IMINE BRANCH

DEPARTIANTI OF MTNES
OTTATA - CAHADA

NEW PYROTETALLURGICAL IABOR:TORY
FOR TEST AD RESEARCH OIT IRON ATD STEEL

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

- IDNES BRANCH -

DEPARTMEMT OF MTNES, OTTAWA, CATHADA
Memorandum Series \quad April, 1929 . Number 38

NEF PYRORETILLURGICAL LABORATORY
FOR TEST AND RESEARCH ON IRON AND STEEL
by T. B. Tinm* and T. W. Hardy**

In vien of the groving importance of the iron and steel industry in Canada, the Department of aines is providing laboratory facilities for test and research thereby extending to that industry the same degree of co-operation that has proved so advantageous to the non-ferrous mining industry. The Department has erected in Ottama as an addition to its present Ore Testing Laboratorics, a ner pyrometallurgical laboratory, which is being cquipped with laboratory scale and somi-conmercial roasting, calcining, sintering, metallizing, melting, heat-treating, and standord laboratory testing and metallographic equipment for conducting extensive test and research on ferrous and non-ferrous ores, metals and their alloys, especially. iron and stecl.

[^0]At the time the Mines Branch was organized into its various Divisions in 1907, the most pressing problem confronting the Division of ore Dressing and Metallurgy was the beneficiation of Canadian iron ores and consequently the first laboratory to be built was equipped for beneficiation tests. Twenty-ene ares from Nova Scetia, New Brunswick, Quebec, Ontario, and British Columbia were tested, the results shoring that in many cases marketable products could be obtained, suitable for use in the iron blast furnaces. However, the work mas not productive of establishing an iron ore industry as primary ores of foreign origin could be bought and laid down at Canadian furnaces cheaper than Canadian beneficiated ores.

During the mar and post-rar years, very little investigative rook Was done by the Mines Branch on iron ores or on any phase of ferrous metallurgy. This lack of attention may be attributed to two reasons: First there appeared to be no hope for the immediate utilization of Canadian iron ores due to the ready availability of cheap foreign ores; and second, to the demands for ore treatment test and research by the rapidly growing nonferrous industry, stimulated by the urgency for the production of war metals. The investigative work of the Division of Ore Dressing and Metallurgy mas therefore directed to the treatment of non-ferrous ores. Nevertheless the laboratory equipment for the beneficiation of iron ores has been kept up-todate by the purchase from time to time of new equipment as progress has been made in other countries. Developments have been closely matched for their application to Canadian ores.

No large deposits of primary iron ores available for use in blast furnaces arc known in Canada, hence, she has to rely on foreign ores to supply her requirements. The two chief sources are the United States for Ontario, and Newfoundland for Nova Scotia furnaces. However, located within reasonable distances of her furnaces arc large deposits of the following types,
all of thich requirc bencficietion or som special ncthod of trantricnt for thcir utilize.tion:-

1. Sideritcs or iron cerbonetcs
2. Lo:i-gradc, lo:--sulphur megnctitcs
3. Yigh-sulphur nagnctitos
4. Eignctitc-hcinetitc rixturcs
5. Titnaifcrous zngectitos

It is felt that the tiac is rpproachine :hch it : ill bo ceonomicelly possiblc to utilize conedion orcs to supply Cencien furnce requirements and the iron and stocl incustry :rith products of Cenadion oricia. The ennually increseins porscntege of ores bcine bencficietcd in other countrics together : ith the dercloments in the tceniquc of bencficietion processes and the vest anount of cxpcrimentel rork beine donc on dircet roduction processes i: the past fow yocrs herc brought closcr the tire whon Conadien orcs cen be utilized. It is bolicvod thet miztures of Conedion boncficietcd orcs in tho propen proportions :illl eive eradcs of pis ircn morc sedepteble to the production of dircrsificd iron and stecl products. It is therefore the purposc of the Division of Orc Drossing and intellurer to investigete the Ecncficiation of Candian orcs of the forcgoing typos end elso their adaptebility to dircet reduction or spongc iron processcs.

Dincet rcduction procosscs arc under invostisction in yorway, Siodon, Germay, Jepen, end the Unitod States end lerge suns of money are being spent to put then on c. comorcisl besis. In the Europen countrics, Therc high-eradc screp is scarce, processes hatc bocn dcroloncd on a prosumbly coonozic basis and production plants hate becn croetcd. It is claincd that sponge iren is a supcrior product for the zenufecturc of hieh grode.irons and stcels. The rectellurgists of the Fincs 3rench heve beca ead erc retehing closcly the developments of thesc processcs, in vic: of their epplication to Canadion orcs and conditions. The plen of investigation as outlincd is to

Cetoranc, first tho quality of the irons onc stccls procuced fro: spone iron ance fron Cenndien orcs in comprison : ith cocoptod erades mace by

 conditions. Diroct refucticn processes :any provide a aoro suitable bese for the menufscture of high grece irows me stecls and, wilo thore is 20 irrceitetc li!eclihooc of such proccsses cmerocching to ony apprccieble catont upon proscnt blest furmace opcrations, it is possible thet in tinc stcol-maling prectice may ke modificd to porait of et least a partial substitution of sponec iron for tis iron in the manufceture of tho nore corren Grades of stcel.

