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ABSTRACT 

A realistic strength criterion ofi-en used to describe the yielding behaviour of a jointed rock mass 
at a continuum level is the well-known Hoek and Brown criterion. This paper is concerned with a 
3-D stress generalization of the Hoek-Brown failure criterion by rneans of an elliptical fitnctional 
which leads to a smooth deviatoric trace in the stress space. For its incorporation into a finite 
element analysis involving plasticity calculations, the formulation of an implicit stress integration 
algorithm is presented. The key computational methodology alludes to the notion of consistent 
tangent modulus and implicit return mapping schemes (radial and closest point return) for stress 
integration in a finite element analysis. 'Within the context of non-linear elastoplastic analysis, it is 
found that formulation of such consistent modulus and success into achieving numerical efficiency 
are closely intertwined. Indeed, the procedure results into accurate and rapid convergence of the 
displacernent finite element scheme during the search for equilibrium. This means that 
considerable savings in computational time can be achieved for large scale problems. Numerical 
examples which focus on the Hoek-Brown plasticity model are presented in order to fully 
appreciate the robustness of the algorithm, and hence the viability of such method to practical 
problems. 

INTRODUCTION 

Constitutive models find their usefulness when they are used in conjunction with the 

finite element method to describe material behaviour in a general boundary value problem 

setting. For modelling rocks, the Hoek-Brown failure criterion has been widely used to 

characterize strength of material from both laboratory and site data. However, rarely has it 

been regarded as a yield surface and integrated into the theory of plasticity to compute strains 
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and displacements in the yielded rock via finite elements. Coupled with the empirical nature 

of the Hoek-Brown failure criterion, numerical breakdowns in the severe stress regimes have 

in general impeded its application to elastoplastic solutions of equivalent continuum rock 

masses. 

This paper focuses on the generic problem of constitutive stress integration in the context 

of elastoplastic calculations. The computational structure of a finite element analysis which 

involves non-linear material behaviour comprises two major aspects. First, the equilibrium 

corrector must ensure that the integrated stress state and the associated plasticity state 

variables (hardening/softening parameters) conform with the yield condition, i.e. full 

consistency conditions must be met at discrete stages of the solution process. Second, the 

solution of non-linear equations of equilibrium must be consistently linearized in 

conjunction with the integrated stress, a point which is very often overlooked at the 

detriment of accurate numerical computations. 

The key issue of the present discussion arises in the case of large excavations for example, 

when the load increment is no longer infinitesimal in order to justify the approximations 

made during linearization of the finite element equations. The approach chosen to integrate 

the constitutive law then becomes a crucial factor for achieving numerical accuracy and 

stability. Several explicit and implicit integration schemes are being used for elastoplastic 

computations. On the one hand, explicit integration usually requires the determination of 

the elastic-elastoplastic transition through the calculation of a contact stress on the yield 

surface and a scaling factor for the plastic multiplier, see Owen & Hinton [1]. At some times, 

in cases of complex stress and loading conditions, this procedure breaks down and can 

produce undesira:ble phenomena such as negative plastic flow, a case when the plastic 

multiplier numerically becomes negative, as reported in Deng & Rosakis [2]. Also, it is 

computationally inefficient especially for complex yield surfaces that require an iterative 

procedure for finding the scaling factor and contact stresses on the yield surface. On the 

other hand, implicit methods—of which the predictor/corrector scheme forms part—are 

more accurate and numerically robust for cases of finite loads. This class of numerical 

algorithm originates from the ,work of Wilkins [3] for the radial return in h plasticity 

analysis, and has been investigated in various contexts. An example is the establishment of 

the notion of closest point return for the overstress, see [4,5,6]. 

Just as important as the stress integration scheme, is the linearization of the equilibrium 

equations which arise from a finite element idealization. It is found that in most instances, 

linearization of the equilibrium equations is carried out independently of the stress 

integration method adopted for the constitutive law. Consequently, the elastoplastic 

modulus commonly used in deriving the tangent stiffness matrix is inconsistent with the 
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stress integration scheme. Very often, the approximation which results from such calculations 

leads to degradation of convergency characteristics of the problem. While this deterioration 

appears to be insignificant for simple constitutive models, it can be prominent for highly 

non-linear situations involving truly finite loads and complex material behaviour. 

In this paper, a so-called algorithmic tangent moduli, as coined by Simo & Hughes [6], 

is derived for a plasticity model based on a form of 3-D Hoek-Brown failure criterion with 

associated and non-associated flow rules. The solution of the discrete problem is obtained 

incrementally using a full Newton method in conjunction with an exact linearized consistent 

tangent modulus. The procedure includes an initial elastic step followed by an elastoplastic 

correction step which ensures the exact satisfaction of the plastic consistency condition by 

solving locally a scalar non-linear equation in addition to the global equilibrium equations. 

