1-12/14

Energy, Mines and Energie, Mines et Resources Canada Ressources Canada

CANMET

Canada Centre for Mineral and Energy Technology Centre canadien de la technologie des minéraux et de l'énergie

 $^{220}\ensuremath{\text{Rn}}$ ACTIVITY CONCENTRATION LEVELS IN LARGE U/Th SUBTERRANEAN ENCLOSURES

J. BIGU

ELLIOT LAKE LABORATORY

DECEMBER 1989

To be published in Radiation Protection Dosimetry for publication.

CROWN COPYRIGHT RESERVED

MINING RESEARCH LABORATORY DIVISION REPORT 90-32 (J) ^{220}Rn activity concentration levels in large u/th subterranean enclosures

J. Bigu Elliot Lake Laboratory CANMET, Energy, Mines and Resources Canada Elliot Lake, Ontario, Canada

ABSTRACT - Concurrent measurements of 220 Rn and 220 Rn progeny were conducted in an underground uranium mine. The 220 Rn measurements represent the first accurate source of data for Canadian mines. Furthermore, a study of the ratio between 220 Rn and its progeny under varying airflow conditions was conducted in order to determine its usefulness to derive 220 Rn activity concentration levels from experimentally simpler 220 Rn progeny measurements. The data obtained suggest that the relationship between these two variables, although approximate, can be used for practical applications when no great accuracy is required.

i

Measurements of 220 Rn are of interest from the theoretical and practical standpoints. Knowledge of the 220 Rn concentration at a given crosssection of an enclosure of known geometry enables the determination of the 220 Rn progeny concentration within the enclosure as a function of time and of space coordinates. These calculations are useful for airborne radioactivity modelling of living and working environments, and for the estimation of occupational exposure of working personnel.

Determination of 220 Rn concentrations is, however, time-consuming and difficult, particularly in the presence of other airborne radioactive contaminants, such as 222 Rn and its progeny. There are several methods available for the measurement of 220 Rn such as the activated carbon (charcoal) method⁽¹⁾, the scintillation cell method, in conjunction with solid-state detectors⁽²⁾, and the track-etch detector method using selective gas barriers. In any case, however, measurements are not straightforward. By comparison, measurements of 220 Rn progeny are relatively simple.

This paper presents data on 220 Rn and 220 Rn progeny measurements carried out in an underground (UG) U mine. The relationship (ratio) between these two variables was calculated and related to airflow conditions in the mine locations where measurements were made in order to determine whether this ratio was suitable for approximate estimations of 220 Rn activity concentration levels from experimental measurement of 220 Rn progeny concentrations.

EXPERIMENTAL PROCEDURE

Several UG locations of different ore grades and under varying airflow (ventilation) conditions were selected for the measurement of 220 Rn activity concentration levels, i.e., [220 Rn], and of 220 Rn progeny concentration levels, e.g., Potential Alpha Energy Concentration, PAEC(Tn), and Working Level, WL(Tn). (It should be noted that the relationship between WL(Tn) and

PAEC(Tn) is a simple one, namely, $1 \text{ WL}(\text{Tn}) = 20.8 \ \mu\text{J/m}^3$, where $\mu\text{J/m}^3$ is the unit of the PAEC. The symbol Tn in round brackets stands for 220_{Rn} progeny.)

Measurements were conducted for a period of several days at different sections of each mine location. Radon-220 measurements were carried out using the Two Filter Method $(2FT)^{(3)}$. Radon-220 progeny measurements were conducted using standard grab-sampling techniques^(4,5). Parallel, i.e., concurrent, measurements of both 220 Rn and 220 Rn progeny were made at each UG mine section so that these two variables could be related unambiguously at each sampling station. Ventilation conditions, i.e., airflow rate (Q) at each sampling station, were carefully monitored and noted. Although a number of mine locations were investigated, only two main locations are reported here, namely, airway/travelway, and an exhaust airway. As previously indicated, each mine location was subdivided into several mine sections, i.e., sampling stations, in order to obtain a representative average value for each variable measured.

