

Geological Survey of Canada Scientific Presentation 130

Geology and geochemistry of mafic and ultramafic bodies in the Shebandowan mine area, Wawa-Abitibi terrane: implications for Ni-Cu-(PGE) and Cr-(PGE) mineralization, Ontario and Quebec

K. Kuster¹, C.M. Lesher¹, and M.G. Houlé²

¹Mineral Exploration Research Centre, Harquail School of Earth Sciences, Goodman School of Mines, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario

²Geological Survey of Canada, 490 rue de la Couronne, Québec, Quebec

2022

Presented at: Harquail School of Earth Sciences Graduate Symposium

Date presented: April 2021

For information regarding reproduction rights, contact Natural Resources Canada at copyright-droitdauteur@nrcan-rncan.gc.ca.

Permanent link: https://doi.org/10.4095/329394

This publication is available for free download through GEOSCAN (https://geoscan.nrcan.gc.ca/).

Recommended citation

Kuster, K., Lesher, C.M., and Houlé, M.G., 2022. Geology and geochemistry of mafic and ultramafic bodies in the Shebandowan mine area, Wawa-Abitibi terrane: implications for Ni-Cu-(PGE) and Cr-(PGE) mineralization, Ontario and Quebec; Geological Survey of Canada, Scientific Presentation 130, 25 p. https://doi.org/10.4095/329394

Publications in this series have not been edited; they are released as submitted by the author.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2022

Abstract

The Shebandowan Ni-Cu-(PGE) deposit occurs in the Shebandowan greenstone belt in the Wawa-Abitibi terrane. This deposit is one of a few economic Ni-Cu-(PGE) deposits in the Superior Province and one of a very few deposits worldwide that contains both Ni-Cu-(PGE) and Cr-(PGE) mineralization. The mafic-ultramafic successions in the area comprise abundant flows and sills of tholeiitic basalt and lesser Al-undepleted komatiite (MgO >18 wt%, Al₂O₃/TiO₂ = 15–25), the latter indicating separation from mantle sources at shallow levels. Siliceous high-Mg basalts (MgO 8–12 wt%, SiO₂ > 53 wt%, TiO₂ < 1.2 wt%, La/Sm_[MN] < 1-2) are relatively abundant in the area and likely represent crustally contaminated komatiites. Ultramafic bodies in the Shebandowan mine area comprise at least three or four komatiitic sills (A-B, C, D) and at least two komatiitic flows (E, F), all of which are altered to serpentinites or talc-carbonate schists with relict igneous chromite and rare relict igneous orthopyroxene-clinopyroxene. Unit A-B contains pentlandite-pyrrhotite-chalcopyrite-pyrite-magnetite mineralization, occurring as massive sulfides, sulfide breccias, or stringers, and subeconomic chromite mineralization in contorted massive bands varying from a few millimetres up to 10 metres thick. The localization of massive and semi-massive Ni-Cu-(PGE) ores along the margins of Unit A and the paucity of disseminated and net-textured ores suggest tectonic mobilization. Chromite is typically zoned with Cr-Mg-Al-rich (chromite) cores and Fe-rich (ferrichromite/magnetite) rims due to alteration and/or metamorphism, but rarely contains amoeboid magnetite cores. The thickness of chromite in Unit B is too great to have crystallized in cotectic proportion from the komatiitic magma and a model involving dynamic upgrading of magnetite xenoliths derived from interflow oxide facies iron formations is being tested.

Introduction

- Archean and Proterozoic magmatic Ni-Cu-(PGE) and Cr-(PGE) deposits preferentially hosted by komatiitic ultramafic rocks
- Close association between Ni-Cu-PGE and Cr is much less common, e.g. Bird River Sill, Manitoba; Esker Intrusive Complex, Ontario; Shebandowan, Ontario; and Uitkomst Complex, South Africa
- Reasons for associated Ni-Cu-PGE and Cr mineralization are not clear, but must reflect a confluence of favourable factors
 - 1) Intermediate-Mg, high-Cr komatiitic magma
 - 2) High magma flux to facilitate thermomechanical erosion and high magma:sulfide and magma:oxide ratios (R factors)
 - 3) Access to crustal sulfides and oxides

Regional Setting

- Abitibi-Wawa terrane (ON-QC): numerous small-medium high-grade (e.g., Alexo, Shebandowan) and few large low-grade (e.g., Dumont) Ni-Cu-(PGE) deposits, but Cr-(PGE) mineralization restricted to Shebandowan
- Bird River Uchi Oxford-Stull La Grande – Eastmain "BUOGE superdomain" (ON-QC): few known world-class Cr-(PGE) deposits (e.g., Black Thor-Blackbird), numerous small Cr-(PGE) deposits/

Houlé et al. (2020) TGI5-OF

Shebandowan Greenstone Belt

Legend:

Metasedimentary rocks with minor calc-alkaline to alkaline intermediate volcanic rocks and intrusions

Intermediate volcanic and intrusive rocks

Intermediate to felsic volcanic rocks

Calc-alkaline basalts

Felsic volcanic rocks

Massive to pillowed tholeiitic basalts

Modified from Lodge (2016) Prec. Res.