The other salient feature is the expression of a consistent (algorithmic) elastoplastic tangent 

stiffness in a form which is computationally attractive. For tension, a cut-off surface is used 

and special attention is given to the singular corner region formed at the intersection of the 

3-D Hoek-Brown and the tension cut-off surfaces. As such, when the elastic predictor falls in 

the tensile zone, a consistent stress return is enforced. It is found that due to its consistency 

with the notion of closest point mapping, this stress return avoids notorious numerical 

breakdowns in such tensile stress situations, and consequently rapid equilibrium convergence 

is conserved. 

PRELIMINARIES 

Consider the standard displacement type finite element setting in which the incremental 

displacement and resulting strain fields are usually given. The aim is to solve the continuum 

elastoplastic problem incrementally by computing the actual stress-strain response function 

during the search for global equilibrium. The discrete algorithmic problem for the simple 

case of perfect plasticity can be stated as follows: given the stress, total and plastic strain fields 

at pseudo-time tn, compute new states at final pseudo-time ta+ i, i.e. 

tan , en , e1:} 	tani-DEn+Pen1)+11. 

Concurrently, incremental equilibrium must be fulfilled by requiring 

+1 : 1: Ae 1 an = Lf:Aun+1 d12 + Sr  T:Aun+1  dl',  
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where f and T are the body and traction forces respectively, Q the volume of interest and r

the boundary along which tractions are applied. Generally speaking, the key incremental

variables can be typically calculated by invoking the kinematic conditions, the additivity of

elastic and plastic strain increments and the flow rule of plasticity as:

DEn+l = B' ,&un+l; D6n+1 = Ce' (AEn+l - ,&En+l)' A£n+l AAn+1 aQQ-n+lj (3)

I

in which B is the strain-displacement operator, C' the elastic tensor, A, the plastic multiplier,

Q the plastic potential and âQ the gradient operator. Accordingly, it is possible to recast the

elastoplastic problem into an evolution problem where the final stress vn+1 must lie on the

yield surface F, i.e.

CFn+l
=

Ce: (En+l - En+l)' En+l = En +Ân+l a oQn+ll F(0n+1) _ 0- (4)

I
I
I
I
I
I
I

I
I

From the above (Eqs. 4a,b), the final stress crn+l can be rewritten conveniently as

tr e n
Qn+l - Un+l - ^n+l C ^ a v`^n+l ) (5)

which can be interpreted as the projection of the trial stress (elastic predictor) onto the yield

surface. When the yield function F coincides with the plastic potential Q, the transformation

which results from such projection is indeed the closest point projection due to the convexity

of the functions. The plastic multiplier which gives the magnitude of the stress projection is

obtained by linearizing Eq. (4c) about the final stress in an implicit fashion. This procedure

when combined with the linearization of Eq. (2) gives rise to the calculation of the so called

consistent tangent operator which is different from the classical elastoplastic (continuum)

tangent operator in many aspects, see Willam [7].

CONSISTENT LINEARIZATION OF FINITE ELEMENT EQUATIONS

The linearization of Eq. 2 reduces to equilibrating internal forces Ftntwith external forces

Fext • The internal force which refers to equivalent forces resulting from a given stress field a

is expressed as:

Fint - fu B T ' 6n+1 A2• (6)

I
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Consider that one wishes to advance the solution from pseudo time station tn  where 

principal variables un, E n, O'n  are known, to tn+ 1. Since equilibrium has to be established also 

at tn+ i for a new displacement field u n+ i, ideally, 

Fint(u n+1) = Fext • 

Here, the expression of Fint  depends on the final stresses, strains and displacements which are 

in fact unknown; hence the solution has to be iteratively found from 

F. (uk 	Aunk  +1) n+ i 	 Fext 

where k corresponds to the kth. iteration during successive attempts to find the final 
displacement un,i . Expanding the above into a Taylor's series around n+1 at the kth. 

iteration and keeping only first order terms results into: 

Fint (uk  ) + 	Aun+1 + Ll(Au 
2 
n+1) = Fext  

• 
n+1 	

k 

du n+1 

Auk .[Tk -1
(F — F (uk  ) n+1 	Jn+1 	ext 	int n+1 

Pik 	nint  
n+1 .1 	e9u  

Based on Eq. 9b from which corrective displacements are calculated, the displacement at the 

end of the kth. attempt simply becomes 

uk+1 uk + Auk 
n+1 	n 	n+1* 

In a classical fashion, successive ,iterates are performed until the internal force Fint  equals to 

the external force Fee  within a certain tolerance. 