Because, in general, 220 Rn progeny measurements are far less complicated and less labour intensive than 220 Rn measurements, and because 220 Rn progeny measurements are routinely conducted in some Canadian UG U mines, it is of great practical interest to determine whether a simple relationship between these two variables exists that is suitable for practical application. This, as stated above, was the purpose of this investigation where simplicity in determining 220 Rn was a major consideration even at the expense of some tolerable lack in accuracy.

EXPERIMENTAL RESULTS AND DISCUSSION

A summary of some of the experimental data obtained is given in Table 1, where the tabulated values of concurrent measurements of 220 Rn activity concentration, 220 Rn progeny concentration, and ventilation conditions for several UG sampling stations and dates are shown. The data of Table 1 are

given in SI units, and also in the more historical units, i.e., Bqm^{-3} and $pCiL^{-1}$ for [²²⁰Rn], and μJm^{-3} and WL for ²²⁰Rn progeny, respectively.

The data shown in Table 1 are valid under airflow conditions in the range 12 m^3s^{-1} to 66 m^3s^{-1} which are typical for this UG U mine. The average value for the ratios of interest, namely, PAEC(Tn)/[²²⁰Rn] and WL(Tn)/[²²⁰Rn] are, approximately:

 $PAEC(Tn)/[^{220}Rn] = (1.184 \pm 0.380) \times 10^{-3} \mu JBq^{-1}$ for SI units, and $WL(Tn)/[^{220}Rn] = (2.057 \pm 0.733) \times 10^{-3} WL/pCiL^{-1}$ in 'historical' units.

Figure 1 shows a normalized frequency histogram of 220 Rn progeny measurements conducted in a variety of mine locations in the same UG U mine. Most of these locations were areas of lower activity than the areas chosen for the measurements indicated in Table 1. The shape of the histogram shown in Figure 1 is consistent with direct 220 Rn data measured elsewhere.

CONCLUSIONS

The ratio of ²²⁰Rn progeny concentration to ²²⁰Rn concentration given above is of practical interest in U/G U-mines with significant amounts of ²³²Th in the orebody, and hence, significant contribution of ²²⁰Rn and its progeny to mine air, because in enables calculation of [²²⁰Rn], which measurement is rather complex and time consuming, from far simpler measurements of WL(Tn) or PAEC(Tn). Radon-220 concentration data can then be used to determine the ²²⁰Rn flux density across mine walls as described elsewhere⁽⁶⁾. The data so obtained are expected to be sufficiently approximate for engineering purposes and radiation control applications where no great degree of accuracy is required.

Because the ratio $PAEC(Tn)/[^{220}Rn]$ depends on the airflow rate, the ratio can also be used as an index of ventilation conditions in U/G U mines. Furthermore, knowledge of $[^{220}Rn]$ and PAEC(Tn) is important from the health physics standpoint for radiation exposure calculation purposes.

REFERENCES

- Bigu, J. Radon-220 Determination Using Activated C and a High-Purity Ge Detector. Health Physics 51, 534-538 (1986).
- Bigu, J. A Method for Measuring Thoron and Radon Gas Concentrations Using Solid-State Alpha-Particle Detectors. Appl. Radiat. Isot. (Int. J. Radiat. Appl. Instrum. Part A). 37, 567-573 (1986).
- Mayya, Y.S. and Kotrappa, P. Modified Double Filter Method for the Measurement of Radon and Thoron in Air. Ann. Occup. Hyg. 21, 169-176 (1978).
- 4. Rock, R.L. Sampling Mine Atmospheres for Potential α -Energy due to Presence of Radon (Thoron) Daughters. Mine Enforcement and Safety Administration (MESA) Information Report IR-1015 (available from Washington, DC: MESA, U.S. Department of the Interior) (1975).
- 5. Bigu, J. and Grenier, M. Thoron Daughter Working Level Measurements by One and Two Gross Alpha-Count Methods. Nucl. Instrum. & Methods in Nucl. Res. 225, 385-398 (1984).
- Bigu, J. An Evaluation of Radiation and Meteorological Conditions in an Underground Uranium Mine. Mining Research Laboratory (CANMET, Energy, Mines and Resources Canada, Ottawa), Division Report MRL 89-36(TR) (1988).