Sensdion titmiforous anenctites ore c souree of iron, upon which littlo inrestisetire vorl incs bocn zonc. These ores contein sinll emounts
 possikility of recorcring the vanciun contcnt lones intorost to the proble: of their somercinl utilization, anc mill bo investigntcr.

The meing of clloy stcols in concen is in its infoner but in other countrics this brenoh of the stocl industry hes had \approx remerisble oxpansion in the last ton ycers. Ench yenr secs the ficle for alloy steel $\because i c a n$ and statistics show thet progress in the dllor stecl industry has been oightoen tives as rapic as in tho ecacrel stccl incustry ruring the pest fiftenn yons. The corcloment of compositions of allor stecls ent the propor treatmont of such stccis to moct special requircmonts are constantly recurring probloms. In those ecvelopments Conecie cencot afford to les bckinc, particularly in vici: of the fact thet the alloy stccl incustry provices the most importent merlet for our niclecl end mer provicc importent outlcts for cur coppor, molybicnum and other non-furrous motels. To shoulc
be es rell-informos. as cre tho procucers in othor countrios in the techniquo ef making sud trcating alloy stcols.

The olcotric melting furneco is perticularly rell ceapted to the making of elloy stocls but since chcep clectric poror is not generolly areilable, the bulk of the production has beon mace by the open hearth process. In spitc of the lack of choop poilcr, the cloctric furnace has madc and is moking rapic strices, ani cortain gracs of alloy stocl are boine produccd in largc cloctric molting furneces at \approx cost that cnables them to compotc successfully rith open hocrth stcols on a prico basis. It socms alcer that :rith our chen hydro clcctric po.icr ie havo one edventago that sioule offsct to consicerable catcnt thet of mess production helc by the procuccrs in other countrics one it oould opposr logical that our dovelopmont in the ficle of specinl stcols should bo with the olectric furnace. Fith the facilitios avoilable on cempletion of the nor laboratorics, the inines Brazch oan be of consiccrable service to the stecl incustry, in the rorking out of elcetric stecl making tcchniquc, in the corclopment jf nor uscful compositions, in the \because orking out of mothors of hoat trontment and in co-oporating rith stcol proaucors in ovcreomins iifficulties encountoror in prectical oporations.

It is anticipatce that the investigetive rork aill follo: three distinct but closcly rclatcd lines:-

1. Brone probloms conncetci. With the boncficiation anc. utilization of Cenadian iron ores, enc the investigation of both ncts and cstablishce processes of iron anc. stccl production and their applicability to Canceian orcs and concitions.
2. The dovclonment of nc: stccls an? other allovs and the rorkins out of the propor methors of molting, rorloins, anc treating such alloys for specific uses.
3. Co-operation frith produces and consumers of iron one stael products in solving specific problems.

The nee prrometellurifeal laboratory :which hes been erected is
105 fact long by 56 fact mic one ,ill house the following furn acc equipment:

Ficlting Equipment

1. in \therefore jex-ilorthrup high frequency induction melting unit, consisting of the following main items:-

Ma.) Zotor-seneretor sect, induction trace motor rotor at $260 \mathrm{~h} . \mathrm{p} ., 3$ phase, 60 cycle, 550 volt, $1800 \mathrm{r} \cdot \mathrm{p} . \mathrm{m}$. Generator rater at 150 kilowatts, output at 0.9 no:.cr factor; 900 volt, 900 cycle, single phesc. Complete with s:itchborre, condenscrs, etc.
(b) \therefore 500-pouni molting furnace, (nosc-tilt) complete with hoist for tilting.
(c) : 50-pouni melting furnace, erronecre to operate from the 150 kilowatt motor-generater sot but not simultancously with the 500-pound furnace.
2. A onc-ton Hercult type are melting furnace complete
\because ith transformers one electrical equipment. Transformer equipment rill consist of three single phase $250 \mathrm{~K} . \mathrm{V} . \mathrm{L}$. units with special provisions to permit a selection of voltages over a wide range. This is to provide for the use of these transformers for additional electric furnaces.
3. \therefore gas-fired crucible brass melting furnace.
4. is small cupola furnace for cast iron.

The melting equipment will be served by a 3 -ton overhead crane.
Facilities for the pouring of ingots and for other purposes will be provide.

