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Abstract: Advancements in the establishment of the geological framework of the Sverdrup Basin re-
sulting from the Geo-mapping for Energy and Minerals program can be grouped under the main topics of 
tectonostratigraphy, crosslinking of biostratigraphy and chronostratigraphy, integration of igneous records 
with newly refined stratigraphy, and effects of global climatic environments on hydrocarbon source rocks 
in geological time. New discoveries of volcanic ash beds throughout much of the Triassic stratigraphic 
section required new tectonic interpretations involving a magmatic arc northwest of the basin that was 
likely involved in the opening of the Amerasia Basin. Modern approaches to biostratigraphy calibrated by 
radiometric age dating of volcanic ash beds made global correlations to chronostratigraphic frameworks 
and tectonic models possible. Correlation of the stratigraphy and recent geochronology of the High Arctic 
large igneous province (HALIP) places the main pulse of mafic magmatism in a postrift setting. Finally, 
the depositional setting of source rocks in the Sverdrup Basin is explained in terms of oceanographic fac-
tors that are related to the global environment. All of these advancements, including hints of undefined and 
relatively young structural events, lead to the conclusion that the hydrocarbon potential of the Sverdrup 
Basin has not been fully tested by historical exploration drilling.

Résumé : Les progrès réalisés dans la définition du cadre géologique du bassin de Sverdrup grâce au 
programme Géocartographie de l’énergie et des minéraux peuvent être regroupés sous les principaux 
thèmes suivants : la tectonostratigraphie; les liens croisés entre la biostratigraphie et la chronostratigra-
phie; l’intégration des archives ignées et de la stratigraphie nouvellement précisée; et les effets des envi-
ronnements climatiques globaux sur les roches mères d’hydrocarbures au cours des temps géologiques. 
La découverte de nouvelles couches de cendres volcaniques dans une grande partie de la coupe stratigra-
phique du Trias a nécessité la formulation de nouvelles interprétations tectoniques mettant en jeu un arc 
magmatique au nord-ouest du bassin, lequel a probablement été impliqué dans l’ouverture du bassin amé-
rasien. Les approches modernes de la biostratigraphie étalonnée par la datation radiométrique des couches 
de cendres volcaniques permettent des corrélations des cadres chronostratigraphiques et des modèles tec-
toniques à l’échelle globale. La corrélation de la stratigraphie et de la géochronologie récente de la grande 
province ignée du Haut-Arctique permet de situer la principale impulsion d’activité magmatique mafique 
dans un contexte post-rift. Enfin, le milieu de dépôt des roches mères dans le bassin de Sverdrup peut être 
expliqué à l’aide de facteurs océanographiques liés à l’environnement global. Tous ces progrès, y compris 
des indices de l’existence d’événements structuraux non définis et relativement récents, permettent de 
conclure que le potentiel en hydrocarbures du bassin de Sverdrup n’a pas été entièrement vérifié par les 
anciens forages d’exploration.
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INTRODUCTION
The Geo-mapping for Energy and Minerals (GEM) 

Western Arctic project was tasked with re-examining the 
geological framework for areas of the Canadian continental 
margin bordering the Arctic Ocean. The fundamental stra-
tigraphy of the Sverdrup Basin was established by previous 
generations of Geological Survey of Canada (GSC) scien-
tists over many decades prior to the GEM program. These 
GSC scientists produced a rigorous description, correlation, 
and fossil-based age definition of stratigraphic units. The 
GSC was uniquely equipped with the requisite expertise 
to undertake GEM-supported research and developed new 
fields of study in the process.

An overarching theme of the GEM program in studying 
the Sverdrup Basin was to allow researchers to apply mod-
ern laboratory techniques and advancements in geological 
theory, but this could only be achieved by undertaking new 
targeted field observations and rock sampling. Sedimentary 
geochemistry, radiometric geochronology, micropaleon-
tology, and tectonostratigraphy were integrated to provide 
an up-to-date paleoenvironmental and tectonic framework 
for the Sverdrup Basin, from initial subsidence in the 
Carboniferous to uplift in the Cenozoic. The elements of this 
framework were combined to examine how the Arctic Ocean 
formed by continental drift.

This paper does not present new research. Instead, it 
describes the contribution of the GEM program to advancing 
the understanding of Sverdrup Basin’s geological framework. 
The bibliography provided in Appendix A is a catalogue of 
publications on the Sverdrup Basin that have been produced 
as part of the GEM program. 