4

Date	Location	[²²⁰ Rn] pCi/L (Bq/m	WL(Tn)	(PAEC(Tn)) (µJ/m ³)	0 (m ³ /s)	Remarks
16/11/87	Exhaust airway	194.4 (719 192.1 (710 203.6 (753	3) 0.462 8) 0.454 3) 0.482	(9.61) (9.44) (10.03)	- - -	
19/11/87		217.1 (803 222.4 (822 202.9 (750	0.473 0.490 0.490 0.504	(9.84) (10.19) (10.48)	- -	
17/12/87		209.4 (774 236.7 (875 225.4 (834	8) 0.458 8) 0.458 0) 0.455	(9.53) (9.53) (9.46)	-	
04/11/87	Airway/travelway	82.5 (305 67.1 (248 75.1 (277	0.081 0.074 9) 0.091	(1.68) (1.54) (1.89)	37.8 37.8 37.8	
30/12/87		39.1 (144 32.2 (119 28.5 (105	7) 0.101 1) 0.110 5) 0.106	(2.10) (2.29) (2.20)	23.6 23.6 23.6	
07/01/88		43.8 (162 42.0 (155 37.5 (138	(1) 0.063 (4) 0.065 (8) 0.061	(1.31) (1.35) (1.27)	20.3 20.3 20.3	
26/01/88	Exhaust airway	191.8 (709 251.6 (930 197.2 (729 167.0 (617	07)0.43909)0.48206)0.43709)0.459	(9.13) (10.03) (9.09) (9.54)	63.5 62.7 64.5 58.8	A B A B
27/01/88		230.6 (853 245.2 (907 217.7 (805 163.0 (603	2) 0.419 2) 0.456 5) 0.428 1) 0.444	(8.72) (9.48) (8.90) (9.23)	62.5 63.7 66.4 60.7	A B A B
28/01/88	Airway/travelway	65.4 (242 224.0 ? 51.8 (191 59.7 (220	.0) 0.083 0.095 .7) 0.074 9) 0.089	(1.73) (1.97) (1.54) (1.85)	17.0 16.3 14.5 17.1	C D C D
29/01/88		70.4 (260 45.7 (169 46.7 (172 43.0 (159	05)0.0891)0.1328)0.1101)0.152	(1.85) (2.75) (2.29) (3.16)	17.0 14.8 12.5 14.4	C D C D

Table 1 - Thoron and thoron progeny concentration for two underground mine locations and several sampling stations.

Note: The letters A, B, C and D refer to sampling stations.

5

Fig. 1 Normalized frequency histogram of ²²⁰ Rn progeny.

6

²²⁰Rn ACTIVITY CONCENTRATION LEVELS IN LARGE U/Th SUBTERRANEAN ENCLOSURES

J. Bigu Elliot Lake Laboratory CANMET, Energy, Mines and Resources Canada Elliot Lake, Ontario, Canada

Received April 28 1990, Amended July 10 1990, Accepted August 5 1990

Abstract — Concurrent measurements of 220 Rn and 220 Rn progeny were conducted in an underground uranium mine. The 220 Rn measurements represent the first accurate source of data for Canadian mines. Furthermore, a study of the ratio between 220 Rn and its progeny under varying airflow conditions was conducted in order to determine its usefulness in deriving 220 Rn activity concentration levels from experimentally simpler 220 Rn progeny measurements. The data obtained suggest that the relationship between these two variables, although approximate, can be used for practical applications when no great accuracy is required.

INTRODUCTION

Measurements of ²²⁰Rn are of interest from the theoretical and practical standpoints. Knowledge of the ²²⁰Rn concentration at a given cross section of an enclosure of known geometry enables the determination of the ²²⁰Rn progeny concentration within the enclosure as a function of time and of space coordinates. These calculations are useful for airborne radioactivity modelling of living and working environments, and for the estimation of occupational exposure of working personnel.

Determination of ²²⁰Rn concentrations is, however, time-consuming and difficult, particularly in the presence of other airborne radioactive contaminants, such as ²²²Rn and its progeny. There are several methods available for the measurement of ²²⁰Rn such as the activated carbon (charcoal) method⁽¹⁾, the scintillation cell method, in conjunction with solid state detectors⁽²⁾, and the etched track detector method using selective gas barriers. In any case, however, measurements are not straightforward. By comparison, measurements of ²²⁰Rn progeny are relatively simple.

