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ABSTRACT 

This report investigates the effect of loading rate on the material properties 

and dynamic constants of granitic samples from the Underground Research 

Laboratory (URL), near Pinawa, Manitoba. 

Atomic Energy Canada Limited (A.E.C.L.) is presently investigating the fea-

sibility of long-term underground storage of nuclear waste using test samples 

from the Pinawa batholith. 

It was concluded that the loading rates studied had no significa.nt effect on the 

Tangent Modulus of Elasticity or Poisson's ratio. The uniaxial compressive 

strength of the samples, however, decreased with the loading. 

It is recommended that more testing programmes be initiated and new meth-

ods for longterm effects of load, and other natural geologic occurrences be 

devised to better reflect the storage conditions. 
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INTRODUCTION 

The storage of wa,ste produced through nuclear fission has presented very 

special, and very difficult problems for industry and society. The problems 

arise from the extreme danger that fission products poise to the environment 

and the length of time required for safe disposal. 

Atomic Energy of Canada Limited (A.E.C.L) is presently investigating the 

feasibility of storage chambers cut deep within stable rock formations. If 

rock formation are found that exhibit extreme stability over time of such 

great magnitude, a realistic solution to the storage needs of nuclear waste 

would be available. 

This report investigates the effects of load over time on a rock mass. Since 

the storage of nuclear wa,ste involves an extended time period, the effects of 

load on the strength of rock is very necessary. Uniaxial compression tests 

were performed on 21 samples of granite at three different loading rates, 0.75 

megapascals per second (MPa/s), 0.075 MPa/s and 0.0075 MPa/s. 

Values for uniaxial compressive strength, Young's modulus and Poisson's 

ratio were calculated. The effects of the reduced loading rates are discussed 

through interpretation of existing rock failure theories. 

1. 
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1.0 Geological Description of Test Samples

Test samples originated from Test Room 9 at the 240 meter level of the

Underground Research Laboratory (URL) excavation in the Lac du Bonnet

batholith near Pinawa, Manitoba. The samples were 45 mm in diameter

with a granitic composition and a coarse grained texture. Mineralogical

compositions were approximately 30% K-feldspar, 30% plagioclase, 30% or

slightly less quartz and 10% or slightly more mafic minerals, with biotite

dominating.

1.1 Preparation of Samples

Core samples selected for testing are first cut using a water-cooled diamond

impregnated saw. They are cut to a length slightly longer then the desired

final length to allow for sufficient lapping. Samples should have a final length-

to-diameter ratio of 2.5:1. The samples are next lapped using â double-

lapping machine until the parallelity of the ends is within 0.001 inch and

they are as perpendicular to the long axis as possible. With the samples

properly prepared physical measurements of length and diameter can be

obtained. (Table 1.)

2.0 Determination of Ultrasonic Velocity Constants

Compressional wave and shear wave velocities as well as Dynamic Young's

Modulus, Dynamic Shear Modulus, and the Dynamic Poisson's ratio are

determined using ultrasonic pulse velocity measuring equipment. (Fig. 1.)

The transmitter imparts a mechanical impulse to the sample and the arrival

time of the wave is observed using the oscilloscope. The time required for the

wave to transverse the sample's length is used to calculate the wave velocity.



Ed = 
Vp2  —V32  

p Vs2  3 ( Vp2  — 4 Vs2  ) 

V = — 
t 

Where V = dynamic Young's modulus 

/ = Poisson's ratio 

t = shear wave velocity 

The dynamic Young's Modulus, dynamic Shear Modulus, and the dynamic 

Poisson's ratio, referred to as the dynamic constants, are calculated from the 

wave velocities and the sample's density. 

3.  

vd = 
2(Vp2  — Vs2 ) 

Where  Ed = dynamic Young's modulus 

Pd = Poisson's ratio 

V, = shear wave velocity 

Vp  compressive wave velocity 

vp2  — 2vs2  
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2.1 Strain Gauge Application 

Surface areas selected for gauge placement are sanded and washed down with 

acetone to remove surface roughness, dirt, and oils and to allow fo-r a bet-

ter bonding between sample and gauge. Micro-Measurements, Inc. general 

purpose 500BII strain gauges, (Fig. 2) and a two component glue were used 

on the test samples.Two axial strain gauges are applied dia.metrically op-

posing one another and two circumferential gauges are applied in the same 

manner. Each pair of gauges is wired in series and the lead wires attached 

by solder (Fig. 3). A jacket of heat shrinkable tubing is placed over the 

prepared sample to protect the test personnel and test equipment, and to 

allow examination of failure characteristics. 