MODERN TECTONIC FRAMEWORK
Prior to GEM, there was no direct evidence of a complex 

geodynamic setting for the Sverdrup Basin; therefore, inter-
pretations about the basin’s origin quite necessarily involved 
postorogenic and passive margin processes. It was mainly 
detrital zircon U-Pb age data coupled with new field obser-
vations, more specifically recognition of volcanic ash beds 
in the Triassic section, that required updated tectonic con-
cepts. These ideas led to a new understanding of the setting 
for the Sverdrup Basin in terms of continental configuration 
and, more importantly, explained why the Sverdrup Basin 
formed. In general, the new model places the basin behind a 
continental subduction zone, in a retro-arc position (Fig. 1), 
and the various stages of the basin are attributed to subduc-
tion dynamics, ultimately resulting in rifting, continental 
breakup, and formation of the Arctic Ocean as a back-arc 
basin (Fig. 2, 3; Hadlari et al., 2016, 2018; Midwinter et al., 
2016; Alonso-Torres et al., 2018).

MULTIDISCIPLINARY 
APPROACHES TO CRETACEOUS 
STRATIGRAPHY

Significant updates to the stratigraphy of the Sverdrup 
Basin were achieved using an integrated multiproxy approach. 
New quantitative techniques were developed for the next-
generation analysis of biostratigraphic data from the Sverdrup 
Basin; for example, the Hassel Formation in the Sverdrup 
Basin was determined to be time equivalent to the putative 
Hassel Formation in the Eclipse Trough (Bylot Island) on 

Figure 1. Global tectonic reconstruction of Pangea from Hadlari et al. (2018).



217

T. Hadlari

the basis of a statistical comparison of fossil pollen assem-
blages (J.M. Galloway et al., 2012). In another example, 
assemblage-level biostratigraphic signatures for Upper 
Jurassic–Lower Cretaceous strata were developed using 
quantitative palynology (Fig. 4; J.M. Galloway et al., 2013). 
Demonstration of a sub-Hauterivian unconformity in the 
basin was useful for tectonic frameworks (J.M. Galloway 
et al., 2013, 2015).

Figures 5 and 6 are examples showing the integration 
of measured sections, paleontology, chemostratigraphy, and 
geochronology. These sections were previously measured 
and studied, but new field-sampling strategies for modern 

laboratory techniques yielded valuable results, mainly because 
volcanism spans a much wider time range than previously 
documented (Herrle et al., 2015; Davis et al., 2017).

The integrated approach also yielded results from vol-
canic stratigraphy because some rocks previously mapped 
as volcanic flows are actually sills. Flows are the same age 
as interbedded sedimentary strata, whereas sills could be 
emplaced at any time after sedimentary deposition; there-
fore, distinguishing between flows and sills is of critical 
importance for assessing paleomagnetic and geochrono-
logical data. New insight into the chronostratigraphy of 
the Sverdrup Basin, implications for normal and reverse 

Figure 2. Map of the Sverdrup Basin from Hadlari et al. (2018).
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Figure 3. Stratigraphy and tectonic stages of the Sverdrup Basin (Hadlari et al., 2016, 2018).

Figure 4. Multidimensional scaling analysis of fossil pollen and spores in Hoodoo Dome (from J.M. Galloway 
et al., 2013).
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paleomagnetic polarity chrons, and timing of magmatic activ-
ity in the High Arctic large igneous province (HALIP) were 
discussed, clarified, and revised in Evenchick et al. (2019).

GLOBAL CLIMATE, LOCAL 
ENVIRONMENT, AND 
HYDROCARBON SOURCE ROCKS

A series of GEM papers has shown the impact of mer-
cury and fly ash during the latest Permian extinction event 
(Grasby et al., 2011, 2015a, b, 2017). These toxic byprod-
ucts were released from burning coal as magma from the 
Siberian large igneous province rose through sedimentary 
strata (Fig. 7). The discovery of fly ash in the Canadian 
Arctic was a serendipitous discovery of GEM research, 
when organic-rich upper Permian rocks were examined for 
their hydrocarbon source-rock potential.

The GEM field-based studies demonstrated that the Early 
Triassic was severely nutrient limited due to global hot-
house conditions causing a stratified ocean (Fig. 8), which 
limited source-rock formation. Return to normal tempera-
tures led to high marine productivity and the formation of 
major circum-Arctic petroleum source rocks (Grasby et al., 
2013, 2016).

