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PEAK AND RESIDUAL STRENGTH ENVELOPES ESTABLISHED 

BY CONFINED SHEAR TEST METHOD 

M. Gyenge* 

ABSTRACT 

This report provides a detailed account of the development and 

verification of a novel testing concept for establishing the frictional and 

strength properties of jointed rocks. 

A set of four cylindrical specimens is easily prepared from 

readily available diamond cores. In the test apparatus, three equal normal 

forces are applied on the three outside specimens in a radial direction. 

The latter are in sliding contact with the central specimen along 

three equally-spaced generatrices. A concentric shear force is applied to 

the central core in an axial direction. The central core is free to move 

along the shear direction, but it is otherwise confined along the lines of 

contact, by the triangular application of normal forces. 

The technique had been verified by successfully testing several 

rocks, including both ductile and brittle types. Strength and frictional 

properties were established for smooth joints, as well as, for joints with 

simulated asperities. 

The results obtained by the completed tests revealed that this 

technique is superior to any of the previously-used shear testing methods. 

Due to the inherent advantages of the method, a large quantity of highly 

reliable joint-property data can be obtained from a single set of test 

specimens. 

Based on the reliable, reproducible and consistent data thus 

obtained, it is seemingly possible to evolve a data analysis method 

to distinguish between the various components of the coefficient of 

friction, and relationships between them. 

*Research Scientist, Canadian Mine Technology Laboratory, Canada Centre for 
Mineral and Energy Technology (CANMET), Energy, Mines and Resources 
Canada. 
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Analysed joint property data can be correlated with uniaxial and 

triaxial test data. Consequently, with this method of analysis all major 

strength and deformation properties can be linked. 

The defined interrelationships between joint and rock substance 

strength properties were used to determine both the peak and the residual 

strength envelopes of jointed rock mass. 

The test apparatus, due to its simplicity, is highly versatile. 

It can be used not only with a laboratory press, but also with a simple 

portable test frame operated by hydraulic hand pumps. Specimen preparation 

can be performed on site. 



ENVELOPPES DE RESISTANCE MAXIMALE ET RESTDUELLE ETABLIES 
PAR LA METHODE D'ESSAI DE CISAILLEMENT CONFINE 

M. Gyenge* 

RESUME 

Ce rapport ,décrit en détail comment a été élaboré et comment vérifier un 
nouveau principe d'essai pour établir les propriétés de frottement et de 
résistance des roches diaclasées. 

Un jeu de quatre éprouvettes cylindriques est facile à préparer à partir 
de carottes de forage au diamant faciles à obtenir. Dans l'appareil d'essai, 
trois forces normales égales sont appliquées radialement sur les trois 
éprouvettes extérieures. Ces dernières sont en contact de glissement, le long 
de trois génératrices équidistantes, avec l'éprouvette centrale. Une force de 
cisaillement concentrique est appliquée axialement au noyau central. Ce 
dernier est libre de se déplacer le long de l'axe de cisaillement, mais il est 
autrement confiné le long des lignes de contact par l'application triangulaire 
des forces normales. 

La technique a été vérifiée par des essais concluants sur plusieurs 
roches, tant ductiles que fragiles. Les propriétés de résistance et de 
frottement ont été établies pour des diaclases lisses ainsi que pour des 
diaclases avec aspérités simulées. 

Les résultats des essais ont révélé que cette technique est supérieure à 
toutes les autres méthodes d'essai de cisaillement utilisées. A cause des 
avantages inhérents de la méthode, une grande quantité de données très fiables 
sur les propriétés des diaclases peuvent être obtenues d'un seul jeu 
d'éprouvettes. 

D'après les données fiables, reproductibles et systématiques ainsi 
obtenues, il serait possible d'élaborer une méthode d'analyse des données pour 
distinguer les diverses composantes du coefficient de frottement, et les 
relations entre elles. 

*Chercheur scientifique, Laboratoire canadien de technologie minière, Centre 
canadien de la technologie des minéraux et de l'énergie (CANMET), Energie, 
Mines et Ressources Canada. 
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Les données analysées sur les propriétés des diaclases peuvent être
corrélées avec des données d'essais uniaxiaux et triaxiaux. Par conséquent,

cette méthode d'analyse permet d'établir des relations entre toutes les
grandes propriétés de résistance et de déformation.

Les relations définies entre les propriétés de résistance des diaclases et
de la matière rocheuse ont servi à établir les enveloppes de résistance tant
maximale que résiduelle de masses rocheuses diaclasées.

L'appareil d'essai, par sa simplicité, est très souple. Il peut être
utilisé non seulement avec une presse de laboratoire, mais aussi. avec un

simple cadre d'essai portatif actionné par des pompes à main hydrauliques. Les

éprouvettes peuvent être préparées sur place.
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INTRODUCTION 

An increasing amount of Canadian underground mining will, in the 

future, will take place under high stress, deep mining conditions. The 

increasingly sophisticated analysis, needed for good mine design, will 

require even more accurate constitutive equations to describe the strength 

and deformational properties of the rock mass. Consequently, new test 

methods and analytical procedures have to be developed to provide 

sufficiently accurate test data for this purpose. 

The necessary development work is currently being handled within 

MRL's "Rock Properties and Support Systems" project. In the first phase of 

development, the post-failure strength properties tests were emphasized. 

The task of updating the test capabilities of CANMET's Canadian Mine 

Technology Laboratory (at MRL) was completed in two stages. First, the 

available 1.4 MN capacity universal press was modified and adapted for the 

requirements [1,2]. The present stage of updating activities involve the 

development of testing procedures for a recently purchased 4.5 MN capacity 

MTS 815 servo-hydraulic test system. 

The second phase of the laboratory testing technology development 

is concerned with the strength properties of the joints. This report is an 

account of the development and verification of procedures involved in a 

novel test concept, which will be referred to as the "confined shear test 

method". 

PREVIOUS TEST METHODS 

The frictional and strength properties of joints are currently 

determined by either triaxial or direct shear test methods. 

The triaxial method is used to establish the shear strength of a 

geological discontinuity in a cylindrical specimen under triaxial loading. 

This test provides data useful in determining the strength properties of 

the natural discontinuities, namely peak shear strengths at various lateral 

pressures, as well as the peak value of the coefficient of friction and 

apparent cohesion. The test is performed on a cylindrical rock specimen 

containing a single geological discontinuity with a certain degree of 

surface roughness and with an angle of orientation permitting sliding under 

the triaxial test conditions. 

The limitation in the degree of surface roughness that can be 
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tested represents one of the drawbacks of the method. The orientation 

requirement poses a further limitation on the use of the method, and 

presents problems in specimen preparation. A distinct advantage of the 

method is that triaxial test conditions are used. This permits the 

frictional and strength properties of the tested discontinuity to be 

obtained under confinement, i.e., under conditions which may simulate the 

actual field conditions around an underground opening. 

The more popular of the two current methods in use is the direct 

shear test. The laboratory test is performed in a shear device consisting 

of a box made of two frames that hold the two halves of the specimen, 

separated by the plane of discontinuity. The test provides data useful in 

determining the strength properties of the natural discontinuities. The 

following relevant information is provided: (a) the shear strength on the 

plane at various normal pressures; (h) the geometrical component of the 

shear strength which results from the interlocking of surface 

irregularities; and (c) the frictional component of the shear strength due 

to sliding of the two surfaces. The test can be performed on a rock 

specimen of either irregular or cylindrical shape which contains the 

particular discontinuity of interest. 

The shear device is provided with means for applying normal and 

shearing forces to the plane of discontinuity. The test method simulates 

the sliding condition of a surface block unconfined along its sides. 

A specific type of direct shear test method is used to determine 

the residual shear strength and residual angle of friction of a rock 

substance. The test is usually performed on cylindrical specimens with a 

saw-cut plane of discontinuity. The test is used: (a) either to 

complement the triaxial shear tests which provide data relating only to the 

peak strength properties, or (h) to check the residual angle of friction of 

a natural discontinuity in the rock. 

A field version of the direct shear method is used to measure the 

in situ peak and residual shear strengths as a function of the stress 

normal to the sheared plane. This test is usually employed in connection 

with foundation investigations of large structures, when the high cost of 

tests can be justified. 

The field shear tests are carried out on intact blocks of the 

rock, which are isolated from the surrounding rock mass by excavation, or 

by drilling. The size of a block sample is governed by the capacities of 

the available loading systems. While a 0.1 m2  area of tested discontinuity 

can be taken as a minimum, tests on a larger scale are expected to provide 
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more representative results. A distinct disadvantage of field shear tests

is the necessary costs involved in site preparation and the rather complex

and large loading facilities required.

Regardless of the test method used, interpretation of the test

results and their use for underground designs provide only uncertain

answers. The uncertainties are inherent in the test method itself. The

following problem areas are common to all of the specific tests mentioned

above.

One of the interpreted laws of friction postulates, that in the

case of dry surfaces the friction force is not dependent upon the total

area of the surfaces in contact. Therefore, these methods should provide

reliable data. However, problems arise at the stage of shear and normal

stress calculations. The original contact area can, perhaps, be calculated

or measured. However, once the normal and shear forces are applied, and

once the normal and shear displacements have therefore occurred, the

original contact area changes and is no longer known. Analysis,

interpretation and use of the test results is, therefore, questionable.

Another interpreted law of friction states, that in the case of

dry surfaces, the friction force is dependent upon the kinds of materials

tested and upon the degree of roughness of the two surfaces in contact.

However, to establish the strength and frictional properties along a plane

of discontinuity, at least three, and preferably five, data pairs of the

normal and shear stresses are required. Therefore, ideally an equivalent

number of individual tests must be conducted at a range of normal loads, on

specimens of identical material and of an equal degree of roughness along

the two surfaces in contact. When dealing with geological materials, it is

hard enough to meet the first requirement. The identical surface roughness

of contact criterion probably never occurs. The test results obviously

reflect the differences between the specimens, which in turn contributes to

the uncertainty in the results achieved.

The third interpreted law of friction states, that the maximum

friction force which can be developed is dependent upon the normal pressure

between the two surfaces in contact, and is proportional to it.

One problem tied in with this law is the uncertainty with which the normal

pressure and its distribution can be established. Because the contact area

continually changes during the test, and since there is also a variation in

the surface roughness along the contact area, the normal pressure cannot be

calculated with any degree of certainty.

The second problem area is related to the magnitude of the normal
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stress which is usually applied when using these test methods. In order to 

run the tests on sliding surfaces that contain all of the representative 

features of the relevant discontinuity, the goal is to select its area as 

large as possible. Due to the constraints imposed by the capacities of the 

available loading devices, the tests are usually performed at rather low 

levels of normal stress. Consequently, the strength and frictional 

properties in case of higher normal stresses can only be estimated by the 

very uncertain means of extrapolation. 

There are other shortcomings of these test methods as well. One 

such shortcoming, already touched upon, is related to the question of 

field-condition simulation. The failure mechanism due to the sliding of 

rock blocks, forming the periphery of an underground opening or the surface 

of an open pit, is adequately simulated by these methods. However, the 

movement of blocks within the rock mass is constrained. This condition is 

simulated only by the triaxial test method; this, however, has its own 

drawbacks, as discussed previously. 

Moreover, specimen preparation for these tests is rather 

difficult, especially in the case of the in situ shear test. With the 

exception of the portable shearing device, the required special testing 

facilities are relatively complex. 

Contact area related problems are eliminated by the test method 

suggested by Stimpson [3]. This simple test procedure measures the 

critical angle of sliding of cylindrical core surfaces in contact, by using 

three pieces of core and a tilt cable. The main problem with this method 

is that the frictional properties can only be established for a smooth 

surface and for a single normal load, namely, for the weight of the sliding 

core. 

HIGHLIGHTS OF THE NEW TESTING METHOD 

To reliably establish the frictional and strength properties of 

rock joints, a new testing technique had to be developed. It is based on a 

novel concept which is designed to eliminate the problems inherent in the 

use of the previous methods. 

Following the conceptual and then the detailed designs, as well 

as in-house manufacturing and calibration, the test equipment and concept 

had been verified by means of test programs. Various rock types were 

tested and the frictional and strength properties established for smooth 

joints, as well as, for joints with simulated asperity. The tested rock 
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materials included both ductile and brittle types. In addition, steel and 

teflon materials were also tested, in order to obtain comparative test data 

for ideal elastic and plastic materials. These data ideally suited for the 

development and verification of the analytical procedures. 

The results of these test programs revealed that the method is 

superior to any previous shear testing technique. Due to the inherent 

advantages of the applied concept, a large quantity of highly-reliable data 

on joint properties can be obtained from a single set of test specimens. 

Through the applied loading systems and instrumentation, it is 

possible to exercise full control over the normal stress acting along the 

joint represented by a single line of contact (i.e., the generatrix of the 

cylindrical test specimen). The test is conducted under confined 

conditions. The stress level acting on the specimen reaches, and even 

surpasses, the level required for underground mine design purposes. 

Due to the obtained highly reliable, reproducible and consistent 

data, it is seemingly possible to determine and separate the various 

components of the coefficient of friction, and to establish the 

relationships between components and the involved stresses. Furthermore, 

it is seemingly also possible to define the relationship between the joint 

strength properties and the peak and residual strength properties of the 

rock substance. Consequently the testing technique, in combination with 

the analytical procedure, constitute a complete system which may be used 

for determination of design parameters of a jointed rock mass. In 

addition, due to its simplicity, the testing procedure can be used at the 

mine sites. 

Because of the novelty of the concept involved in the testing, 

and especially because of the new approach to the relevant analysis, this 

report contains a plethora of details. This is done in order to assist the 

interested readers who may wish to study the details of the logic and 

reasoning involved in the analysis and interpretation. Furthermore, 

because of the additional information about the frictional behaviour of the 

rock obtained by this test method, it was difficult to identify the various 

components of the coefficient of friction by the usual terms in general 

use. Therefore, new terms were defined which are considered to be more 

descriptive for the observed mechanisms. 
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CONFINED SHEAR TEST METHOD 

BASIC PRINCIPLE 

The basic principle of the confined shear test technique is 

illustrated in Fig. 1. The specimen set comprises four cylindrical rock 

core specimens of same diameter. The three outside specimens are of equal 

length, while the centre core is longer. 

Each of the outside cores is loaded by a normal force, Pn , of 

equal magnitude. The concentric shear force, S, is applied to the centre 

core. 

The outside cores are all rigidly supported from both underneath 

and behind. Their movement in a vertical direction, i.e. in the direction 

of shearing, is constrained. However, their individual horizontal 

movement, i.e., their normal displacement, is unconstrained. The centre 

core, which moves freely in the vertical direction, is supported only by 

the shear and normal forces along the three vertical lines of contact with 

the outside cores. 

In addition, the horizontal movement of the core set as a whole 

is unhindered. This provision of free movement is a further guarantee of 

the concentric application of the shear force. By virtue of the statically 

very stable triangular application of the normal forces, and the provision 

of free movements, a completely self-adjusting loading system is attained. 

The diagram of forces is shown in Fig. 1(b). The centre core is 

confined laterally by the radially-applied normal forces, P. Axial 

displacement, i.e., shear displacement, of the centre core occurs when the 

applied shear force, S, is greater than the combined shear resistance along 

the three lines of contact with the outside cores. Equilibrium is reached 

when: 

- P 
n 	 Eq 1 3g 

S 
P
s 

- --- 	 Eq 2 3 

therefore, 

Ps 

and the coefficient of friction is: 

Ps 
P
n 

S 

let 

. p 
11 	n 
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TEST APPARATUS 

The test apparatus was developed and constructed in-house at the 

CMTL [4]. It is shown in Fig. 2 and 3. 

The main component of the apparatus is its ring-frame. It 

contains three grooves, spaced at 120° along the inside diameter, to 

accommodate the vee blocks which are to seat the outside cores. At the 

groove locations, the ring-frame also contains through-holes equipped with 

hydraulic pistons. The ring-frame is carefully levelled by three levelling 

bolts, positioned at 120°. 

The three through-holes, with the pistons inside them, are 

connected to the hydraulic power supply by a common line. 

The ring-frame, is supported by three levelling bolts in an 

elevated and levelled position. The bolts rest on a polished steel plate. 

The vee blocks within the grooves are also resting on the polished steel 

plate. Underneath they are lubricated to facilitate normal displacement of 

the outside core. The vee blocks are L-shaped in their vertical 

cross-section, to allow for the support and vertical positioning of the 

outside cores. 

Normal Force Application 

The hydraulic pistons are activated by the pressurized hydraulic 

fluid in the common line. In the CMTL laboratory the line is pressurized 

from the confining pressure unit of the rock testing press. In field use, 

a hydraulic hand pump can be employed. 

