.749	57.4
	Texaco	(aa)	106	159	189	278	328	380	404	97.0	1.1	1.9	1738	0.740	59.7
1	Union	(x)	106	165	188	249	294	360	406	97.0	1.0	2.0	1662	0.751	56.9
	Marathon H.T.	(e)	109	169	196	266	311	375	410	96.5	1.0	2.5	1727	0.742	59.2
	North Star	(v)	106	154	174	245	299	378	422	97.0	1.2	1.8	1672	0.736	60.8
	High Life	(v)	106	130	140	173	209	285	393	97.5	1.3	1.2	1330	0.697	71.5
	North Star Ethyl	(v)	108	160	190	261	305	365	410	97.5	1.0	1.5	1691	0.748	57.7
	Maple Leaf	(y)	121	181	203	259	294	345	396	97.5	1.0	1.5	1678	0•740	59.7
	White Rose	· (a)	114		178	248	5 03	374	423	97.5	1.0	1.5	1678	0.737	60.5
	Canadian Ethyl	(a)	110		187	258	301	363	414	97.5	1.4	1.1	1682	0.747	57.9
	Red Seal	(a)	98			248	300	373	419	97.5	1.1 .	1.4	1672	0.737	60.5
	Noroco	(cc)							400	97.5	1.2	1.3	1470	0.717	65.9
A	verage:		107	157	179	243	288	355	407	97.2	1.1	1.7	1629	0.736	60.8

TABLE I - RESULTS OF ANALYSIS (Cont'd).

Sample No. Brand	Com- pany	lst drop F.	10%	20%	6 50	OM RI	NGE 90% °F	End point ^O F.	Reco-	Resi- due	Distil- lation loss.	Index No. ^O F.	Spec. grav.	Deg. API
	•			•		•		VANC	OUVER, 1	B.C.		• .	:	x.
115. Richfield	(đā)	103	170	204	276	320	380	418	98.0	1.2	0.8	1768	0.759	54.9
116. Union	(x)	102	158	187	245	288	348	404	97.5	1.1	1.4	1630	0.750	57.2
117. Premier	(c)	110	166	190	248	290	346	404	98.0	1.0	1.0	1644	0.752	56.7
118, Shell (400)	(89)	106	164	192	252	294	356	398	97.5	1.0	1.5	1656	0.750	57.2
119. Home	(ff)	100	160	186	254	298	364	418	98.0	1.0	1.0	1680	0.751	56.9
120. Violet Ray	(gg)	101	157	190	254	297	369	415	97.0	1.0	2.0	1682	0.752	56.7
Average:		104	163	192	255	298	360	409	97.7	1.1	1.2	1677	0.752	56.7
•					•								н н •	
		•		•				VICT	ORIA, B.	•C•	•		· .	
121. Union	(±)	100	162	188	252	298	360	406	98.0	1.2	0.8	1666	0.752	56.7
122. Shell (400)	(ee)	106		193		-	355	398	98.0	1.0	1.0	1648	0.748	57.7
123. Home Gas	(ff)		162				342	394	98.0	1.0	1.0	1607	0.749	57.4
124. 3 Star Premier	(c)	105					361	409 .	97.0	1.1	2.0	1680	0.752	56.7
Average:		103	162	190	249	293	354	402	97.7	1.1	1.2	1650	0.750	57.2