3.0 Loading Tests and Data Presentation 

The test sam.ples were loaded to failure using a Material Testing System 

(MTS) 815 Rock Mechanics Test System operated by the senior technol-

ogist. The lead wires from the strain gauges were attached to two Bruel 

and Kjaer type 1526 strain indicators. The circuit was configured to form a 

half wheatstone bridge that uses dummy arms of the same gauge factor to 

compen.sate for effects due to temperature and lead length. Seven samples 

were tested at each loading rate; 0.75 megapascals per second (MPa/sec), 

0.075 MPa/sec, and 0.0075 MPa/sec. Load, axial strain and circumferential 

strain data was recorded and later transferred to the facilities VAX computer 

system for analysis. Graphical interpretation was conducted, plotting stress 

against strain (Figs. 4-25) and tables showing the modulus of elasticity, Pois-

son's ratio, uniaxial compressive strength and calculated mean values were 

produced. (Tables 2-6) 
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3.1 Discussion and Interpretation 

Test results from the load rate experiments indicate that the uniaxial com-

pressive strength of the granitic samples was directly affected by  the  rate at 

which they were loaded to failure. Suggested load rates between 0.50 MPa/s 

and 1.00 MPa/s are used in standard laboratory experiments to determine 

the uniaxial compressive strength of rock samples and one of the loading 

rates used in this set of experiments, 0.75 MPa/s is within these parameters. 

When the values of the uniaxial compressive strength for this standardized 

loading rate are compared to the values obtained from the reduced loading 

rates, a dramatic decrease in the uniaxial compressive strength is observed. 

A notable decrease of 8.9% exists between the first loading rate of 0.75 MPa/s 

and the second loading rate of 0.075 Mpa/s. A further decrease of 7.3% was 

noted between the second loading rate and the third of .0075 Mpals. An over 

all decrease of 15.6% or 28 MPa wa,s observed over the entire load-rate range. 

The Tangent modulus of elasticity was consistently within deviaticins that 

can be attributed to variances in rock composition and sample preparation. 

There was no evidence to indicate that the tangent modulus of elasticity was 

affected by different loading rates. Also of interest is the large variance of 11 

standard deviations observed for the uniaxial compressive strengths of the 

samples that were failed at the load rate of 0.0075 MPa/s. This large field 

of failure strengths suggests that with increased loading time failure planes 

have greater opportunity to manifest themselves along existing wealmesses 

inherent in the rock; and secondly, that such weak-nesses exist and are unique 

to each sample. 

3.2 Theories on Rock Failure and Interpretation 

Many theories address the mechanism that actually leads to failure in rock 

I  



and other solid materials and the effects of strain over time on material 

strength and failure. The Griffith Theory of Rupture [2] was an early and 

quite explanation of the mechanism that causes failure in solids. Griffith 

based much of his theory on considerable experiments that he conducted 

on glass and metal solids. The Griffith Theory of rupture, stated simply, 

explains that failure results as micro-cracks grow in response to load. The 

growth occurs as the extreme tension located at the crack tip exceeds the 

elastic modulus for the material. These micro-cracks can be idealized as thin 

ellipses and as a result of their shape extreme tensions exist at their tips. Any 

stress acting on the sample will be greatly magnified at crack tips, and failure 

can result at values far lower than expected values predicted by the mate-

rial's modulus of elasticity. Griffith further postulated that the multitude of 

existing micro-cracks in the solid may coalesce to form larger micro-cracks 

and micro-faults directed by the applied force. However, it is not entirely 

clear ho. w.  curved micro-cracks might coalesce to form microscopic fractures 

[1]. Griffith's theories were partially revised by McClintock and Walsh to 

better explain rock failure. McClintock and Walsh assumed that as a load 

is imparted to a test sample the ellipse shaped micro-cracks close, creating 

frictional forces that might then develop at the contacts of crack surfaces 

to influence crack growth and ultimately failure [1].The samples were tested 

with end platens made of hardened steel with the same diameter as the test 

sample. The end platens create a region of uneven stress distribution that 

forms a con.e extending at approximately 45 degrees -until a point is formed 

within the sample [4]. The directing of a region of uneven stress combined 

with a loading rate slow enough to allow for crack propagation in accordance 

with Griffith's rupture theories and modified Griffith theories would lead to 

the prediction of conically shaped and diagonal failure planes. Such failure 

characteristics were observed in test samples from all three loading rates, 

6.  



vvith no one loading rate being dominated by cone, wedge or diagonal failure 

characteristics. 