Tona

Tonalites, granodiorites, granites, monzonites and syenites intrusions

Banded iron formation

Ultramafic flows and sills

Gabbro intrusions

6

Modified from Sotiriou et al. (2019) Lithos

Shebandowan Ni-Cu mine - Geology

Greenwater Assemblage

- Older succession
 - Tholeiitic basaltic flows, flow breccias, and tuffs
 - Haines Gabbro
 - Ultramafic sills
- Younger succession
 - Tholeiitic to calc-alkaline basalts
 - Ultramafic flows
 - Interflow oxide-chert iron formation

Shebandowan Assemblage

- High-Magnesian basalts
- Timiskaming-type rocks
- Granitoid intrusions

Modified from Morton (1982) Ph.D.

Ultramafic bodies

- 3 to 4 "sills" (A-B, C, D)
 2 "flows" (E, F)
- Thinner sills/flows (C-D-F) are undifferentiated peridotite
- Thicker sills/flows (A-B-E) are differentiated harzburgite to olivine gabbro
- Flows are associated with oxide-chert iron formation and basaltic hyaloclastite (to be confirmed)
- Variably altered to greenschist facies serpentine – magnetite ± tremolite ± talc ± carbonate assemblages

9

Mafic volcanic rocks

pyroxenites

Structural complexity

Deformation stages

D1: WSW-plunging mineral lineations

D2: ENE-plunging isoclinal folds and mineral lineations, steeply dipping foliations

D3: N-S steeply plunging kink folds

D4: Strike-slip faulting (Crayfish Creek Fault)

Controversial facing direction

From plan view facing South, sulfides near bottom, chromite on top (Osmani, 1997 - OGS Report)

From structural and stratigraphic considerations south of the fault, sulfide ore lies on top of ultramafic sill (Morton 1992 - *Ph.D.*)

Ore may be mobilized post-folding - planar sheet sheared along contacts in a system with isoclinal folding

Ol+Opx

hebandowan Flow E, DDH30401/240ft

Opx-Cpx Oikocrystic Ol Peridotite

Ol+Opx 🍏 🖉

Shebandowan Flow E, DDH30401/240ft

Ol+Lia

Ol+Opx

Sill B

Harzburgite; Olivine (Ol) + Orthopyroxene (Opx) + disseminated chromite, altered to serpentine + talc + dolomite + magnetite DDH 30468-1030 ft – Plane polarized light

Sill B – Upper zone

Gabbro: Olivine, clinopyroxene, and plagioclase altered to serpentine, tremolite-actinolite + talc (sample R20 – Ramp section)

Shebandowan Lithogeochemistry

- Well-defined olivine accumulation-fractionation trend
- Sill A-B varies between 44 and 13 wt% MgO

 Higher Fe contents of Shebandowan cumulate rocks indicate that they contain lower-Fo olivine and are derived from lower-Mg magmas than the majority of Abitibi komatiites

Shebandowan Lithogeochemistry

- Olivine fractionation/accumulation trend
- Higher Ni samples contain sulfides

OI = olivine, *SuI* = sulfides, *Chr* = chromite, *UM* = ultramafic, *M-UM* = mafic-ultramafic, *GB* = gabbro, *FC* = fractional crystallization

- Dominantly Olivine-(Chromite) fractionation/accumulation trend
- Mostly Cr-saturated, but some in Sill B are Olivine-only cumulates
- Indicates that magma evolved from Chromiteundersaturated to Chromite-saturated

Mineralization – Ni-Cu-(PGE)

Massive sulfides DDH 45171-50 ft Sill A

DDH 78826/145

Average composition (*pXRF*, *n* = 7) 8.4% Ni, 2.0% Cu, 0.2% Co (Houlé et al., unpublished data)

- Pyrrhotite-Pyrite-Chalcopyrite Pentlandite, predominantly massive and
 semi-massive breccias with negligible
 disseminated or net-textured sulfides
- 10.2 Mt @ 1.9% Ni, 1.0% Cu, and 3 g/t Au+Pt+Pd
- Lower Ni/Cu ratio than expected

