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SOURCE LOCATION TECHNIQUES FOR SEISMIC ACTIVITY IN MINES 

by 

J. Niewiadomski* 

SUMMARY 

The methods used for the location of the seismic sources in mines 
(i.e., rockburst) may be divided into two major groups: a) linear methods; 
and h) nonlinear methods. 

Linear methods have a smaller area of application than the nonlinear 
ones. They can be used only in the presence of a relatively .simple 
geological structure, for example, when the seismic velocity can be treated 
as a constant value. They are fast, normally non-iterative, relatively 
simple, and what is very important, allow one to use well developed 
mathematical methods of linear algebra. 

The theory of non-linear methods for seismic source location is a 
subset of so called non-linear optimization. The non-linear optimization 
methods are used to search for the extremum of so called object function, 
which is constructed by using the results of measurements and assumptions 
related to the investigated physical phenomenon. These methods are nearly 
without exception iterative, and in most cases they use a linear 
approximation of the originally non-linear problem at every iteration step. 

*Visiting Fellow, Elliot Lake Laboratory, CANMET, Energy, Mines and 
Resources Canada, Elliot Lake, Ontario, from the Institute of Geophysics, 
Polish Academy of Sciences, Warsaw, Poland. 
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LINEAR METHODS 

The possibility of applying linear methods for source location is the 
result of simple algebraic operations on the set Of basic non-linear 
equations, which relate the velocity of the seismic waves radiated from the 
source with the time needed to reach the receivers of these waves (geophones 
or seismometers). For example, for the i-th geophone an element of such a set 

may be written as follows: 

ti * v = [(x1-a1) 2  + (x2-bi) 2  + (x3-c1) 2]2 	 Eq 1 

where, xi, x2 and x3 are coordinates of the source, ai, bi, and ci are the 
coordinates of the i-th geophone, v is the seismic wave velocity, and ti is 
the travel time of the impulse. 

Let us assume that the velocity v is known. Then N + 2 non-linear 
equations may be used to construct the set of N linear equations using the 
method known as the USBM method (Blake et al., 1974) or N + 1 equations using 
Mt. Isa method (Godson et al., 1978). There exists a possibility to use a 
wide range of mutations of these methods. For example, one can remove the 
usually unused parameter t o  - the time needed for the seismic wave to cover 
the distance from the source to the first geophone hit (see Mt. Isa method) - 
but such construction involves the time arrivals in power up to 3, which, in 
the case of unreliable time readings, makes the system more sensitive to 
errors than in the original Mt. Isa method. 

All linear methods construct the system of equations, which can be 
written in the form: 

A * x = b 	 Eq 2 

where the vector x contains components of unknown source parameters, A is 
the matrix of the linear system, and b is the right-hand side vector of the 
system. Detailed derivation of such a system may be found in the above 
mentioned publications. 

System (2) most often is solved using conventional methods, such as 
Gauss-Elimination, with preceding multiplication of both sides of Equation 2 
by transposed matrix A, AT, when the system is overdetermined. This 
operation gives the best solution of the system in the sense of Least 
Squares. Despite the popularity of this method it seems that another group 
of methods, called General Inverse, are more attractive. An overview of the 
literature which covers the General Inverse (GI) methods may be found in the 
paper written by Ben-Israel and Charms (1963). From the many methods of GI 
which proved to be convenient, is a method which was discovered by Moore 
(1920), and evidently rediscovered by Penrose (1955). Let us assume that 
the Euclidean norm for vectors will be used: 

X  11  = ,(XT  * x) 1 / 2 	 Eq 3 

where, T stands for transposition. 	For system (2) the General Inverse of 
the matrix A, A* , gives the solution x * , where: 

x *  = A*  * b Eq 4 

This solution is the smallest (in the Euclidean norm sense) vector 
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from the set of all vectors x, which minimize the residual vector r: 

HrU=UA*x-bil= min, ifx= x* 	 Eq 

The properly constructed vector x *  represents the Least Square 
solution for equation 2, also in the presence of inconsistent data or/and in 
the case when system (2) is undetermined, as well as in the case of 
inconsistent data and singular matrix A. 

The general inverse of the matrix A, A* , may be easily calculated 
using the so called Singular Value Decomposition (SVD) technique (Lawson and 
Hanson, 1974). This technique allows decomposition of matrix A into the 
product of three elements: 

A = U * S * VT 	 - Eq 6 

where, if A has dimension (m,n), then U is the matrix of dimension (m,m), 
matrix S: (m,n), and matrix C: (n,n). The symbol T means transposition. 
The matrix U consists of orthornormalized eigenvectors of the product A*AT, 
the matrix V consists of the orthonornalized eigenvectors of the product 
AT*A. The matrix S is a diagonal one with n non-negative elements on its 
diagonal. These elements, Si, (i = 1,...n), are the square roots of the 
eigenvalues of the product AT*A. 

The Singular Value Decomposition allows one to build the inverse (GI) 
of the matrix A, A* : 

A*  = V * e * UT 	 Eq 7 

where S+  is a diagonal matrix, in which diagonal elements have the inverse 
values of Si, if Si > 0, and 0, if Si = O. Then the solution of system (2) 
can be written as follows: 

x
*
=V*S+ *UT*b. 