The movement of one crack creates a field of extremely fast moving stresses 

that can cause further cracks to occur. The cohesion of the sample is r-educed 

as the cracks spread to the sample's surface, redistributing the load to smaller 

unbroken sections of the sample. All these factors act to reduce the strength 

of the sample [3]. The velocity at which the cracks grow is dependent on 

the physical properties of the sample. The theory of crack stress being an 

initiator for secondary crack formation leading to failure strongly suggests 

that the strength of a test sample will be a function of time. Tests conducted 

on glass blocks yielded results that sug,gest the platen restrictions do not 

encourage directed failure but limit the formation of a series of straight cracks 

connected by many jagged transverse cracks [3]. This failure characteristic 

was again observed in all samples from all three loading rates and is referred 

to as axial splitting. 

While no one theory best explains observed rock failure, the cumulation of 

both directional crack propagation through Griffith and modified Griffith 

rupture theories and the developm.ent of axial splitting, as observed in both 

glass blocks [3] and charcoal grey granite, provide a reasonable and realistic 

model rock failure, as observed in the test samples from the Pinawa batholith. 

7.  



Figure 3 wiring of gaugèd sample. 

UPPER PLATEN 

SPECIMEN 

CIRCUMFERENTIAL 
STRAIN GAUGE 

AXIAL STRAIN 
GAUGE 

LOWER PLATEN 

FRONT VIEW REAR VIEW 

-11I• 	UM 	 -11MI 	-MI -MI 	-MI AIM 	-1•11 -BM -UM 



TRANSMITTER 

SPECIMEN 

RECEIVER 

PULSE 

GENERATOR 

POWER 

AMPLIFIER 'LIFIER 

red 
I I 

1 

1 

Gouge length 1 f End loops--.—{ 

1 11  
lob  length 

1 
1 

1 
1 

9. 

OSCILLOSCOPE 

Figure 1 schematic of ultrasonic pulse measuring equipment. 

Overoll poltern length 

ill 
	=11111  

4IM 

4..  
w.  	_Tob spot ing 

Outer grid lines Grid center 	inner gr.o Imes 

olignment mons 

•cp 

Figure 2 Micro-Measurements Inc. general purpose 500BH strain gauge. 



1 

1 

1 

Table 1: Summary of Specimen Dimensions and Density 

Specimen 	Length 	Diameter 	Density 

Identification 	(mm) 	(mm) 	(Mg/m3 ) 

	

209-018-EXT7 8.27 	101.85 	44.74 	2.63  

	

8.37 	103.78 	44.80 	2.63  

	

8.47 	105.08 	44.71 	2.63  

	

9.04 	104.94 	44.70 	2.63  

	

9.17 	103.00 	44.78 	2.63  

	

9.37 	102.90 	44.79 	2.62  

	

9.48 	102.49 	44.75 	2.63  

	

10.72 	100.68 	44.82 	2.63  

	

10.83 	104.24 	44.85 	2.62  

	

11.29 	101.09 	44.79 	2.63  

	

11.40 	100.67 	44.80 	2.63  

	

11.50 	102.91 	44.84 	2.63  

	

11.61 	101.65 	44.81 	2.63  

	

11.72 	101.71 	44.83 	2.63  

	

11.97 	102.73 	44.80 	2.64  

	

12.06 	102.10 	44.82 	2.63  

	

12.16 	101.91 	44.82 	2.63  

	

12.27 	100.89 	44.84 	2.63  

	

12.37 	104.08 	44.86 	2.63  

	

12.50 	103.23 	44.80 	2.63  

	

12.61 	103.06 	44.80 	2.63 

10.  
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Table  2: Summary of Ultrasonic Velocity and Dynamic Properties for URL Loading Rate Specimens 