Breccia sulfides Sample I-15a Sill A

DDH 78826/134.5

Average composition (*pXRF*, *n* = 6) 3.7% Ni, 1.8% Cu, 0.2% Co (Houlé et al., unpublished data)

Mineralization – Chromite

Most rocks contain **cotectic abundances** (50-100:1) of Ol and Chr

Typically altered with **Cr-Mg-Al-rich cores** (chromite) and **Fe-rich rims** (ferrichromite/magnetite) Rare amoeboid magnetite cores (DDH 30414-240ft Sill C) Sill B contains an up to 10m-thick layer of massive chromitite

Massive Chromitite DDH 78819/587 Average composition (pXRF, n = 6) 26.5% Cr, 0.3% Ti, 0.4% Ni (Houlé et al., unpublished data)

Layered Chromitite Intercalation of massive chromitite and peridotite (Photos by M. Houlé)

Chromite Chemistry

Sills: higher Al, lower Ti-Fe **Flows:** lower Al, higher Ti-Fe

Higher-Al, lower Ti-Fe chromite formed at, lower fO₂

UM Body	TiO ₂ (wt%)	MnO (wt%)	Fe ³⁺ / (Fe ³⁺ +Cr ³⁺ +Al ³⁺)
Sill A peridotite	0.5	1.1	0.182
Sill B peridotite	0.8	1.3	0.183
Sill B chromitite	0.6	0.4	0.165
Sill C peridotite	1.9	1.1	0.185
Flow E peridotite	4.0	1.7	0.332
Flow F peridotite	3.9	1.7	0.349
From Morton 1982 Ph.D.			

	Sill A	Sill B	Sill C	Sill D	Flow E	Flow F
Stratigraphic Position	Older basaltic succession		Older basaltic succession	Older basaltic succession	Younger basaltic succession	Younger basaltic succession
Thickness/Length	20-150m* x 6 km		37m x 1.25 km	80m x 0.8 km	115m x 3 km	18m x 1 km
Lithologies	harzburgite – Olivine gabbro		harzburgite – Iherzolite	harzburgite – Iherzolite	harzburgite – Olivine gabbro	harzburgite – Iherzolite
Differentiation	strong		weak	weak	strong	weak
OI Enrichment	mod	erate	high	high	moderate	high
Chr TiO ₂ (%) Chr MnO (%) Chr Al ₂ O ₃ (%) Chr Fe ³⁺ /Fe ³⁺ +Al ³⁺ +Cr ³⁺	ave. 0.5 ave. 1.1 high no data		ave. 1.9 (bimodal) ave. 1.1 intermediate no data	no data no data no data no data	ave. 4 ave. 1.7 ave. 8 ave. 0.34	
Log fO ₂ (ΔFMQ)	-2 to 0	0-2	ave. 2	no data	0-2**	2-4**
Whole rock Mg# Whole rock CaO/TiO ₂ Whole rock Al ₂ O ₃ /TiO ₂	0.83 - 0.78 ave. 19 ave. 21	0.86 - 0.69 ave. 14 ave. 21	no data no data no data	no data no data no data	ave. 0.66 no data no data	0.80 to 0.76 ave. 8 ave. 12
Ni-Cu-(PGE) mineralization	economic	none	none	none	none	none
Chromite mineralization	none	subeconomic	none	none	none	none
Data from Morton 1982 Ph.D.	*multiphase, ** high Ti may underestimate fO2		Mg# = Mg/ (Mg+Fe)	ave.	ave. = average value	

Implications for Cr and Ni-Cu-(PGE) mineralization

Host Units

- Moderately high MgO contents, presence of abundant Olivine with Orthopyroxene-Clinopyroxene rather than just Olivine-Clinopyroxene suggest crystallization from **contaminated low-Mg komatiitic magma**
- Excess cumulus Olivine-Orthopyroxene suggests flow-through crystallization
- Moderate-strong differentiation of thicker units suggest that they **ponded after** accumulating Olivine-Orthopyroxene

Ore Localization

- Massive and semi-massive sulfides along the margins of ultramafic bodies and rare disseminated and net-textured ores suggest **tectonic mobilization**
- Higher-than-expected Cu/Ni ratios suggest incorporation of Cu-rich crustal sulfides (Morton 1982 Ph.D.) or selective mobilization of Cu-PPGE-rich ISS relative to Ni-IPGE-rich MSS (to be tested)
 PPGE = Pt-subgroup of platinum group elements (Pd, Pt, Rh), ISS = intermediate solid solution, MSS = monosulfide solid solution

Sulfur Sources

- Magmas can dissolve and exsolve only very small amounts of sulfide
- Most deposits of this type formed by upgrading of sulfide xenomelts (Lesher & Campbell 1993 Econ. Geol.)
- No known local S sources at Shebandowan mine, but there are **S-rich argillites elsewhere in the belt**

Black sulfidic argillite intercalated with ultramafic flows east of mine area (Photo from Hinz 2018 M.Sc.)