The activated pistons push the vee blocks, guided by the grooves, 

towards the centre of the assembly. The triangular loading arrangement and 

equal piston forces ensure that the three outside cores are loaded 

equally. Therefore, the applied normal forces along the contact lines 

(between the centre sliding core and the side cores) are also equal. Due 

to the applied lubrication, the radial movement of the vee blocks is 

virtually frictionless. Therefore the applied load is evenly distributed 

as a line load, along the entire length of the contact lines. 

The evenly-distributed normal forces is directly proportional to 

the applied line pressure. The desired pressure was kept constant 

manually. 
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Measurement of Normal Displacement

The arrangement to measure normal displacement is shown in Fig. 3

and 4. A short pin is fastened to the top of each vee block. A very thin

copper wire interlinks these pins. At one end the wire is fixed to one of

these pins, while passing over the other two pins. The other end of the

wire is fastened to the core of a LVDT. The LVDT is, in turn, securely

clamped to the ring-frame.

The average normal displacement, be it dilation or contraction,

can then be calculated for every test stage from the recorded movement of

the LVDT core, by taking into consideration the geometry of the wire

linkage.

The completed tests showed, however, that measurements obtained

with this arrangement did not always provide an accurate reading of the

normal displacement. The reason is quite clear. In order to ensure

concentric shear force application, as mentioned before, the set of cores,

as a whole, is allowed to move sideways. However, since the position of

the LVDT is fixed (it being clamped to the ring-frame) any floating

movement of the entire core set is added to the measured sum of the normal

displacements occurring along the lines of contact.

If required, an accurate normal displacement measurement can be

achieved by means of a simple modification. Small LVDT units can be placed

within drill holes in the ring-frame, appropriately positioned at each

groove, with the purpose of measuring the individual displacement of each

vee block. These displacements would then be an accurate measure of the

individual normal displacements that occur along the three lines of

contact.

After analyzing the test results, the necessity for improved

accuracy in normal displacement measurement became highly questionable.

The magnitude of the normal displacement is not required for the analysis

of strength and frictional properties. The existing system, as described,

indicates whether the observed displacement is due to dilation or to

contraction. This information is adequate to analyze the shear mechanism

occurring during various phases of the test.

Shear Force Application

The test set-up in conjunction with the laboratory press, and

with the portable field press is shown in Fig. 5 and 6, respectively. The
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axial load is supplied by the loading system of the rock testing press in 

the first instance. In the second case a hydraulic jack, activated by a 

hand pump, does so. 

The shear force acting on the sliding centre core is measured and 

recorded by the strain-gauged ring load cell. 

Measurement of Shear Displacement  

The shear displacement is measured and recorded by a 

vertically-positioned LVDT. It is held in a vertical position by a 

horizontal arm which is connected to a cylindrical steel loading platen. 

This platen is located between the sliding centre core and the load cell. 

The tip of the spring-loaded extension rod of LVDT core is rests 

on the ring-frame. 

Data Recording  

The outputs of the transducers (i.e., of the strain gauges of the 

load cell, of the LVDT for normal displacement and of the LVDT for shear 

displacement) are recorded by an XY1Y2 recorded on data sheets with 

convenient grids. 

The shear force versus normal displacement relationship is 

recorded on XY1 axes. Test data with respect to the shear force versus 

shear displacement are recorded on the XY2 axes. 

PREPARATION OF SPECIMEN SET 

The test requires a set of four rock cores of same diameter. The 

test apparatus is designed for the preferred BX size cores (i.e., with a 

nominal diameter of 41.3 mm). However, specimen sets with a somewhat 

larger or smaller diameter are also acceptable. 

Although the length of the core is not an essential dimension, 

the preferred length to diameter ratio for the outside cores is 2:1. The 

height of the sliding centre core is increased by the desired length of the 

shear displacement. Based on the results of the completed tests, the 

preferred shear displacement is in the order of 15 mm. 
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The parallel ends are cut perpendicular to the axis by a circular 

diamond saw. No special end preparation is necessary. 

The core surface obtained by typical core-drilling procedures is 

acceptable for routine tests. However, the core surface is to be specially 

prepared if the test is aimed at simulated surface roughness 

investigation. 

A smoother than core-drilled surface can be obtained, for 

example, by surface grinding in a machinist-lathe (Fig. 7). The simulated 

large asperities of sliding surfaces are prepared in the same way. The 

matching indents and protrusions of the simulated asperities are formed on 

the rotating cores by grinding wheels having the desired profile. 

TEST PROCEDURES 

One of the most important advantages of this test method is that 

each specimen set can be tested at several different levels of normal 

force. Each test, at the predetermined normal force level, is performed 

along a specific set of contact lines. The cores are rotated after each 

test. The predetermined test lines, together with the respective test 

number and core identification, are marked on the round labels attached to 

the top surface of the cores (Fig. 3 and 4). 

The maximum number of tests that can be conducted on the same set 

of cores is governed by the diameter of the cores and by the extent of 

shear and crushing damage experienced along the lines of contact. The 

damage depends upon the normal force of the test run. 

Experiments with BX size cores show that in the case of smooth 

core surfaces (core-drilled, ground, and lapped) up to nine tests can be 

performed on the same specimen set. The number of tests on cores with 

simulated large asperities must, however, be decreased to four, to avoid 

overlapping damage to the asperities. 

There are two types of test procedures, namely: single-stage 

procedure and multi-stage procedure. 

Single-Stage Procedure  

The feature of the single-stage procedure is that along each set 

of contact lines only one shear test is performed. Various predetermined 

normal force is applied to each set of contact lines, which is kept 
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constant for the test run.

Specimen sets with smooth surface finish can be tested either by

single-stage or multi-stage procedure. However, to test specimen sets with

simulated large asperities, the single-stage procedure must always be

used.

The steps of the test procedure is explained by referring to

Figure 8, which is the record of the shear test obtained for steel

specimens with single large asperity, performed at Pn = 166.4 lbf (740 N)

applied normal force. The steps of the test are as follows:

(a) Setting of contact lines - While the centre core rests on a

spacer block and the outside cores are seated on the vee

blocks, the cores are rotated until the respective markers

with the number of the test run are matched up on all

labels.

(b) Application of normal force - The hydraulic pistons are

activated until the predetermined line pressure is reached.

In this given case, this amounts to 2,000 psi (13.8 MPa)

which results a normal force of 168.4 lbf (740 N) with the

given piston area.

(c) Mounting of instruments - The LVDT transducers, as well as

the strain-gauged ring load cell, are positioned and

connected to the YX1Y2 recorder. The spacer block,

supporting the centre core, is now removed.

(d) Setting of data recording procedures - The scales of the

recording instrument are set, and the recording pens are

moved and lowered into their recording positions. The

cross-head of the press is lowered.

(e) Application of shear force - While the normal force is kept

constant, the shear force is applied at a constant rate

until the predetermined amount of shear displacement is

reached. The latter is 0.45 in. (11.5 mm) in case of

subject test run.

(f) Dismantling - First the shear force is released and the

cross-head of the press raised. Then the transducers are

dismantled next, the normal force is released, and finally

the spacer block is placed underneath the centre core.
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The shear force in Step (e) varies with the shear displacement. 

The relationship between the shear force, P s , and shear displacement, 

8 s , for that particular test condition is given by the XY2 record of 

Figure 8. 

Multi-Stage Procedure  

The multi-stage procedure is used to test specimen sets with 

smooth surface finish, with the distinct advantage that an increased amount 

of test data can be obtained for each test run. The procedure is explained 

by referring to Figures 9 and 10. 

The initial run of the multi-stage procedure follows Steps (a) to 

(0 of the single-stage procedure, that is, shear test is performed along 

the contact line for the entire shear test length. Figure 9 represents the 

test records of the initial run obtained for smooth steel specimens set 

tested at an applied normal force of Pn  = 166.4 lbf (740 N). The total 

shear test length was 0.4 in. (10.2 mm). 

The recorded relationship between the shear force, P s  and shear 

displacement, 8 s , is given by the XY2 record in Figure 9(a). The 

relationship between the shear force and normal displacement, 8 n , is 

given by the XY1 record in Figure 9(b). 

To establish the strength and frictional properties of the joints 

the normal displacement is not a requirement. Figure 9(b), therefore, 

represents somewhat useful but unessential information. For example, 

Figure 9(h) indicates that along the contact lines contraction took place, 

due to the deformation of the minute asperities during the test. 

In Figure 9(a) the shear force values are marked at two specific 

points of the recorded graph. These shear force values are: the peak 

value of P st  and shear force value for the first plateau on the graph 

P ' 	The significance of these values will be given duting the course of Y ' 
data analysis. 

Figure 10 represents the recorded results of the remaining steps, 

which involved a series of repeated shear tests along the contact lines 

already been tested by the initial run (Figure 9). Each repeated shear 

test is performed at various predetermined value of normal force. The 

continuation of the test steps of the multi-stage procedure is as follows: 

(g) Re-application of the normal force - A repeat of Step (b); 
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in case of Figure 10, the re-applied normal force was 41.6 

lbf (185 N). 

(h) Re-mounting of all instruments - A repeat of Step (c). 

(i) Re-setting of data recording procedures - A repeat of Step 

(d). 

(j) Application of shear force - While the normal force is kept 

constant, a shear force is applied at a constant rate until 

the predetermined shear displacement, which, in the case of 

Figure 10, was 0.065 in, (1.7 mm), is reached. 

(k) Increase of normal force - While the shear force is kept 

constant, the line pressure is swiftly increased to the next 

predetermined level, which in the case of Figure 10 produced 

the normal force of Pn  = 83.2 lbf (370 N). 

(1) Continuous application of shear force - While the normal 

force is kept constant at the new level, a shear force is 

continuously applied at a constant rate until an additional 

shear displacement of 0.065 in. (1.7 mm) is reached. 

(m) Repeat Steps (k) and (1) for the additional predetermined 

normal force levels. In the case of Figure 10 these were: 

Pn  = 166.4 lbf (740 N) 

Pn  = 249.6 lbf (1110 N) 

Pn  = 332.8 lbf (1480 N) 

Pn  = 416.0 lbf (1850 N) 

(n) Dismantling - A repeat of Step (f). 

Figure 10(a) represents the relationship between the shear force, 

P s , and shear displacement for the various levels of the multi-stage 

normal forces. The corresponding P s , versus 8 n  graph in Figure 10(b) 

indicates the increased amount of deformations of minute asperities along 

the contact line, as the normal force levels are increased. 

In Figure 10(a) the average shear force value, for the 

multi-stage shear test at Pn  = 166.4 lbf (740 N), is Py " = 32.9 lbf 

(146 N). The significance of this value will be explained during the 

course of data analysis. 
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TYPICAL TEST RESULTS 

From the test results it can be concluded that the coefficient of 

friction is not a simple material property. It is composed of several 

components. The coefficient of friction between sliding surfaces is the 

results of the various combination of these components. 

The relative contribution of the components depends on: 

(a) the condition of the sliding interface, which is affected by 

the history of sliding; 

(h) the topography of the irregularities of the sliding 

interface and the degree of their interlocking; 

(c) the environment such as the prevailing stress level along 

the sliding interface and the confinement condition of the 

sliding solids; 

(d) the strength and deformation properties of the sliding 

solids. 

Due to the consistent and reliable data, obtained by the confined 

shear test method, it is possible to define the significant components of 

the coefficient of friction either through direct measurements or through 

logical deductions. 

The test method and analytical procedures had been developed with 

the ultimate objective of providing sufficiently accurate data for use in 

underground rock mechanics investigations and in design and ground control 

calculations. Consequently, the test data were studied and analysed with 

the above practical use in mind. The refined theoretical analysis of the 

test data were not pursued this time. 

To establish the components of the coefficient of friction and 

their combined effects under various conditions it is essential to remember 

to the mathematical meaning of it. That is, the coefficient of friction is 

nothing else but a dimensionless number, i.e. the ratio between the 

momentary shear and normal forces. Therefore, for any applied normal force 

kept constant during the test run, the variation in the coefficient of 

friction reflects the variation in the shear force value which is required 

to initiate or maintain shearing. 

Three types of materials, with various sliding contacts, were 
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tested, namely: steel, teflon and various rock materials. 

Specimens of steel material were tested because of the 

essentially ideal elastic and elasto-plastic deformation properties of the 

steels. The teflon material was tested for two reasons. Firstly, to 

obtain frictional data on material with ideally plastic deformation 

properties. The second reason was to verify the testing technique for a 

material with extremely low value of coefficient of friction, which is 

occasionally even referred to as "frictionless" material. The main 

objective of the laboratory test program is, however, to establish the 

joint strength properties of the various rock types. So far, the following 

rock types were tested: diabase, limestone, sandstone, granite and INCO 

ore. 

Typical test results obtained for steel, teflon and granite 

specimen sets with smooth sliding contacts are given in Figure 11. The 

recorded shear force versus shear displacement data shown, include both, 

the initial and the multi-stage test graphs. 

Although the following brief comparative discussion are equally 

applicable to the data of multi-stage steps, only the graphs of the initial 

runs will be compared here. These presented data are comparable because: 

the specimen size was similar in all the cases, the smooth sliding contact 

prevailed for all materials, the same normal force magnitude of 83.2 lbf 

(370 N) was applied for each test. Consequently, the comparison needs to 

consider only one variable, which is the material properties. More 

specifically, because at the normal load level of 83.2 lbf (370 N) the 

minute asperities along the sliding contacts were only deformed during the 

tests, without crushing or other damage, the only variable in the 

comparison is the deformation property of the material. Any difference 

between the data presented in Figures 11(a), 11(b) and 11(c) is a 

reflection of the deformational respond of the material, as it is 

controlled by its deformation property. 

In the case of steel the Ps  versus S s  graph, in Figure 11(a), 

shows an initial rise in shear force. This peak force is accompanied by a 

very small shear displacement. As the shear displacement increases the 

shear force decreases. The rate of decrease in shear force, from an 

initial higher rate, also decreases with increased displacement, with the 

tendency of reaching a plateau. After test the specimens showed only 

slight markings along the sliding contact. This indicates mainly elastic 

deformation of the minute asperities. 

A somewhat similar picture is shown for the teflon material in 
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Figure 11(b). The shear force versus shear displacement graph has an

initial peak again but at a lower value than for the steel. The change in

the rate of the shear force decrease is much faster for the teflon. The

local variation of shear force is much smaller than for the steel; it is

practically negligible. It is so, despite the fact that by touching the

specimens a similar surface roughness can be observed for both types of

materials. Actually, the specimen of the two materials were prepared, by

using the same cutting tool and procedures during the lathe turning.

However, following the test the sliding contacts on the teflon specimens

showed permanent, i.e. plastic deformation, of the minute asperities.

An entire different picture can be drawn for the deformational

behaviour of the granite, based on the data presented in Figure 11(c). The

most striking characteristic of the Ps versus 6s graphs is the harmonic

variation of the shear force. This is caused by the interacting

thread-like asperities, produced by the lathe grinding specimen

preparation. Note that the harmonic variation of shear force decreases in

amplitude with increased displacement, but it remains the same in

frequency. This means that in case of granite for the indicated values of

normal forces the thread-like asperities survived the shearing. Only

slight alteration occurred to them, as expressed by the decrease in

amplitude. The magnitude of the shear force, consequently, the coefficient

of friction for the granite is much higher than for the steel and

especially for the teflon.

Another characteristical difference of the shear force graph for

granite is that, unlike the steel and teflon graphs, it has no initial peak

value. This difference is attributable to the different deformational

behaviour of the granite.

Due to the elastic property of the teflon and especially of the

steel, the interlocked minute asperities, prior to any shear displacement,

can be deformed elastically. A shear displacement will be initiated when

the yield load for the contact areas of the minute asperities is reached.

The granite is also considered as elastic material, although to a

lesser degree than the steel. The elastic behaviour of rock substances is

quite evident from other laboratory tests. However, the interlocked minute

asperities do not behave elastically. The size of the minute asperities is

in the order of rock particle size. The rock particles unable to sustain

prolonged deformation caused by the concentrated stresses acting on the

particle contacts. Instead, they break-off. Consequently, the initial

peak shear force value cannot develop.
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The typical test results obtained for steel and granite specimen 

sets with large single asperity sliding contacts are compared in Fig. 12, 

which was produced by superimposing the two test graphs. The dimensions of 

the simulated large single asperity and the directions of shearing are 

shown in Fig. 13. The recorded graph in Fig. 12 were obtained by the tests 

performed in the shear direction Case A. 

