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ABSTRACT

In an effort to better understand the spatial and temporal distributions of mineralized intrusions of the
Midcontinent Rift (MCR), and what controls their style of magmatic Ni-Cu-PGE sulphide mineralization,
we have compiled an overview of all known intrusions and their ages. We provide new U-Pb ages for more
than ten such intrusions and/or their associated dyke systems. A number of these investigations are still in
progress, and all ages should be treated as preliminary. Nevertheless, we discuss new results on the miner-
alized Current Lake, Sunday Lake, Tamarack, and Crystal Lake intrusions, as well as the Bovine Igneous
Complex on the southern flank of the MCR. These new results, as well as improved ages for a number of
the associated major dyke swarms and sill complexes (e.g. the Logan Sills), favour a relatively sharp onset
of high-volume mafic-ultramafic magmatism in the MCR at ca. 1110 to 1106 Ma, although a few of the
older age “outliers” remain to be tested. Mineralized intrusions are not confined to any specific magmatic
pulse but are distributed through time, correlating with the major magmatic pulses at 1110-1106 Ma (e.g.
Current Lake), 1104 Ma (Tamarack), of course at 1099 Ma (Duluth Complex), to as young as 1093 Ma
(Crystal Lake). All these intrusions are dynamic, multi-phase, feeder-type systems. A major “post-Duluth
Complex” reorganization in the magmatic plumbing system is identified starting at ca. 1097-1096 Ma, with
magmatism contracting into a linear feeding zone along the northwestern shore of Lake Superior—the
“north shore magmatic feeder zone” or NSMFZ—cored by the major Pigeon River dyke swarm. This feeder
zone, a major magmatic fissure system, likely fed the entire lava flow field of the Portage Lake Volcanic
Group, which extends to both sides of Lake Superior.

INTRODUCTION

Straddling the Canada-USA border, North America’s
1.1 Ga Midcontinent Rift (MCR; Fig. 1) is one of the
best preserved and most accessible Proterozoic failed
intra-cratonic rift systems in the world (Wold and
Hinze, 1982; Green, 1983; Van Schmus and Hinze,
1985; Hutchinson et al., 1990; Cannon, 1992; Allen et
al., 1997; Miller and Nicholson, 2013; Stein et al.,
2018a,b). It thus represents a pre-eminent natural labo-
ratory for understanding the evolution of complex rift
systems in cratonic settings, what generates them, what
makes them fail, and the myriad of processes associ-
ated with their magmatic, sedimentary, and structural
evolution, including a wide variety of mineral systems
(Nicholson et al., 1992).

The MCR, with its voluminous magmatic rocks
(Fig. 1, Table 1), hosts one of the largest layered intru-

sions in the world, the Duluth Complex (e.g. Paces and
Miller, 1993), with extensive low-grade Ni-Cu-Co-
PGE resources, and possibly reef-type PGE mineral-
ization (Hauck et al., 1997; Miller, 1998; Miller et al.,
2002). Some of the deposits along the western basal
contact of the Duluth Complex (see Fig. 1) are cur-
rently in an advanced exploration and permitting stage
(e.g. PolyMet, 2019) and will likely be mined in the
near future. Slightly younger discrete intrusions above
that contact, so-called “OUIs” (oxide-rich ultramafic
intrusion; Severson et al., 2002), are rich in Fe-Ti+V
oxides and are being evaluated as a Ti£V resource.

Elsewhere, both in Canada and the USA, the rift sys-
tem hosts a number of smaller, localized, conduit-type
mafic-ultramafic intrusions (“chonoliths”) that are
mineralized with higher grade Ni-Cu sulphides (e.g.
Tamarack; Goldner, 2011), one of which is currently
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being mined (Eagle; see Ding et al., 2010, 2012;
Ripley, 2014). These intrusions remain attractive
but challenging targets for mineral explorationl.
Consequently, there is significant on-going explo-
ration, on both sides of the Canada-US border. The
large, lopolith-like, multi-phase alkaline intrusion of
the Coldwell Complex, on the northeast shore of Lake
Superior, has long been a target for both disseminated
Cu mineralization and, more recently, for platinum
group elements (PGEs; Good and Crockett, 1994;
Good et al., 2015, 2017; Ames et al., 2017).

The broader rift system and its cratonic hinterland
also host a wide variety of other mafic-ultramafic, alka-
line, and carbonatitic intrusions (e.g. Weiblen, 1982;
Sage, 1991; Wu et al., 2017), many of which have
been, or are being actively explored for a range of com-
modities, from rare metals (Nb, e.g. the Nemegosenda
intrusion) to diamonds (Kyle Lake kimberlites). The
overall age range of this compositionally diverse, intra-
cratonic magmatic activity appears to span nearly 100
Myr, from ca. 1170 Ma to ca. 1070 Ma (Davis and
Sutcliffe, 1985; Davis and Paces, 1990; Heaman and
Machado, 1992; Paces and Miller, 1993; Davis and
Green, 1997; Heaman et al., 2004, 2007; Fairchild et
al., 2017; McCormick et al., 2017; Wu et al., 2017),
with the early phases of magmatic activity generally
seen as precursor events to the ca. 1115-1085 Ma main
magmatic phases of the rift system (see Miller and
Nicholson, 2013, for a discussion of the evolutionary
phases of the MCR).

In the final stages of its evolution, during rift inver-
sion as a consequence of moderate regional shortening,
fluid systems transported base metals, particularly Cu,
but also Ag, onto the thrust-imbricated flanks of the
rift, forming a variety of Cu deposits (Bornhorst and
Barron, 2011), particularly in Michigan on the
Keweenaw Peninsula. Elsewhere, Ag-Co-bearing min-
eralization and a variety of other hydrothermal veins
systems (e.g. Pb-Zn-Ba veins), are spatially associated
with the MCR, its intrusions, and contemporaneous
faults, including, of course, the well known amethyst
deposits east of Thunder Bay (e.g. Smyk and Franklin,
2007).

Finally, the MCR and its mineral systems are super-
imposed on the complex older setting and substrate of
the rifted Superior craton margin, which was intruded
by several large igneous province-scale events (e.g. the
ca. 2.1 Ga Marathon magmatic event) during the
Paleoproterozoic, before being overlain by variably
deformed sedimentary basins hosting classic
“Superior-type” banded iron formations. All these
exceptional characteristics enhance the value of the
MCR as an outstanding natural laboratory.

RATIONALE FOR THE PRESENT STUDY

A critical data set fundamental to any deeper under-
standing of this well preserved but nevertheless com-
plex rift system, including its mineral systems, consists
of precise and accurate ages of all the components that
make up this rift system. Already, there is a rich litera-
ture on dating (mostly U-Pb, some Ar-Ar) of the MCR
(e.g. Heaman et al., 2007 and references therein;
Bleeker et al., 2018, for a recent summary). Much
recent progress has focused on improving the age reso-
lution of volcanic rocks that fill the rift, in conjunction
with detailed paleomagnetic investigations, to resolve
the rapidly evolving apparent polar wander path and its
implications (e.g. Swanson-Hysell et al., 2014, 2019;
Fairchild et al., 2017). Nevertheless, many key compo-
nents of the rift system, including a wide variety of
intrusions that are part of the complex plumbing sys-
tem of the MCR, remain undated or have ages that
require refinement, and/or have dates that are clearly
puzzling outliers in the temporal framework of U-Pb
ages. Some of the published U-Pb ages (e.g. Heaman et
al., 2007) were obtained on limited amounts of very
small baddeleyite crystals and suffer from associated
complications (Pb loss and variable discordance, ele-
vated common Pb and associated corrections, ambigu-
ity in choice of regression line and upper intercept, sub-
tly different systematics between baddeleyite and zir-
con, etc.). In some cases, there exists doubt on the
exact provenance or sample location of dated samples,
or whether an intrusion of interest is part of the MCR
at all or possibly much older (Bleeker et al., 2018).

1 Many of the mineralized intrusions of the MCR have sulphides with favourable Cu/Ni ratio, additional Co, and appreciable
precious metal contents (PGE+Au), which adds to the overall value of their potential sulphide ores.