This paper presents data on 220 Rn and 220 Rn progeny measurements carried out in an underground (UG) uranium mine. The relationship (ratio) between these two variables was calculated and related to airflow conditions in the mine locations where measurements were made in order to determine whether this ratio was suitable for ²²⁰Rn approximate estimations of activity experimental levels from concentration measurement of ²²⁰Rn progeny concentrations.

EXPERIMENTAL PROCEDURE

Several UG locations of different ore grades and

under varying airflow (ventilation) conditions were selected for the measurement of ²²⁰Rn activity concentration levels, i.e. [²²⁰Rn], and of ²²⁰Rn progeny concentration levels, e.g. Potential Alpha Energy Concentration, PAEC(Tn), and Working Level, WL(Tn). (It should be noted that the relationship between WL(Tn) and PAEC(Tn) is a simple one, namely, 1 WL(Tn) = 20.8 μ J.m⁻³, where μ J.m⁻³ is the unit of the PAEC. The symbol Tn in round brackets stands for ²²⁰Rn progeny.)

Measurements were conducted for a period of several days at different sections of each mine location. ²²⁰Rn measurements were carried out using the Two Filter Method (2FT)⁽³⁾. ²²⁰Rn progeny measurements were conducted using standard grab sampling techniques^(4,5). Parallel, i.e. concurrent, measurements of both ²²⁰Rn and ²²⁰Rn progeny were made at each UG mine section so that these two variables could be related unambiguously at each sampling station. Ventilation conditions, i.e. airflow rate (Q) at each sampling station, were carefully monitored and noted. Although a number of mine locations were investigated, only two main locations are reported here, namely, an airway/travelway, and an exhaust airway. As previously indicated, each mine location was subdivided into several mine sections, i.e. sampling stations, in order to obtain a representative average value for each variable measured.

Because, in general, ²²⁰Rn progeny measurements are far less complicated and less labour intensive than ²²⁰Rn measurements, and because ²²⁰Rn progeny measurements are routinely conducted in some Canadian UG uranium mines, it is of great practical interest to determine whether a simple relationship between these two variables exists that is suitable for practical application. This, as stated

EXPERIMENTAL RESULTS AND DISCUSSION

A summary of some of the experimental data obtained is given in Table 1, where the tabulated values of concurrent measurements of ²²⁰Rn activity concentration, ²²⁰Rn progeny concentration, and ventilation conditions for several UG sampling stations and dates are shown. The data of Table 1 are given in SI units, and also in the more historical

units, i.e. Bq.m⁻³ and pCi.l⁻¹ for $[^{220}Rn]$, and μ J.m⁻³ and WL for ^{220}Rn progeny, respectively.

The data shown in Table 1 are valid under airflow conditions in the range 12 m³.s⁻¹ to 66 m³.s⁻¹ which are typical for this UG uranium mine. The average value for the ratios of interest, namely, PAEC(Tn)/ $[^{220}Rn]$ and WL(Tn)/ $[^{220}Rn]$ are, approximately:

$$\begin{aligned} \text{PAEC(Tn)/[}^{220}\text{Rn}] &= (1.184 \pm 0.380) \times 10^{-3} \\ & \mu J.\text{Bq}^{-1} \text{ for SI units, and} \\ \text{WL(Tn)/[}^{220}\text{Rn}] &= (2.057 \pm 0.733) \times 10^{-3} \\ & \text{WL per pCi.I}^{-1} \text{ in 'historical'} \\ & \text{units.} \end{aligned}$$