The equivalent characteristical points of the two tests graphs 

are marked by the same numerals, circled by single and double circles for 

the steel and granite materials, respectively. The remarkable similarities 

of the two graphs is an affirmation of the testing technique. It marks the 

accuracy and reliability of the test data. The dissimilarities in the 

graphs indicate definable differences in the shearing meachanism and the 

associated deformation of the two materials. For example, in case of the 

elastic steel material the recorded graph section marked by point 4 

suggests a continuous and steady deformation, while, for the brittle rock 

material, this graph section is obscured or even absent. 

DATA ANALYSIS 

CALCULATION OF STRESS ALONG CONTACT LINES 

Following the contact line setting, the second step of the 

confined shear test is the application of the normal force Pn • The 

deformation and stress along the lines of contact, due to an applied normal 

force, can be calculated by using the solution given by Timoshenko and 

Goodier [5]. 

The general solution of pressure between two bodies in contact is 

being applied to the special case of contact between two cylinders with 

parallel axis. The surface of contact in this case is a narrow rectangle. 

The distribution of pressure, a n , along the width of the contact surface 

is represented by a semi-ellipse. 

If b is half of the width of the contact surface, and Pn ' is 

the load per unit length of the contact surface, from the semi-elliptic 

pressure distribution, one will obtain: 

Pn ' - 0.5 n b an  

from which 

2 P ' 
a - 
n 

 
n b 

Eq. 5 
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The investigation of local deformation for the quantity of b 
gives the following expression: 

Eq. 6 

where, R1 and R2 are the radii of the cylinders, and kl and k2 
are constants defined by the following equations: 

1 - vî 

Eq. 7 

1 - v 
k2 - 	n E2  

where, vl and v2 are the Poisson's ratios and E1 and E2 are the 
elastic modulii of the materials of the cylinders in contact. 

Since both cylinders are of the same material and the two radii 

are equal, Eq 6 is greatly simplified. The value of the Poisson's ratio 

for the tested steel is v = 0.269, therefore 

I  1   + k2 = 2 	-  0.2692 1  _  0.591  ki  r E 	 E 
then, 

or 

The stress along the contact line, due to the applied normal 

load, can then be calculated by Eq 5. This stress is an average value. At 

the tips of the minute asperities the stresses are much higher than the 

average. This is, however, not a concern of the analysis, which is aimed 

at a solution for practical use. Similarly, the actual deformation is much 

more complex than the average distribution given by Eq 6. Again, from a 

practical point of view, it does not matter. Whatever the actual stresses 

or the deformations of the minute asperities are, they define the initial 

condition of the particular shear test. 

The change from this initial condition is entirely due to the 

shear force which is required to initiate and maintain shear 

displacement. The magnitude of the required shear force depends upon, 

beside the normal force, the type of tested material, the roughness of the 
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sliding contact, the degree of engagement of the interlocking roughnesses, 

and the condition of the interlocking roughnesses. The change in the shear 

force is recorded by the shear force versus shear displacement graph of the 

shear test. 

SHEAR MECHANISM ALONG SMOOTH CONTACT LINES 

Steel Specimens 

Figure 14(a) is a typical graph obtained by single-stage shear 

test procedure on steel specimens with smooth sliding contact. With 

respect to the test, represented by the graph, all the above mentioned 

variables are constant, except the condition of the interlocking 

roughnesses. 

Shear displacement will take place only if the interlocked minute 

asperities were disengaged. This disengagement involves both asperity 

overriding and asperity deformation. The ruggedness of the graph in Figure 

14(a) is the indication of asperity overriding. However, this overriding 

or dilation mechanism in case of smooth-walled steal specimens has only 

negligible, "background-noise" type, effect. The overall shape of the 

graph, which constitutes the essential test data, is unaffected by the 

ruggedness. 

Therefore, the Ps  versus S s  graph in Figure 14(a) can be 

interpreted as minute asperity deformation versus S s  graph, where the 

shear force value at a specific shear displacement distance is a measure of 

the extent of the minute asperity deformation which had been occured while 

that specific shear displacement took place. Those shear force values 

which are essential for the analysis, are labelled in Figure 14(a). Their 

definition are: 

Pst = peak, or static shear force; the shear force which is 

required to initiate shear displacement; the shear force which is 

associated with the elastic deformation of the asperities. 

P s  = slidings shear force; the shear force which is required to 

maintain shear displacement; the shear force which varies in 

value from Pst  to Pu . 

Pu  = ultimate shear force; the shear force required to maintain 

continuous sliding in case of perfectly smooth sliding contacts; 

the shear force which is associated with the plastic deformation 
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of the asperities. 

Py ' = yielding shear force; the sliding shear force value at 

the first plateau of the graph; the shear force which is 

associated with the transition point between the elasto-plastic 

and the plastic deformation of the asperities. 

Pd = deformation shear force; the shear force which is required 

to deform the asperities completely to result perfectly smooth 

sliding contacts; Pd = Pst  - Pu . 

Pid = initial deformation shear force; the shear force which is 

required to initiate plastic deformation of the asperities, 

therefore, to cause permanent deformation; Eid = Est - Ey'. 

Ecd = continuous deformation shear force; the shear force which 

is required in addition to the initial deformation shear force to 

deform the asperities completely to result perfectly smooth 

sliding contacts; P -cd = Pd - Pid or Pid =P'- P Y 	u. 

Figure 14(a) can be compared with a complete stress-strain curve, 

such as shown in Figure 14(b), which can be obtained by stiff testing 

techniques. The rising leg of a typical complete stress-strain curve 

begins with a linear portion which ends at the proportional limit. The 

linear portion is followed by a slightly curved section, which ends at the 

elastic limit. Specimens stressed up to this limit, upon a load release, 

regain their original dimensions. The increased curvature beyond the 

elastic limit indicates permanent deformation. A release of load would 

result in an essentially linear stress-strain curve, parallel to the first 

section. The offset of this linear stress-strain curve is the permanent 

deformation. 

The peak value is the upper yield stress. From this maximum 

value the stress decreases rapidly to a lower yield stress value, 

characterized by a small plateau in the post-failure section of the 

stress-strain curve. As the material continuously fails the stress-strain 

curve gradually decreases to the residual stress value which is defined by 

the second and larger plateau. When the load is released the stress 

diminishes as indicated by the linear end section of the stress-strain 

curve. 

Admittedly, it is somewhat difficult to recognize in Figure 14(a) 

those data points which are comparable to the previously discussed 

characteristical points of a typical complete stress-strain curve. The 
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main problem behind the interpretation difficulties is the scale of 

Figure 14(a). 

This point is proven by Figure 15 where the results of two 

identical test runs performed along two sets of immediately adjacent 

contact lines, are shown. The shear displacement scale for the first test, 

Figure 15(a), was the same as for the test in Figure 14(a). The result for 

the rising leg is a straight shear force versus shear displacement graph, 

apparently without any shear displacement. However, when for the second 

test the shear displacement scale of the recorded graph was enlarged by 

five-fold, as shown in Figure 15(b), the shear displacement due to the 

elastic deformation of the interlocking asperities became evident. Beside 

the peak or static shear force, P -st, which is comparable to the upper 

yield stress, it is also possible now to identify the shear force values 

which are comparable to the proportional and the elastic limits. 

Having this information, for the test data presented in Figure 

14(a) an interpretation, analogous to the analysis of a complete 

stress-strain curve (Figure 14(b)), can be given. The initial conditions 

(interlocking between asperities, deformation and stress along contact 

lines) to the test data in Figure 14(a) were set by the applied normal 
force of Pn  = 166.4 lbf (740 N). The initial conditions have effect on 

shear test results, consequently, they are interdependent. 

The interlocked minute asperities, due to the shear force, will 

be elastically deformed. Passing the shear force magnitude equivalent to 

the proportional limit and then the elastic limit stress values of the 

interlocking minute asperities of the steel material, the shear force 

reaches a peak value of Pst . This static shear force is sufficiently 

high to deform and therefore disengage the interlocking minute asperities, 

or with other words to initiate shear displacement. 

Following the peak, the shear force required to maintain shear 

displacement decreases drastically. Speaking in stress-strain terms, 

beyond the upper yield stress the failed minute asperities will continue to 

fail in the form of further deformation. The shear force decreases first 

steeply, and then more gradually. This is a reflection of the change in 

the deformation characteristics of the minute asperities with the 

progression of shear displacement. 

Around the peak shear force the dominating deformation 

characteristic minute asperities of the steel is elastic. This is clearly 

demonstrated by the steep initial slopes of the descending graph. However, 

the deformation behaviour of the failing steel minute asperities becomes 
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elasto-plastic which is indicated by a gradual decrease in the shear force. 

With further displacement, the deformation of minute asperities 

increasingly continue. The deformation behaviour of the minute asperities 

ultimately changes to plastic. The transition from elasto-plastic to 

plastic behaviour is indicated by a plateau in the shear force versus shear 

displacement graph. The sliding shear force value at this plateau is 

yielding shear force Py '. This corresponds to the lower yield stress of 

a complete stress-strain curve (Figure 14(b)). 

Beyond the transition point a slowly progressing plastic 

deformation can be maintained by a correspondingly decreasing shear force. 

The ultimate shear force which is required to maintain continuous sliding, 

Pu , is the minimum shear force value of the shear force versus shear 

displacement graph (Figure 14(a)). The corresponding stress level is a 

complete stress-strain curve is the residual stress (Figure 14(b)). 

Note that the deformation corresponds to the ultimate shear force 

Pu  can be reached only at a considerably longer shear displacement path 

than the one used in the test case of Figure 14(a). As a matter of fact, 

the value of Pu  given in Figure 14(a), had been obtained by the test 

series with large single asperity. The required long shear displacement 

path, for smooth sliding contacts, would have resulted an impractical 

specimen length. 

After completion the shear test for a predetermined displacement 

length, as the shear load is slowly released, a straight descending line is 

obtained. Actually, in an enlarged shear displacement scale, it would show 

a deviation from the horizontal, similar to the rising leg of the graph in 

Figure 15(b), but in a negative sense. The descending leg in Figure 14(a) 

signifies the elastic relaxation of the deformed minute asperities. 

Without providing sound analytical reasoning, the attention is 

drawn to the "textbook quality" stress-strain curve for steels, which can 

be obtained from the recorded shear force versus shear displacement graph, 

as shown in Figure 14(c). It represents the average values of Figure 

14(a). Accordingly, the interlocked minute asperities, due to the applied 

normal force Pn  and shear force Pst , are under such a state of stresses 

that the yield strength of the involved minute asperities is proportional 

to Pid. The remarkable analogy between the two graphs need only be 

noted, without further considerations in the analytical process. 

In Figure 14(a) the shear force components were identified 

according to their relationship to the deformation of the minute 
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asperities. The coefficient of friction is a dimensionless number. It

expresses the ratio between the shear and normal forces. Therefore, the

components of the coefficient of friction are being identified in the same

way as the corresponding shear forces. The coefficient of friction

components are to be referred as follows:

pst = static coefficient of friction; it prevails at the

instant of shear displacement initiation.

ps = sliding coefficient of friction; it is related to the

conditions of the continuously maintained shear displacement; its

value falls between pst and pu.

pu = ultimate coefficient of friction; it corresponds to the

continuously maintained shear displacement in case of perfectly

smooth sliding contacts.

py - yielding coefficient of friction; a specific value of the

sliding coefficient of friction µs, related to the conditions

required to change the deformation behaviour of the minute

asperities from elasto-plastic to plastic.

Pd = coefficient of friction of deformation; it is related to

the total deformation of the minute asperities occurs between the

initial state and the state of completely smooth sliding

contacts; ud = Pst - uu•

µid = coefficient of friction of initial deformation; it is

related to the elasto-plastic deformation stage of the minute

asperities; uid = Pst - uy•

µcd - coefficient of friction of continuous deformation; it is

related to the plastic deformation stage of the minute

asperities; Pcd = Pd - Pid or µcd = py - uu•

Typical test data records obtained by testing steel specimens

with smooth sliding contacts are given in Figures 9 and 10. Figure 9 is

the recorded data of the initial test run, performed at the normal load of

166.4 lbf (740 N). In the process of analysis two data points are used,

namely the static shear force Pst, and the yielding shear force Py'.

Figure 10 is the recorded data, for the same sliding contact, as

obtained by the multi-stage procedure. The portions of the graph are

identified by the normal forces at which they were obtained. For the
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immediate discussion the graph portion for the normal force of 

Pn  = 166.4 lbf (740 N) will only be used. The average shear force of 

this portion is Py ", which is designated as the multi-stage yielding 

shear force. 

The two graphs (Figures 9 and 10) which were obtained by two 

different testing modes, but along the same contact lines, are united in 

Figure 16, by repeated photocopy method. The study of the combined graph 

reveals several important information. 

First of all, it shows the quality and reliability of the data 

which can be obtained by the testing technique. Although the graphs in 

Figure 16 are the results of two separate tests, they are actually the 

components of the same data set. This is convincingly expressed by the 

combined graph. The unifying elements of the two tests are: the applied 

normal force of Pn  = 166.4 lbf (740 N) and the common sliding contact 

lines. 

Due to the negligible magnitude of normal displacements of both 

tests, the two shear force versus normal displacement graphs in 

Figure 16(b) are completely and undistinguishably superimposed. 

The most important information is given in Figure 16(a) by the 

practically identical values of yielding shear forces of Py ' and P ". Y 
In order to properly emphasize the significance of this test result, the 

definition of these yielding shear forces, as well as, the modus operandi 

related to them, must be reiterated. 

Yielding shear force Py ' is obtained by initial test run. It 

signifies the transition point between the elasto-plastic and the plastic 

deformation of the minute asperities along the tested sliding contact lines 

of the smooth walled steel specimens. The deformation of the minute 

asperities is caused by the prevailing stresses, which are due to the 

combined effect of Pn  and P s  forces. 

The applied normal force Pn  is constant for the test run. 

However, the shear force Ps  varies according to the requirement to 

initiate first, and then, to maintain the shear displacement. This 

requirement is controlled by the momentary deformation of the minute 

asperities. Therefore the change in shear force, required to maintain 

shear displacement, is related to the change in the deformation status of 

the asperities. Accordingly, the reason for the drop of shear force, 

vallue from Pst  to Py ' is the initial deformation of the minute 

asperities. The final stage of minute asperity deformation of the initial 
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test run, is a state of deformation which, at the applied normal force of 

Pn  = 166.4 lbf (740 N), requires a shear force of P s  to maintain 

continuous shear displacement. 

The multi-stage procedure is performed along the same sliding 

contacts, which had already been deformed by the initial test run. The 

value of P s , which was required to maintain continuous shear 

displacement, can be regarded as a measure of the minute asperity 

deformation, for the maximum shear displacement of the initial test run 

conducted at an applied normal force of Pn  = 166.4 lbf (740 N). 

Consequently, it is expected that the shear force value for the test stage 

of the multi-stage procedure performed at the applied normal force of 

Pn  = 166.4 lbf (740 N), should be the same as P s . 

Indeed, as shown in Figure 16(a), the values for the shear forces 

of P s  and Py " are virtually identical. This evidence is the factual 

affirmation of one important result achieved by the testing technique, 

namely, that some of the components of the coefficient of friction are 

related to deformation. 

As can be seen in Figure 16(a), the average values of P i " and 

P s  are, from practical point of view, equal, but the shape of the related 

graph sections are different. The graph section defined by P s  is flat, 

with small shear force variations. This relatively smooth graph section is 

the reflection of the continuous shear displacement along the contact lines 

with minute asperities had been deformed during the preceding shear 

displacement. The graph section defined by Py " displays a larger 

variation of shear forces. Although this shear displacement is a repeated 

one, it still can be regarded as an initial displacement, because it always 

follows the step of normal load application. The graph section of P y " 

shows a slight peak value. Like in the case of the initial test run, it 

corresponds to an initial deformation of the already deformed minute 

asperities, i.e. some reshaping of the deformed asperities takes place. 

However, in comparison with the peak value of P st  of the initial test 

run, this peak value can be ignored completely. 

The shear force values obtained by multi-stage procedure, at 

various applied normal forces, are defined as: 

PY  " = multi-stage yielding shear force; the average value of 

the shear forces which are required to initiate and then to 

maintain a repeated shear displacement for a predetermined length 

of S Y' 
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With respect to the relationship between the asperity deformation

and shear force, several important conclusions can be made by analyzing the

shape of the test graphs. The peak value in shear force is caused by the

interlocked undeformed minute asperities of the sliding contact lines. Due

to the stresses, from the normal and shear forces, these interlocking

asperities deform. Permanent deformation of the interlocking minute

asperities is reached at a specific magnitude pair of Pn and Py' forces

and at a specific shear displacement value of 8'. Once this shear

displacement had been reached, and consequently the yielding shear force is

arrived at, the shear force required to initiate a repeated shear

displacement is without peak value.