Figure 1 opposite page. Summary map of the Midcontinent Rift, modified after Miller and Nicholson (2013) and previous
authors (Miller and Chandler, 1997; Weiblen, 1982, and other contributors to the volume edited by Wold and Hinze, 1982), high-
lighting all the rift-related intrusions. Undated or poorly dated intrusions, and (or) ages that are otherwise problematic, are
shown by stars with a yellowoutline. Only a selection of ages is specifically shown on this figure (space permitting), and the
reader is referred to Table 1 for additional age data and references. High-precision U-Pb ages on volcanic rocks are shown for
reference (Davis and Sutcliffe, 1985; Davis and Paces, 1990; Davis and Green, 1997; Zartman et al., 1997; Schoene et al.,
2006; Swanson-Hysell et al., 2014, 2019; Fairchild et al., 2017). Dyke swarms are shown using red lines and font. Newly
obtained U-Pb ages as part of the present study are shown in bold red font and are summarized in Table 2. The grey band
along the northwestern shore of Lake Superior is the tentative “post-Duluth Complex” 1097-1092 Ma “north shore magmatic
feeder zone” (NSMFZ) discussed in this paper. Abbreviations: BIF = banded iron formation, Cgl. = Conglomerate, Fm. =
Formation, Gp = group, Is. = Island, Lk. = Lake, Mt = Mount, Qte = quartzite, Twp = Township.
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Midcontinent Rift and its mineral systems: Overview and temporal constraints of Ni-Cu-PGE mineralized intrusions
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Midcontinent Rift and its mineral systems: Overview and temporal constraints of Ni-Cu-PGE mineralized intrusions

Sample site

Main upper sill

Thin
lower sill

Figure 2. View of the iconic Logan Sills (s.s.) overlooking the Kaministiquia River and the city of Thunder Bay. Two sills are vis-
ible, having intruded mudstones and thinly bedded turbiditic wackes of the ca. 1.85 Ga Rove Formation, Animikie Basin: an
upper main sill capping the mesas, and a thin lower sill forming a minor ledge in the trees. William Logan visited the area in
1846 during early geological reconnaissance work. Decades later, Lawson recognized that these were sills, rather than basaltic

flows, and named them after Logan (Lawson, 1893).

The present research, therefore, aims to resolve
some of the key questions on the timing of major mag-
matic pulses and, particularly, the ages of mineralized
intrusions, thus allowing a more refined picture of the
complex and evolving magmatic plumbing system of
the rift. Resolving some of these key timing questions
will set the stage for more detailed questions such as
why some intrusions are mineralized whereas others
are not, the spatial and temporal variation of their
potential mantle sources and variable metal fertility,
and what parts of the volcanic sequence the intrusions
may have fed. We here present new U-Pb ages on ~10
key units and discuss their implications. In an accom-
panying contribution (Smith et al., 2020), we focus in
more detail on one mineralized intrusion, the Crystal
Lake Intrusion southwest of Thunder Bay.

SCOPE OF THE PROBLEM:
KEY EXAMPLES

Here we introduce the scope of the problem by high-
lighting two key magmatic units on the northern flank
of the MCR, the Logan Sills near Thunder Bay and the
Inspiration sill of the northern Nipigon Embayment
(Fig. 1, Table 1). The iconic “Logan Sills” (Fig. 2)—so
named by Lawson (1893) after the founder and first
director of the Geological Survey of Canada—repre-
sent extensive and voluminous sill complexes on the
north shore of Lake Superior. Early U-Pb dating stud-
ies suggested an age of 1109 +4/-2 Ma2. (Davis and
Sutcliffe, 1985), on samples from the Lake Nipigon
area. Since then, subtle geochemical differences in
incompatible element ratios have suggested that sills in
the Nipigon area (now called “Nipigon Sills”) and sills

in the Thunder Bay area (now “Logan Sills”, sensu
stricto) may actually form two distinct sill complexes
(Hollings et al., 2007, 2010). A tentative age of 1114.7
+ 1.1 Ma was determined from a Logan Sill on Mount
McKay, using a limited selection of very small badde-
leyite grains (Heaman et al., 2007). This and other
older age “outliers”, such as the suggested age for the
Inspiration sill of 1159 + 33 Ma (Heaman et al., 2007),
raised the possibility of an older and drawn-out start of
MCR mafic magmatism, a finding that is at odds with
modern dating studies on many large igneous
provinces. With better and more robust high-precision
U-Pb data, these studies typically show a sharp onset of
high-volume mafic magmatism, on a time scale of 1 to
2 Myr, sometimes followed by additional pulses of
diminishing volume and/or more varied composition
over a 5 to 25 Myr time scale.

To help settle this important question of “the age of
onset of voluminous mafic magmatism”, we resampled
both the Mt. McKay sill overlooking Thunder Bay and
the Inspiration sill in the Nipigon area. In the field, we
spent time collecting the most optimum samples of
late-stage, more fractionated, and Zr-enriched pegma-
toidal gabbros towards the top of both sills. Both sam-
ples returned adequate baddeleyite and some magmatic
zircons (Fig. 3). Although at this stage all our results
should be treated as preliminary, our data indicate
improved ages for these sills at 1106.3 + 2.0 Ma for the
main Logan Sill capping Mt. McKay, and 1105.5+ 3.0
Ma for the Inspiration sill (Fig. 4), i.e. within uncer-
tainty of each other and also the original Davis and
Sutcliffe (1985) data, respectively; and, importantly,
also within uncertainty of the oldest high-precision

21n a subsequent paper, the three collinear zircon fractions are regressed from the orign to an upper intercept age of

1108.2+0.9 Ma (see Davis and Green, 1997).
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e

Figure 3. Typical baddeleyite and zircon recovery from pegmatitoidal gabbros near the top of Midcontinent Rift sills, the main

Logan Sill at Mount McKay (a—d), and the Inspiration sill near Armstrong, Ontario (e-g). a, e) Photographs of sampled material,
i.e. last-crystallizing differentiated pegmatoidal gabbro, which is typically underneath the chilled upper contact of the sills.
b, f) Typical baddeleyite recovery. ¢, d, g) Blady late-stage magmatic zircons. All scale bars are 200 pm.

ages near the base of the volcanic successions around
the rift at ca. 1107-1108 Ma (Davis and Sutcliffe,
1985; Davis and Green, 1997; Swanson-Hysell et al.,
2019). These initial results confirm our intuition that
the onset of the first high-volume mafic magmatism
was indeed relatively sharply timed and occurred at ca.
1109-1107 Ma (see also Davis and Green, 1997), and
that some of the more tentative results or interpreta-
tions on variably discordant small baddeleyite fractions
from the Heaman et al. (2007) study were not quite
accurate. Our results also demonstrate the remaining
complexity, as few of the individual analyses are fully
concordant. Although we recovered better baddeleyites
than previous studies (Fig. 3), and also magmatic zir-
cons in many cases, the blady magmatic zircon crystals
in these types of samples do not withstand aggressive
chemical abrasion and retain some discordance. If they
are aggressively treated by chemical abrasion
(Mattison, 2005), these crystals (Fig. 3c,d,g), with their
cracks and accumulated damage, dissolve; with no or
minimal chemical abrasion, they retain some discor-
dance, requiring extrapolation to upper intercept ages.
Nevertheless, these new improved ages represent a sig-
nificant step forward.

14

In contrast to these improved, but nevertheless
slightly discordant results on early high-volume dia-
base sill complexes, we here also discuss new zircon
ages on well behaved gabbro samples from some of the
mineralized intrusions, Tamarack in Minnesota and
Crystal Lake in Ontario (Fig. 5). Both samples dis-
cussed here yielded abundant and relatively good qual-
ity zircons, which after chemical abrasion yielded fully
concordant, overlapping data, and consequently highly
precise and accurate ages on par with high-precision
results on rhyolite samples in the volcanic successions.
The sample from Tamarack, a differentiated pegma-
toidal gabbro near the top of the “southern bowl” of
this large composite intrusion, yielded a zircon concor-
dia age (Ludwig, 1998, 2003) of 1103.8 + 0.9 Ma based
on three fully overlapping single zircon data (Fig. 5a).
This age is clearly younger than the 1107-1109 Ma
onset of high-volume mafic magmatism but could cor-
relate with the nearby volcanic sequence of the
“Chengwatana basalts” (Wirth and Gehrels, 1998) in
the southwestern extension of the MCR (Fig. 1). A
mineralized, pegmatoidal, vari-textured gabbro from
the northern arm (or “limb”) of the Crystal Lake
Intrusion yields a fully concordant zircon and badde-
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Figure 4. U-Pb concordia diagrams for (a) the Logan Sill at the top of Mt. McKay (sample 18-DL-025B) and (b) the Inspiration
sill (sample 17-DL-014B) from the northern Nipigon Embayment. Zircon (Zr) data are shown as red ellipses and baddeleyite
(Bd) as black ellipses. Preferred age picks are shown in bold font. All data-point error elipses are 20.

leyite age of 1093.2 £ 1.2 Ma (Fig. 5b), distinct and
considerably younger than the 1099.6 + 1.2 Ma date on
discordant baddeleyite fractions reported by Heaman et
al. (2007). This younger age suggests a correlation of
the Crystal Lake Intrusion, not with the main Duluth
Complex, but rather with the younger intrusions in the
roof of that complex, such as the Beaver Bay Complex.
Results on multiple samples from the Crystal Lake
Intrusion and a more detailed interpretation is pre-
sented in Smith et al. (2020).