Oxide Sources

- Magmas can dissolve and crystallize only very small amounts of chromite
- Thickness of chromitite at Shebandowan (also Bird River, Lac Fed, Lac des Montagnes, Menarik) are much less than Black Thor, but still greater than can be produced through changes in solubility (e.g., magma mixing, fractional crystallization/assimilation fractional crystallization, changes in pressure)
- Partial melting of iron formation and **upgrading of magnetite xenocrysts** (Lesher et al. 2019 *Geology*) is being tested (including nature of amoeboid magnetite cores)

Interflow black chert magnetite iron formation

Future work in the Shebandowan Mine

- Data compilation from companies
- Fieldwork including field mapping and core logging with sampling the key geological units at the mine site and at the Ontario Geological Survey core logging facility in Conmee Township near Thunder Bay
- Petrographic work
- Mineral chemistry on oxides and silicate minerals (EPMA and LA-ICP-MS)
- Whole-rock and ore geochemistry of the key geological units including both mineralization types – Ni-Cu-(PGE) and Cr-(PGE)
- Sulfur, Rhenium, Osmium and Nd isotope geochemistry

Acknowledgments

Canada

- Geological Survey of Canada Valérie Bécu, Anne-Aurélie Sappin
- Vale Exploration Canada Inc. Joel Hrominchuk and Enrick Tremblay
- University of Minnesota Duluth Dr. Penelope Morton
- Ontario Geological Survey Resident Geologist Program Mark Puumula

University of Minnesota Duluth Driven to Discover

References

- Houlé, M.G., Lesher, C.M., Sappin, A.-A., Bédard, M.-P, Goutier, J., Yang, X.M., 2020. Overview of Ni-Cu-(PGE), Cr-(PGE), and Fe-Ti-V magmatic mineralization in the Superior Province: Insights on metallotects and metal endowment: *in* Targeted Geoscience Initiative 5: Advances in the understanding of Canadian Ni-Cu-(PGE) and Cr ore systems Examples from Midcontinent Rift, the Circum-Superior Belt, the Archean Superior Province, and Cordilleran Alaskan-type intrusions, W. Bleeker and M.G. Houlé, eds.; Geological Survey of Canada, Open File 8722, p. 117–139.
- Hinz, S.L.K., 2018. Geochemistry and petrography of the ultramafic metavolcanic rocks in the eastern portion of the Shebandowan greenstone belt, northwestern Ontario: Unpublished M.Sc. Thesis, Lakehead University, Thunder Bay, Ontario, 157 p.
- Lavigne, M.J., Aubut, A.J., Scott, J., 1990. Base metal mineralization in the Shebandowan greenstone belt: Field trip guide, Institute on Lake Superior Geology, 36th Annual Meeting, Thunder Bay, ON, v. 36, part 2, p. 67–97.
- Lesher, C.M. and Campbell, I.H., 1993. Geochemical and fluid dynamic modeling of compositional variations in Archean komatiite-hosted nickel sulfide ores in Western Australia: Economic Geology, v. 88, p. 804–816.
- Lesher, C.M., Carson, H.J.E., Houlé, M.G., 2019. Genesis of chromite deposits by dynamic upgrading of Fe ± Ti oxide xenocrysts: Geology, v. 47, p. 207–210.
- Lodge, R.W.D., 2016. Petrogenesis of intermediate volcanic assemblages from the Shebandowan greenstone belt, Superior Province: Evidence for subduction during the Neoarchean: Precambrian Research, v. 272, p. 150–167.
- Morton, P., 1982. Archean volcanic stratigraphy, and petrology and chemistry of mafic and ultramafic rocks, chromite, and the Shebandowan Ni-Cu Mine, Shebandowan, Northwestern Ontario: Unpublished Ph.D. thesis, Carleton University, 346 p.
- Osmani, I.A., 1997. Geology and Mineral Potential Greenwater Lake Area, West-Central Shebandowan Greenstone Belt: Ontario Geological Survey, Report 296., 135 p.
- Sotiriou, P., Polat, A., Frei, R., 2019. Petrogenesis and geodynamic setting of the Neoarchean Haines Gabbroic Complex and Shebandowan greenstone belt, southwestern Superior Province, Ontario, Canada: Lithos, v. 324-325, p. 1–19.