The initial deformation, associated with the peak value of shear

force Pst is elastic. Consequently, peak shear force value can develop

only for materials with truly elastic properties, such as steel. This fact

had been convincingly proved by numerous tests involving various materials.

Although the yielding shear forces of Py' and Py" are

somewhat different, from practical point of view they are taken as same.

One of the reasons for it, is the negligible difference in their values.

For example, in the test case of Figure 19(a) the difference is

(33.7 - 32.9)/33.7 = 2.4%.

The second reason, of practical nature, is related to the testing

procedure. Each initial test run provides one value of yielding shear

force of Py' which is applicable for the normal load of the test run.

However, during the multi-stage phase of the test procedure a yielding

shear force value of Py" is obtained for each normal load application.

Consequently, the number of Py" values, that can be obtained, equals to

the product of the number of the tested contact lines and the number of the

normal load applications.

The third reason, which is practical again, is that the

determination of the Py" shear force values is always easy. However, to

determine the yielding shear force value of Py', as it can be defined for

the elastic materials, in the case of rock materials is not possible.

Rock Specimens

The rock material is generally regarded as elastic material,

however, it behaves considerably different ways than a truly elastic
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material such as the steel. It does behave differently especially with 

respect to the deformation of the minute asperities. 

The interlocking minute asperities of the steel material are 

capable to sustain the concentrated stresses up to the point of the yield 

strength. For steel, the deformation of the asperities is essentially 

elastic up to the yield strength, with only a small portion of permanent 

deformation. The peak shear force is interpreted as the expression of this 

mechanism of minute asperity deformation. 

In case of rock material, the particles of the interlocking 

minute asperities are unable to sustain the deformation caused by the 

concentrated stresses. Instead, the particles break-off without an 

indication of elastic deformation and without showing any increase in shear 

force. Consequently, the recorded test graphs of rock materials are 

without peak shear force values, even for the initial test runs. There are 

some variations in the relative ruggedness or smoothness of the test 

graphs. Those variations are attributed to the specific characters of the 

sliding contact lines of the various rock types, represented by the tested 

specimens. 

Granite  

Typical recorded graphs, of the initial and multi-stage test runs 

performed on granite specimens with smooth sliding contact lines, are shown 

in Figure 17. The variation of shear forces follows a systematic pattern. 

It is due to the thread-like minute asperities of surface finish of the 

specimens produced by the lathe grinding operation used for reducing the 

4.75 cm diameter of the core sticks to the specimen's diameter of 4.1 cm. 

The systematic variations of shear forces are within the bands 

defined by their low and high values. As a general rule the width of the 

band increases with the increased normal forces. However, some test cases 

were exceptions from this general rule. 

The yielding shear force values of Py ' and Py " are defined 

(Figure 17) as the mid-values of the bands. The difference between the 

two yielding shear force values is negligible, similarly to the steel. For 

example in the test case of Figure 17 the difference is 

(15.2 - 14.8)/14.8 - 2.7%. 
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Sandstone  

In contrast, the typical recorded graphs of Figure 18 obtained 

for the initial and multi-stage test runs on sandstone specimens, show 

essentially constant shear forces, with hardly any change in their values 

for the entire shear displacement length. The surface finish was obtained 

by diamond drill coring. 

The fine and uniform sand grains along the sliding contact lines 

form the interlocking minute asperities. These sand grains can be 

sheared-off by a practically constant value of shear force. Some reduction 

in shear force can be seen for the initial test run, due to the wearing of 

sliding contact lines caused by the longer shear displacement. 

Indiana Limestone  

Typical recorded graphs obtained for Indiana limestone specimens 

with smooth sliding contact lines are shown in Figure 19. The surface 

finish of the specimens was obtained again by diamond drill coring. 

Although the smoothness along the sliding contact lines was similar to that 

of the sandstone specimens the graphs of the limestone are more rugged. It 

is caused probably by the variation in the size of grains along the sliding 

contact lines which require variable magnitude of force to shear-off. 

Heterogeneity in strength of various grain materials can also be a 

contributing factor. 

Diabase  

Typical test results for diabase specimens are presented in 

Figure 20. The specimens were cut from diamond drill core sticks, without 

further surface preparation. 

The graphs obtained for the lower values of normal forces are 

smooth. The very uniform fine-grained particles of the diabase provides 

explanation for the small variation of shear forces, displayed by these 

graphs. 

With the increasing normal forces the graphs become increasingly 

rougher. An extremely wide range of shear force variation is shown by the 

graph obtained for the multi-stage test step conducted at an applied normal 

force of 416.0 lbf (1850 N). The phenomenon of sudden reduction and regain 

of shear force is interpreted as "stick and slip" shear mechanism, which 



29 

found to be characteristical to some rock types at normal stress levels in 

excess of 120 MPa. 

INCO Ore  

Figure 21 represents typical test results obtained for INCO ore 
material. The graphs are very similar to those of the diabase. Some 

differences can be noticed for the mid-range normal forces. These rougher 

graphs of the INCO ore are probably resulted by the material variation of 
the grains along the contact lines. The sudden wide-range changes of shear 

force at the 416.0 lbf normal force test stage is typical for this 

material. 

SHEAR MECHANISM ALONG SLIDING CONTACTS WITH SIMULATED ASPERITY 

Steel Specimens 

The dimensions of the simulated single large asperity are shown 

in Figure 13(a). With respect to the shape of the interlocking asperity, 

two shear directions were tested. In Case A, the shear direction coincided 

with the longer and shallower slope. While in Case B, the direction of 

shear was reversed. 

From the dimension of the asperity, shown in Figure 13(a), the 

slope angles were: aA = 23.7° and cs = 

Typical test data are presented in Figure 22. Figures 22(a) and 

22(b) are the recorded graphs of the shear tests performed at an applied 

normal force of Pn  = 83.2 lbf (370 N) in the shear direction of Case A 

and of Case B, respectively. In Figure 22(c) the two graphs are 

superimposed by repeated photocopy technique. 

The comparison of the graphs given in Figure 22 reveals several 
similarities. The overall shape of the two graphs is similar. This is a 

strong affirmation of the testing principle and method. 

Due to the different geometry of the simulated asperity with 

respect to the two shearing directions, there are however several 

differences in the two test graphs. 

One obvious difference is the shear displacement of the total 

disengagement of the asperity, which is controlled by the vertical 
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dimensions of the asperity, i.e., as shown in Figure 13(a),

ôA = 0.24 inch and SB = 0.11 inch.

Other equally obvious difference is the magnitude of shear

forces. To initiate and then to maintain shear displacement, the required

shear force in Case B is about double than that for Case A. One reason for

it, is the slope angle of the shear, i.e., aB = 43.7° versus

aA = 23.7°. The other reason is the different deformation mechanism of

the interlocking asperities in the two shear directions, involving both the

deformation of the simulated large asperity and of the minute asperities

along the lines of contacts.

The different mechanism is indicated by the markedly different

rising legs of the two graphs. For Case B, it is almost linear with a

slight deviation prior to the peak shear force value. It is a typical

elastic load-deformation curve. This indicates that in Case B the initial

phase of shearing mechanism is characterized by the elastic deformation of

the large asperity. Because of the large asperity slope angle (aB =

43.7°), shear displacement along the sloping contact during the initial

phase of shear force appliccation is restrained.

In contrast, the rising leg for Case A (Figure 22(a)) shows a

deformation response which is resulted from the combination of the elastic

deformation of the large asperity itself and of the minute asperities on

the sloping surface of it. In the Case A, the asperity slope angle is low

enough (aA = 23.7°) to allow some small shear displacement along the

sloping surface during the initial phase of shear force application.

Consequently, the associated deformations of the surface minute asperities

and of the large asperity are superimposed. This combined mechanism of

elastic deformations is quite obvious in Figure 22(c), where the magnitude

of the shear displacements related to the rising legs can be easily

compared.

The analysis of test results is based on the assumption that

applied normal force and the shear force are uniformly distributed along

the contact lines. Based on this assumption, it is possible to substitute

the terms of normal and shear forces by the equivalent terms of normal and

shear stresses.

This assumption, strictly speaking, can only be applied in the

case of perfectly smooth contact lines. It must be recognized that at the

contacts of the minute asperities, especially at their tips, high stress

concentration occurs. Consequently, the actual stress levels associated

with the deformation and yield of the minute asperities of the steel
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specimen are much higher than the stress levels of the analysis. 

With respect to frictional properties investigations, however, 

the knowledge about the actual concentrated stress magnitude is not 

important. The coefficient of friction is a ratio between the shear and 

normal stresses. The result of the analysis, therefore, is the same, 

whether it is based on the calculated uniformly distributed or on the 

actual stresses between the interlocking asperities. 

Furthermore, the practical application of the frictional 

properties in mine design always considers uniformly distributed stresses, 

i.e. ground stresses. Consequently, in analysing the test results, it is 

justifiable to use uniformly distributed stresses along the contact lines 

even in the case of large asperity. It must, however, clearly understand 

that the concentrated stress levels at the three tips of the asperity of 

the centre specimen, is much higher than the calculated uniformly 

distributed contact line stresses. 

There are theoretical solutions to estimate the magnitude of the 

concentrated stresses between the interlocking asperities [6]. These 

calculations, however, failed to contribute to the results of the analyses. 

For the test series with large asperity, the contacts between the 

three stationary outside specimen and the moving centre specimen are the 

three points of the protruding asperity profiled on the centre specimen. 

As the shear force is applied, these three points move upwards on the 

sloping faces of the indentated matching asperities, profiled on the 
outside specimens. 

Specimens made out of materials with infinitely high elastic 

modulus and strength i.e. rigid body, would provide one extreme mode of 

disengagement of the interlocking asperity. The shear displacement of the 

total disengagement would be equal to the dimension of the asperity in the 

direction of shearing. At the same time, each outside specimen would move 

sideways, i.e. dilate, by a distance equal to the protruction of the 

asperity which in the case of the test series was 0.105 inch 

(Figure 13(a)). 

The opposing extreme mode of disengagement would be provided by a 

specimen set with extremely low deformation and strength properties. The 

disengagement, in this case, would be characterized by a complete 

destruction of the protruding asperity at the contact points, either by 

deformation or by shearing. No dilation would occur. 
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The mode of disengagement of a real material is between these 

two extremes. The steel is an elastic material, up to the yield point. 

Beyond the yield point the behaviour of steel is elasto-plastic, which 

becomes more and more plastic under the continuous loading. 

During the tests, dilations of the outside specimens had been 

observed. Based on previous test experience, however, the measurement of 

dilation had been omitted. 

The three contact points of the protruding asperity are the 

subject of a very high degree of stress concentrations. The concentrated 

stresses, far beyond of yield stress, are causing in the asperity material 

simultaneous elastic and plastic deformations. For the instant of 

disengagement, the sum of these deformations in shear direction equals to a 

shear displacement value which is obtained by substracting the asperity 

dimension in shear direction from the shear displacement of total 

disengagement. 

At the moment of test completion, when the stresses are released, 

the elastic portion of the deformation relaxes. Only the effects of the 

permanent plastic deformation on the asperity can be observed and measured 

on the specimen. 

It had been observed that for the tests conducted at lower normal 

forces permanent plastic deformation generally occurred only on the 

protruding centre asperity. For the test at higher normal forces, however, 

permanent deformations can be observed on the indentated asperities of the 

outside specimens as well. 

Further analytical details of the involved mechanisms are 

presented in Figure 23 for the Case B test run of Figure 22(b). Points of 

the recorded graph, with significant changes, were identified by numbers 

from 1 to 6. Each point is defined by its shear force and shear 

displacement coordinates, bearing the identification number of the point. 

The relative positions of the matching asperity, for each point, 

are given in the scale of the recorded shear displacement. These drawings 

were prepared only to demonstrate the sliding on a sloping surface by 

assuming completely rigid asperity material, i.e. omitting the asperity 

deformations. 

Point 1 represents the initial condition. The normal force of 

Pn  = 83.2 lbf (370 N) is applied, causing the matching asperity elements 

to be pressed together. At the points of the asperity tip contacts with 
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the sloping seat, concentration of stresses will take place. 

As the shear force is applied, the magnitude of the concentrated 

stresses increases. Due to these stresses, the asperity tip contacts are 

elastically deformed, until the yield strength of the tip contact is 

reached. This condition is arrived at Point 2. The shear displacement 

value of 82 is the elastic deformation of the asperity tip contact. Actual 

shear displacement along the sloping seat does not occur at that stage. 

Due to the yield of the over-stressed material of the contact 

tips a rearrangement of stresses takes place which is accompanied by some 

stress release. The stress release is elastic, therefore, the 

corresponding portion of graph is a mirror image of the immediate pre-yield 

portion. Point 3 represents this condition. The differential shear 

displacement of 63 - 62 represents a true displacement along the sloping 

seat. 

The continuously maintained shear displacement causes the 

asperity tip contacts to slide along the contact lines on the sloping 

seats. While still further deformation of asperity tip contacts take 

place, the sliding mechanism now is mainly governed by the deformation of 

the minute asperities along the contact lines on the sloping seats. The 

relevant section of the graph is in close resemblance with the graph 

obtained for specimens with smooth sliding contact. 

Point 4 identifies the plateau which corresponds to the yielding 

shear force of P ' of the smooth sliding contact test series. The Y 
deformation behaviour of the minute asperities between Points 3 and 4 is 

elasto-plastic. Analogue with the smooth sliding contact, the plateau at 

Point 4 indicates the transition between elasto-plastic and plastic 

behaviour of the minute asperities. 

Beyond the transition point, i.e. between Points 4 and 5 the 

deformation behaviour is plastic. At the beginning the rate of the 

deformation is low. However, as the sliding asperity tip contact 

approaches the edge of the sloping seat the concentration level of stresses 

within the seat edge material reaches the yield value. The result is an 

increased rate of shear force reduction, which is in turn, due to the 

latest recent deformations. This stage corresponds to Point 5. 

The last stage of the test is represented by Point 6. It 

corresponds to the instant of the total disengagement. At this stage, the 

only contact between the stationary outside and the sliding centre 

specimens, are the perfectly smooth points of the asperity tips and the 
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sloping seat edge, as they were deformed and polished while the shear 

displacement, under the prevailing yield stress level, was completed. 

Point 6 identifies a limiting asperity deformation condition. It 

is produced by the limiting stress, i.e. yield stress. The contact area of 

sliding was at the minimum value, i.e. contact point, therefore, the shear 

force measurement was free from the influence of surface roughness. 

Furthermore, this surface roughness had been minimized by the shear 

deformation, i.e. perfectly smooth, polished contacts. 

The sliding mechanisms and the variation of shear forces for the 

Case A test run, of Figure 22(a), follow the same general pattern. The 

analytical explanation and reasonings, made for Case B, are equally 

applicable. 

The differences between the two cases were caused by the 

different angles of sloping seats. The slope angle value of Case B drops 

from aB = 43.7° to aA = 23.7°. Because of this smaller sliding slope 

angle, the influence of the deformation of minute asperities, along the 

sliding contact lines on the sloping surfaces, was somewhat larger than in 

Case B. 

From the superimposed graphs of Figure 22(c) it can be seen that 

the elastic shear displacement of the peak shear force in Case A is the sum 

of the elastic deformation of two elements. Caused by the shear force 

application, both the large asperity itself and the minute asperities on 

the sloping faces are simultaneously deformed. Having much smaller 

dimensions, the yield load of the interlocking minute asperities is reached 

first, which is given by the shear force value at the kink in the rising 

leg of the graph. The elastic deformation of the large asperity contact 

tip is continued then until the yield load of the contact tip itself is 

reached. The influence of minute asperities is merely an observation fact, 

without any effect on the analyses of test results. 

Rock Specimens  

Sliding contacts with simulated asperity were tested for 

three types of rock materials, namely: Indiana limestone, diabase and 

granite. Typical test results obtained for granite are shown in Figure 24. 

For the purpose of comparison the recorded test graphs obtained 

in shear directions Case A and Case B are superimposed by using repeated 

photocopy technique. The superimposed graphs of Figure 24(a) were resulted 
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by the single-stage procedure first test runs. The graphs in Figure 24(h) 

were obtained by the repeated test runs conducted along the same contact 

lines. 