SAMPLING STRATEGY AND

OVERVIEW OF RESULTS

Fieldwork over the last 2-3 years has allowed us to
visit many of the key intrusive units, often with local
experts. We have specifically targeted mineralized
intrusions, and intrusions deemed of interest to explo-
ration. We have also targeted representative units of
some of the main magmatic pulses that were still lack-
ing precise and accurate ages (e.g. Logan Sills), as well

A | Tamarack Intrusive Complex B | Crystal Lake Intrusion
0.1878 " h ) )
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Figure 5. U-Pb concordia diagrams and preliminary ages for (a) the main “southern bow!” of the Tamarack Intrusion, Minnesota;
and (b) the mineralized vari-textured gabbros from the northern limb of the Crystal Lake Intrusion. For the Tamarack sample,
three fully concordant and overlapping zircon analyses define a concordia age (filled ellipse) of 1103.8 + 0.9 Ma, distinctly
younger than the earlier onset of high-volume basaltic magmatism in the Midcontinent Rift (at ca. 1106—1110 Ma). For Crystal
Lake (b), we show one well behaved sample with concordant and overlapping zircon and baddeleyite results. Additional results
are discussed in Smith et al. (2020). All data-point error elipses are 20.
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as some of the problematic age “outliers” (e.g.
Inspiration sill, and members of the Pigeon River dyke
swarm). In all these cases, we spent time in the field to
evaluate the overall complexity of the intrusions and
their different phases, after which we sampled opti-
mum material for U-Pb dating (~10 kg, sometimes
multiple samples): typically coarser grained, slowly
cooled, more fractionated units in which incompatible
elements such as Zr (and U) show elevated abun-
dances, thus increasing the likelihood that larger and
more abundant baddeleyite and/or zircon crystals
would have crystallized. In some of the composite or
multi-phase intrusions, we sampled more than one
phase, including both the presumed oldest and
youngest phases—although the general expectation is
that all of these will be within the resolution of the typ-
ical data, ideally ~1 Myr3.

At the same time, we have compiled and evaluated
all previous work (Table 1), feeding into our overall
prioritization of samples. Needless to say, the require-
ment for accurate high-precision ages keeps increasing,
as models are improving and associated questions are
refined. Hence, this work is never finished and a num-
ber of samples are still in progress. Nevertheless, we
can present here ~10 new ages for key units around the
MCR, including some of the mineralized intrusions on
the Canadian side of the border (Table 2). All results
should be treated as preliminary, as additional fractions
are still being analyzed. For analytical methods, the
reader is referred to the accompanying paper by Smith
et al. (2020, see their Appendix 1).

MINERALIZED INTRUSIVE COMPLEXES
OF THE MIDCONTINENT RIFT:
SOME KEY EXAMPLES

Sunday Lake Intrusion

The recently discovered Sunday Lake Intrusion,
located in Jacques Township, ~25 km north of Thunder
Bay, intrudes Archean metasedimentary rocks and
granitoids of the Quetico Subprovince (Fig. 6). The
intrusion, now dated at 1109.0 = 1.3 Ma (this study;
Table 2), is emplaced along the Crock Lake Fault,
interpreted as a splay of the main Quetico Fault to the
north (Flank, 2017), and is characterized by a distinct,
elliptical, reversely magnetized anomaly. The morphol-
ogy and true extent of the intrusion is yet to be fully
determined; however, drilling indicates that the body is
tabular in shape where emplaced into Quetico metased-
imentary rocks, and more tube-like (cylindrical) to the
northwest where it is hosted by Archean granitoids
(Fig. 6). The differentiated intrusion is divided into an

Ultramafic Series, a Lower Gabbro Series, and an
Upper Gabbro Series (Flank, 2017) on the basis of pet-
rographic and geochemical characteristics. The 10-120
m thick basal Ultramafic Series is composed of gab-
broic breccia, melagabbro, olivine melagabbro, peri-
dotite, and minor pyroxenite. The 250 m thick Lower
Gabbro Series consists of gabbro, melagabbro, and
peridotite. The evolved, coarse-grained Upper Gabbro
Series is comprised of strongly hematized leucogabbro,
oxide-rich gabbro, and evolved monzogabbro. The
upper contact is commonly brecciated, containing sub-
angular and partially resorbed quartz fragments and
Quetico metasedimentary xenoliths within a chilled,
hematized groundmass.

Sulphide mineralization within the Sunday Lake
Intrusion is disseminated (2—-10 vol.%) and mainly
concentrated along the basal contact of the Ultramafic
Series. The main mineralized body, which is enriched
in Cu, Pt, Pd, and Au at typical levels of 3—10 g/t
Pt+Pd+Au, contains disseminated, high PGE-tenor sul-
phides composed of chalcopyrite, pyrite, and pyrrho-
tite. Drilling has indicated that the main orebody can be
traced over a 1500 x 900 m area, with a thickness of up
to 43 m (Flank, 2017; S. Flank, pers. comm., 2019).
Lower grade (<1 ppm Pt+Pd+Au), high-tenor sulphide
mineralization (=1200 ppm Pt+Pd+Au in 100% sul-
phide) has also been recognized within laterally contin-
uous horizons at the upper and lower contacts of the
Lower Gabbro Series (Flank, 2017). Footwall
stringers, enriched in Cu and PGEs have also been
noted.

Current Lake Intrusive Complex

The Thunder Bay North Igneous Complex, located ~50
km northeast of Thunder Bay, comprises a series of
small, mineralized ultramafic-mafic intrusions that
have been emplaced in proximity to the east-west-
trending Quetico Fault, and are hosted within the
Archean Quetico Subprovince (Fig. 7). Intrusions of
the Thunder Bay North complex, which include the
Current Lake, Steepledge, and Lone Island Lake intru-
sive complexes and possibly other bodies, are associ-
ated with the early stages of the MCR development and
are prospective targets for Pt-Pd-Cu-Ni sulphide min-
eralization. The Current Lake Intrusive Complex,
which we have dated at 1106.6 £ 1.6 Ma (this study;
Table 2), is a tubular to tabular conduit-like deposit that
is characterized by a “tadpole”-shaped aeromagnetic
anomaly that extends for ~6 km in a northwest-south-
east direction and widens to the southeast (Fig. 7a;
Goodgame et al., 2010; Thomas et al., 2011). The
Current Lake Complex, along with the adjacent paral-

3 Most magmatic complexes are emplaced within the time span of a typical magmatic pulse of less than 1 Myr. Resolving
complexity on shorter time scales, in Proterozoic rocks, remains very challenging. An interesting example is the study by
Mungall et al. (2016) of the Bushveld Complex, although this study remains controversial.
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lel Steepledge Complex, shows variation in shape,
composition, orientation, and grade along its length.
The change in morphology of the Current Lake
Intrusive Complex from tubular to more tabular coin-
cides with the contact between Archean granitoids in
the north and Quetico metasedimentary rocks in the
south. Pre-existing structures in the Quetico
Subprovince are also thought to have strongly con-
trolled the initial emplacement of the Thunder Bay
North magmas.

Extensive drilling has delineated a 3.4 km long,
continuously mineralized, disseminated sulphide body
that is hosted within the ultramafic portion of the com-
plex and is characterized by Pt/Pd ratios of >1 and
Ni/Cu ratios of ~0.5 (Goodgame et al., 2010; Thomas
et al., 2011). In the north, the Current Lake Intrusive
Complex is a subhorizontal, sinuous, tubular body
composed mainly of olivine melagabbro and lherzo-
lite, ranging from >30 m in diameter, up to 50 m in
width and 70 m in thickness (Goodgame et al., 2010;
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Figure 7. Summary figures of the Thunder Bay North Complex and its Current Lake Intrusive Complex. a) Summary magnetic
map (total intensity) showing the various parts of the Current Lake complex (image courtesy of Allan MacTavish, Panoramic
Resources, and pers. comm., 2018). The map highlights the NNW-SSE-trending “tadpole”-shape anomalies of the Current
Lake and Steepledge Lake intrusive complexes. The locations of the cross-sections shown in figures (b) to (d) are also shown.
b) Cross-section through the northern part of the Current Lake complex (looking north); in this section, the intrusion is tube-like
in morphology with mineralization disseminated throughout the interior of the chonolith. ¢) Cross-section (looking east) through
the Beaver Lake portion of the Current Lake Intrusive Complex. d) Cross-section (looking west) through the South-East anom-
aly. Cross-sections from Thomas et al. (2011) and A. MacTavish (Panoramic Resources, pers. comm., 2018). Approximate loca-

tion of our dated sample shown by a red star.