Calculation of Jacobian J 

The Jacobian J, Eq. 9c, which emerges from linearizing the equilibrium equations re flects 

the variation of each component of the internal forces given in Eq. 6 with each component 

of the displacements. Thus, for the kth. iteration, one gets 

(7) 

(8) 

(10) 
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ik aFi.nt 

 'in 
 B

T 8Cin+1 
 n+1 

dUk 	n 	auk  n+1 	 n+1 

Further differentiation gives 

k dok dE k 	a
Ci 

k  
(371+1  _ 	n+1 	n+1 	n+1  B T 

auk 	 as 
kn+1 (9E k 

 auk 
n+1 	n+1 	n+1 

Wh.en the above is substituted into Eq. 11, the expression of the Jacobian matrix takes a 

more recognizable form: 

aclk 
T k = r B T :c k :B  4n, c k 	n+1  
n+1 jg2 	n+1 	 n+1 	ae

kn+1 
• 

It is found that the rate of convergence of the equilibrium Newton-Raphson scheme depends 

critically on the correct evaluation of the Jacobian J. Equation 13 is central for the 

calculation of the so called consistent modulus which relies on the expression of the 

incremental stress-strain relationship in a stress return fashion, Eq. 5. The developments in 

subsequent sections focusses on the derivation of such a consistent tangent modulus for the 

Hoek-Brown failure/yield criterion commonly used in rock problems. Applications to soil 

problems such as in the integration of Cam-clay type of models have been very successful, see 

Borja [8]. 

ROCK PLASTICITY 

An important phenomenon manifested by rock strata in the vicinity of rock openings is 

their non-linear behaviour in response to induced stress. This non-linearity can often be 

attributed to the formation, closure or opening of cracks. For the mathematical description 

of the non-linear behaviour of the rock mass, a yield criterion based on the theory of 

plasticity is needed. 

In order to determine the yielding conditions of a rock mass considered as an equivalent 

continuum, a 3-D strength criterion is needed. It has been usual to use the well-established 

Mohr-Coulomb and Drucker-Prager criteria which define simple yield surfaces (pyramidal 

(13) 
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surface and cone respectively) in the stress space. For rocks, a well-known criterion often

used to account for the strength of intact rock as jointed masses is the Hoek-Brown criterion.

3-D Hoek and Brown Yield Surface

The original form of Hoek-Brown [9] criterion in terms of principal stresses is given by

U1 = U3 + mQcU3 + sa , (14)

in which o'1, Q3 are the major and minor principal stresses at failure. The uniaxial strength is

related to the parameter o'c, while m, s are empirical parameters which describe the extent of

breakage of the rock mass. The yield surface can be readily expanded under isotropic

conditions and formulated in terms of principal invariants of the stress tensor, i.e.

FHB=4J2cos26+ma'c 2rsi +cos81 +mQ, 3s0^=0,

sin30=-3y3 J32 J3/2'
2 (15)

where Il is the first stress invariant, J2 is the second deviatoric stress invariant, and 6 the

Lode angle related to the third deviatoric stress invariant J3. This represents a curved pointed

bullet with 6 curved parabolic surfaces in the octahedral plane, see Fig. 1. Unfortunately,

singularities similar to Mohr-Coulomb arise at the intersection points, and these are not

desirable when computing the gradient to the surface. However, the trace of the surface in

the deviatoric plane can be smoothened out; for example Pan et al. [10] adopted a circular

section for simplicity. In this study, a special smoothening technique which accounts for the

representation of variable strengths in the stress space is derived.

Continuous 3-D Hoek and Brown Yield Surface

The failure surface is smoothened in such a way that its trace in the deviatoric plane is

continuous and has continuous derivatives. This smoothness, or continuity condition is very

important to ensure the gradient is unique. Also, from a computational point of view it is

convenient to have a single description of the failure surface within the stress space. Since

isotropic conditions prevail in the present context, only a sextant of the stress space need to

I
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Figure 1. Generalized 3-D Hoek-Brown failure surface 
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be examined, i.e. —z  /6 s s w / 6 . An elliptic approximation is used to describe the 

variation of the trace of the failure surface in the deviatoric plane, as illustrated in Fig. 2. 

— Gri t  

Figure 2. Elliptical approximation of deviatoric trace 

The elliptic trace can be readily expressed in terms of polar coordinates via the following 

functional: 

The eccentricity e defines the ratio of the deviatoric stress q in the extension branch to the 

one in the compression branch, Le. 

e e 
qc 

In order to ensure smoothness and convex conditions, 0.5 < e <1 for the eccentricity e. As a 

result of using the functional g, a conical surface with curved meridian and smooth deviatoric 

trace is obtained with the space diagonal as axis of revolution, see Fig. 3. The mathematical 

(17) 
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expression of the smooth, continuous 3-D Hoek-Brown surface as an extension to Eq. 15 is 

finally given by: 

F(a) = q2  g2  (0) + cr:q g(0) + 3 cr: p - so = 0; 