The remarkable similarities of the graphs, even for the repeated 

test runs, is an affirmation of the testing technique, with respect to the 

reliability and accuracy of the test data. The dissimilarities in the 

graphs indicate definable differences in the shearing mechanism and the 

associated deformation, as governed by the different dimensions of the 

asperity in the two shear directions. 

In Figure 24(a) the characteristic points of the superimposed 

graphs are numbered. The equivalent poins of the two test graphs are 

marked by the same numerals. The numerals of the Case A and Case B graphs 

are circled by single and double circles, respectively. 

The conclusions which were resulted by the detailed analyses of 

the test graphs for steel material, with slight modifications, are valid 

for the granite as well. The justification is given by the remarkable 

similarities, as shown for example in Figure 12, between the test graphs 

obtained under the same test circumstances for the steel and granite 

specimens. The modification in the interpretation of granite's test graph 

is required because of the different deformational characteristics of the 

two materials, as clearly expressed by the relevant test graphs. 

As can be seen in Figure 24(a), the influence of the deformation 

mechanism of the interlocking asperities for the granite is similar to that 

of the steel. Due to the differences in the angles of the sloping contact 

surfaces and in the effects of the deformation of the large asperity and 

the minute asperities for Case A and Case B, the shear mechanism is, just 

like in the case of steel, somewhat different in the two shear directions. 

The different mechanism is indicated again by the significantly 

different rising legs of the two graphs in Figure 24(a). For Case B it is 

practically linear up to the peak shear force value. The shear 

displacement at the peak shear force is equal again to the elastic 

deformation of the large asperity. The displacement at peak shear force in 

Case A is the sum of the elastic deformation of the large asperity itself 

and the shear displacement due to the crushing of the minute asperities 

along the sliding contact lines, which are at a slope angle of aA = 26.6 0  

(Figure 13(b)). The descending legs of the two graphs are very similar. 
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The detailed analysis of shear mechanism for the Case A test run 
is given in Figure 25. Occasional comparative remarks to steel test 

results are necessary because those are regarded as the reference data, due 

to the ideally elastic deformation properties of the steel. 

At Point 1 the asperity is completely interlocked, under the 

applied normal force of P. 

Caused by the shear force, applied to the centre sliding 
specimen, both the large asperity itself and the minute asperities on the 

sloping faces are simultaneously deformed. Because of their much smaller 

dimensions the yield load of the interlocking minute asperities is reached 

first, as indicated by the shear force value at the small kink in the 

rising leg of the graph. 

The continued rise of the shear force cause further elastic 

deformation of the asperities until reaches a level equivalent to the shear 
strength of the interlocking minute asperities on the sloping contact 
faces. This force crushes the minute asperities, which is marked by the 
first small drop in shear force on the rising leg. The second smaller drop 

in shear force value marks further crushing of minute asperities. The peak 
shear force is reached at the value of P2. The shear displacement value of 

82 is the sum of the shear displacements related to the crushing of minute 

asperities and to the elastic deformation of the large asperity. 

The breakdown of the large asperity starts at Point 2. The 

forces, concentrated at the asperity contacts, break the extreme tips. 
This results in an immediate elastic relaxation of the asperity, marked by 

the shear force value of P3. 

Due to the different deformational behaviours of the 

two materials, the test graphs of steel and granite becomes significantly 

different for those sections which is immediately beyond the point of 

elastic relaxation. In case of steel, as shown in Figures 8, 12, 22 and 23 

the elastic relaxation phase is followed always by a phase of continuous 

and steady deformation, characterized by a plateau in the graphs with 

little variation of shear forces (Point 4 in Figure 23(a)). The 

deformation behaviour of minute asperities for the steel, between Points 3 

and 4 is elasto-plastic. Point 4 represents the transition point between 

elasto-plastic and plastic behaviour of the minute asperities. 

For the brittle rock material this graph section is obscured or 

even absent. As shown in Figure 25, the continuous shear displacement 

along the sloping contact faces is accompanied by further minute asperity 
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crushings, marked by the ups-and-downs in shear force values, until Point 5 
is reached. This point marks the shear force value at which the crushing 

of the asperity earnestly begins. The shear force P5 is large enough to 

initiate the break of that volume of the asperity which is defined by the 

still existing contacts of the interlocking sections of the large asperity. 

The continuous crushing of the asperity is characterized by an S 

shaped unloading curve, with the inflexion point at Point 5.5 and the lower 

end at Point 7. 

The shear force of P5 . 5 represents a mid shear strength value 
between the maximum value of P5, associated with the initiation of break, 

and the minimum value of P7. 

The complete asperity disengagement occurs at Point 6. The shear 
force at this point drops to the value of P6. 

A comparison between the descending legs of the 'test graphs for 

steel and granite reveals the different shear mechanisms of asperity 
disengagement pertinent for the two materials. As shown in Figure 23 the 

descending leg of the test graph is a smooth S shaped line between Points 5 
and 6. It reflects the elastic relaxation of the steel asperity with the 

tips which undergone plastic deformation by that stage. The descending leg 

for the granite, in Figure 25, exhibits the crushing process of the rock 
asperity tips. The descending leg has a similar S shape. However, due to 
the crushing process, it is jittery. 

The asperity deformation and the asperity disengagement for the 
steel coincide at Point 6, which defines the ultimate shear force, Pu , 

associated with perfectly smooth sliding contacts produced by the plastic 

deformation of the asperity tips. As shown in Figure 25 the asperity 

crushing of granite material is completed at Point 7, which is the lower 

end point of the S shaped unloading curve. The corresponding shear force 

value at Point 6 is higher than the ultimate shear force value which is 

defined by the complete disengagement of asperity. 

SHEAR PROPERTIES ALONG SMOOTH CONTACT LINES 

Steel Specimens  

The first test series along smooth contact lines of steel 

specimens was conducted at dry sliding condition, i.e. no lubricant was 



38 

applied along the contacts. The test results are summarized in Tables 1 

and 2. 

In Table 1 the listed yielding shear forces, Py ", were derived 

from the recorded graphs of the multi-stage tests by following the 

previously described conducts of data treatment. 

The multi-stage procedure test resulted six shear force values 

for each applied normal force. The mean values and the standard deviation 

of yielding shear forces were calculated. Similar computations were 

performed for the values of yielding coefficient of friction, py . 

Table 2 summarizes the test results for the initial test runs, 

namely, the yielding shear forces and the peak or static shear force 

values, s t •  The calculated peak and yielding coefficient of friction E 
values are also listed. 

The values in the last line of Table 2 were established by the 

core sliding method [3]. The last two columns of Table 2 show the 

differences, expressed in percentages, between the values of Py ' and the 

mean values of PY  " in Table 1, as well as, between the values of 

py  = Py '/Pn  and the mean values of gy  = Py "/Pn . The 

percentages in Table 2 are similar to the percentage values of the standard 

deviations in Table 1. This similarity justifies the assumption that, from 

practical point of view, the yielding shear forces Py ' and Py " are 

interchangeable. 

The peak shear forces, Est,  and the peak coefficient of 

frictions , 
 Pst, 

 of Table 2 are ploted in Figures 26(a) and 26(b), 

respectively. To the shear force values plotted in Figure 26(a), a 

straight line can be drawn which starts at the origin. The slope of this 

straight line is the peak coefficient of friction Pst = 0.415. In 

Figure 26(h) it is represented by a straight line, parallel with the normal 

force axis, which is well fitted to the plotted p st  values of Table 2. 

Therefore, it can be stated that relationship between the applied 

normal forces and the static or peak shear forces, which are required to 

initiate shear displacement, is linear. The ratio between the forces, 

i.e. Pst = Est/En is constant. For the tested steel material the 
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Table 1 - Summarized test results for steel specimens with smooth sliding 
contact lines tested in dry condition by multi-stage procedure 

En, 	TEST 	PY ' , 	Py, 	P n, 	TEST 	PY" ' 	1157, 
lbf 	LINE 	lbf 	Py"/Pn 	lbf 	LINE 	lbf 	Py"/Pn  

	

1 	6.8 	0.163 	 1 	50.7 	0.203 

	

2 	6.8 	0.163 	 2 	49.6 	0.199 

	

3 	7.8 	0.188 	 3 	48.1 	0.193 

	

41.6  	249.6 	  

	

4 	6.3 	0.151 	 4 	46.3 	0.185 

	

5 	7.0 	0.168 	 5 	49.6 	0.199 

	

6 	5.9 	0.142 	 6 	46.3 	0.185 

	

Mean 	6.7 	0.163 	Mean 	48.4 	0.194 

	

Standard 	1.2 	0.010 	Standard 	2.3 	0.006 

	

Deviation 	(18%) 	( 	6%) 	Deviation 	( 	5%) 	( 	3%) 

	

1 	15.2 	0.183 	 1 	66.6 	0.200 

	

2 	15.2 	0.183 	 2 	66.6 	0.200 

	

3 	15.9 	0.191 	 3 	64.4 	0.195 

	

83.2  	332.8 	  

	

4 	14.1 	0.169 	 4 	61.8 	0.186 

	

5 	14.8 	0.178 	 5 	66.2 	0.199 

	

6 	14.1 	0.169 	 6 	62.5 	0.188 

	

Mean 	14.9 	0.179 	Mean 	64.7 	0.195 

	

Standard 	0.7 	0.005 	Standard 	1.4 	0.005 

	

Deviation 	( 	5%) 	( 	3%) 	Deviation 	( 	2%) 	( 	3%) 

	

1 	32.9 	0.198 	 1 	81.4 	0.196 

	

2 	33.7 	0.203 	 2 	83.3 	0.200 

	

3 	32.9 	0.198 	 3 	80.7 	0.194 

	

166.4  	416.0 	  

	

4 	30.7 	0.184 	 4 	78.8 	0.189 

	

5 	32.9 	0.198 	 5 	82.5 	0.198 

	

6 	30.3 	0.182 	 6 	78.1 	0.188 

	

Mean 	32.2 	0.193 	Mean 	80.7 	0.194 

	

Standard 	1.4 	0.005 	Standard 	2.0 	0.006 

	

Deviation 	( 	4%) 	( 	3%) 	Deviation 	( 	2%) 	( 	3%) 
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Table 2 - Summarized results of the initial test runs for steel
specimens with smooth sliding contact lines tested
in dry condition

Pn) Pst) Pst) Py' I uy ,

'

PERCENTAGE DIFFERENCES FROM THE

MEAN VALUES OF MULTI-STAGE TEST

lbf lbf Pst/Pn lbf Py /Pn
for P'y for py

41.6 16.7 0.401 6.3 0.151 - 6 - 8

83.2 31.8 0.382 15.5 0.186 + 4 + 4

166.4 72.5 0.436 33.7 0.196 + 4 + 2

249.6 106.6 0.427 49.2 0.197 + 2 + 2

332.8 136.9 0.411 66.6 0.200 + 3 + 3

416.0 177.6 0.427 80.7 0.194 0 0

0.745 0.322 0.432 ----- ----- --- ---
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value of this constant coefficient of friction is 0.415. This value is, 

however, applicable only for the degree of roughness along the sliding 

contact lines which was represented by the tested specimens. 

The mean values of yielding shear forces, Py " in Table 1, are 

also plotted in Figure 26(a). The best fit for the normal force values 

above 150 lbf (667 N) is linear. Under this value, the relationship 

between the normal and shear force is slightly non-linear. 

The non-linear relationship is more evident from the normal force 

versus yielding coefficient of friction plot in Figure 26(b). It can be 

seen that the yielding coefficient of friction, py , for the normal force 

values of about 150 lbf (667 N) and above, is depicted by a straight line 

which is parallel with the normal force axis. However, for normal force 

values less than 150 lbf (667 N) the data points are on a curved line. 

The extrapolated portion of the curve, which is indicated by 

broken line, intercepts the vertical axis at the value of ultimate 

coefficient of friction of pu  = 0.130. This numerical value had been 

confirmed independently by the simulated large asperity test series, which 

will be discussed elsewhere. 

The percent values of standard deviations, listed in Table 1, are 

also shown in Figure 26(a) and 26(b). The highest percentage belongs to 

the lowest normal force. This indicates, that the scatter in the shear 

force data is largest for the low normal forces. The variation in shear 

force is due to the roughness along the contact lines. Since the 

deformation of the minute asperities decreases with decreasing normal force 

the data scattering expectantly increases with decreasing normal force. 

The exceptionally low standard deviation percentage values, even 

including the higher values, is the manifestation of the highly reliable 

data set that can be obtained by the confined shear test method. 

Figures 26(a) and 26(h) are the graphical presentation of 

results, based entirely on actually measured test data. Figures 26(c) and 

26(d), in addition, also include the components of the coefficient of 

friction and the shear force, respectively. The deductive logics, which 

resulted the definition of these components, were already discussed 

extensively in connection with Figure 14. 

The following discussion is to explain the steps of producing 

first Figure 26(c) and then Figure 26(d). The static coefficient of 

friction gst  and the yielding coefficient of friction py  in 
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Figure 26(c) were replotted from Figure 26(b). Both of these coefficients 

were calculated from measured shear force data of P st  and Py ', 

respectively. 

From Figure 14(a),  Pst = Py  + Pid or P id  - Est - Ey' ,  
therefore, gid - Pst - gy . The value of the coefficient of friction 

of initial deformation gid can be calculated for each applied normal 

force from the known values of p st  and gy . 

Furthermore, from Figure 14(a), Py' - Ecd + Pu  or 

Ecd  = Ey' - Pu , therefore , Pcd = gy  - pu . Again, the values of 

coefficient of friction of continued deformation g c d are calculated from 

the known values of py  and pu . 

In addition, from Figure 14(a),  Pst = Pu  + Pd or 

Ed - E- P st 	u, therefore,  Pd  = Pst - pu . Since both  Pst  and 

gu  are constant values, the coefficient of friction of deformation pd 
must also be constant, that is, represented in Figure 26(c) by a straight 

line parallel with the normal force axis. 

All the coefficient of friction components and their variations 

with normal force are shown in Figure 26(c). The products of these 

coefficient of friction components and the normal forces are the relevant 

shear force components. Their variations with normal forces are shown in 

Figure 26(d). 

The variation of Pst , Pd and Pu  is linear for the entire 
range of normal forces. For the rest of the components, i.e. Pid, Py 

and Pc d, the variation is linear for normal forces higher than about 

150 lbf (667 N) and non-linear for normal forces below of that. 

The stability analysis of underground openings, design of support 

systems, mine lay-out, mining sequence and method studies, etc. are 

performed in terms of stresses. The strength and frictional properties of 

joints should, therefore, also be expressed in stress terms. Furthermore, 

the use of stress terms is also required to correlate the shear test 

results with the results obtained by other laboratory tests, such as 

uniaxial and triaxial tests. 

The theoretical background to calculate the deformation and 

stress along the lines of contact had been already discussed. Based on 

those previously discussed equations, the normal stresses, due to the 

applied normal forces, were calculated. These are, with the results of 

intermediate calculations, listed in Table 3. The elastic constants, and 
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the specimen dimensions were used for the calculation, are also given in 

Table 3. 

The information given in Figure 26(c) and 26(d) presented anew, 

in stress terms, in Figure 27. The relationships between the coefficients 

are also summarized in Figure 27. 

Table 3 - Calculated normal stresses for steel specimens 
with smooth sliding contact lines 

Pn , 	lbf 	Pn, N 	Pn ' Nim 	b, m 	an, MPa 

	

0.745 	3.3 	43 	0.20 x 10-5 	13.5 

	

41.6 	185.1 	2,419 	1.65 x 	10-5 	93.5 

	

83.2 	370.1 	4,838 	2.33 	x 	10-5 	132.2 

	

166.4 	740.2 	9,676 	3.30 x 	10-5 	186.7 

	

249.6 	1110.3 	14,513 	4.04 x 10 -5 	228.7 

	

332.8 	1479.5 	19,340 	4.66 x 10 -5 	264.2 

	

416.0 	1850.5 	24,189 	5.21 x 	10-5 	295.6 

E = 199.9 GPa 
v = 0.269 
R = 0.019 m 
L = 0.0765 m 
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The second test series was performed on the same specimens set as 

the first one, but prior to the shear tests the specimens were lubricated 

with regular machine grease. All tests were conducted along new and fresh 

contact lines. 

The data analyses followed the procedures as had been detailed 

for the tests of dry condition. The results of the lubricated test series 

are summarized in Figure 28, where the components of the coefficient of 

friction and the corresponding shear stress components are presented in 

function of normal stresses. 

A comparison of the results obtained by the two series of tests 

reveals the effect of lubrication on the coefficient of friction. The 

lubrication, as expected, reduces the friction. The coefficient of 

friction values were reduced by about 9%, which is surprisingly low. 