Date	Location	[²²⁰ (pCi.l ⁻¹)	⁹ Rn] (Bq.m ⁻³)	WL(Tn)	(PAEC(Tn)) (μJ.m ⁻³)	Q (m ³ .s ⁻¹)	Remarks
16.11.1987	Exhaust airway	194.4 192.1 203.6	7193 7108 7533	0.462 0.454 0.482	9.61 9.44 10.03	 	
19.11.1987	1	217.1 222.4 202.9	8033 8229 7507	0.473 0.490 0.504	9.84 10.19 10.48		
17.12.1987	-	209.4 236.7 225.4	7748 8758 8340	0.458 0.458 0.455	9.53 9.53 9.46		
4.11.1987	Airway/travelway	82.5 67.1 75.1	3053 2483 2779	0.081 0.074 0.091	1.68 1.54 1.89	37.8 37.8 37.8	
30.12.1987		39.1 32.2 28.5	1447 1191 1055	0.101 0.110 0.106	2.10 2.29 2.20	23.6 23.6 23.6	
7. 1.1988		43.8 42.0 37.5	1621 1554 1388	0.063 0.065 0.061	1.31 1.35 1.27	20.3 20.3 20.3	
26. 1.1988	Exhaust airway	191.8 251.6 197.2 167.0	7097 9309 7296 6179	0.439 0.482 0.437 0.459	9.13 10.03 9.09 9.54	63.5 62.7 64.5 58.8	A B A B
27. 1.1988		230.6 245.2 217.7 163.0	8532 9072 8055 6031	0.419 0.456 0.428 0.444	8.72 9.48 8.90 9.23	62.5 63.7 66.4 60.7	A B A B
28. 1.1988	Airway/travelway	65.4 224.0 51.8 59.7	2420 ? 1917 2209	0.083 0.095 0.074 0.089	1.73 1.97 1.54 1.85	17.0 16.3 14.5 17.1	C D C D
29. 1.1988		70.4 45.7 46.7 43.0	2605 1691 1728 1591	0.089 0.132 0.110 0.152	1.85 2.75 2.29 3.16	17.0 14.8 12.5 14.4	C D C D

Table 1. Thoron and thoron progeny concentration for two underground mine locations and several sampling stations.

J. BIGU

Note: The letters A, B, C and D refer to sampling stations.

• Figure 1 shows a normalised frequency histogram

- of ²²⁰Rn progeny measurements conducted in a variety of mine locations in the same UG mine. Most of these locations were areas of lower activity
- than the areas chosen for the measurements indicated in Table 1. The shape of the histogram shown in Figure 1 is consistent with direct ²²⁰Rn data measured elsewhere.

CONCLUSIONS

The ratio of ²²⁰Rn progeny concentration to ²²⁰Rn concentration given above is of practical interest in UG uranium mines with significant amounts of ²³²Th in the ore body, and hence a significant contribution of ²²⁰Rn and its progeny to mine air, because it enables calculation of [²²⁰Rn], whose measurement is rather complex and time consuming, from far simpler measurements of WL(Tn) or PAEC(Tn). ²²⁰Rn concentration data can then be used to determine the ²²⁰Rn flux density across mine walls as described elsewhere⁽⁶⁾. The data so obtained are expected to be sufficiently approximate for engineering purposes and radiation control applications where no great degree of accuracy is required.

progeny.

Because the ratio $PAEC(Tn)/[^{220}Rn]$ depends on the airflow rate, this ratio can also be used as an index of ventilation conditions in UG uranium mines. Furthermore, knowledge of [^{220}Rn] and PAEC(Tn) is important from the health physics standpoint for radiation exposure calculation purposes.

REFERENCES

- 1. Bigu, J. Radon-220 Determination Using Activated C and a High-Purity Ge Detector. Health Phys. 51, 534-538 (1986).
- 2. Bigu, J. A Method for Measuring Thoron and Radon Gas Concentrations Using Solid-State Alpha-Particle Detectors. Appl. Radiat. Isot. (Int. J. Radiat. Appl. Instrum. Part A) 37, 567-573 (1986).
- 3. Mayya, Y. S. and Kotrappa, P. Modified Double Filter Method for the Measurement of Radon and Thoron in Air. Ann. Occup. Hyg. 21, 169-176 (1978).
- Rock, R. L. Sampling Mine Atmospheres for Potential α-Energy due to Presence of Radon (Thoron) Daughters. Mine Enforcement and Safety Administration (MESA) Information Report IR-1015 (available from Washington, DC: MESA, US Department of the Interior) (1975).
- 5. Bigu, J. and Grenier, M. Thoron Daughter Working Level Measurements by One and Two Gross Alpha-Count Methods. Nucl. Instrum. Methods Nucl. Res. 225, 385-398 (1984).
- Bigu, J. An Evaluation of Radiation and Meteorological Conditions in an Underground Uranium Mine. Mining Research Laboratory (CANMET, Energy, Mines and Resources Canada, Ottawa) Division Report MRL 89-36(TR) (1988).

.