 $s_{i}^{*} = s_{i}$

District	drop 1	0% 20	10 20.0	I RANGE	End point ^O F•	Reco-	Resi- due	Distil- lation loss	Index No. ^O F.	Spes. grav.	Deg. API.	
elifar, N.S.	96 15	1 184	265 53	3 372	4.10	97.0	1.1	1.9	1698	0.748	57.7	
it. John, N.B.			256 29		389	97.3	1.0	1.7	1639	0.741	59.5	· .
uebec, Que.			251 29		402	97.3	1.1 '	1.6	1644	0.740	59.8	Sally St
Icntreal, Que.	101 15				416	97.1	1.1	1.8	1733	0.750	57.2	
ttawa, Ont.	100 14				408	97.0	1.1	1.9	1662	0.741	59.5	1
oronto, Ont.	102 15				403	97.0	1.1	1.9	1669	0.736	60.8	
ondon, Ont.	100 15				407	96.9	1.1	2.0	1688	0.740	59.7	•
innipeg, Man.	101 15				400	97.5	1.1	1.4	1652	0.735	61.0	
legina, Sask.	103 15				395	97.2	1.0		1025	0.731	62.0	
algary, Alta.	103 15				407	97.5	1.2	1.3	1641	0.738	60.2	
dmonton, Aita.	107 15					97.2	1.1	1.7	1629	0.736	60.8	
ancouver, B.C.	104 16				409	97.7	1.1	1.2	1677	0.752	56.7	
ictoria, B.C.	103 16				402	97.7	1.1	1.2	1650	0.750	57.2	
		÷.			r	2 T			```			
Ly erage:*	101 15	5 182	254 30	1 362	406	97.2	1.1	1.7	1660	0.741	59.5	· ·
This is the averag	e for al	l the	sample	s testo	eđ∙	• •		•			• .	•
TABLE III - AVER	AGE RESU	LTS F	OR COM	ARISON	, 							
	AGE RESU			مندر بين كار الرازي (18- ي	380				1579	0.732	61.8	
anada, 1916		0 192	237 27	0 330		97.1			1579 1695	0.732 0.737	61.8 60.5	
anada, 1916 anada, 1923	125 17	0 192 0 193	237 27 255 29	0 330 6 358	380							-
anada, 1916 anada, 1923 anada, 1924	125 17 120 17	0 192 0 193 3 195	237 27 255 29 249 28	70 330 96 358 98 347	380 423	97.1			1695	0.737	60.5	
anada, 1916 anada, 1923 anada, 1924 anada, 1925	125 17 120 17 113 17	0 192 0 193 3 195 4 199	237 27 255 29 249 28 258 29	70 330 96 358 98 347 99 359	380 423 410	97 .1 97 . 4			1695 1662	0.737 0.736	60•5 60•8	
anada, 1916 anada, 1923 anada, 1924 anada, 1925 anada, 1926	125 17 120 17 113 17 116 17	0 192 0 193 3 195 4 199 4 191	237 27 255 29 249 28 258 29 256 30	70 330 96 358 98 347 99 359 90 360	380 423 410 412	97.1 97.4 97.0			1695 1662 1701	0.737 0.736 0.739	60•5 60•8 60•0	
anada, 1916 anada, 1923 anada, 1924 anada, 1925 anada, 1926 anada, 1927	125 17 120 17 113 17 116 17 110 16	0 192 0 193 3 195 4 199 4 191 1 189	237 27 255 29 249 28 258 29 256 30 259 30	20 330 30 358 38 347 99 359 90 360 94 366	380 423 410 412 410	97•1 97•4 97•0 97•4			1695 1662 1701 1681	0.737 0.736 0.739 0.739	60.5 60.8 60.0 60.0	
anada, 1916 anada, 1923 anada, 1924 anada, 1925 anada, 1926 anada, 1927 anada, 1928	125 17 120 17 113 17 116 17 116 17 110 16 107 16	0 192 0 193 3 195 4 199 4 191 1 189 0 186	237 27 255 29 249 28 258 29 256 30 259 30 255 29	70 330 90 358 98 347 99 359 90 360 94 366 98 359	380 423 410 412 410 416	97.1 97.4 97.0 97.4 97.0			1695 1662 1701 1681 1693	0.737 0.736 0.739 0.739 0.741	60.5 60.8 60.0 60.0 59.5	