For the lubricated condition the values of the static coefficient 

of friction Pst,  and of the coefficient of friction of deformation, 

pd, are 0.393 and 0.263, respectively, and the ultimate coefficient of 

friction pu  is the same as for the dry sliding condition, namely 0.130. 

Granite 

The yielding shear force values of Py ", i.e. the mid-value of 

the shear force bands as shown in Figure 17, are listed in Table 4. It 

also includes the calculated coefficient of friction values, i.e. the 

ratios between shear and normal forces. The established parameters 

obtained by statistical analyses are also given. 

The mean values of yielding shear forces, given in table 4, are 

plotted against the applied normal forces in Figure 29(a). As shown, the 

data points of the lower normal force range form a curved-line 

relationship. However, it becomes linear for the higher normal force 

values. The tangent value of the linear portion found to be 0.962. 

The mean coefficient of friction values from Table 15 are plotted 

in Figure 29(b). The coefficient of friction value for Pn  = 0 is 

obtained by extrapolation. The tangent value of 0.962 of Figure 29(a) is 

represented in Figure 29(h) by a horizontal line, which is the static 

coefficient of friction value Pst,  of the tested granite. The presented 

result in Figure 29(b) indicates that the function of the yielding 

coefficient of friction, py , approaches the value of Pst = 0.962. 
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Table 4 - Summarized test results for granite specimens with smooth 
contacts tested by multi-stage procedure 

En, 	TEST 	PY" ' 	4y, 	En, 	TEST 	PY" ' 	4y, 
lbf 	LINE 	lbf 	Py"/Pn 	lbf 	LINE 	lbf 	Py"/Pn  

	

1 	4.4 	0.441 	 1 	66.6 	0.800 

	

2 	 0.681 	 2 	74.0 	0.889 

	

3 	 0.802 	 3 	75.9 	0.912 
9.98  	83.2 	  

	

4 	 0.981 	 4 	77.7 	0.934 

	

5 	 0.701 	 5 	68.5 	0.823 

0.521 	 6 	66.6 	0.800 

	

Mean 	 6.9 	0.688 	Mean 	 71.6 	0.860 

	

Standard 	1.9 	0.194 	Standard 	4.9 	0.059 

	

Deviation 	(28%) 	(28%) 	Deviation 	( 	7%) 	( 	7%) 

	

1 	12.6 	0.606 	 1 	148.6 	0.889 

	

2 	15.2 	0.731 	 2 	153.6 	0.923 

	

3 	16.7 	0.803 	 3 	157.3 	0.945 
20.8  	166.4 	  

	

4 	18.5 	0.889 	 4 	161.0 	0.968 

	

5 	15.2 	0.731 	 5 	148.0 	0.889 

	

6 	13.5 	0.649 	 6 	140.6 	0.845 

	

Mean 	15.3 	0.735 	Mean 	151.4 	0.910 

	

Standard 	2.1 	0.102 	Standard 	7.4 	0.044 

	

Deviation 	(14%) 	(14%) 	Deviation 	( 	5%) 	( 	5%) 

	

1 	29.8 	0.716 	 1 	386.7 	0.930 

	

2 	33.3 	0.800 	 2 	384.8 	0.925 

	

3 	35.2 	0.846 	 3 	397.8 	0.956 
41.6  	416.0 	  

	

4 	37.0 	0.889 	 4 	420.0 	1.010 

	

5 	32.4 	0.779 	 5 	388.5 	0.934 

	

6 	31.5 	0.757 	 6 	383.0 	0.921 

	

Mean 	33.2 	0.798 	Mean 	393.5 	0.946 

	

Standard 	2.6 	0.062 	Standard 	14.0 	0.033 

	

Deviation 	( 	8%) 	( 	8%) 	Deviation 	( 	4%) 	( 	3%) 
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The previous investigations related to the frictional properties 
of steel and other rock types, the following relationships were established 

between the components of friction of the smooth sliding contact lines: 

Pst = Py 4" Pid ,  Py - Pu 4" Pcd ,  Pst - PU + Pd ,  Pd - Pid + Pcd, 
Pst = Pu 4" Pcd + Pid. Using these relationships and the facts that 
for Pn  = o, Pcd = 0 and py  = pu , it is possible to plot the 

functions for all other frictional components, as shown in Figure 29(b). 

The frictional components plotted against normal stresses, 

instead of forces, are presented in Figure 30(a). The shear stresses, 

correspond to the coefficient of friction components of Figure 30(a) are 

given in Figure 30(b), together with the list of the established 

relationships. 

Indiana Limestone, Sandstone, Diabase and INCO Ore  

The coefficient of friction and the shear stress components for 

the Indiana limestone are plotted in Figure 31, while those information for 
sandstone are given in Figure 32. 

The variations of coefficient of friction and shear stress 

components for diabase and INCO ore are presented in Figure 33 and 
Figure 34, respectively. 

While discussing the test results obtained for diabase and INCO 

ore, the "stick and slip" shear mechanism experienced during some of the 
test runs was also pointed out. The sudden loss of shear strength occured 

only for the test runs conducted along smooth contact lines at normal 
stress levels in excess of 100 MPa. 

The data obtained by the completed tests are insufficient for 

arriving at any firm conclusions. Still, the importance of the observed 

phenomenon deserves a brief discussion. 

The results presented in Figure 35 are to be used for this 

discussion. The graphs in Figure 35(a) belongs to the diabase material. 

From the recorded P s  versus S s  graphs, such as Figure 20, an average 

shear force value of slippage Pss  can be established for each of those 

applied normal force where slippage has occured. Then the coefficient of 

friction values for stick-slip are Pss = Ess/En- 
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These coefficient of friction values are plotted in the lower 

graph of Figure 35(a). Between the calculated data points the variation is 

assumed to be linear. The corresponding strength values are represented by 

m 	in the upper graph of Figure 35(a). It insects the linear ultimate ss 
shear stress function of tu  at the normal stress value of about 

an  = 190 MPa. Logically, for normal stress values higher than this the 

shear stress values equal to tu . Similar results are presented in 

Figure 35(h) for the INCO ore material. 

It is important to note that the "stick and slip" shear mechanism 

occured only in the case of diabase and INCO ore rock materials, and not 
for Indiana limestone, sandstone and granite. This behaviour is probably 

an indication of some properties specific to those material. Further tests 
on various other rock materials, conducted at elevated stress levels, are 
justified. 

Teflon 

The main objective of the laboratory shear test program was to 

establish the joint strength properties of the various rock types. Steel 

and teflon specimens were tested to obtain frictional data on materials 

with near ideal deformation properties. The frictional properties of 
ideally plastic material were investigated by testing teflon specimens. 

Two test series were conducted on teflon material. The specimens 

of the first series were prepared by lathe turning. The ordinary machine 
surface roughness provided the cylindrical specimens with smooth contact 

lines. 

Typical test results, obtained for teflon specimens with smooth 
contact lines, are shown in Figure 36. The graphs include both, the 

initial single-stage and the multi-stage test runs. Figure 36(a) 

represents the shear force versus shear displacement graphs, while 

Figure 36(h) gives the relationship between the normal displacement and 

shear force. 

The teflon is a plastic material, with predominately plastic 

deformational characteristics. However, at the beginning of loading an 

elastic deformation phase takes place. Consequently, the graphs resemble 

to those graphs which were obtained for the steel specimens with smooth 

contact lines. The graph for the initial test run is with a peak value of 

shear force, Est.  This peak value in shear force is again due to the 

interlocked minute asperities of sliding contacts. As shown by the graph 
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in Figure 36(a), the initial deformation associated with the peak shear 

force, is elastic. Consequently, the teflon at that stage behaves 

elastically. Following the peak, the shear force decreases suddenly to the 

value of Pe , in the fashion of elastic relaxation. With further 

displacement, the deformation of minute asperities increasingly continues. 

Their deformation behaviour becomes first elasto-plastic and ultimately 

plastic. The sliding shear force value for the transition point from 

elasto-plastic to plastic behaviour is the yielding shear force Py '. 

The graph obtained for the multi-stage runs also shows slight 

peak value for each run performed at various applied forces. However, 

these peak values, in comparison to the peak values of the initial test 

run, are negligible. 

These peak values were regarded as the values of yielding shear 

forces of the multi-stage procedure,  Pi ".  Their statistical means, are 

plotted in Figure 37(a), which also includes the peak shear force values 

obtained by the initial test runs. The calculated ratios between shear and 

normal forces, i.e. the values of the coefficient of frictions are plotted 

in Figure 37(b). 

The data spread, expressed by the percentage value of standard 

deviation, for the teflon found to be considerably larger than those 

obtained for the steel material, although it is still well below to the 

usual spread associated with any other shear test method. The reason for 

the larger data spread is the combination of the less certain capability in 

the measurements and of the more pronounced effects of the minute 

asperities in the case of low contact stresses. The uniformly distributed 

concentrated stresses along the contact lines were substantially lower for 

the teflon than for the steel specimens. For example, the concentrated 

stresses associated with an applied normal force of Pn  = 416 lbf (1850 N) 

in the case of steel and teflon specimens were 296 MPa and 13 MPa, 

respectively. 

The information in Figures 37(a) and 37(h) are presented in terms 

of stresses in Figures 37(c) and 37(d). Due to the uncertainty related to 

the overwhelming influence of the minute asperities at low normal stresses, 

and also due to the extremely small value of coefficient of friction, to 

establish the frictional components of teflon, unlike for the steel and 

rock materials, it was not possible. The frictional properties of the 

teflon, therefore, may be defined by its static and yielding coefficient of 

friction values Pst = 0.136 and p = 0.062, respectively. 
Y 

The deformation of the minute asperities along the contact lines 



49 

influences greatly the numerical value of the coefficient of friction. 

This can be studied by comparing the recorded graphs of the initial test 

runs, in Figure 38, obtained for the steel and teflon materials under 

similar test conditions. The surface finish of specimens was the same for 

both materials. 

The general shape of the two graphs is similar. The shear force 

values, however, for the steel material are much larger. The ruggedness, 

caused by the minute asperities of contact lines, for the graph of steel 

material is a dominant feature. For the teflon, however, the similar 

asperities cause only negligible ruggedness in the graph. The points, with 

characteristical shear force values ( 5t  Pe) Ey' and P s ), are 

equally recognisable in both graphs. 

The ratio between the peak or static coefficient of friction of 

the steel and teflon (Figures 27 and 37) is 0.415/0.136 = 3.05. The ratios 

for the corresponding points of the two graphs in Figure 38 are: 

72.5/23.31 = 3.11, 57.7/18.90 = 3.05, 33.7/10.40 = 3.24, 31.8/8.88 = 3.58. 

From the above observations several conclusions can be made. The 

coefficient of friction is a material property and its value depends on the 

degree of roughness of the interlocking asperities and the momentary 

deformation degree of the asperities. The coefficient of friction for the 

steel is about 3.05 times larger than it is for the teflon. The 

deformation of the asperities is influenced by the deformational 

characteristics of the material. The steel and teflon are ideal 

representatives of elastic and plastic materials, respectively. The 

initial deformation and relaxation, however, for both materials are 

elastic. This is perhaps the reason why the ratios for P st and Pe  

shear forces are so close to the value of 3.05. 

With the increasing shear displacement the plastic deformational 

characteristic becomes more dominating and the ratios for Py ' and Ps  

change to 3.24 and 3.58, respectively. The different degree of ruggedness 

of the graphs is the result of the different degrees of deformation of the 

minute asperities, governed by the deformation characteristics of the two 

materials. 

The teflon specimens of the second test series were prepared with 

thread-like minute asperities which resulted continuously interlocking 

mechanism between the asperities along the contact lines. The threads were 

produced by lathe turning, cut to a depth of 0.01 inch (0.25 mm) by using a 

90° cutting-tool, producing 16 threads per inch. 
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Typical recorded test data are presented in Figure 39. 

Figures 39(a) and 39(h) are the recorded graphs of the initial test run at 

an applied normal force of Pn  = 332.2 lbf (1480 N), representing the 

relationships between shear force and shear displacement, and between shear 

force and normal displacement, respectively. For the same contact lines, 
the recorded graphs of the multi-stage test results are shown in 

Figures 39(c) and 39(d), representing the variation of shear force with 

respect to shear displacement, and the relationship between shear force and 

normal displacement, respectively. 

The influence of the deformation status of the interlocking 

asperities on the coefficient of friction had already been, repeatedly, 

emphasized. This important information can be, perhaps, most convincingly 

concluded from the data of Figure 39. 

In order to provide the most informative picture, in Figure 39(a) 

the graph of the initial test run obtained with smooth sliding contact 

(from Figure 36(a)) is also reproduced by broken line. The comparison of 

this graph with the recorded graph of the initial test run of Figure 39(a), 

reveals the effects of the thread-like asperities on the frictional 

properties of teflon. Furthermore, information can be gained on the 
variation of these effects, as influenced by the deformation status of 

the simulated asperities. 

Firstly, due to the asperities, the shear forces were increased 
by about five times. This increase equally holds for any characteristical 

points of the graphs (i.e., Est/Est = 5 . 38 e Ee/Ee =  5.52,  y E t / 
PY  ' = 4.81 and  P5  /P 5  = 4.89). The deformation characteristic of the 

rising leg for the smooth sliding contact lines is elastic. The plastic 

deformation character of the teflon, however, comes into play even during 

this initial loading phase, as indicated by the larger angle of inclination 
of the rising leg. The elastic behaviour, however, is also present as 

indicated by the straightness of the rising leg. The shear displacement of 
the rising leg can be interpreted as the total deformation of the 

interlocking thread-like asperities which resulted from both elastic and 

plastic deformation of these asperities. 

The combined effect of plasticity and elasticity on the shear 

force variation can also be seen from the mechanism of asperity 

disengagement. The recorded graph in Figure 39(a) shows two general 

patterns for this mechanism. A complete cycle of shear force variation of 

the pattern, dominant for the lower displacement range, is indicated by 

points A-B-C-D-A'. A cycle of the higher shear displacement range is 
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marked by K-L-M-N-O-P-K'.

The rigid body analyses of both cycles are given in Figure 40.

Must remember that the explanatory figures are correct only with respect to

the position of the asperities relative to each other. Asperity

deformation, which is especially significant in case of teflon, is

ignored. Nevertheless, the analysis provides explanations on the reasons

behind the significant variations in the shear force values.

At point A, under the combined effect of the applied normal force

and the prevailing shear force which has the value of A, the asperities are

completely interlocked.

Due to the continuously maintained shearing deformation of the

interlocked asperities takes place. This deformation is entirely elastic.

The displacement in the explanatory figure B is to be regarded as elastic

deformation and not an actual shear displacement, as being shown. Shear

force B is equivalent to the peak strength of the interlocking asperities,

for the deformed asperity condition which prevailes at that specific shear

displacement value.

At the instant of reaching the peak strength, while the shear

displacement continuous, a relaxation of the asperities' material takes

effect. Due to the relaxation the shear force drops to the value of C.

The relaxation is elastic.

The further shearing results a plastic reshaping of the deformed

asperity tips, while they are being disengaged. The associated shear force

value is D.

Following the disengagement the shearing on the down-slope faces

of the thread-like asperities takes place. Consequently, the shear force

drops to the value of A'. A further reshaping of the asperity tips

follows. Based on the shape of the relevant graph portion, the associated

deformation is plastic.

A similar step-by-step analysis can be performed for the second

typical shear force cycle in Figure 40. It would, however, result only

unnecessary repeats. The discussion, therefore, is to be restricted to the

differences of the two cycles.

The difference is caused by the mode of deformation of the

asperities which had already been deformed by the numerous repeated cycles

of the preceding shear displacement. Beginning at point K the initial
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deformation respond is elastic. However, at point L some reshaping of the

previously deformed asperity takes place. This reshaping is indicated by

the plastic relaxation between points L and M. The reshaped asperities,

having now full contacts between the sloping faces of matching thread-like

asperities, will then deform elastically until the shear force value of N

is reached. Shear force N is equivalent to the peak value of the

interlocking asperities. Beyond Point N, the mode of deformation,

therefore, the pattern of change in the shear force value follows the form

of changes between the points of B and A' of shear force cycle A - A'.

Figure 39 contains even further information with respect to the

interplay between the asperity deformation and the frictional values. As

shown by Figure 39(c), because the asperities were deformed by the initial

test run, i.e. Figure 39(a), the multi-stage test runs are without peak

shear strength values. Although the asperities undergone considerable

previous deformation cycles, their effects on shear force variation

remained dominating. Each cycle reflects the interplay between the

prevailing condition of asperity deformation and the magnitude of acting

forces.