Thomas et al., 2011). Here Pt-Pd-Cu-Ni sulphide min-
eralization is disseminated in nature and distributed
throughout the entire tubular body (Fig. 7b). To the
southeast, the peridotite intrusion progressively deep-
ens and becomes a shallowly plunging tabular body in
the Beaver Lake area, with dimensions up to 600 m
wide and 200 m thick (Goodgame et al., 2010; Thomas
et al., 2011). Sulphide mineralization is more localized
in this area and is confined to the margins of the con-
duit. Semi-massive to massive sulphides have been
locally intersected here, along the basal contact of the

intrusion (Fig. 7c). Near the top of the intrusion, a dif-
ferent style of mineralization has been identified, char-
acterized by finely disseminated, high-tenor Cu-bear-
ing sulphides (Goodgame et al., 2010). The southeast-
ern extent of the Current Lake Complex, defined by a
circular magnetic anomaly, is represented by the
differentiated, tabular, unmineralized “Southeast
Anomaly”, which is composed of a basal peridotite,
overlain by an oxide gabbro, and a distinctive red,
hybrid gabbro that is strongly hematized and contami-
nated.
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phide ore in drill core from the CGO intrusion.

Tamarack Intrusive Complex

The mafic-ultramafic Tamarack Intrusive Complex,
located ~75 km to the southwest of the Duluth
Complex, intrudes Paleoproterozoic slate and grey-
wacke of the Upper Thomson Formation within the
Paleoproterozoic Animikie Basin (Fig. 8). The com-
plex is characterized by a tadpole-shaped aeromagnetic
anomaly, which extends ~13 km in a northwest-south-
east direction and varies from 1 to 4 km in width (Fig.

8; Goldner, 2011; Taranovic et al., 2015). The complex,
interpreted as a dynamic open-system conduit that
crystallized from a picritic parental magma (Taranovic
et al.,, 2015), consists of three sub-intrusions: the
“coarse-grained olivine” (CGO), the “fine-grained
olivine” (FGO), and the southern “bowl” intrusions.
The mineralized CGO and FGO intrusions are located
in the north, where they form the dyke-like portion of
the Tamarack Intrusive Complex, with an overall mor-
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phology of an irregular funnel (Fig. 8c). The 1105 + 1.2
Ma CGO intrusion (Goldner, 2011), which comprises
the lower portion of the funnel-like dyke, is composed
of coarse-grained peridotite, feldspathic peridotite,
melatroctolite, and melagabbro (Taranovic et al.,
2015). The overlying FGO intrusion is characterized by
fine-grained peridotite, feldspathic peridotite, felds-
pathic pyroxenite, and melagabbro (Taranovic et al.,
2015). The “bowl]” intrusion, which appears barren of
sulphide mineralization, is composed of peridotite and
feldspathic peridotite overlain by a differentiated
sequence of oxide-rich gabbronorites (Goldner, 2011).
At present, uncertainty surrounds the relative timing of
the three intrusions. Our new zircon concordia age of
1103.8 £ 0.9 Ma, based on three fully overlapping sin-
gle zircon results (Fig. 5a), was obtained on pegma-
toidal gabbro near the differentiated top of the southern
bowl.

The Ni-Cu-PGE sulphide mineralization within the
Tamarack Intrusive Complex (Fig. 8c) is hosted within
the CGO and FGO intrusions and includes minor mas-
sive, disseminated, and net-textured sulphide ores char-
acterized by Ni/Cu ratios of >1 (Taranovic et al., 2016).
Current inferred resource estimates indicate 4.3 Mt at
1.58% Ni, 0.92% Cu, 0.29 g/t Pt, and 0.18 g/t Pd
(Fletcher et al., 2018). The CGO intrusion hosts the
majority of the mineralization as disseminated and
semi-massive (net-textured) sulphides, which are typi-
cally localized within the core of the dyke. The FGO
intrusion hosts disseminated and patchy net-textured
sulphide mineralization that is confined to discrete lay-
ers near the base of the intrusion, above the FGO-CGO
contact. Massive sulphide lenses are found at the con-
tact between the FGO-CGO intrusions and in adjacent
country rocks (Fig. 8c). The sulphide ores are charac-
terized by variable proportions of the primary mag-
matic assemblage pyrrhotite, pentlandite, chalcopyrite,
and magnetite, with accessory pyrite and cubanite
(Taranovic et al., 2016). Platinum group element tenors
are variable throughout the Tamarack Intrusive
Complex ores (Taranovic et al., 2016), a feature attrib-
uted to variable R-factors. The highest PGE tenors,
which are comparable to those of Noril’sk ores, are
associated with disseminated ores of the CGO intru-
sion. It has been suggested that the high-tenor sul-
phides of the CGO intrusion formed as a result of
upgrading of an earlier sulphide liquid, left in the con-
duit system by the inferred earlier FGO magma
(Taranovic et al., 2016). Although crustal contamina-
tion is thought to have played a critical role in ore gen-
esis and in attaining S saturation, this is not recognized
within the preserved isotopic record. Sulphides within
the Tamarack Intrusive Complex are characterized by
mantle-like 834S values between -0.2 and 2.8%o
(Taranovic et al., 2018), which are in sharp contrast

with those from the basal disseminated ores of the
Duluth Complex (834S 0-18%o; Ripley et al., 2007,
Queffurus and Barnes, 2014). Furthermore, O and Re-
Os isotope compositions indicate only low degrees of
contamination (<3%). Taranovic et al. (2018) suggest
that the isotopic characteristics of the Tamarack
Intrusive Complex could be a function of either selec-
tive contamination of Paleoproterozoic sedimentary
rocks or efficient isotopic exchange within the dynamic
conduit system. If exchange reactions have operated to
obliterate the initial isotopic signature, then such iso-
topes are no longer accurate proxies for estimating
crustal contamination.

Eagle and Eagle East Intrusions

Prior to the discovery of extensive, high-grade, mas-
sive Ni-Cu sulphides at the Eagle intrusion in 2002, Ni-
Cu-PGE mineralization in the MCR was thought to be
hosted by larger, sheet-like mafic intrusions (e.g.
Duluth Complex, Crystal Lake). The Eagle discovery
changed this perspective, resulting in a wave of explo-
ration for magmatic sulphide deposits focussed on
smaller, early rift, conduit-type intrusions.

The small ultramafic Eagle intrusion and nearby
Eagle East intrusion intrude Paleoproterozoic rocks of
the Marquette Range Supergroup within the Baraga
Basin, which is also host to the MCR ecast-west-trend-
ing Marquette-Baraga dyke swam (Fig. 9). The Eagle
and Eagle East intrusions (formerly known as the
Yellow Dog Peridotites; Morris, 1977), are character-
ized by prominent ellipse-shaped magnetic highs
(long-axis parallel to the dyke swarm) and occur as
separate subvertical, boat-shaped, dyke-like bodies
(Fig. 9; Ding et al., 2010; Barnes et al., 2016). Barnes
et al. (2016) suggest the morphology of these intru-
sions resulted from conduit widening of an initial
blade-shaped dyke (cf. Savannah, Western Australia).
The Eagle intrusion is 480 m long and 100-200 m
wide, with a vertical extension of >300 m. The deeper
Eagle East intrusion is ~600 m long, ~150 m wide, and
>500 m thick (Ding et al., 2010). Both are emplaced
above the unconformity with the Archean basement.

The Eagle and Eagle East intrusions contain signifi-
cant Ni-Cu-PGE mineralization, with current estimates
indicating a combined resource of 4.8 Mt at 2.8% Ni,
2.4% Cu, 0.7 g/t Pt, and 0.5 g/t Pd (Clow et al., 2017).
The sulphide mineralization is characterized by dissem-
inated, semi-massive and massive sulphide ores, which
are composed of pyrrhotite, pentlandite, chalcopyrite,
and cubanite (Ding et al., 2010, 2012). At Eagle, over
90% of the sulphide ore occurs in the irregular-shaped
massive sulphide zone above the keel of the intrusion,
with some ore also hosted within adjacent metasedi-
mentary rocks (Fig. 9c¢,d). At Eagle East, high-grade
semi-massive and massive sulphide ores are confined
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to the subhorizontal portion of the conduit, occurring
close to the basal contact of the intrusion (Fig. 9¢; Clow
et al., 2017). The overlying funnel-shaped peridotite
body contains negligible sulphide mineralization (Ding
et al., 2010). The semi-massive to massive sulphide
ores in both intrusions are characterized by elevated
Ni/Cu ratios, relatively fractionated PGE patterns,
and metal tenors comparable to those observed at
Tamarack (Ding et al., 2012; Taranovic et al., 2016).
Chalcopyrite-rich veins within the footwall show
highly fractionated PGE patterns (Ding et al., 2012).