Cf* = 4:±c-  ; q = -\I3J2  and  p= . = . , 	3 	 3 

Plastic Potential 

It has long been recognized that an associated flow rule over-estimates the degree of plastic 

dilation and thus plastic work dissipation. In order to rectify and thus overcome this 

shortcoming, a plastic potential must be used in conjunction with the Hoek-Brown yield 

surface. Considering that a smooth and simple surface is desirable for computational reasons, 

the following form of plastic potential has been retained: 

** 	** 	** 	* 
Q(a) = q2 + na, q +3a, p; a, =m 

3 

The parameter m *  corresponds to a dilation coefficient while n determines the size of the 

deviatoric trace. Values of n=1 and 2 would correspond to a circular generalization of the 

deviatoric trace based on the triaxial compression and extension branches respectively. It is 

noted that when m equals m, an associated flow rule can be achieved provided n is properly 

adjusted. In contrast, plastic flow with no dilation takes place when m equals zero, in which 

case Eq. (19) degenerates into a generalized von-Mises type of surface. 

STRESS RETURN 

As seen further back, the stress integration scheme can be regarded as a return mapping 

operation of the general form: 

cle = cer _ AÂk ce :  a  il k 
n+1 	n+1 	n+1 	cr-12+1 .  

The stress return onto the yield surface follows a direction prescribed by the plastic potential 

Q. Fig. 4 geometrically illustrates the mechanics of the stress return in the p -q space and 

deviatoric plane. In the present context, due to the simple form of the plastic potential, the 

direction of plastic flow is radial in the deviatoric plane but not in a meridional section as 

(18) 

(19) 

(20) 
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shown in the p-q space. The key observation is that when F. Q, the projection becomes 

indeed the closest point return and plastic flow is associated. 

The isotropic elastic tensor Ce  is classically given in terms of bulk modulus Kand shear 

modulus  G,  i.e. 

Ce = K1 01 + 2G(I — 	1), = tensor product, 

= 1.(1.klJl  +111 1.k)'  1.. = Kronecker delta,  
2 1 	111 

Using the chain rule to evaluate a GQ +, in terms of derivatives in p and q, and invoicing Eq. 

(19), the term Ce: a nk +1  specializes into 

Ce : a cri(4 +1= K 	+1  1+ 
3G  

	 s . 
n+1 	n+1 	n+1 

The above represents the stress return in terms of mean and deviatoric components whose 

directions are given by tensors 1 and s respectively. Herein, deviatoric stress is classically 

defined as s = a — p 1. Finally, substituting in for actual expressions of the gradient to the 

potential function Q, the stress return equation becomes 

= Cer  — 3K0.**A2.k  1 — G(2qn+1 + ncr:*  )AA.' kn +1 n+1 	n+1 	c 	n+1 

For convenience in the mathematics, the above stress return equation is written in terms of 

mean and deviatoric components as 

eik 
Ptr  3K ** AÂ k 

 n+1=  n+1 — 	Crc 	n+1' 

s k 	s tr 	G(2qk  + na:* ) AÂkn+1 I s
n+1  

n+1 	n+1 	 k n+1 
I n+11I 

Due to the radial nature of the stress return in the deviatoric plane (not in the meridional 

plane), the final and trial normalized stress vectors are co-linear in a direction defined by the 

radial unit tensor ii, 

(21) 

(22) 

sn+1 

S
n+1 

(23) 

(24) 

(25) 

(26) 
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Also, taking the Euclidean norm of the final deviatoric stress in Eq. 25, and after some

algebraic manipulations, one gets:

Knowing that q =

Sn+
k

= Ilsn+lll
46 G(2qn+1

+ nQc
** ) AAk

n+1'
(27)

Ilsll, and rearranging terms in Eq. (27) finally yields the stress return for

the deviatoric component,

e - 3G n Ai1,k a'**
k ^n+l n+1 c.

qn+1- (1 + 6G0Ân+1)

Determination of Scalar Plastic Multiplier Ailn+l

(28)

The scalar value of the plastic multiplier &a,n+l is obtained by merely imposing consistency

requirement to Eq. 18a. At the k th. iteration,

k k k k * k

F(^^n+1)
_[q

k
n+l gn+l(e) + 6c^n+lgn+l(B) + 3Q pn+1 - Sac -^'

(29)

Furthermore, it is noted that the functional g which appears in the consistency condition in

Eq. 29 depends on the Lode angle B and the eccentricity e. Since the stress return is radial in

the deviatoric space, the Lode angle remains unchanged during the geometrical projection.