Figures 39(b) and 39(d) reveal that the normal displacements were

exclusively contraction. From the comparision of the two recorded normal

displacement graphs, it can be concluded that about half of the

deformation, occured during the initial test run, was permanent.

The summarized test results are presented in Figure 41, in terms

of stresses. The steeply sloping primary portion of tst function can

apparently be replaced by the linear function with the slope angle of

45° + 0st, where, i = 45° is the inclination of the thread-like

asperities and Ost is the angle of static frictional sliding obtained by

the test series of smooth sliding contact lines.

From the coefficient of friction functions in Figure 41(b) it is

evident that the two lines will join at a normal stress level somewhat

higher than the upper level of the test series. The continuous decrease of

coefficient of friction can be anticipated, until the value is reduced to

pst = 0.136, and then to µy = 0.062, and finally to the value of the

ultimate coefficient of friction µu. Due to the extremely low

coefficient values of the teflon, the measurement accuracy became an

impediment in establishing the value of µu.
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SHEAR PROPERTIES ALONG CONTACT LINES WITH SIMULATED ASPERITY 

Steel Specimens  

The shear mechanism along contact lines with simulated large 

asperity is detailed previously in connection with Figure 23. The 

presented discussion had provided explanatory information only with respect 

to the mechanism of shearing. Still further analysis is required to 

interpret the meaning of the tests results and to express them in terms of 

coefficient of friction. 

This analytical procedure relies on the method of interpretation 

established for smooth contact lines. 

In Figure 42(a) the recorded graph obtained for steel specimens 

with large single asperity sheared in Case A direction. The graph in 

Figure 42(h) is recorded for the initial test run conducted on steel 

specimens with smooth contact lines. The surface finish and the applied 

normal force were identical for both cases. The comparison of the 

two graphs should, therefore, reflect those differences which are 

attributable completely to the large asperity. 

As previously discussed, the shear displacement of the peak shear 

force (i.e. P2 in Figure 42(a)) for the test graph obtained in Case A 

direction, is the sum of the elastic deformation of two elements. Caused 

by the shear force application, both the large asperity itself and the 

minute asperities on the sloping faces are deformed simultaneously. Having 

much smaller volume the yield load of the interlocking minute asperities is 

reached first, which is given the shear force value of PI.5 at the kink 

point of the rising leg. The elastic deformation of the large asperity 

contact tip is continued then until the yield load of the contact tip 

itself is reached at the shear force value of P2. 

The value of P1.5 is the peak shear force what the interlocking 

minute asperities on the sloping face can sustain. As it should, this 

shear force has the same value (within the range of experimental errors) as 

of the peak shear force Pst  obtained for the minute asperities of smooth 

contact lines (Figure 42(b)). Therefore, shear force P1.5 is to be 

identified by the symbol of Pstma , where the bar refers to the test 

series with single large asperity, subscripts of st are to recognize the 

identity of the static or peak shear forces and the subscripts of ma are to 

refer to the minute asperities which define this shear force value. 
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The result of Pststma  is important to verify that the = 7  
peak shear force of smooth sliding contact is associated with the elastic 
deformation of the minute asperities. The finish of the sloping face of 
the large asperity and the smooth sliding contacts was identical, 
therefore, the two independent tests, conducted at identical normal forces, 
resulted the same peak shear force values, as far as the minute asperities 
are concerned. 

The further shear force application causes further elastic 
deformation of the contact tips of the asperity. The rate of deformation 
increases, as indicated by the increased angle of inclination from the 
horizontal. The peak shear force is P2 which is the yield load of the 
contact tips. This peak shear value is analogous with the peak shear value 
of smooth contact lines, P -st) therefore, P -2 = Pst) where the bar refers 
again to the test data of the single large asperity series. 

Following the peak the shear forces suddenly decrease, due to the 
elastic relaxation. The amount of decrease is about the same for both 
graphs. The analogy between shear forces P3 and Pe  can be easily 

recognized, therefore, P3 = P e . 

The shear force plateau, which is signaling the transition point 
between the elasto-plastic and the plastic deformation of the asperities, 
can readily be recognized. This shear force level is analogous with 
yielding shear force of the smooth sliding contact, P y ', it is, 

— 
therefore, designated as P4 = Py. 

The asperity deformation is a function of the shear 
displacement. Since the shear displacement for Point 5 is the same as the 
total displacement of the smooth sliding contact, a similar degree of 
asperity deformation can be assumed for both cases. Therefore, 

P5 =I's. 

The shear force value of P5.5 marks the mid value between the 
shear forces of P5 and P6. It is identified as Pm . It designates the 
inflection point on the descending S shaped leg of the graphs which 
signifies the elastic relaxation of the large asperity. There is no 

equivalent point exist on the graph of the smooth contact line test. The 
angle of inclination from horizontal of the relaxation curve is the same as 
for the rising curve, but with negative sign. 

Shear force P6 corresponds to the ultimate deformation conditions 

of the point contacts. It refers to the minimum value of shear force which 

is required to maintain continuous sliding of the steel material when the 
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sliding contacts are perfectly smooth. The ultimate shear force value, 

eu , can be determined by test series with single large asperity. The 

equivalent value, i.e. the same value, in the case of smooth sliding 

contact test series, could only be achieved if the specimens used were long 

enough to allow sufficiently large displacement necessary to attain the 

asperity deformation of perfectly smooth contact lines. The required 

specimen length, to achieve the condition of Ps  = Pu , however, would be 

impractical. 

The selection of the discussed points of the recorded graph was 

based on the assumption that they are important in analysing the test 

results in order to make conclusions with respect to the effects of a large 

asperity on frictional properties. The relative importance of these points 

are being now investigated and evaluated. 

The shear stress values of the identified points are summarized 

in Table 5, where the coefficient of friction values are also calculated. 

The shear force values listed in Table 5 are plotted in Figure 43. This 

presentation reveals that the variation of shear forces follows the same 

pattern for all the identified points, except PI.5 values. For the lower 

normal force values PI . 5 < P5 . 5, however, they are equal for the normal 

force values above 250 lbf (1112 N). 

The variations of coefficient of friction values with normal 

stress are presented in Figure 44. These variations are based on the 

coefficient friction values listed in Table 5 and are labelled by the 

previously established terms of designation (Figure 42). The corresponding 

shear stresses are plotted in Figure 45. The additional information 

contained in Figures 44 and 45 will be discussed later. 

In order to investigate the effects of the large asperity, the 

shear stress difference values were plotted in Figure 46. These shear 

stress difference values were calculated by substracting the shear stress 

values of the smooth contact lines (Figure 27) from the analogous shear 

stress values of the large asperity (Figure 45). 

The main difference between the two test series is the 

inclination angle of the shear path, which are 23.7° and 0° for the 

asperity and for the smooth contact line, respectively. The shear stress 

associated with the aA = 23.7 0  inclined shear path is: t = tan aA an = 

0.438 au. 



Table 5 - Summarized test results for Case A test series performed on steel specimens with large asperity 

P n 	P 1.5 	P 1.5 	P2 	P2 	P3 	P3 	P4 	P4 	P5 	P5 	P 5.5 	P 5.5 	P6 	116 

16.6 	3.7 	0.223 	34.2 	2.060 	25.9 	1.560 	24.1 	1.452 	22.2 	1.337 	13.0 	0.783 	7.4 	0.446 

33.3 	11.1 	0.333 	59.2 	1.778 	46.3 	1.390 	42.6 	1.279 	38.9 	1.168 	29.6 	0.889 	14.8 	0.444 

49.9 	16.7 	0.335 	75.9 	1.521 	59.2 	1.186 	55.5 	1.112 	48.1 	0.964 	31.5 	0.631 	13.0 	0.261 

66.6 	18.5 	0.278 	87.0 	1.306 	81.4 	1.222 	66.6 	1.000 	55.5 	0.833 	40.7 	0.611 	14.8 	0.222 

83.2 	29.6 	0.356 	107.3 	1.290 	92.5 	1.112 	85.1 	0.980 	70.3 	0.845 	55.5 	0.667 	20.4 	0.245 

166.4 	61.1 	0.367 	193.4 	1.163 	180.4 	1.084 	159.1 	0.956 	112.9 	0.678 	70.3 	0.422 	24.1 	0.145 

249.6 	103.6 	0.415 	279.4 	1.119 	248.9 	0.997 	228.5 	0.915 	164.7 	0.660 	101.8 	0.408 	31.5 	0.126 

332.8 	127.7 	0.383 	347.8 	1.045 	314.5 	0.945 	290.5 	0.873 	222.0 	0.667 	131.4 	0.395 	40.7 	0.122 

416.0 	159.1 	0.382 	410.7 	0.987 	386.7 	0.930 	347.8 	0.836 	277.5 	0.667 	168.4 	0.405 	46.3 	0.111 
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Therefore, would the inclined shear path the only influencing 

factor of the large asperity, then the shear stress differences in 

Figure 46 should coincide with t = 0.438 an  value. However, the 

presented data show entirely different picture. The shear stress 

differences of ist  - tste  t e  - te  and Ty 	t y  are all higher 
than the value defined by the inclined shear path. The data points are 

seemingly positioned within a relatively narrow band which is more or less 

parallel to the slope defined by t = 0.438 an . 

The shear difference values of "es  - m s  show, however, a 

different pattern. For the normal stress values larger than 60 MPa, it 

departs the other curves and gradually approaches the linear relationship 

of inclined shear path. 

The above patterns of variations can be related to the 

deformation of the asperity contact tips. The deformation of the asperity 

associated with the shear force value of s  (Figure 42) is considerably 

larger than the deformations connected to the other values (i.e. rst , 
Pe  and Î ) 	Therefore, the corresponding shear stress difference, Y • 
t s  - t s , value should expectantly be the closest to the linear 

relationship. One must remember that t = 0.438 an  function is applicable 

only for the sliding of a rigid body on an inclined plane, i.e., no 

deformation is considered. The variation pattern of shear stress 

difference value of i's  - t s  indicates that theoretically, at a 

sufficiently high normal stress value, the degree of deformation will 

attain the condition of rigid body slidings. This condition will 

necessarily coincide with the degree of deformation required for a 

perfectly smooth sliding contact, i.e. complete deformation and ultimate 

coefficient of friction, p u . 

Because the deformation associated with the shear forces of 

-este Pc  and Py are much smaller, it logically follows that the 

corresponding shear difference values are further away from the linear 

relationship of the inclined shear path. 

There are other important information that can be concluded from 

Figure 46. It had been deduced in connection with Figure 42 that the shear 

force values of Pst  and il's tnie  are equal. Therefore, the data points 

for the Tstma  - -E st  shear difference values should lay on the 

abscissa. They are, instead, positioned on a straight line parallel to the 

abscissa at -10 MPa. This consistant vertical shift is due to the 

difference in the conditions of the two independent test series. 
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Shear stress value of -i'm  corresponds to the inflection point on 

the elastic relaxation curve in Figure 42. Although, there is no 

equivalent value in the case of smooth contact line test, the shear stress 

difference values of im  - -E nt  were calculated and plotted in 

Figure 46. The obtained curved line joins the constant value of 

-fstma - tst = -10 for the normal stresses larger than 260 MPa. The 

linear function of t = 0.438 an  is tangent to the curved line at the 

origin. 

So far the interplay between the asperity deformation and the 

shear stresses was investigated. For the characteristic points of the 

recorded graphs the condition and the degree of deformation and then the 

relationship between the deformation and shear stresses were established. 

The questions, that which one of these characteristic points provides the 

data which are essential, and also useful, in determining the frictional 

properties of the simulated joint were not yet answered. 

The following analysis is based on the information presented in 

Figure 45, which is the graphical representation, in stress terms, of the 

data listed in Table 5. The subscripts refer to the characteristic points 

as were defined in Figure 42. In Figure 45 there several linear function, 

are also shown by broken lines. Function m n t, reproduced from Figure 27, 

is the stress relationship for the peak, or static, shear stress for the 

smooth sliding contact lines. 

Each of the functions given by solid lines can be taken as a 

strength envelope, applicable to the prevailing deformation condition of 

the asperity for the particular characteristic point. The question is: 

which one of these envelopes can be regarded, in the sense customary in 

rock mechanics investigations, as the failure envelope of the joint 

simulated by the test series. 

To decide, the principle developed in connection with rock joint 

investigation is used [7]. There, the conclusion was that the steeply 

sloping primary portions of the failure envelopes are approximately equal 

to 0 + i. The inclination of the secondary portions of the failure 

envelopes are approximately equal to O r . The definition of these terms 

are: 

0 = the angle of frictional sliding resistance. The appropriate 

value for practical problems can apparently be obtained after 

large displacements have occured along macroscopically smooth 

and flat but microscopically irregular (i.e., unpolished) wet 

surfaces. 
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i = the angle of inclination of the failure surfaces with respect 

to the direction of application of the shearing force. 

Or  = the angle of residual shearing resistance of materials 

which initially were partly or completely intact. It is obtained 

from the asymptotic minimum values of shear strength following 

large displacements. 

The angle of inclination in our case is i = aA = 23.7°. 

Actually, neither the frictional sliding resistance angle (0) nor the 

residual shearing resistance angle (Or ), which would entirely fulfill the 

above definitions, is available. However, the frictional constants, 

established for the smooth sliding contact lines, do have close 

= similarities. These constants from Figure 27 are: Pst 	0.415  
(0st = 22.5°), and pu  = 0.130 (Ou  = 7 • 4 0 ). 

In accepting the validity of the above i + 0 approximation 

principle, two straight lines were drawn in Figure 45, one with the slope 
angle of 23.7° + 22.5° = 46.2°, the other with 23.7° + 7.4° = 31.1°. The 

third line has a slope angle of (i + 0y). It is the straight line fit of 
the slightly curved line plot which was obtained by adding to i = 23.7° the 

angle values of py  in Figure 27. 

Based on the results presented in Figure 45 the following 

information can be concluded: 

(a) the Tst  / an  curve represents the relationship between 

the normal stress and the peak shear stress. From the 

previous discussions it is evident that the peak shear 

stress, s t P  is the yielding stress of the elastically 7  
deformed asperity contact tips. Therefore, the Tst  / an 

 curve can be regarded as the yield strength envelope of the 

asperity contact tips. The equivalent normal and shear 

forces are required to initiate shear displacement. 

(h) theTs  / an  curve represents the post-yield stress 

condition of the asperity contact tips, immediately after 

the yield. Therefore, the curve can be regarded as the 

post-yield strength envelope of the asperity contact tips. 

(c) the î / an  curve reflects the stress conditions Y 
associated with the transition of elasto-plastic deformation 

of the contact tips to plastic deformation. It can be 

regarded as the lower yield strength envelope of the 
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asperity contact tips. 

(d) all of these envelopes are strength envelopes, expressing 

the stress conditions which prevail for the specific 

deformation phases of the asperity contact tips. The 

failure envelope criteria of rock joint investigation, 

however, does not apply to these envelopes. Their steeply 

sloping primary portions cannot be approximated by neither 

possible linear m / an  functions. 

(e) the description of a failure envelope seamingly fits for 
7s  / an  curve. Its steeply sloping primary portion is 

approximately equal to (aA + °st). This is applicable 

for the normal stress values of up to 80 MPa. For normal 

stress values higher than this, the Ts  / an  curve 

deviates from the straight line, first rapidly and then 

gradually, in such a fashion that with the increasing normal 

stresses its slope angle approaches the value of 

(aA + (6u). Therefore, it can be concluded that 

7 s  / an  curve is the peak failure envelope for the 

simulated large asperity. The stress conditions of the 

curve refer to the maximum degrees of asperity deformations 

which were attained at the point where the sliding on the 

inclined seat is completed. The deformation of asperity is 

permanent plastic, with some elastic component which relaxes 

suddenly at the instant of the total asperity disengagement. 

(f) the stress condition at the instant of the total 

disengagement is represented by the 7u  / an  curve. 

These stress data refer to the ultimate degree of asperity 

deformation when the perfectly smooth sliding contact of the 

asperity tips is attained. Therefore, the iu  / an  curve 

represents the residual failure envelope for the simulated 

large asperity. 