anada, 1916 anada, 1923 anada, 1924 anada, 1925 anada, 1926 anada, 1927 anada, 1928 anada, 1928 anada, 1929	125 17 120 17 113 17 116 17 116 17 110 16 107 16 107 16 102 15	0 192 0 193 3 195 4 199 4 191 1 189 0 186 3 181	237 27 255 29 249 28 258 29 256 30 259 30 255 29 255 30	70 330 90 358 98 347 99 359 90 360 94 366 98 359 90 360 94 366 98 359 90 363	380 423 410 412 410 416 409	97.1 97.4 97.0 97.4 97.0 97.0 97.3			1695 1662 1701 1681 1693 1667	0.737 0.736 0.739 0.739 0.741 0.737	60.5 60.8 60.0 60.0 59.5 60.5 60.5	
anada, 1916 anada, 1923 anada, 1924 anada, 1925 anada, 1926 anada, 1927 anada, 1928 anada, 1929 anada, 1929 anada, 1930	125 17 120 17 113 17 116 17 116 17 110 16 107 16 107 16	0 192 0 193 3 195 4 199 4 191 1 189 0 186 3 181	237 27 255 29 249 28 258 29 256 30 259 30 255 29 255 30	70 330 90 358 98 347 99 359 90 360 94 366 98 359 90 360 94 366 98 359 90 363	380 423 410 412 410 416 409 411	97.1 97.4 97.0 97.0 97.0 97.0 97.3 97.0		•	1695 1662 1701 1681 1693 1667 1663	0.737 0.736 0.739 0.739 0.741 0.741 0.737	60.5 60.8 60.0 60.0 59.5 60.5	
anada, 1916 anada, 1923 anada, 1924 anada, 1925 anada, 1926 anada, 1927 anada, 1928 anada, 1929 anada, 1930 hited States,	125 17 120 17 113 17 116 17 116 17 110 16 107 16 107 16 102 15	0 192 0 193 3 195 4 199 4 191 1 189 0 186 3 181 5 182	237 27 255 29 249 28 258 29 256 30 259 30 255 29 255 30 255 30 254 30	70 330 16 358 18 347 19 359 10 360 14 366 18 359 10 360 14 366 10 359 10 363 11 362	380 423 410 412 410 416 409 411	97.1 97.4 97.0 97.0 97.0 97.0 97.3 97.0			1695 1662 1701 1681 1693 1667 1663	0.737 0.736 0.739 0.739 0.741 0.741 0.737	60.5 60.8 60.0 59.5 60.5 60.8 59.5	
anada, 1916 anada, 1923 anada, 1924 anada, 1925 anada, 1926 anada, 1927 anada, 1928 anada, 1928 anada, 1929 anada, 1930 mited States, July 1929	125 17 120 17 113 17 116 17 116 17 110 16 107 16 107 16 102 15 101 15	0 192 0 193 3 195 4 199 4 191 1 189 0 186 3 181 5 182 - 187	237 27 255 29 249 28 258 29 256 30 259 30 255 29 255 30 255 30 254 30	70 330 16 358 18 347 19 359 10 360 14 366 18 359 10 360 14 366 10 359 10 363 11 362	380 423 410 412 410 416 409 411 406	97.1 97.4 97.0 97.4 97.0 97.3 97.0 97.2			1695 1662 1701 1681 1693 1667 1663	0.737 0.736 0.739 0.739 0.741 0.737 0.736 0.741	60.5 60.8 60.0 60.0 59.5 60.5 60.5	
anada, 1916 anada, 1923 anada, 1924 anada, 1925 anada, 1926 anada, 1927 anada, 1928 anada, 1929 anada, 1930 bited States,	125 17 120 17 113 17 115 17 116 17 110 16 107 16 107 16 107 16 102 15 101 15	0 192 0 193 3 195 4 199 4 191 1 189 0 186 3 181 5 182 - 187 2	237 27 255 29 249 28 258 29 256 30 259 30 255 29 255 30 255 30 254 30	70 330 90 358 98 347 99 359 90 360 94 366 98 359 90 360 94 366 93 359 90 363 91 362 378	380 423 410 412 410 416 409 411 406	97.1 97.4 97.0 97.4 97.0 97.3 97.0 97.2			1695 1662 1701 1681 1693 1667 1663	0.737 0.736 0.739 0.739 0.741 0.737 0.736 0.741	60.5 60.8 60.0 59.5 60.5 60.8 59.5	