However, the final stress point may fall onto a point which belongs to a different deviatoric

plane surface with a new value of mean pressure p. The eccentricity e will invariably change

accordingly since it depends on the mean pressure through the following relation:

r(c^)2 +(sQ2 - 3Q^ p) - Cr*
e= •

(Q^ /2)2+(so^-3a^p)-a^ l2

(30)

It is of interest to note that the above was obtained by invoking the definition in Eq. 17 and

by replacing 0 values of -at/6 and ar/6 into the original Eq. 15 to calculate the deviatoric

stress invariant in compression and extension respectively. Since the resulting consistency

An+1
requires a local Newtonequation in Eq. (29) is non-linear in nature, solving for A ^

iteration with A)^+1 = 0 as initial estimate, and keeping 0 constant. The algorithmic

procedure is explicited in Box. 1.

I
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n
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 • 

n+1  

S tr  — n+1  
ilSntr+i ll ak 

= pk 1 
n+1 	n+1 

15 

Keeping Lode angle 0 constant : 

1. Initialize k = 0. AÂ, k  = 0 
n+1 

2. Compute Fk F(  zukn+i)  

3. If IF/ < FTOL ,  exit;  else 

4. zuk+i 3A k _ Fk F ' ( A2%! 
n+1 	n+1 	 n+1/ 

5. k k +1 and go to 2 

Box. 1 Local Newton Raphson to determine plastic multiplier 

The derivative of Fwith respect to AÂkn+i  is readily obtained by chain differentiating Eq. 29. 

Note that the super- and sub-scripts which refer to the load and iteration steps will be 

temporarily dropped for sake of neatness of presentation. Accordingly, the derivative of F is 

given by 

F' (AÂ kn+1) = 	p' +[2qg2  (0) + a: g(0) +[2q2  g( 0) + o: 	. 	(31) 

with 

= -3Ka:*  , 

, 	3G(2q + no:*  ) 
q = 	  (1+ 6G AÂ) 

c2g 
g ' = --3Ka

** 
 . dp, 	c 

CONSISTENT TANGENT MODULUS 

The generic expression for the final stress cek  can be classically written in terms of mean 
n+1 

and deviatoric parts as follows: 

(32) 

With the preceding definition as seen far back in Eq. 13b., the consistent modulus is 

obtained by chain differentiating the stress tensor Ciii+1  with respect to the final strain E Ine +1  to 

lead to the following: 



‘,7  „i k 
Un+1  
e k 

n+1 

* dA2u k  
(2q n+1 + nec *) 	:+1  ' -- 

(9E 714.1 

G 

(1 + GGAA, kn+i) • 
(37) 

	

(3F c9P7k,±1 	ÔF (9qnk  +1  0.  

	

apnk aenk +1 	qnk +1  denk+1  dF(AÂkn+1  (38) 

16  

apk 	 k ari 

	

0
aq 	

ak 
p 

aek 	as
ine+1 	

3 	aEk 	"V 3 In +1 
n+1 	

ac
kH-1 

It can be easily shown, see [4], that the variation of the unit normal h with the final strain 

c k  is given by: 
n+1 

	

ah 	2G  
(I 1 101—h0h). 

	

a  k 	j .tr I 	3 
n+1 	II  n+11 

The derivation of the consistent modulus also requires the calculation of derivatives of the 

mean pressure and deviatoric stress invariant with respect to the final strains. Thus, with the 

aid of Eqs. 24 and 28, straight forward differentiation yields 

‘.„k 	 aAÂk 
f 	n+1  = K{1 3a 	:+1 

  
1, 

C  
n+i "n+1 

(34) 

(35) 

(36) 

Calculation of 83,2tk  I dE k  n+1 	n+1 

In order to compute the consistent tangent modulus associated with 3-D Hoek-Brown yield 

criterion, it remains to calculate the derivative (9,U,k  / c2E k  which appears in Eqs. 36 and 
n+1 	n+1 

37. Differentiation of the consistency equation with respect to .U.k  and hence c k  implies n+1 	 n+1 

Inserting Eqs. 36 and 37 into the above consistency and after collecting terms result into 

(3A.2t. k  — n+1  _ -è—c 	+ fi 1,  
de  k 

n+1 

(39) 
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in which

^x = V6 G ôF K ak ; M = 3G ( 2qn+
k ak + 3KQ^* ^^

M

F . (40)
k

^

n+l apn+1 qn+l n+l
aq

The explicit expressions of U and can be readily obtained by calculating the gradient of

the yield function F given in Eq. 18,

aF _r k k *]g k

ak

L2qn+lgn+1 + ^n+1'

^n+l

(41)

I
I
I
I
I
I

I
I
I
I
I

k
aF * k k ag1

= 3 U + [2q14 1 + ^ ^n+l k

apn+1 apn+l

Calculation of âpn+l n+1 and aqn+1 / dEn+1

(42)

The derivatives in Eqs. 36 and 37 can now be conveniently expressed using Eq. 39. Thus,

k
apn+1 =K(1-3/3Q**)1 - 3crKcr^* n.