Palynological analysis revealed a cold snap of late 
Valanginian age in the Canadian High Arctic that resulted 
in vegetation composition changes (J.M. Galloway et al., 
2015). Analysis results also demonstrated that during the 
overall Cretaceous warm period, cold snaps affected bio-
logical productivity in circum-Arctic regions (Grasby et al., 
2017).

HIGH ARCTIC LARGE IGNEOUS 
PROVINCE (HALIP)

The HALIP was probably initiated ca. 128 to 126 Ma by 
a plume that arrived after the Arctic Ocean had started to 
form, with the main initial pulse of magmatism occurring at 
124 to 120 Ma (Fig. 9). Results from field mapping identi-
fied new volcanic horizons and provided more robust age 
constraints, which showed that the record of igneous activity 
in the HALIP was more protracted than previously thought 
(Evenchick et al., 2015; Herrle et al., 2015). Following 
the first pulse, magmatism persisted throughout the Late 
Cretaceous to ca. 80 Ma.

The integration of biostratigraphy and geochronology 
techniques has allowed fossil horizons to be calibrated in 
terms of radiometric ages (Herrle et al. 2015; Davis et al., 
2017). Igneous geochronology places the magmatic events 
in time (Evenchick et al., 2015; Dockman et al., 2018). 
Relating stratigraphic ages and magmatic ages allowed the 
correlation of events in the sedimentary basin with the mag-
matic record of HALIP. Examination of this new tectonic 
framework revealed that the HALIP postdates both rifting 
and the breakup event, when parts of Russia and Alaska 
started to drift away from the northwestern Canadian Arctic 
margin.

ORE AND PETROLEUM SYSTEMS
Many GEM products have important implications for 

resource potential, from the metallogeny of HALIP rocks 
(Jowitt et al., 2014; Saumur et al., 2016) to the timing of 

Figure 5.  Early Cretaceous stratigraphy of Axel Heiberg  Island, Nunavut, calibrated using geochronology (figure 
and caption from Herrle et al., 2015). A: Stratigraphy, biostratigraphy, lithostratigraphy, paleoceanographic events, 
and lithology. B: Total organic carbon (TOC, %). C: U-Pb geochronology ages (red dashed lines indicate absolute 
age tie points). D: Organic carbon isotopes. E: Carbonate carbon isotope composite age-calibrated curve (from 
Gradstein et al., 2012) and major mid-Cretaceous paleoceanographic events. F: Position of the late Aptian to early 
Albian cold snap based on TEX86 sea-surface temperatures from the Mazagan Plateau, France (from McAnena 
et al., 2013). Correlative intervals based on δ13C fluctuations are indicated by segments a–i. Grey areas and red 
wavy lines represent condensed intervals (Rhizocorallium beds). Black wavy lines represent disconformities (paleo-
sols) of middle and upper Cenomanian. Benthic foraminifera stratigraphy after Schröder-Adams et al. (2014). Blue 
stars show glendonite beds; grey lines represent correlative paleoceanographic events. RM = Rondon Member; 
BR = Bastion Ridge; OAE = oceanic anoxic event; P.s. = paleosol; Sh = shale; Si = siltstone; Vf = very fine-grained 
sandstone; F =  fine-grained  sandstone; M = medium-grained sandstone; V. borealis = Verneuilinoides borealis;  
E. multiplum = Evolutinella multiplum; H. gigas = Haplophragmoides gigas; G. canad. = Gaudryina canadensis;  
M. mant. = Miliammina manitobensis; G. iri. = Gaudryina irinensis; T. r. = Trochammina rutherfordi; D. smok. = Dorothia 
smokyensis; E. bound. = Evolutinella boundaryensis. 

Figure 6. Late Cretaceous stratigraphy of Axel Heiberg and Ellef Ringnes islands, calibrated using geochronology 
(from Davis et al., 2017). MFS = maximum flooding surface; OAE = oceanic anoxic event; Vf = very fine-grained 
sandstone; F = fine-grained sandstone; M = medium-grained sandstone; C = coarse-grained sandstone.
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Figure 7. Mercury flux in late Permian marine environments (from Grasby et al., 2017). Negative (−ve) and positive (+ve) ∆199Hg 
source signatures are indicated. Pangea sections: Meishan, China; and Buchanan Lake, Sverdrup Basin, Canadian Arctic Archipelago.