Specimen 	P-wave 	S-wave 	Dynamic Young's Dynamic Shear Dynamic Poisson's 
Identification 	Velocity (km/s) Velocity (km/s) 	Modulus (GPa) 	Modulus (GPa) 	Ratio  

	

209-018-EXT7 8.27 	4.41 	3.00 	50.62 	23.59 	 0.07  

	

8.37 	4.37 	2.80 	47.41 	. 	20.55 	 0.15  

	

8.47 	4.35 	2.90 	48.69 	22.07 	 0.10  

	

9.04 	4.38 	2.92 	49.42 	22.48 	 0.10  

	

9.17 	4.39 	2.84 	48.41 	21.27 	 0.14  

	

9.37 	4.33 	2.92 	48.42 	22.42 	 0.08  

	

9.48 	4.33 	2.92 	48.58 	22.38 	 0.08  

	

10.72 	4.85 	3.29 	61.21 	28.46 	 0.08  

	

10.83 	4.66 	3.09 	55.53 	25.08 	 0.11  

	

11.29 	4.42 	2.81 	48.21 	20.80 	 0.16  

	

11.40 	4.46 	2.76 	47.70 	20.05 	 0.19  

	

11.50 	4.58 	2.78 	49.12 	20.33 	 0.21  

	

11.61 	4.46 	3.13 	. 	52.30 	25.76 	 0.02  

	

11.72 	468 	3.19 	57.18 	26.80 	 0.07  

	

11.97 	4.31 	3.24 	47.31 	27.71 	 -0.15  

	

12.06 	4.47 	3.08 	52.31 	24.98 	 0.05  

	

12.16 	4.51 	3.02 	52.46 	23.91 	 0.10  

	

12.27 	4.60 	3.05 	54.20 	24.46 	 0.11  

	

12.37 	4.51 	3.03 	52.59 	24.13 	 0.10  

	

12.50 	4.63 	3.17 	55.89 	26.48 	 0.06  

	

12.61 	4.54 	3.04 	53.16 	24.31 	 0.09  
, 

Mca.n 	4.48 (0.14) 	3.00 (0.15) 	51.46 (3.75) 	23.72 (2.46) 	0.09 (0.07) 
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Table 3: Summary of Uniaxial Compression Properties: Loading Rate = 0.75 MPa/s 

Specimen 	Uniaxial Compressive 	 Tangent Modulus of Elasticity (GPa) 	Poisson's 
Identification 	Strength (MPa) 	10 MPa 20 MPa 30 MPa 40 MPa 50 MPa 60 MPal 50% 	75% 	Ratio  

	

209-018-EXT7 8.27 	187 	29.31 	43.35 	52.27 	58.03 	61.70 	63.74 	65.94 	61.66 	0.25  

	

9.04 	186 	23.08 	39.03 	48.76 	54.97 	58.97 	61.30 	64.39 	61.31 	0.29  

	

9.48 	191 	29.04 	42.65 	51.59 	57.31 	60.90 	62.83 	65.80 	65.34 	0.23  

	

11.29 	175 	35.10 	45.52 	53.19 	58.26 	61.52 	63.32 	64.78 	60.31 	0.26  

	

11.61 	170 	28.95 	44.25 	54.11 	60.03 	63.36 	64.63 	65.76 	67.94 	0.25  

	

12.06 	181 	31.52 	45.10 	54.03 	59.73 	63.27 	65.09 	66.76 	62.55 	0.26  

	

12.37 	167 	29.99 	39.57 	46.52 	51.39 	54.80 	57.10 	59.46 	55.43 	0.27 



Table 4: Summary of Uniaxial Compression Properties: Loading Rate = 0.075 MPa/s

Specimen Uniaxial Compressive Tangent Modulus of Elasticity (GPa) Poisson's
Identification Strength (MPa) 10 MPa 20 MPa 30 MPa 40 MPa 50 MPa 60 MPa 50% 75% Ratio

209-018-EXT7 8.37 171 32.54 44.14 53.05 57.95 60.33 61.94 63.81 60.19 0.29
9.17 176 27.09 39.89 50.00 56.47 60.80 63.98 68.49 64.84 0.29