k
aEn+1

(43)

aqn+1 = - 3G P -(2qn+1 + ncrc * ) 1 + G (^ - 3(2qn+1 + na^ * ) cc ) n.

a

(44)

£
k
n+1

The final form of the consistent modulus, corresponding to associated and non-associated

stress return on the 3-D Hoek-Brown yield surface, emerges when substituting Eqs. 35, 43

and 44 into the general expression in Eq. 34, thus

Cn+1=K(1-3(3a'^*) 1x01 - 3^za^*K lOn ^7qnxO1

+ L 2G(1-^,^)-,^G^xr7g 1 n On + 2G310O 1).

with

(45)

I



s k  n+1 
— 

Str  n+1 

(46) 

18 

** — 
= 2qk 	 ' + nu • A =1+ 6G INAkn+1; 	= n+1 	c  

The final closed-form expression for the consistent modulus is given in a very convenient 

form for computer implementation. It leads to a symmetrical or non-symmetrical tensor 

depending upon whether an associative or a non-associative flow rule is adopted. 

Furthermore, it is found that the consistent modulus is solely expressed in terms of elastic 

parameters G and K and plastic components characterized by a combination of the radial 

direction i and the space diagonal direction 1. 

For matter of comparison, the classical continuum tangent modulus  E 41  which refers to 

the one obtained from the continuum and not from the algorithmic equations is given: 

Enk+i  = K(1 — 3p 07) 101 — 3a cfc**K 10h — .NR GP rig*  h 0 1 

— 	G a rig*  0 	+ 2G (I — 	1). 

The variables oc,fi, M and G which appear in the above are the un-barred versions of those 

listed in Eq. 40. An interesting point is that both expressions (Eqs. 46 and 47) take up the 

same form except that the shear modulus G appears to be scaled down by factors X-  and e . 

This can be interpreted as degradation of the elastic parameter due to plastification. In 

particular, A  significantly larger than 1 while less than 1 when the trial stress 

shoots far outside the yield surface, which is the case for large load steps. Hence the 

continuum and consistent tangent operators may differ significantly, and it is probably this 

discrepancy which is responsible for degradation of the convergence characteristics as shown 

in the numerical example given at the end of this paper. To conclude, the traditional form of 

the continuum tangent modulus will coincide with the consistent tangent modulus only for 

infinitesimal load increments when AA,k  —> 0 and 1 which result into n+1 

a = a, p=p, G=GandM=M. 

Stress Return for Tensile Region of Stress Space 

The stress return and consistent tangent modulus derived in previous sections are valid as 

long as the trial stress falls within the region where stresses are compressive. When the trial 

stress shoots far out in the tensile zone of the stress space, special provision must be made to 

the algorithm. A simple cut-off surface F2 is herein introduced to limit tension to a value pt  . 

(47) 
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Seen this way, the model algorithm will have 3 basic response modes: elastic mode, failure

envelope mode and tension cut-off mode. Figure 5 illustrates the different possible modes and

the corresponding stress return.

a QFl

tensile corner (3;

Axial return (4)

a aF2

L\

F2=P-Pt
tension

Pt

Failure (2)

Fi( a)
yield function

Elastic zone (1)

compression

Figure 5. Stress return modes

P

The treatment of the tensile corner zone formed by the intersection of the Hoek-Brown

failure and the tension cut-off surfaces demands particular attention since strict plastic

consistency conditions must be satisfied. In such situation, both the failure surface and the

tension cut-off are activated with the stress return taking place consistently and uniquely

towards the vertex. The vertex point is determined on the basis of the Lode angle defined by

the trial stress. This basically means that the stress is pulled back to the vertex formed by the

intersection of the surfaces in the meridional plane containing the trial stress. Hence the

vertex is given as

qw qt ° 1 { a /22_3a Pt+sc1- al 2^; ppt(48)
gee

where the functional g is based on 6t determined from the trial stress, and the eccentricity et

of the trace of the failure surface in the tension cut-off plane. The stress return simply

becomes qn+l = qt ; Pn+l = Pt •
The consistent tangent modulus associated with such a stress return is readily obtained

from Eq. 34. Due to the fixed nature of the vertex once the meridional section has defined,

plastic potential
Q( Q)

I
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the derivatives apnle+1 1 (9E nk  41  and a q k  / d6 k  which appear in Eq. 34 vanish. Hence, the 
n+1 	n+1 

compact form of the consistent modulus becomes 

In region 4, the trial stress is simply pulled in a direction parallel to the p axis, which is 

consistent with the vertical tension cut-off surface F2. In this situation, the stress return 

equation and the consistent modulus are simply given by 

as k 
cik = str + pt  1; C — 	"+1  — 2G(I — 1 1 C 

n+1 	n+1 	 n+1 de k 	 3 
n+1 

NUMERICAL TEST 

The classical example of the excavation of a circular opening in an infinite homogeneous 

isotropic rock mass subjected to a uniform isotropic insitu stress cro  is considered. For 

constitutive behaviour, the rock mass is made to follow an elastic brittle-plastic material with 

yielding occurring whenever peak resistance is mobilized followed by a sharp drop in strength 

to residual values. The schematics of the problem geometry, its discretization and the 

material behaviour are given in Fig. 6. 