Figure 8. History of upwelling along northwestern margin of Pangea (from Grasby et al., 2016). a) Late Permian; b) Early Triassic; 
c) Middle Triassic. N/P = nitrogen/potassium; R = Redfield ratio; OMZ = oxygen minimum zone.



224

GSC Bulletin 609

salt movement and formation of hydrocarbon traps (e.g. 
J.M. Galloway et al., 2013; Dewing et al., 2016a). Some 
excellent examples of GEM products that are directly related 
to resource potential are highlighted below.

A basinwide summary of the thermal maturity of the 
Middle Triassic source-rock interval(s) in the Schei Point 
Group indicates that Middle Triassic source rocks in the 
western Sverdrup Basin are in the oil, rather than gas, win-
dow (Dewing and Obermajer, 2011). This implies that the 
large natural gas discoveries in the western Sverdrup Basin 
had a deeper origin.

Canada’s largest conventional natural gas field at Drake 
Point, on Melville Island, contains 5.3 TCF of gas trapped in 
an anticline (Fig. 10; Dewing et al., 2016b). New results show 
that the anticline formed in two phases: the first phase was 
a previously unrecognized folding event at ca. 100 Ma; the 
second occurred during the Eurekan Orogeny at ca. 55 Ma. 
The geochemical characteristics of the gas at Drake Point 
indicate that the gas migrated from a source rock dominated 
by type III (terrestrial) kerogen. This implies a source deeper 
than the Middle Triassic strata, possibly as deep as the 
Permian van Hauen Formation. If gas was generated from 

deep source rocks, then many traps in the Sverdrup Basin 
were not fully assessed during exploration drilling carried 
out in the 1970s to 1980s.

Examination of the Polaris mine explains the location of 
the Polaris Zn-Pb deposit in terms of fault reactivation (Reid 
et al., 2013a). An older (Early Devonian) set of reverse faults 
was reactivated in Late Devonian time as strike-slip faults 
(Fig. 11). This created local pull-apart basins that focused 
fluid flow. This model helps predict areas of highest min-
eral-exploration potential that may have a similar geological 
setting.

SUPPORT FOR UNIVERSITY 
RESEARCH

By supporting research at universities, the GEM pro-
gram was able to expand the scope of Sverdrup Basin 
activities by adding external expertise and laboratory capa-
bilities to complement core GSC activities. Professors at 
various universities led research groups: B. Beauchamp at 
the University of Calgary (Tullius et al., 2014; Anfinson 

Figure 9. Magmatic pulses of the High Arctic large igneous province (from Dockman 
et al., 2018).
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Figure 10. Interpreted seismic section from Melville Island, showing lower Paleozoic rocks below a hanging-wall 
anticline formed within strata of the Sverdrup Basin (for location and full discussion see Dewing et al., 2016b).
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Figure 11.  Late Devonian fault motion at Polaris Zn-Pb mine site  from Reid et al. (2013b). Interpreted trace 
of leading edge of basement blocks shown as red dashed lines. Basement blocks that step to the west cause 
compression (block A), whereas those that step to the east cause local pull-apart basins (block B). Locations of 
blocks A and B are shown by boxes on the map. 
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et al., 2016; Williscroft et al., 2017; Alonso-Torres et al., 
2018; B.J. Galloway et al., 2018; Beauchamp et al., 2019); 
C.J. Schröder-Adams at Carleton University (Pugh et al., 
2014; Schröder-Adams et al., 2014); R.W.C. Arnott at the 
University of Ottawa (Midwinter et al., 2016, 2017a, b); 
G. Pearson at the University of Alberta (Dockman et al., 
2018); and R. Stephenson at the University of Aberdeen 
(Stephenson et al., 2013).

INTERNATIONAL COLLABORATION
Formal agreements were negotiated with four international 

research institutes to support collaborative field-based research 
related to the Sverdrup Basin. These were the University 
of Hull (Bond and Grasby, 2017), University of Leeds (e.g. 
Grasby et al., 2015a, b), Bundesanstalt für Geowissenschaften 
und Rohstoffe (J.M. Galloway et al., 2018; Piepjohn et al., 
2018), and Uppsala University (Deegan et al., 2016).
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