(g) for the test condition defined by the kink on the rising leg 

of a Case A test graph (see Figure 42) the stress condition 

is represented by the is tma  / an  curve. It had been 

already established that the shear force corresponding to 

the kink point is equal to the peak shear force of the 

smooth sliding contact lines, i.e. Pstma = Pst. The 

consistent difference between the two values is due to the 

different conditions of the two tests. This shadow of 

difference is the result of the dissimilarity between 
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7c-stma / an  and tst / an  functions in Figure 45. As 

had been concluded, the kink is due to the elastic 

deformation of the minute asperities of the inclined seat of 

the large asperity. Consequently, the -e'strss  / an  curve 

represents the envelope of the sliding resistance which is 

exerted by the minute asperities of the inclined seat. It 

represents only a passing, intermediate stage of asperity 

deformation and only in the case of low angle of 

inclination. 

(h) for the inflection point of the descending leg of the test 

graph the stress relationships are defined by -err, / an 

 curve. From the definition follows that this curve is 

positioned at mid-values between t s  / an  and tu  / an 

 curves. For the higher normal stress values it merges with 

the -es trns  / an  curve. 

The presented conclusions can be made from Figure 44, as well, 

where the values of the coefficient of friction components and their 

variation with normal stresses are plotted. 

The analyses of Case B test data provided similar results. The 

differences in the results are attributable always to the geometrical 

differences of the large asperity with respect to the shear directions of 

Case A and Case B. 

Granite  

The shear mechanism had already been analysed in connection with 

Figure 25. The analysis also included comparison between the shear 

mechanism for the steel and the granite specimens. The dissimilarities in 

shear mechanism, caused by the different properties of the two materials, 

were identified through the detailed analysis of the test graphs. To 

establish the frictional properties of the granite joint simulated by the 

test specimens, the procedure as detailed previously for the steel was 

followed. 

The shear stress values of the identified points (Figure 25) are 

summarized in Table 6, where the coefficient of friction values are also 

calculated. The shear force values listed in Table 6 are plotted in 

Figure 47. 
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Table 6 - Summarized test results for Case A test series performed on granite specimens 
with large asperity 

Pn 	P2 	g2 	P5 	P5 	E 5.5 	g 5.5 	P7 	g7 	P6 	g6 

1.664 	68.8 	41.386 	48.1 	28.906 	35.2 	21.154 	22.2 	13.341 	6.7 	4.026 

4.16 	76.2 	18.317 	65.5 	15.745 	40.7 	9.784 	19.2 	4.615 	10.4 	2.500 

9.98 	96.2 	9.639 	75.9 	7.605 	53.7 	5.381 	37.0 	3.707 	20.3 	2.034 

20.8 	140.6 	6.760 	111.0 	5.337 	64.8 	3.115 	35.2 	1.692 	18.5 	0.889 

41.6 	205.4 	4.938 	177.6 	4.269 	122.1 	2.935 	79.6 	1.913 	48.1 	1.156 

83.2 	290.5 	3.492 	262.7 	3.157 	185.0 	2.224 	136.9 	1.645 	101.8 	1.224 

166.4 	462.5 	2.779 	392.2 	2.397 	292.3 	1.757 	210.9 	1.267 	155.4 	0.934 

416.0 	999.0 	2.401 	880.6 	2.117 	621.6 	1.494 	462.5 	1.112 	373.7 	0.898 
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The variation of coefficient of friction values with normal 

stress are presented in Figure 48. These curves represent the best fit 

curved lines drawn on the calculated values listed in Table 6. The shear 

stress functions shown in Figure 49 are based on the coefficient of 

friction curves of Figure 48. 

In order to define the failure envelope let us go back to the 

analysis of the shear mechanism in Figure 25. As discussed, the continuous 

shear displacement along the sloping contact faces is accompanied mainly by 

the crushing of minute asperities. The crushing of the large asperity 

earnestly begins at Point 5. The shear force P5 is large enough to 

initiate the break of that volume of the asperity which is defined by the 

still existing contacts of the interlocking asperity sections. 

The continuous crushing of the asperity is characterized by an S 

shaped unloading curve, with the inflexion point at Point 5.5 and the lower 

end at Point 7. The shear force of P5.5 represent a mid shear strength 

value between the maximum value of P5, associated with the initiation of 

break, and the minimum value of P7. The complete asperity disengagement 

occurs at Point 6. 

From the previous discussions it is apparent that function x5.5 

represents the shear stress values falling between the shear stress values 

for the initiation of asperity break, m5, and the minimum value of shear 

stress, t7, associated with the broken asperity. Therefore, function 

m5.5 represents average values, and is to be regarded as the failure 

envelope of the asperity. 

Function t6 marks the stress condition of complete asperity 

disengagement. It represents the lowest shear stress values, associated 

with the asperity. It prevailes when the broken asperity slides along the 

smooth contact lines of the specimen surface. Function te, is to be 

regarded as the residual strength envelope of the broken asperity. 

The granite material had been tested extensively to determine the 

strength and deformation properties [8]. The test program included 

74 conventional triaxial tests. The confining pressure of these tests 

varied between 3.5 and 55 MPa. The results of these triaxial tests are 

presented in Figure 50. The obtained stress relationships define the peak 

strength envelope, ttc,  as established by the conventional triaxial test 

method. 

One of the objectives of the Rock Properties and Support Systems 

Project is to establish standard procedures for laboratory testing required 
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to characterize and classify mine rocks. The standard procedure

development work had resulted the multi-stage triaxial testing technique.

The proposed procedure require to test three specimen by multi-stage

triaxial technique.

The required three specimens were prepared from the same drill

core as the specimens which were used in the series of confined shear

tests. The multi-stage triaxial tests resulted two strength envelopes,

namely, the peak strength envelope, ttp, and the residual strength

envelope, ttr. These results are presented in Figure 51.

The various t/ an functions, which were obtained by various

testing methods, are summarized in Figure 52(a). Their definitions are:

L5.5 =

LtC

ttp =

to

ztr

tst -

Lu

peak failure envelope of the asperity, obtained by

confined shear test method on specimens with single

large asperity;

peak failure envelope of cylindrical specimens,

obtained by conventional triaxial test method;

peak strength envelope of cylindrical specimens,

obtained by multi-stage triaxial test method;

residual strength envelope of the broken asperity,

obtained by confined shear test method on specimens with

single large asperity;

residual strength envelope of cylindrical specimens,

obtained by multi-stage triaxial test method.

peak (static) strength envelope, obtaine by confined

shear test method on specimens with smooth sliding

contact lines;

ultimate strength envelope, deduced from the test

results obtained by confined shear test method on

specimens with smooth sliding contact lines;

The remarkable closeness of the strength envelopes obtained by

triaxial and by confined shear test methods provides a sound proof of the

reliability and accuracy of the test data obtained. Consequently, it is

proven that the confined shear testing concept and related techniques may

be applied to establish the shear properties of joints with asperities.
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The ultimate goal of the laboratory tests is to determine the 
peak and residual strength envelopes of the rock mass. Figure 52(a) 

summarizes the strength envelopes which are applicable either for the rock 

substance or for the joint. From these strength envelopes the one must be 

selected which will provide an adequately safe design. 

Two basic principles are followed in the selection. Firstly, 

each section of the design envelopes is to be based on the strength 
envelope with the lowest value within that section. Secondly, the 

non-linear sections of the envelopes are to be approximated by linear 

segments. 

The peak and residual strength envelopes of the investigated type 

of granite rock mass are presented in Figure 52(b). The peak strength of 

the rock mass in case of normal stresses between 0 and 80 MPa is controlled 
by the strength of the rock substance (tt p ). For the normal stress range 
of 80-160 MPa it is governed by the failure strength along the joints 

(t5.5). 

The residual strength of the rock mass, for the normal stress 

magnitudes form 0 to 80 MPa is given by the peak shear strength along the 
smooth joints (tst).  For the normal stresses between 80 to 160 MPa the 
residual strength of the broken substance, that is either t6 or t tr , 

which should be the same, although they were established by entirely 

different methods. 

The remarkable agreement of the peak strength envelopes must also 
be pointed out. Although, the testing methods were different, the basic 
test conditions were the same for all the three tests. Consequently, the 
methods should yield the same results. 

The strength envelope for the theoretical rock mass with 
perfectly smooth joint contacts is the ultimate strength envelope, t u . 

The equations of the recommended design envelope segments for a 

granite rock mass are: 

Peak strength: 

if 0 < an  < 80 P 	• = 1 56 an  + 35 

if 80 < an  < 160 P 	' =  0.89 an  + 90 



Residual strength: 
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if 0 < an  < 80 

if 80 < an  < 160 

t r  = 0.96 an  

t r  = 0.52 an  + 35 

Diabase  

The details of diabase test and analysis procedures were reported 

previously [9]. Figure 53 presents the summary of the results. The 

various strength envelopes are given in Figure 53(a). The linear t st  and 

tu  envelopes were obtained for the diabase specimens with smooth contact 

lines. The curved line envelopes of tte  and Cr  are the peak and 

residual strength envelopes, respectively, for the diabase rock substance, 

determined by triaxial test methods of an independant test program [10]. 

The meanings and the significances of .c5, t5.5 and .c7 were 

discussed previously in connection with the granite testing. The function 

of t5.5 represents the peak failure envelope of the asperity. At the time 

of diabase testing the confined shear test method was still under 

development. The shear forces for the complete asperity disengagement 

(Point 6) were not yet recorded. Therefore, in Figure 53(a) can be shown 

only the triaxial residual strength envelope, ttr. 

The peak and residual strength envelopes of a diabase rock mass 

are given in Figure 53(b). In case of normal stresses between 0 and 

80 MPa, the peak strength of the rock mass is controlled by the strength of 

rock substance (ttc).  For the normal stress range of 80-200 MPa it is 

governed by the failure strength of joints (t5.5). 

The residual strength of the rock mass for the normal stress 

magnitudes of 0 to 80 MPa is given by the peak shear strength along the 

smooth joints (tst).  For normal stresses between 80 and 200 MPa the 

residual strength envelope is defined by the residual strength of the rock 

substance (ttr). 

The strength envelope for a rock mass, with joint contacts 

assumed to be perfectly smooth, is the ultimate strength envelope, tu . 

The segments of the recommended design envelopes of a diabase 

rock mass are defined by the following equations: 
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Peak strength: 

if 0 < an  < 80 	 tp  = 1.41 an  + 55 

if 80 < an  < 200 	 t = 0.52 an  + 126 

Residual strength: 

if 0 < an  < 80 	 tr  = 1.06 an  

if 80 < an  < 200 	 tr  = 0.34 an  + 55 

Indiana Limestone  

The strength envelopes of the Indiana limestone, established by 

the various testing programs, are summarized in Figure 54(a). One 

particular characteristics of the Indiana limestone is reflected by the 

results of the traditional triaxial tests [11]. As can be seen the 

difference between the peak and residual strength envelopes (t tc  and 

ttr) is negligible. Specimens broken under triaxial test conditions, 

subject to the prevailing stresses, were recompacted and consequently they 

regained their strength almost to the point of original values. Continuous 

load application resulted further compaction of the test specimens with 

very little reduction, or in some cases even gain, in strength. 

Similarly to the diabase, the shear forces for the complete 

asperity disengagement were missed by the test procedure used at the time 

of testing. Therefore, the residual shear strength envelope of the joint 

(t6) is not available. Due to the unusual behaviour of the Indiana 

limestone, the residual strength of the joint, unlike the other rock types, 

cannot be based on the residual strength envelope of rock substance, which 

was obtained by the traditional triaxial testing method 

Instead, an additional information is used in determining the 

residual strength envelope of an Indiana limestone jointed rock mass. The 

shear stress envelope of text  shown in Figure 54(a) was established by 

the extension triaxial test method. No significant recompaction of 

specimens occurs during this type of test, therefore, text  function can 

be regarded as the residual strength envelope of the Indiana limestone rock 

substance. 

Furthermore, the constant coefficient of friction value, 

indicated by the plateau of the m7 function, signifies a limiting 

condition. It is being interpreted as the shear stress function for the 

(ttr). 
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complete asperity disengagement. Since, in comparison with text , the 

plateau has the lower shear stress values, it is assumed that the beginning 

of the upper segment of the residual strength envelope coincides with this 

plateau. It then merges with t ext function for the higher normal 

stresses. The first segment of the residual strength envelope is defined 

by the peak strength of the smooth contact lines 

The first segment of the peak strength envelope is determined by 

both the peak strength envelope of rock substance (x tc ) and the failure 

strength envelope of the simulated asperity (t5.5). The second segment is 

governed by the triaxial peak strength evelope of rock substance (ttc)- 

The equations of the segments of the strength envelopes, 

recommended to use for design purposes, as shown in Figure 54(h) are: 

Peak strength: 

(xst)- 

if 0 < an  < 45 

if 45 < an  < 120 

t = 0.97 an  + 12 

tp  = 0.3 an  + 42 

Residual strength: 

if 0 < an  < 15 

if 15 < an  < 120 

t r. = 1.11 an  

t r  = 0.32 an  + 12 
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CONCLUSIONS

The method described in this report represents a novel testing

technique, equally suitable for determining the shear strength of smooth

joints and joints with asperity.

The cylindrical specimens required for the tests are prepared

from ordinary diamond-drill cores. Since diamond drilling is the most

common sampling technique, drill cores representing the rock formations to

be investigated are usually readily available. Subsequent specimen

preparation work is minimal.

The same specimen set of four cores can be used for several (up

to nine) shear tests, which are performed at various applied normal

forces. This eliminates the usual variation in shear properties from

specimen to the next. Also, the number of specimens, required to establish

the shear strength properties of joints for a specific rock formation, is

greatly reduced.

The test apparatus, incorporating methods for normal and shear

force application, represents a self-adjusting self-contained system. This

ensures that the normal forces are automatically equalized, and that the

applied shear force is concentric. Thus, complete force and displacement

control is inherent in the system design.

The three equal normal forces are applied along the three equally

spaced contact lines of the central sliding core. This method of load

application creates confined test conditions. Therefore, it reproduces the

actual field conditions of the rock mass around an underground opening.

The shearing occurs along the contact lines of the cylindrical

specimens. Therefore, uncertainties, associated with the continuous

variations in the magnitude of the actual contact areas during the tests

(so characteristic of other shear test methods), are eliminated.

Furthermore, since shearing does take place along the contact

lines, the test results thus obtained are only affected by the variation in

roughness along the one-dimensional contact lines. Consequently, the

results more closely reflect the true frictional properties of the tested

material. The influence of the sheared surface quality variations, unlike

other shear test methods, is essentially eliminated.
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The novel test principle effectively utilizes the inherent 

geometrical features of the system. The applied normal loads produce 

concentrated normal stresses along the contact lines of the cylindrical 

specimens. Therefore, shear tests can be conducted at much greater normal 

stress levels than has been possible with any other type of shear test 

method. 

Combination of these advantages resulted in a shear test 

procedure that yields a large quantity of highly reliable and consistent 

test data. 

Based on the reliable and consistent test data thus obtained, it 

is seemingly possible to evolve a new data analysis method. With this new 

method of analysis, in turn, it is seemingly possible to identify and 

separate the major shear components. 

The properly analysed results of the joint properties tests can 

also be correlated with the uniaxial and triaxial test data. Consequently, 

all the major strength and deformation properties of the rocks can be 

interlinked. 

On the basis of the defined interrelationships between the 

strength properties of the joints and of the rock substance, the shear 

strength of a jointed rock mass can be established. Both the peak and the 

residual strength envelopes of a jointed rock mass can be defined, and made 

practical use of the laboratory test results in the design and stability 

analysis of underground openings. 

In view of its simplicity, the test apparatus is highly 

versatile. Not only can it be used in a laboratory press, but also it can 

be used in a portable and simple test frame at the actual mine sites. 

Normal and shear forces can be provided by hand operated hydraulic pumps. 

The necessary amount of specimen preparation can also be achieved at the 

mine sites. 

Even though the test apparatus, used for the tests described in 

this report, was only an in-house-made prototype, it performed very well 

indeed. The normal displacement measuring device constitutes the only 

exception. However, the test data analysis procedure proved that 

measurement of normal displacement is only useful, but not essential. 

There is, therefore, little need for any modification of the prototype test 

apparatus. 
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Fig. 1 - Principle of confined shear test method; (a) isometric view of 

specimen set, (b) top view of specimen set. 
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Fig. 2 — Test apparatus; (a) top view, (h) section. 
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Fig. 3 - Photograph of test apparatus with specimen cores and with 

device to measure normal displacement. 
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Fig. 4 - Arrangement for measurement of normal displacement 



Fig. 5 - Test set-up in conjunction with the laboratory press. 
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Fig. 6 - Test set-up in conjunction with a portable field press. 
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Fig. 7 - Surface grinding in machinist-lathe. 
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Fig. 43 - Variation of shear forces with applied normal forces for 
the Case A test series performed on steel specimens with 
large asperity. 
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