The finite element mesh consists of 23 eight noded isoparametric elements with the radius 

of the external boundary 37 times the opening radius. The rock mass is made free to move in 

the radial direction but not in the longitudinal z direction due to the plane strain conditions 

prevailing in the infinitely long opening. 

Associated Flow Rule 

The Hoek and Brown parameters used in the analysis are E=10GPa, 'v=0.25, ac =10 MPa, 

W=5, mr. 1, sP. 1,s ,  = 0.1, where superscripts p and r stand for peak and residual. The inner 

wall pressure is initially subjected to the insitu stress value of the rock mass, i.e. 25 MPa. 

Excavation is simulated by releasing the internal pressure until it drops to zero in a stepwise 

manner. In order to investigate the effect of step size on the solution, the number of 

unloading steps to achieve zero internal wall pressure are made to be 5, 9 and 19 (large, 

medium and small). 

(50) 
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Figure 6. Discretized model for circular opening in infinite space 

Figure 7a shows the distribution of radial, hoop and longitudinal stresses along the radius 

r. It is clearly seen that the soluiion is insensitive to unloading step size, whether the number 

of steps is 5, 9 or 19. The classical jump in stresses occurs at the boundary of the elastic and 

plastic regions for both the hoop and longitudinal stresses. In that particular case, the plastic 

radius is found to be about 3.6 m. The variation of displacement along the radial direction is 

given in Figure 7b and all three unloading schemes give basically the same distribution. 

Table 1. gives the convergence characteristics of the consistent tangent modulus scheme as 

compared with the continuum formulation for the above problem. The superiority of the 
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consistent modulus approach is clear as plasticity becomes more pervasive towards the end of 

the unloading steps. 

Table 1. Comparison of Convergencyz Consistent vs. Continuum Tangent Modulus 

Consistent Tangent 	Continuum Tangent 
Modulus 	 Modulus  

LARGE: 5-step unloading scheme  
step 	Load 	no. of 	force error 	no. of 	force error 
no. 	P 	iterations 	 iterations  

1 	24.0 	1 	 - 	 1 	 - 
2 	15.0 	1 	 - 	 1 	 - 
3 	10.0 	1 	 - 	 1 	 - 
4 	5.0 	13 	.9460E-07 	>200 	 7 
5 	0.0 	23 	.1206E-06 	>300 	7  

	

' 	MEDIUM: 9-step unloading scheme  

1 	24.0 	1 	 - 	 1 	 - 
2 	20.0 	1 	 - 	 1 	 - 
3 	15.0 	1 	 - 	 1 	 - 
4 	10.0 	1 	 - 	 1 	 - 
5 	8.0 	11 	.20602E-06 	19 	.6555E-05 
6 	6.0 	10 	.79410E-09 	19 	.8595E-05 
7 	4.0 	13 	.52380E-07 	45 	.1715E-04 
8 	2.0 	14 	.11690E-06 	161 	.2330E-04 
9 	0.0 	23 	.47010E-07 	>300 	 7 

SMALL: 19-step unloading scheme  

1 	24.0 	1 	 - 	 1 	 - 
2 	20.0 	1 	 - 	 1 	 - 
3 	15.0 	1 	 - 	 1 	 - 
4 	10.0 	1 	 - 	 1 	 - 
5 	9.0 	8 	.2052E-06 	15 	.6665E-05 
6 	8.0 	10 	.2476E-06 	17 	.2225E-05 
7 	7.0 	8 	.3852E-06 	15 	.5700E-05 
8 	6.0 	9 	.8115E-09 	16 	.3110E-05 
9 	5.0 	8 	.2136E-09 	22 	.1100E-04 
10 	4.5 	10 	.7118E-07 	19 	.5100E-05 
11 	4.0 	10 	.1855E-06 	21 	.6660E-05 
12 	3.5 	11 	.8355E-07 	29 	.1188E-04 
13 	3.0 	40 	.1427E-06 	18 	.6929E-05 
14 	2.5 	12 	.2123E-06 	43 	.1478E-04 
15 	2.0 	13 	.3579E-06 	72 	.2148E-04 
16 	1.5 	15 	.1189E-06 	100 	.3902E-04 
17 	1.0 	17 	.5755E-07 	>200 	 ? 
18 	0.5 	19 	.3227E-06 	>200 	 ? 
19 	0.0 	25 	.3114E-06 	>300 	 ? 