.

للواد فراك

•

1.0

· · · · ·

Comparison of Results

-16--

It is quite interesting to compare the above figures with others obtained in somewhat the same way. Table III gives the average results of 88 samples collected in Canada presumably in 1916, and reported by the laboratories of the Repartment of Inland Revenue': the average results of the following number of samples collected in Canada in the year indicated: 48 in 1923: 59 in 1924? 73 in 1925 : 76 in 1926 : 83 in 1927 : 77 in 1928 : 84 in 1929 : and 124 in 1930; the average results of 162 samples collected in the United States during July, 1929, and reported by the U.S. Bureau of Mines , and the essential features of the specification (revised June 11th, 1929) for motor gasoline adopted by the Specification Board of the United States for the use of the various department and independent establishments of the United States Governments. When judged by the distillation range, which is the ordinarily accepted standard. it will be observed that the gasoline sold during the present year shows an average of good quality with practically the same volatility as that sold during 1929. According to the data in Table III and the distillation curves in Figure I, the gasoline marketed in Canada during August, 1930, was superior to that sold in the United States during July, 1929, and to the United States Federal Specifications for the United States Government motor gasoline.

Since 1925, there has been a gradual change in the characteristics of the average gasoline marketed in Canada, as indicated in Figure II¹⁷. This change is particularly noticeable at the lower end of the distillation range as the average temperature of the first drop, 10 per cent and 20 per cent points has been lowered. The average temperature of the 50 per cent, 70 per cent and 90 Per seem points has remained fairly constant. The average temperature of the end point has been lowered.

The lowering of the average first drop, 10 and 20 per cent points is probably due to the increased production of gasoline from natural gas and the

mpl	θ •	Inde: No.	spec.	Deg.	lst drop			LATI(50%			End point	Reoo-	Resi-	Distil- lation		
10.		° _F .	grav.	ITA				°F•			°F.	very	due	loss		
4.	Shell	1821	0.750	57.2	108	162	195	293	347	397	427	96.5	1.0	2.5	•	
. 8	Shell .	1814	0.752	56.7	106	164	196	290	344	394	426	97.0	1.3	1.7		
3.	Erie Oil Co.	1803	0.750	57.2				292			416	97.0	1.0	2.0	• .	
9.	Blue Sunoco	1798	0.765	53.5				284			424	97.0	1.2	1.8	. •	
5.	Cyclo	1790	0.784	49.0	110	164	193	284	340	391	418	97.0	1.0	2.0		
2.	Perfection	1781	0.747	57.9	104	158	194	283	334	392	420	97.0	1.2	1.8		
L	Blue Sunoco		0.761	54.4				281			423	97.5	1.0	1.5	•	•
1.	Sunoco		0.762	54.2				281			423	97.0	1.2	1.8		• 、
2.	Cyclo		0.772	51.8				282			420	97.0	1.1	1.9		
2.	Blue Sunoco		0.765	53.5				281			421	97.0	1.2	1.8		• •
5.	Richfield		0.759	54.9				276			418 '	98.0	d. 2	0.8	•	
0.	Super Power		0.745	58.4		-	=	277			414	97.0	1.1	1.9		
	Average:		0.759	54.9				284			421	97.1	1.1	1.8	·•	•
(TABLE V - TEN PER	CENT	OF SAM	PLES H	AVIN	; MI	IIMU	1 INI	DEX*	NUMB	ERS	· · · · · · · · · · · · · · · · · · ·				7
											·.					
8.			0.697	71.5	-			173			393	97.5	1.3	1.2		,
3.	Super High Grade			64.0				218		295	364	97.5	1.0	1.5		
1.	Koolmotor		0.722	64•5				218		329	374	97.0	1.0	2.0	-	*
9.	Regal Ethyl		0.723	64.2				208			388	0.80	1.0	1.0	~	
4.	Noroco		0.717	65•9				205			400	97.5	1.2	1.3	a.	
8.	Regal	1484	0.718	65.6				206			404	97.5	1,1	1.4		
7.	No-Nor	1488	0.730	62.3				228			365	97.5	1.0	1.5	•	
8.	Regal Ethyl	1492	0.720	65.0	97	142	159	209	250	336	396	97.5	1.1	1.4		•
3.	Super Quality	1499	0.719	65.3		•		215		-	398	96.5	1.1	2.4	•	· •
	High Life Motor	1506	0.720	65.0	• 9 6	139	159	213	259	343	393	97.0	1.1	1.9	-	• ·
	Regal	1507	0.717	65.9	96	140	156	207	252	340	412	97.5 ·	1.3	1.2		• .
5.	NCKUL				105	150	170	222	261	326	378	97.0	1.0	2.0		
5. 7.	Maple Leaf	1507	0.717	65.9	105	TOO	T 10		COT	UNU	0.0		T • • •	~••		

the sum of the following points in the di 10%, 20%, 50%, 70%, 90% and end point.