Within these conduit deposits, the addition of exter-
nally derived S is considered critical in producing the
large sulphide accumulations characteristic of the
Eagle deposits. Recent studies (e.g. Robertson et al.,
2015) have shown that the addition of crustal S into
these magmatic systems is controlled by the direct
melting and assimilation of wall rock and xenoliths
rather than through devolatilization reactions or disso-
lution of S in thermal aureoles. Thus, the Eagle and
Eagle East ores are not considered to be contact-style
deposits as external S is thought to have been derived
distally from the present location of the ores. This
notion is consistent with 834S and A33S data of the sul-
phide ores, which indicate the addition of crustal-
derived S, from both Paleoproterozoic and Archean
sources distal to the deposits (Ding et al., 2012; Hink,
2016). The low 834S values (634S 0-5 %o) of the Eagle
ores, which do not correspond to the high 834S values
characteristic of the adjacent Michigamme Formation
(634S 4.6-29%o; Ding et al., 2012; Hink, 2016), could
be attributed to selective assimilation of Michigamme
Formation characterized by lower 334S values; isotopic
exchange between the contaminated and pristine
magma (Ripley and Li, 2003); or the extensive incor-
poration of Archean-derived S, as indicated by non-
zero A33S values (-0.86 to 0.86%o; Ding et al., 2012).
Although isotopic data indicate <5% bulk contamina-
tion, possibly up to 20% locally, values are indicative
of a contribution of S from country rocks of up to
~50% (Ding et al., 2012). Consequently, the sulphide
liquid is viewed as being entrained and subsequently
transported and deposited upwards through the magma
conduit. Barnes et al. (2016) proposed, however, that
the massive sulphide ores at Eagle accumulated as the
result of the downward percolation of the sulphide lig-
uid back into the former feeder dyke.

DISCUSSION
Onset of High-Volume Magmatism

As alluded to above, none of the new ages support an
older and protracted onset of the main high-volume
basaltic magmatism of the main MCR. All the ages of
the Logan Sills (sensu lato) are compatible with a ca.
1106-1110 Ma onset, and the minor dispersion among
the present ages (Table 2) may be in part analytical as
uncertainties overlap. Only the reported date for
olivine gabbro of the Kitto intrusion (see Fig. 1 for
location), at 1117.5 = 3.7 Ma (Heaman et al., 2007),
remains as a suspected “outlier”, and, hence, an impor-
tant date we are still testing4.

A sharp onset of the first high-volume basaltic mag-
matism sometime in the 1106 to 1110 Ma interval is
also more in line with a similarly sharp onset of the
main volcanic sequences at ca. 1107-1109 Ma5, with
the oldest recorded age being 1107.7 + 1.9 Ma (Davis
and Green, 1997) on a sample near the base of the vol-
canic sequence overlying the Puckwunge Sandstone
along the Canada-USA border (Fig. 1), and a similar
age of 1107.5 +4/-2 Ma for the base of the Osler Group
(Davis and Sutcliffe, 1985).

This changed perspective on the older MCR units
now draws renewed attention to the Echo Lake intru-
sion, a large layered gabbro complex with PGE miner-
alization buried below Jacobsville Sandstone on the
southern flank of the MCR (Fig. 1). With a reported zir-
con age of 1110.8 = 1.5 Ma on multiple near-concor-
dant and concordant fractions (Cannon and Nicholson,
2001; S. Nicholson, pers. comm., 2018), this intrusion
now stands as the oldest well dated intrusion in the
MCR. As samples from this intrusion had robust zir-
cons, new analysis of chemically abraded zircons may
refine this age to better than 1 Myr precision.

Mineralized Mafic-Ultramafic Intrusion on the
northern Flank of the Midcontinent Rift,
Canada

On the northern flank of the MCR, north of Thunder
Bay, there occur a number of localized mafic-ultra-
mafic intrusions: the Thunder Bay North complex,
including the chonolith-like Current Lake Intrusive
Complex (with a narrow feeder and big bowl-shaped
intrusion); the Sunday Lake intrusion; the Saturday
Night intrusion; and the Thunder intrusion. All of these

4 There are a few other older reported ages, either published or unpublished, but all are based on somewhat complicated and
discordant baddeleyite data, such as the 1120 + 4 Ma upper intercept age for a Baraga dyke near the Eagle deposit (Dunlop,
2013). Others are within error of a ca. 1109 Ma onset (e.g. Jackfish Island and other intrusions in Heaman et al., 2007).

5 Note that in efforts to refine zircon ages on the volcanic sequences, using the latest innovations in high-precision U-Pb
geochronology, there is a tendency towards reporting mean 206Pb/238U ages of multiple concordant zircon analyses, or con-
cordia ages (e.g. Swanson-Hysell et al., 2019), which, in most cases, are just slightly younger than older 207Pb/206Pb ages on
similar samples, thus shifting the age framework to slightly younger ages (by 1-2 Myr). This shift in absolute time is further
magnified by using a modified U isotope ratio (Hiess et al., 2012).
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intrude Archean basement of the Quetico Subprovince
below the northern limb of the MCR, and all are vari-
ably mineralized. Some are being actively explored.
They were discovered by probing distinct geophysical
anomalies (reverse remanence magnetic anomalies),
following the discovery in 2002 of high-grade Ni-Cu-
PGE sulphide ore in another intrusion, the Eagle intru-
sion, on the south side of the MCR®O.

The larger bowl-shaped main parts of these various
intrusive complexes typically show ultramafic cumu-
late rocks near the base, with or without basal sulphide
mineralization, overlain by mafic cumulates that grade
up into evolved monzogabbros underneath a chilled
upper contact that shows extensive interaction with
Archean roof rocks (e.g. Fig. 6b). The apparent nega-
tive magnetic anomalies associated with these intru-
sions, indicating a significant component of reverse
paleomagnetic remanence, suggested that these intru-
sions were part of the early rift story. Few of them were
dated, except for the Thunder intrusion (as part of a
TGI-4 study; see Trevisan et al., 2015), which has a zir-
con age of 1108.0 £ 1.0 Ma. We therefore sampled the
Current Lake intrusion of the Thunder Bay North
Complex, the Sunday Lake intrusion, and the Saturday
Night intrusion, two of which yielded good zircon and
baddeleyite separates from evolved, coarsest grained
samples of upper monzogabbros.

Baddeleyites (5 fractions) from the Sunday Lake
intrusion yield a preliminary age of 1109.0 + 1.3 Ma
(weighted mean 207Pb/206Pb age); the Current Lake
sample (from the Beaver Lake part of the intrusion),
yields a 1106.6 + 1.6 Ma age (upper intercept). It is too
early to tell from these initial results (Table 2) whether
the minor age dispersion is real or whether it reflects
minor analytical differences (such as common Pb cor-
rections on baddeleyites with lower radiogenic Pb con-
tent, or other complications). It is entirely possible that
all these intrusions formed within a million years at ca.
1108 Ma. Given the shape of some of these intrusions,
with tube-like conduits (i.e. “chonoliths”), it seems
likely that they represent dynamic feeders to the major
sill complexes on the northern flank of the MCR,
and/or the lower parts of the basaltic volcanic
sequences that may have extended well onto the north-
ern flank of the MCR.

On the southern flank of the rift, the Eagle — Eagle
East Complex and nearby intrusions also fall in this
same older age group. We have newly dated one of these
differentiated intrusions, the Bovine Igneous Complex),

which yields a preliminary baddeleyite age of 1106.2 +
1.3 Ma (Table 2). It seems likely that the linear array
of intrusions, including Eagle and Bovine Igneous
Complex, share a genetic relationship with major east-
west-trending dykes of the Baraga-Marquette swarm,
which still lack precise and concordant U-Pb ages in
the published literature’7. In detail, however, the
Baraga-Marquette swarm shows at least two discrete
trends (east-northeast, and east-southeast) and may
represent more than one swarm and magmatic event.

Why the “Tadpole”-Shape? And Magma Flow/
Filling Direction?

A remarkable feature of the Current Lake and adjacent
Steepledge Lake complexes is their composite shape
with shallow dipping/plunging conduits in the north,
widening into larger bowl-shaped intrusions to the
southeast, over a distance of ~4 to 10 km. Even more
remarkable is that the somewhat younger Tamarack
Complex, hundreds of kilometres to the southwest in
Minnesota, shows a similar morphology—a basic plan
view that we refer to as a “tadpole”. Also, Sunday Lake
shows this basic plan view, although less pronounced,
with a conduit-like appendage on its northwest side
(Fig. 7). In addition to sharing this basic “tadpole”
shape, the intrusions show a similar orientation and
asymmetry, with the larger bowl-shaped bodies offset
to the southeast (i.e. the tadpoles seem to be swimming
in the same direction!).