In particular, the case of large unloading in the 5-step scheme highlights the robustness 

achieved by the consistent tangent modulus formulation. The number of equilibrium 
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iterations needed when using the consistent tangent modulus were 13 and 23 for steps 4 and 

5 respectively with force error of the order of 10-7 . The continuum tangent modulus method 

took over 300 iterations and the force error was larger. The same trend was found for the 

other unloading schemes when using the continuum formulation as convergence could not 

be achieved—or at least required an incredible number of iterates—for the last steps when 

the internal pressure became zero. Also, it is noticed that whenever convergence was achieved 

for the continuum tangent modulus, the force error was systematically larger than the one 

obtained using the consistent tangent modulus. 

Non-Associated Flow Rule 

The above problem was repeated using the plastic potential described in the previous 

sections for more adequate dilatancy via a non-associated flow rule. The parameter m*  which 

controls dilation was chosen to be 0.5. Note that in the previous study a value of 1.0 was 

used to achieve an approximately associated flow rule. 

Figure 8a. shows the new stress distribution as compared with the one using an associated 

flow rule. As far as regard stresses, they were found to be identical, but as expected, the 

displacement profile gave a smaller convergence at the inner wall of the opening due to less 

dilation, see Fig. 8b. The number of equilibrium iterations needed were still within 

reasonable range. The most critical situation which involves the 5-step scheme was used. For 

the 4th. and 5th. unloading steps which correspond to an internal pressure of 5 and 0 MPa 

respectively, the number of iterations were 14 and 35 with force errors of the order of 10-6 . 

In contrast, the continuum tangent modulus scheme did not converge at all. It is found that 

in general, the degree of non-linearity increases in the non-associated case due to the more 

complicated direction of the stress return. However, this increase in level of difficulty does 

not seem to degrade very much the convergency characteristics of the scheme and thus 

confirms the robustness of the method. 

Effrct of Deviatoric Trace Curvature on Convergence 

The case of a circular cross-section of the yield surface in the deviatoric plane was next 

tried by making the eccentricity e in the formulation to be equal to 1. Since the functional g 

in Eq. 16 reduces to unity, the expression of the yield surface given in Eq. 18 is simplified 

considerably and there is no longer dependence on the Lode angle 0, see [11]. In more 

precise terms the yield surface is derived from triaxial stress conditions and ignores the effect 

of the intermediate principal stresses. 
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Figure 9a illustrates the stress distribution obtained when using a circular approximation 

and comparison with results related to an elliptical smoothening. Note that the circular 

approximation is based on the triaxial compression branch which corresponds to a Lode 

angle of 30 0 . It is found that the plastic radius obtained by using such approximation is 

smaller (2.4m instead of 3.6m) than the one obtained by the elliptical approximation. Also, 

the inner wall moves less, see Fig. 9b. The difference can be explained by the fact that the 

strength corresponding to the elliptical approximation is smaller as one moves between the 

triaxial compression and tension branches in the deviatoric plane. Therefore, a generalization 

based on parameters derived from the triaxial compression branch underestimates the extent 

of plasticity for a general stress situation such as the one met in plane strain conditions. 

In terms of convergency rates, it is seen less number of iterations are needed for a circular 

approximation because of the simpler geometry of the yield function which involves a 

constant curvature; Fig. 10 depicts this observation. 'However, it is thought that for better 

representation of strength for states of stress other than triaxial, the level of complexity 

brought in by the elliptical approximation does not significantly degrade the convergency 

characteristics of the scheme; the number of iterations only increase by less than 2 fold in the 

case examined. 

CONCLUSIONS 

A consistent tangent modulus has been derived for the widely used Hoek-Brown failure 

criterion. The effect of the intermediate principal stress on yielding is accounted by a special 

3-D stress generalization which yields a smooth deviatoric trace in the stress space by means 

of an elliptical functional. It is demonstrated that the implicit integration scheme in 

conjunction with a consistent tangent modulus ensures rapid convergence during the search 

for equilibrium in a non-linear finite element analysis. This is in contrast with the 

conventional so called continuum tangent moduli which tend to degrade the convergence 

rate as they are inconsistently calculated. The generic example of the excavation of a circular 

opening in an infinite rock mass demonstrates the effectiveness and robustness of the 

algorithm, especially when the load step becomes large. Also, equilibrium is satisfied 

rigorously since the error is in the order of 10-9 . It is seen that despite the level of complexity 

brought in by introducing an elliptical trace in the deviatoric plane and a plastic potential, 

the number of iterations still remain within permissible range (35 in the very extreme case as 

compared to over 300 when using the continuum tangent modulus). Also, the algorithm 

adopted in the super tension region can be effectively applied to a multi-surface model such 

as the cap model. 
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