10.72 161 35.42 45.23 52.75 57.08 59.30 60.71 61.68 56.23 0.20
11.40 157 39.08 48.33 55.31 59.21 61.07 62.55 64.85 68.20 0.34
11.72 159 32.60 43.96 52.40 57.12 59.49 61.05 62.34 60.28 0.25
12.16 164 26.54 40.29 49.88 55.09 57.68 59.50 61.84 61.00 0.19
12.50 162 29.04 38.70 47.69 53.37 57.05 59.81 63.53 64.19 0.32
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Table 5: Summary of Uniaxial Compression Properties: Loading Rate = 0.0075 Iv1Pais 

Specimen 	Uniaxial Compressive 	 Tangent Modulus of Elasticity (GPa) 	Poisson's 
Identification 	Strength (MPa) 	10 MPa 20 MPa 30 MPa 40 MPa 50 MPa 60 MPa 	50% 	75% 	Ratio  

	

209-018-EXT7 8.47 	174 	32.81 	44.43 - 52.97 	57.63 	59.82 	61.38 	63.93 	63.54 	0.24  

	

9.37 	153 	28.37 	40.54 	49.36 	54.82 	58.23 	60.72 	63.34 	63.43 	0.27  

	

10.83 	150 	34.03 	46.03 	54.61 	59.23 	61.33 	62.76 	64.10 	63.62 	0.29  

	

11.50 	147 	34.82 	46.83 	55.57 	60.89 	64.02 	66.00 	66.99 	63.96 	0.27  

	

11.97 	147 	34.19 	45.24 . 	54.47 	60.53 	64.56 	67.28 	68.97 	6.7.02 	0.30  

	

12.27 	156 	34.10 	45.50 	55.61 	61.17 	63.86 	65.48 	66.55 	62.05 	0.32  

	

12.61 	140 	27.12 	39.89 	49.28 	55.12 	58.75 	61.08 	62.38 	59.51 	0.28 



-MN Mill MI SIM Ili 	UM MI - 1111111 	IIMI —1111I • -Ma MI AIM MI 	-1111111 

Table 6: Mean Uniaxial Compression Properties for URL Loading Rate Specimens 

Loading 	Uniaxial Compressive 	 Tangent Modulus of Elasticity (GPa) 	Poisson's 
Rate (MPa/s) 	Strength (MPa) 	10 MPa 	20 MPa 	I_ 30 MPa 	40 MPa 	50 MPa 	60 Iv1Pa 	50% 	75% 	Ratio  

0.75 	180 (9) 	29.57 (3.59) 42.78 (2.57) 51.50 (2.86) 57.10 (3.02) 60.6 -5_ 2 .98) 62.57 (2.71) 64.70 (2.44) 62.08 (3.94) 0.26 (0.02)  

	

0.075 	164 (7) 	31.76 (4.56)42.93 (3.44)51.58 (2.53) 56.61 (1.91) 59.39 (1.53) 61.36 (1.58) 63.79 (2.37) 62.13 (3.91) 0.27 (0.06)  

	

0.0075 	152 (11) 	32.21 (3.13)44.07 (2.74)53.12 (2.74) 58.48 (2.68)61.51 (2.66) 63.53 (2.68) 65.18 (2.36) 63.30 (2.25) 0.28 (0.03) 
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RECOMMENDATIONS 

It is recommended that investigations into the feasibility of the long-term 

storage of nuclear waste in formations such as the Pinawa batholith be en-

couraged and continued. 

Tests that replicate the magnitude of time involved in this type of storage 

are necessary to fully understand the effects of load on a rock mass .over such 

an extended period. Tests that investigate the relationships between depth 

and load carrying capability as well as the effects of heat on the strength of 

the in situ rock are also recommended. 

Many other factors may also bear relevance on such storage. Natural geo-

logic occurrences including earthquakes, the movement of the storage area 

through plate tectonics, and effects of ground water also need to be taken 

into consideration when the long term storage of potentially dangerous waste 

is the issue. 
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CONCLUSIONS 

It was concluded that the uniaxial compressive strength of the granitic sam-

ples tested was directly affected by loading at different load rates. A decrease 

in loading rate resulted in a decrease in the uniaxial compressive strength, 

and sample failure at a lower mean load. 

Young's modulus and Poisson's ratio were not affected by reduced loading 

rates. 

It was also concluded that due to the end platens producing uneven regions 

of stress, no one rock failure theory fully describes the observed failure char-

acteristics, but the cumulation of end platen effects and accepted failure 

theories can adequately explain observed failure characteristics. 