Part of the explanation could be gentle southeast-
directed tilting (e.g. ~5° into the rift), which could
expose a somewhat deeper feeder dyke progressively
to the north. Almost certainly this is part of the expla-
nation and naturally leads to the question of flow or
filling direction. Currently there are no hard data on the
flow direction in these complexes, but an overall
magma flow from northern conduit-like feeders into
larger bowl-shaped intrusions in the south is our pre-
ferred8. This suggests that the larger bowl-shaped
intrusions are the down-stream part of the complex that
slowly filled and expanded by roof uplift and stoping,
while undergoing internal crystal settling (cumulates at
the base) and differentiation.

If our interpretation of flow direction is correct, it
would suggest that sulphide ores are most likely to
have accumulated in two places: 1) where narrow con-
duit-like feeders widened and fed into larger bodies to
the southeast, due to decreasing magma flow rates and
rapidly reduced transport capacity; and 2) localized

6 At Current Lake, part of the Thunder Bay North Complex, the discovery of mineralized boulders on the lakeshore also con-
tributed to the discovery of the Current Lake mineralized intrusion (A. MacTavish, pers. comm., 2018).

7 Dunlop (2013) presented an upper intercept age of 1120 + 4 Ma based on three discordant baddeleyite fractions.

8 At the Current Lake Intrusive Complex, Panoramic Resources has generally been entertaining an opposite flow direction,
i.e. from the southeastern bowl-shaped intrusion into the northern conduit (A. MacTavish, pers. comm., 2018).
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sulphide accumulations along the bottom of the main
bowls, due to local gravity settling of sulphide droplets
and pooling in local footwall depressions. Neither of
these targets is easy to find, particularly at depth. These
predictions can be compared with the drill-defined sec-
tions shown in Figures 6 to 9.

Younger Mineralized Intrusions: Tamarack,
Duluth Complex, Crystal Lake

Tamarack

We sampled several phases of the large Tamarack
Intrusive Complex in Minnesota, parts of which hosts
high-grade massive to semi-massive and disseminated
Ni-Cu-PGE sulphides. An earlier date from the north-
ern dyke-like feeder of the complex was determined at
1105.6 + 1.3 Ma, using sparse baddeleyite from a felds-
pathic peridotite (Goldner, 2011). This date is based on
three clustered, slightly discordant (1.1-1.5%) frac-
tions. Some of our samples are still in progress, but zir-
cons from the differentiated upper part of the large
“southern bowl” of the complex yielded excellent con-
cordant and overlapping results (Fig. 5a), resulting in a
concordia age of 1103.8 + 0.9 Ma. This precise and
concordant result indicates that the Tamarack Complex
is clearly younger than the ca. 1106-1109 Ma group of
intrusions north of Thunder Bay. It is possible that it
represents a feeder to the nearby “Chengwatana vol-
canics” that fill the southern part of the MCR (Fig. 1),
for which Wirth and Gehrels (1998) reported a U-Pb
zircon age of 1102 + 5 Ma. The multi-lobed morphol-
ogy of the Tamarack Intrusive Complex, suggesting
three different phases and a dynamic, perhaps longer
lived intrusive history, is compatible with a dynamic
feeder-type system (Goldner, 2011; Taranovic et al.,
2015).

Duluth Complex

The next younger intrusive complex is that of the very
large Duluth Complex (Miller et al., 2001, 2002) dated
by multiple samples at 1098-1099 Ma (Paces and
Miller, 1993; Hoaglund, 2010). It has been described
by numerous authors and will not be dealt with here in
any detail, except for a few brief comments:

1. As recently reviewed by Cawthorn and Miller
(2018), early work on the Duluth Complex by
Grout (1918), then referred to as the “Duluth gab-
bro”, recognized it as “a large, lenticular, centrally
sunken, generally concordant, intrusive mass, with
its thickness approximately one-tenth to one-twen-
tieth of its width or diameter”. Grout (1918) intro-
duced the term “lopolith” (from the Greek word
“lopos” meaning shell or dish) and interpreted the
Mellen Complex across the lake (Fig. 1), now
known to be slightly older, as the southern limb of
his “lopolith”. As explained by Cawthorn and

Miller (2018), the modern view of the Duluth
Complex has evolved significantly and the term
“lopolith” is no longer appropriate, not here and
possibly not elsewhere either (e.g. Bushveld).

2. In the modern literature, the Duluth Complex is
commonly referred to as a “large layered intru-
sion”, the second largest in the world after the
Bushveld Complex. Therefore, it is often thought
of as a laterally extensive layered complex (like the
Bushveld), but a more detailed look at the Duluth
Complex (Miller et al., 2001, 2002) reveals that it
is indeed a “complex” in the very sense of the
word—i.e., made up of several, if not many, more
localized magmatic chambers or sub-intrusions,
each with a slightly different magmatic history.
This makes lateral correlation and a full under-
standing of the Duluth Complex inherently more
difficult, in addition to the extensive glacial cover,
and locally steep topography and thick tree cover.

3. Although there were no historic mines, the com-
plex has been explored for many decades follow-
ing the discovery of Cu-sulphide mineralization by
F.W. Childers in 1948. Since then, exploration has
involved numerous drilling campaigns and sinking
of exploration shafts (Miller et al., 2002; Miller,
2011). Some projects along the basal contact of the
complex (see Fig. 1), involving some massive but
mainly large-tonnage disseminated Cu-Ni-PGE
sulphide ores, are now in a final exploration and
permitting stage. They are likely to go into modern
production in the near future, as large bulk mining
operations, in part using the existing infrastructure
of adjacent iron mines (PolyMet, 2019).

4. These deposits along the base of the complex are
among the largest undeveloped Cu-Ni-PGE sul-
phide resources in the world (e.g. Miller, 2011;
Miller and Nicholson, 2013).

Given its dynamic evolution of multiple sub-intru-
sions or magma chambers, it seems likely that the
Duluth Complex acted as staging chambers and feeders
to parts of the volcanic sequence of the North Shore
Volcanic Group, before magma supply contracted into
a narrower feeding zone along the lakeshore (see Fig. 1
and below).

Crystal Lake Intrusion

The Crystal Lake Intrusion is a y-shaped, multi-phase,
gabbroic intrusion ~40 km southwest of Thunder Bay
and has been the target of past and on-going explo-
ration programs. A detailed overview of the intrusion is
given in another contribution to this volume by Smith
et al. (2020). The absolute and relative age of this intru-
sion has been under debate, since the area also hosts a
number of other gabbroic or diabase intrusions (Geul,
1970, 1973), in particular: the Logan Sills; the north-
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northwest-trending Cloud River dykes; a dense devel-
opment of major north-northeast-trending, rift-parallel
Pigeon River dykes; and the locally internally differen-
tiated, ~100-200 m wide Mount Mollie dyke (e.g.
Cundari, 2012). In the field, we have established the
following sequence of events in this area:

1. North-northwest-trending Cloud River dykes: 30—
100 m wide diabase dykes. Our preliminary results
for these dykes, based on baddeleyite data, suggest
an age of 1109.2 £ 2.9 Ma, in general agreement
with, but more precise than, the earlier result
reported by Hollings et al. (2010).

2. Logan Sills: an extensive diabase (with local gra-
nophyre) sill complex now dated at 1106.3 + 2.0
Ma. Only north-northeast-trending Pigeon River
dykes demonstrably cut the Logan sills®.

3. Northwest-trending Mt. Josephine dyke. a very large
dyke (~100 m wide) just across the Canada—USA
border, trending at right angles to the ridges
defined by the Pigeon River dykes. We determined
a combined zircon and baddeleyite upper intercept
age for this dyke of 1099.0 + 1.2 Ma (Table 2),
which suggests a connection to Duluth Complex
magmatism.

4. Densely developed north-northeast-trending Pigeon
River dykes and sheets: major diabase to gabbroic
dykes (and some dipping sheets), locally with inter-
nal differentiation (Geul, 1970, 1973). In the field,
we established that Pigeon River dykes cut and are
chilled against Cloud River dykes and thus
younger (Bleeker et al., 2019; Smith et al., 2019).
Our current results for Pigeon River dykes cluster
at 1096 Ma, which suggest a broad connection with
the younger intrusions in the roof of the Duluth
Complex, i.e. Beaver Bay Complex and Sonju
Lake Intrusion (Fig. 1, Tables 1, 2); and, in particu-
lar, the “Beaver River Diabase” (Miller and
Chandler, 1997; Doyle, 2016), for which Paces and
Miller (1993) established a crystallization age of
1095.8 £ 1.2 Ma. Large Pigeon River dykes form
major topographic ridges in the area around
Crystal Lake and our observations suggest that
these ridges do not transect the Crystal Lake
Intrusive Complex. We have searched the area of
the Crystal Lake Intrusion for younger crosscutting
diabase dykes, a search that came up negative.
Hence, given that the dense Pigeon River swarm
comprises numerous large, subparallel dykes, rep-
resenting multiple intrusive pulses, and taking cur-

rent dating uncertainties into consideration, the
overall life span of this swarm is likely 1097-1094
Ma.