Roasting, Sintering and ietallizing Furnaces

1. A. 36-inch inside diemeter, 6-hearth, mechenically rabbled, Feresioff roasting furnace, \quad ith top drying hearth. This furnace has been in use for some years on non-ferrous ores.
2. A Tright-Eloyd sintering unit, consisting of tric pans. This unit has been in use for some years for marine sintering tests on iron cre eoncentrates, flue dust, and non-ferrcus or ooncentrates.
3. A rotary laln type, oil-fired, metallizing furnace, 22 feet long, large diameter ≤ 2 inches for 6 feet at the discharge end, tapered section 4 feet long; smell dimeter 21 inches for 12 feet at the feed end. This furnace has teen in use for metallizing the iron content in ilmenite ores.
4. \therefore 60-kiloratt rotating retort electric furnace, batch type, especiaily designed for moking spon§e ircn by gaseous or solid fuel reduction of the ore. Capacity about 250 pounds of sponge iron.

Space is provided for supplementing the akove equipment as required. \therefore dditional metallizing equimert will be installed to investigate the process or processes adaptable to Canadian iron ores and conditions.

Eeat Treatine Furnaces
\therefore separate laboratory 54 feet lons by 14 feet wide is provided for the heat treatine furnaces. It is located on a mezzanine floor at one end of the building extendine for its full width. The equipment will consist of:
\therefore box-type electrically heated iurnace, inside
eimensions approximately 12 inches mide by 24
inches deep by 9 inches high.
A box-type electrically heated furnace, inside dimensions approximately 20 inches wide by 36 inches deep by 18 inches high.

A pot-type electric furnace, inside dimensions of pot 12 inches diametsr by 18 inches deep. in electrically heated tempering oven. Apprcximate dimensicns 24 inches mide by 21 inches deep by 12 inches high.

An electrically heated oil tempering bath, approximatè dimensions 30 inches long by 16 lnches wide by 12 inches deep.

Quanching tanks and'cther miscellanecus equipment. Ad̃iticnal furnaces and cther equipment will be installed es required.

Pyrcmeter Equipment

A separate labcratcry 21 feet long by 14 feet ride is provided for the pyrometer equipment. It is located above the Itom hcusing the motor generator set and -ther alectrical equipment for the high frequency furnace, and is adjacent to the heat-treating lekoratory. In addition to hcusing the temperature reccraing controller for the heat treating furnaces, it \quad fill also serve as a laboratory for the calibration and checking of pyrometer equipment. Each furnece is equipped rith a Leeds and Northrup recording controller and there. is provided for checking and calitrating purposes an
electric furnace specially designed for checking thermocouples, a portable double-scale potenticmeter indicator for rare and base metal thermocouples, and a triple . range oftical pyrometer.

Mechanical and Physical Testing Equimment

1. laberatcry $21 \frac{1}{2}$ feet long ky $18 \frac{7}{2}$ feft :ide is keing provided for mechenical and physical testing equiment :hich :ill consist of the folloning:-

An imsler tensile testing mechine of 100 tons capaoity, complete :.ith arrangements for compression, transverse, end tending tests.

An Amsler single blo.: impact testing machine, capacity 240
ft-lbs. construsted for coth Izod and Charpy tests.
in Clsen sombination toughness and torsion testing machine
in Olsen bend testing machine.
An Alpha Brineil hardness testing machine.
A Rock:ell hardness tester - Model 3H.
A Shore sclerobsope - Licdel D.
A Vicleers hardness testing machine.
Other testing machines vill be added as the occasion demands.
Metallographic Equipment.
\therefore laboratory $21 \frac{1}{2}$ feet long by $18 \frac{1}{2}$ feet :ide is being provided for metallographic equipment rhich inill consist of the follorring:-

A Zeiss 8 -inch by lo-inch horizontal metallographic
unit; complete rith all necessary accessories.
A Eausch and Lomb binooular microscope
\therefore camera for macrophotography.
A Leeds and Northrup transformation point appardus.
A Rock:ell dilatometer, laboratory model.

Sample preparation machines, including cutting wheel, grinding theels, and polishing machines, for rhich a separate laboratory is being provided. \therefore separate phetrersphic derk rocm, completely -quipped is alsc being provided edjecent to the metallceraphic laboratory.

Chemical Laboratories
The chemical labcratories of the Division are fully equipped and staffed fer the conducting of analyses and special chemical investigations in connection rith ores and metallurgical products.

Dechanicel Shops
Complete facilities for the machining of test Ears and ether metallurgicel shmples are afforded ky the Iechenical Division of the Mines Branch, which maintains matine shop, forging shop end other sarvices necessary for maintenance and dovelopment of the mechanical side of the Brancli's sctivities.

[^0]: * Chicf Engincer, Division of Ore Dressing and Netellurgy, hincs Branch, Department of lines
 ** Lfetellurgical Engincor, Division of Orc Drcssing and Motallurgy, Mines Branch, Department of kines