1

.

increased use of cracking equipment at the refineries. The lowering of the average end point with a corresponding smiller difference between the average 90 per cent point and average end point, is probably due to the use of more efficient fractionating equipment such as bubble towers, etc., at the refineries.

In order to determine the variation in quality of the gasoline being sold, the average of the 12 samples (approximately 10% of the total 124 samples) having the highest index numbers and the average of the 12 samples having the lowest index numbers was obtained as in preceding years. The results are shown in Tables IV and V.

<u> </u>	.923	1924	1925	1926	1927	1928	1929	1930	
Maximum 10% 1	791	1806	1821	1815	1823	1791	1773	1787	•
Minimum 10% 1	.500	1428	1497	1524	1518	1488	1503	1471	<u></u>
	291	378	324	291	305	303	. 270	316	

Table VI shows the difference between the average index numbers of the maximum 10% and minimum 10% of the samples collected in Canada in the eight years, 1923 to 1930. The difference between the two averages has been used previously for the purpose of comparison, as a measure of the variation in quality. It will be observed that the variation in quality during 1930 was greater than that in the past four years.

It will be further observed that the average index number, namely 1787, of ten per cent of the samples having the highest index humbers of all those examined in 1930, is higher than the average index number of a similar grade of samples examined in 1929. This indicates that the average volctility of that grade of samples was lower than the average volctility of a similar grade examined in 1929. It will be noted that the average index number, namely 1471, of ten por cent of the samples having the lowest index numbers of all those examined in 1930 is lower than the average index numbers of similar grades of samples examined since 1924. This indicates that the average volatility of that grade of samples was greater in 1930 than the average volatility of similar grades of samples examined in the past five years.

Accordingly, it may be said that the lowest grade of samples examined in 1930 was less volatile than a similar grade examined in 1929, and the highest grade of samples examined in 1930 was more volatile than similar grades examined in the past five years.

-18-

List of References

1. Chemist, Fuel Research Laboratories, Ottawa.

- 2. Investigations of Fuels and Fuel Testing, Mines Branch, 1923 to 1928 inclusive, and Memorandum Series, "Gasoline Survey for 1929" (preprint).
- 3. The hearty support and cooperation of the Department of Pensions and National Health in taking the samples is gratefully acknowledged.
- 4. Chemical and Metallurgical Engineering, Vol. 29, No. 22, Page 970. Investigations of Fuels and Fuel Testing, 1923, Page 53.

5. U. S. Bureau of Standards Circular No. 154.

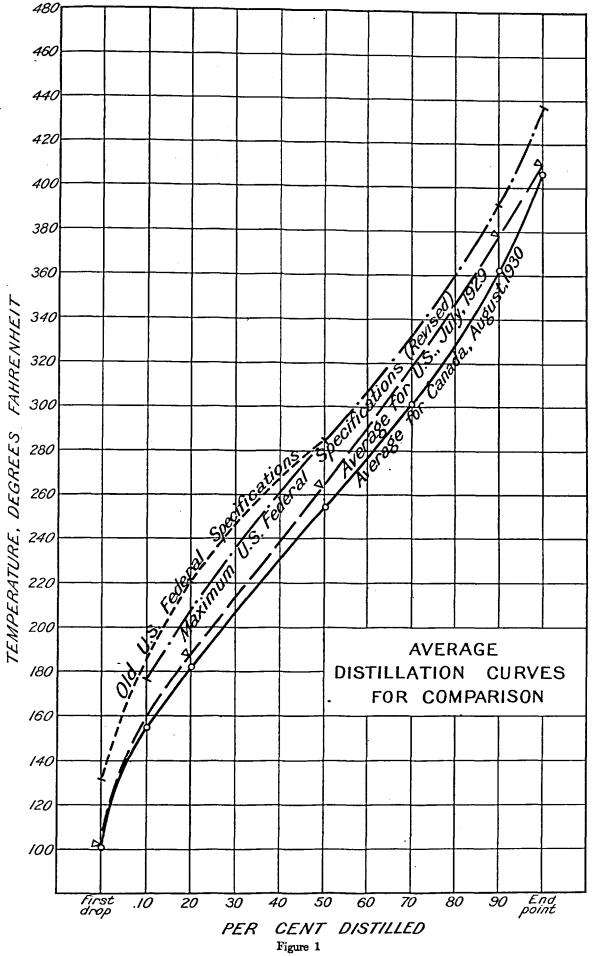
- 6. Gasoline Survey reports in Investigations of Fuels and Fuel Testing, 1927 and 1928.
- 7. Department of Inland Revenue, Canada, Bulletin No. 362 ("Gasoline").
- 8, 9, 10, 11, 12 & 13. Investigations of Fuels and Fuel Testing, Mines Branch, 1923, 1924, 1925, 1926, 1927 and 1928 respectively.
- 14. Mines Branch, Department of Mines, Canada, Memorandum Series, "Gasoline Survey for 1929" (preprint).