5. Mount Mollie dyke: a large, somewhat curved, east-
to east-northeast-trending, internally differentiated
dyke, locally with a core of fine- to coarse-grained
granophyre. It has often been interpreted as a
feeder dyke to the Crystal Lake Intrusion. Instead,
we presently consider this dyke to be a member of
the Pigeon River swarm and note that some other
wide Pigeon River dykes in the area also show
minor internal differentiation, with local gra-
nophyre (Geul, 1970, 1973). Our preliminary data
on samples from the Mount Mollie dyke indicate
an age of 1096.3 + 1.4 (Smith et al., 2020), which
is indistinguishable from our present Pigeon River
dating results (Table 2). We have no explanation
for the much older date reported by Hollings et al.
(2010). We have searched for crosscutting relation-
ships but, to date, have not identified conclusive
field relationships, except for thin north-northeast-
trending dykelets (with chilled margins) intruding
into the Mount Mollie dyke, in agreement with
multiple magma pulses within the overall Pigeon
River swarm.

6. Crystal Lake Intrusion: and finally, the multiple
gabbroic phases of the Crystal Lake Intrusion, a
major keel-shaped to dyke-like, composite, intru-
sive body of both homogeneous gabbro/troctolite
and mineralized vari-textured gabbros (Smith et al.,
2020), not crosscut at surface by any of the dykes
described earlier (but see cross-sections in Smith et
al., 2020). Our most conclusive U-Pb results, on
mineralized vari-textured gabbro from the northern
limb of the intrusion indicates a crystallization age
of 1093.2 + 1.2 Ma (Fig. 5b).

Our preliminary results and observations thus sug-
gest that the dense Pigeon River swarm and younger
Crystal Lake Intrusion correlate in a broad sense with
the Beaver Bay and Sonju Lake complexes in the roof
of the Duluth Complex, and that the Mount Mollie
dyke is not the direct feeder to the Crystal Lake
Intrusion, but rather slightly older and part of the over-
all Pigeon River event. Specifically, the Pigeon River
swarm appears to be the northeastern continuation of
the Beaver River Diabase. The Crystal Lake Intrusion,
at ca. 1093 Ma, represents a final intrusive pulse of this
overall 1097-1092 Ma magmatic phase, which is also
well represented in the volcanic sequences of the MCR.

9 Our preliminary age for the main (upper) Logan Sill at Mount MacKay is within error of other nearby results. One that is
robust and precise is the zircon age for the “Swamper Lake monzogabbro” at 1107.0 + 1.1 Ma (Davis and Green, 1997), just
across the Canada—USA border. These same authors also recalculated the original “Logan Sill” age (obtained at Lake Nipigon)
to 1108.2 + 0.9 Ma and considered this the age of onset of voluminous mafic magmatism. All these key ages are within uncer-

tainty.
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A few other gabbroic intrusions with this relatively
young age are the Blake Township gabbro (Heaman et
al., 2007) and the gabbroic complexes intruding the
Osler Group volcanic rocks, i.e. the Moss Lake
Gabbro and St. Ignace Island Complex (Table 2, and
references therein). The older Cloud River dykes, with
their distinct north-northwest-trend, at high angles to
the Pigeon River swarm, represent a different mag-
matic phase related to the onset of high-volume mag-
matism. These various ages and trends of associated
dykes (i.e. principal stress directions) indicate a signif-
icant reorganization of the system occurred at ca. 1096
Ma.

Post-Duluth Complex Contraction of Magma
Supply into the Central Rift

It is interesting to note that the rift-parallel Pigeon
River dykes (1097-1094 Ma) and the various younger
“post-Duluth Complex™ gabbroic intrusions discussed
above all occur closer to the northwestern shore of
Lake Superior (Fig. 1), i.e. closer to the rift axis, than
many of the older intrusions (e.g. Thunder Bay North
Complex, Tamarack, etc.), suggesting that the focus of
magmatism contracted into the central rift as the litho-
sphere thinned and rifted apart. The Pigeon River dyke
swarm, and the Beaver River Diabase to the south
(Miller and Chandler, 1997), likely are the surface
expression of this more focussed, rift-parallel, trans-
lithospheric feeder zone, which we here refer to as the
“North Shore Magmatic Feeder Zone” (NSMFZ, iden-
tified in Figure 1 by the grey zones along the northern
shore of Lake Superior)l0. It seems likely that the
major Pigeon River dykes and the NSMFZ may have
fed thick lava flows as far away as the Keweenaw
Peninsula. There, the thick Greenstone Flow (Portage
Lake Group) has a U-Pb age of 1094.0 £ 1.5 Ma (Davis
and Paces, 1990), an age that is, within uncertainty,
coeval with the Pigeon River dykes and the more local-
ized gabbroic intrusions that occur along its trend (e.g.
Crystal Lake, Moss Lake). Doyle (2016) arrived at a
similar conclusion but focussed on the Beaver River
Diabase of the Beaver Bay Complex. Our conclusion
would extend this feeder zone into a more extensive
linear zone (NSMFZ). Doyle (2016) draws attention to
the presence of very calcic plagioclase megacrysts in
both the Beaver River Diabase, where they can be tied
to large, lower crustal anorthosite xenoliths, and in the
basalts of the Greenstone Flow. Large plagioclase
megacrysts have also been noted in some Pigeon River
dykes but require further study to determine their anor-
thite content and whether they are xenocrysts from a
similar source.

Implications for Midcontinent Rift “Magmatic
Stages”

Miller and Nicholson (2013) and other authors have
divided the magmatic evolution of the MCR into vari-
ous phases or stages. A full review of this important
topic is beyond the scope of this report and should
await the completion of all our dating results.
Nevertheless, a few comments are in order. Their
“Initiation Stage” (1115-1110 Ma) remains somewhat
nebulous as some of the older ages have been revised,
and others remain under discussion and to be tested.
Beyond the problematic ca. 1110-1120 Ma baddeleyite
ages, there are, however, various “precursor events”,
often alkaline, throughout the wider region (Fig. 1,
Table 1), which need to be included in the overall con-
sideration.

Also, as more precise ages emerge, some of their
later stages, and particularly their age boundaries, will
require some revision. The “Early Stage” of Miller and
Nicholson (2013: 1110-1106 Ma) encompasses the
onset of high-volume mafic magmatism, which is sup-
ported by our study, but the new Tamarack ages chal-
lenge the boundary of the following “Hiatus Stage
(1106-1101 Ma). Perhaps more importantly, the new
insights into the major Pigeon River swarm and
younger gabbroic intrusions, and the reorganization
into a linear magmatic feeder zone (NSMFZ), argue for
a distinct 1097-1092 Ma stage, correlating with the
eruption of the entire Portage Lake lava sequence. An
unconformity may mark the beginning of this sequence
(see also Swanson-Hysell, 2019).

Tholeiitic Versus Alkaline Intrusion and
Mantle Sources

With more complete and accurate age control, and the
spatial distribution of intrusions, as shown in Figure 1,
an interesting aspect of the overall MCR evolution is
the predominance of alkaline intrusions in the eastern
part of the rift. The well dated Coldwell Complex
(Heaman and Machado, 1992; G. Dunning and D.
Good, pers. comm., 2017), and also the reasonably
well dated Nemegosenda alkaline complex farther east
(Heaman et al., 2007), overlap in age with the 1106—
1110 Ma onset of high-volume basaltic magmatism but
are compositionally distinct from the mafic-ultramafic
intrusions in the western MCR. Many of the low-vol-
ume, alkaline precursor events (e.g. Great Abitibi
swarm, and various lamprophyric to kimberlitic intru-
sions) are also concentrated in the eastern part (Fig. 1).
This spatial dichotomy may speak to the nature of the
underlying mantle lithosphere as well as issues dis-
cussed below.

10 The presence of this zone is probably also the reason why the northwest shore of Lake Superior is overall more linear as

compared to, for instance, the southern shore of Lake Superior.
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Mantle Plume Centre and Potential Plume
Track?