15. U. S. Eureau of Mines, Report of Investigations, Serial No. 2959.

- 16. U. S. Government Master Specification No. 622a.

17. U. S. Bureau of Mines, Report of Investigations, No. 2995.

Summary


One hundred and twenty-four samples of gasoline were collected in August, 1930 from 13 widely deparated Canadian cities, and may, therefore, be accepted as representative of the gasoline sold in Canada at that time.

The analyses and detailed examinations show that the average gasoline sold during 1930 was of good quality with practically the same volatility as that sold during 1929, and that the variation in quality during 1930 was greater than that in the past four years.

As indicated by the distillation range, there has been a gradual change in the characteristics of the average gasoline marketed in Canada since 1925. The average temperature of the first drop, ten per cent, twenty per cent and also the end point has been lowered, while the average temperature of the fifty per cent, seventy per cent and ninety per cent has remained fairly constant.

For comparison of the higher and lower quality gasolines two groups, each comprizing ten per cent of the total number of samples examined, were chosen as in former surveys. The higher quality group of the 1930 samples was more volatile than the corresponding groups in the past five years, while the lower quality group of the 1930 samples was less volatile than the corresponding group in 1929.

According to the distillation range and other data obtained, the gasoline marketed during August, 1930, as represented by the samples collected for this survey, was superior to that sold in the United States during July, 1929, as represented by the analyses of samples reported by the United States Bureau of Mines, which gasoline in turn was superior to the United States Federal Specifications for United States Covernment notor gasoline.

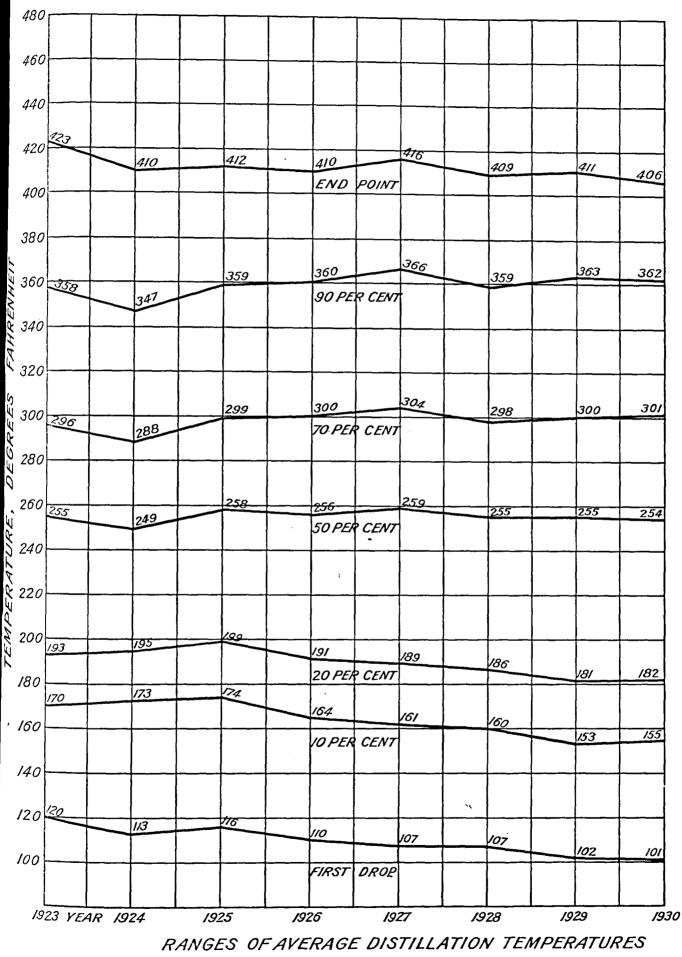


Figure 2