With the overall diversity of intrusions, and the various
dyke swarms of different trends but in many cases still
with poorly defined ages, we caution against drawing
any simple radiating patterns that might indicate a
hypothetical centre of mantle plume impact. The Great
Abitibi dyke swarm (1141 Ma: Krogh et al, 1987) has
featured prominently in such conjecture (Ernst and
Buchan, 1997) but is much older than many dyke
swarms proximal to the MCR, such as the rift-parallel
Pigeon River swarm (1096 Ma: this study), and pre-
dates high-volume mafic magmatism by >30 Myr.
Also, the evidence for lateral emplacement of the main
Great Abitibi dyke, from a magmatic source south of
the MCR (Ernst, 1990), should be treated as specula-
tive at this stage. The Kipling dyke, which perhaps may
define a fanning pattern and plays an important role in
this debate, has no U-Pb age. Furthermore, in this gen-
eral area east and northeast of the MCR, both ca. 2110
Ma Marathon dykes and ca. 2170 Ma Biscotasing
dykes have similar northeast-trends and complicate the
tracing of MCR-related dykes, and associated pale-
opoles are not fully distinct (e.g. Great Abitibi poles
and Biscotasing poles overlap). Clearly, more complete
and precise ages, as well as compositional data, on
many of the dyke swarms of the MCR are needed to
better infer overall emplacement patterns and define
the entire tectonomagmatic system and its evolution.

To determine a possible centre of plume impact, and
a potential plume track, it is also important to zoom out
to the full scale of the North American continent (and
beyond, Rodinia) and to consider all the mafic magma-
tism on a >1000 km scale that could be related (Table
1). To highlight the potential scale of MCR-related
magmatism, some of the key pulses of magmatic activ-
ity, at ca. 1160 Ma and 1108 Ma, are echoed as far
away as northern Saskatchewan in the form of diabase
intrusions in the Athabasca sandstone basin (French et
al., 2002; Bleeker and Chamberlain, 2015). Are these
separate events or are they distant manifestations of the
same overall tectonomagmatic system? Similarly, the
southwestern arm of the MCR, extending far into the
mid-continent, may be connected with the essentially
contemporaneous southwest USA diabase province
(Hammond, 1990; Bright et al., 2014). It is interesting
to note that this latter magmatic province may extend
to somewhat younger ages than the MCR (e.g. Heaman
and Grotzinger, 1992), perhaps providing a hint of a
plume track. Any such speculation would also need
to be reconciled against the paleomagnetic data and

apparent polar wander path derived from the MCR
(Swanson-Hysell et al., 2019). Finally, in this overall
context, it is worth drawing attention to the study of
Edwards and Blackburn (2018), who recorded a distinct
1.1 Ga heating pulse at the base of the lithosphere (from
xenoliths in the Victor kimberlite) far to the northeast of
Lake Superior (~600 km) in the James Bay Lowlands.

CONCLUSIONS

Our ongoing research has added critical details, field
observations, and U-Pb data to the magmatic evolution
of the MCR, with new high-precision U-Pb ages for
~10 of the mineralized intrusions and associated feeder
dyke swarms, while a number of samples is still in
progress. Our results favour a relatively sharp onset of
high-volume basaltic magmatism at ca. 1106-1110 Ma
in the main part of the rift, with coeval more alkaline
magmatism in the eastern MCR. Only the older date on
the Kitto intrusion (ca. 1117 Ma: Heaman et al., 2007)
in the Lake Nipigon area remains as an older age “out-
lier”, one that we are still testing.

The mineralized Sunday Lake Intrusion, north of
Thunder Bay, dated at 1109.0 = 1.3 Ma, is one of the
oldest differentiated intrusions on the northern flank of
the MCR. On the southern flank, the large Echo Lake
layered intrusion has the oldest robust zircon age of
1110.8 &£ 1.5 Ma (Cannon and Nicholson, 2001), and
for this reason alone should be a target for age refine-
ment using modern chemical abrasion-isotope dilution-
thermal ionization mass spectrometry (CA-ID-TIMS)
methods, especially as it is known to contain relatively
good zircons.

Mineralized intrusions of the MCR do not all fall in
this early age group, but show a temporal distribution
that correlates with all the main volcanic phases of the
rift. Through time, they can be grouped as follows:

1. Early MCR intrusions, ca. 1110-1106 Ma: Sunday
Lake, Thunder, Thunder Bay North (Current Lake),
and many of the intrusion on the southern flank,
such as Eagle, Bovine Igneous Complex, and Echo
Lake; also the large Coldwell Complex.

2. The Tamarack Intrusive Complex at ca. 1105-1103
Ma.

3. The Mellen Complex at ca. 1102 Mall,
The main part of the Duluth Complex at 1099 Ma.

5. Younger intrusions along the northwestern shore of
Lake Superior at ca. 1097-1094 Ma: Beaver Bay
and Sonju Lake intrusions and the main Pigeon
River dykes, including Mount Mollie at 1096 Ma.

6. Crystal Lake Intrusion at ca. 1094—-1092 Ma.

11 This large complex on the southern flank of the MCR has not been a focus of our study, but clearly could benefit from age
refinement. Could it be coeval with the Duluth Complex, as Grout (1918) initially inferred, both emplaced near the base of

the overlying volcanic sequences?
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All of the mineralized intrusions that so far have
received detailed studies appear more complex than
single-phase intrusions and all are part of dynamic
feeder systems that likely fed coeval parts of the vol-
canic stratigraphy of the rift. Hence, there is scope for
detailed geochemical and isotopic studies (e.g. see
Doyle, 2016) to reveal some of these connections in
more detail and to better understand the overall dynam-
ics.

As the age database improves, it is clear that the
focus of magmatic activity, including emplacement of
mineralized intrusions, contracted into the developing
rift after the emplacement of the Duluth Complex. The
major rift-parallel ca. 1096 Ma Pigeon River swarm, in
particular, marks this contraction into a major feeder
zone along the northwest shore of Lake Superior (our
NSMFZ), perhaps stretching from the Duluth Complex
in the southwest all the way to St. Ignace Island in the
northeast. The southwest-trending Carlton dykes (Fig.
1) may extend this zone farther to the southwest. This
zone and its major dykes likely were the major fissure
system that fed the entire 1097-1092 Ma Portage Lake
lava pile, including the thick Greenstone Flow.
Following multiple pulses of dyke emplacement into
the NSMFZ, this feeder zone was then intruded by sev-
eral more localized gabbroic complexes, such as
Crystal Lake.

Finally, at the higher precision that is likely to
advance understanding of rift processes (~1 Myr or
better), a number of challenging geochronology-related
problems remain, first among which are the remaining
discordance in some of the data (Fig. 4) and the some-
times minor offset of slightly discordant baddeleyite
data to marginally older 207Pb/206Pb ages as compared
to zircon data (Fig. 10). This offset was first noted
decades ago in Nipigon sills (Davis and Sutcliffe,
1985); it also revealed itself in the data for the Thunder
intrusion (Trevisan et al., 2015), and it is also present
in some of our data. We are still working on this prob-
lem, but it is one reason to keep searching for well
behaved zircons that respond well to chemical abra-
sion. Another approach would be to identify samples
with relatively robust baddeleyite populations that
could withstand air abrasion. This could test whether
this issue with baddeleyite is related to the surface of
the crystals or to other factors.

In comparison, a minor problem is the tendency in
modern high-precision U-Pb dating to concentrate on
potentially more precise 206Pb/238U data from multiple
overlapping concordant zircon analyses (e.g. Swanson-
Hysell et al., 2019), which typically are slightly
younger than 207Pb/206Pb upper intercept ages on sim-
ilar samples, creating an offset among data sets.
Similarly, switching to a more refined U isotopic ratio
amplifies this offset (Hiess et al., 2012). This may be

Crystal Lake Intrusion
mineralized vari-textured gabbro
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Figure 10. Standard U-Pb concordia diagram showing an
example of the relative offset of baddeleyite data (n = 3,
black ellipses) with respect to zircon (n = 2, red ellipses). The
apparent offset to the right results in older 207Pb/206Pb ages
for the baddeleyite, well beyond the uncertainties of the indi-
vidual analyses. Several factors could contribute to this off-
set, some of which are presently not fully understood in each
case study. It remains as a significant hindrance to obtaining
accurate and highly precise ages on zircon-poor rock units
(e.g. many diabase dykes). The example shown is from the
unmineralized troctolite of the northern limb of the Crystal
Lake Intrusion, but this issue is known to occur in many
Midcontinent Rift data sets, including high-resolution data on
zircon and baddeleyite standards from the Duluth Complex
(K. Chamberlain, pers. comm., 2019). All data-point error
elipses are 20.

useful in terms of the best possible absolute age control
on key units of the MCR, but it complicates correlation
between data sets and published ages at a ~1-2 Myr
time scale for an area such as the MCR.
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