When solving a linear system of equations for source location one may 
find two groups of difficulties: 1) diffulties caused by incorrect data 
(such as erroneous time arrival readings, or wrong coordinates of 
geophones); and 2) difficulties caused by ill-conditioning of the system of 
algebraic equations - when the matrix of the system is singular or very 
close to a singular one. To show how the SVD technique helps to deal with 
this, let us first describe one important characteristic of the matrix A, 
called condition number. Condition number, C(A), is defined as the ratio of 
the first diagonal element of the matrix S, si, to the last diagonal element 
of this matrix sn : 

C(A) = si/sn  . 	 Eq 9 

If sn  is equal to 0, matrix A is singular. 	Conditioning of the 
matrix may be worsened by rounding off and truncating the numbers in a 
computer. 

Numerous examples of the importance of the condition number of matrix 
A for the solution of the linear algebraic system are published by Steward 
(1973), Franklin (1970), and Forsythe et al. (1977). 

Eq 8 
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Some seismological applications of the SVD technique are presented by 
Lee and Steward (1981), Wiggins (1972), Jackson (1972), and Olson and Apsel 
(1982). 

To demonstrate several other examples of the general inverse 
technique with SVD used for source location in the case of linear methods, 
let us start with the problem widely covered in literature (e.g., Hawley et 
al., 1981; Herrman, 1979), that is, find the variance of the calculated 
source coordinates in the presence of non-zero variances of data. Let us 
assume that the seismic velocity has a non-zero variance. This case gives 
us, at the same time, an idea on how the coordinates of the source location 
will behave when the velocity is known with sufficient precision, but the 
time readings are not exact. Let us first consider the USBM method (Blake 
et al., 1974). According to formula (8), the k-component of the source 
coordinates vector, xk, may be expressed as follows: 

xk = T (V * S+  * UT)ki bi 
•=3  

where, 	 bi = consti + v2 *(t2 - ti) 

From this follows the variance of xk coordinates: 

var(xk) = var(v 2 ) * 	C(V*S-1- *UT)ki *  (t2-t)] 2  
j=3  

Eq 10 

Egli 

Two examples of the variance x3 (elevation) of the source located by 
the USBM method and the Mt. Isa method are shown in Figures 1 and 2, 
respectively. For calculations the real geophone setting was used (Quirke 
Mine, Ontario, Canada). In this case the array of 32 geophones is located 
inside the area described by coordinates (all coordinates are in meters): 
1300 < X < 3500, 1600 < Y < 2800, 3000 < Z < 3800. On Figures 1 and 2 are 
shown the variances of x3 for the sources located on the plane: 1000 < X,Y < 
4000, Z = 1000, which is a little above the array of geophones (if Z axis 
points downwards). The arrival times for the first 10 geophones hit from all 
32 geophones were first calculated and then formulae 11 was used to calculate 
the variances. 

From these examples of variance it follows that their maximum values 
in the case of the USBM method are around half of those values for Mt. Isa 
method. On the other hand, the area within Figure 2 covered by relatively 
small variance is of greater magnitude in the case of the Mt. Isa method, 
than when the USBM method is used. Generally, it seems that both methods 
give relatively similar results for some areas, but quite different results 
for others. The decision on which method to use must be preceded by the 
proper analysis of variances, because results differ for different geophone 
settings and different locations of the seismic sources. 

Equation 2 may also be used for planning the geophone network to 
ensure the best precision of source locations for the expected area of 
seismic activity. This can be done with the aim of the co-variance matrix C 
(e.g., Jackson, 1972): 
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Fig. 1 - Variance of the vertical components of the source coordinates. 
Source coordinates were calculated by the USBM method. High values 
of variance indicate the area where this method may give incorrect 
results. 

Fig. 2 - Variance of the vertical component of the source coordinates. 
Source coordinates were calculated by the Mt. Isa Method. The area 
where the variance is small, is larger than in the case of the USBM 
method. 
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C = u2 *(AT * A) -1 	 Eq 12 

where U2  is the variance of the data, such as time readings and/or assumed 
velocities. The optimal distribution of the geophone network is such a one 
which minimizes the determinant of the matrix C (e.g., Draper and Smith, 
1966). Several algorithms for regional seismic network planning are 
published by Kijko (e.g., 1977, 1976), for media with constant velocities, 
and in the case of anisotropic media, with extensive use of the co-variance 
matrices. 

The same problem may be formulated in terms of SVD: to find such 
geophone coordinates, that the co-variance matrix C, where: 

az*(v * ( 5+)-2 * VT) 

has the smallest condition number. 

The SVD method may also be applied to check the set of data which are 
to be used for source location when some of them are expected to be 
incorrect. Let us assume that we have N linear equations (2) for K unknown 
values. Let N > K, which means that the system is overdetermined. In this 
case the dimension of A is (N,K). Let us construct a new matrix AB of 
dimension (N,K+1), which in the first K columns has the matrix A, and the 
additional column, K+1, consists of the right-hand side vector of the system 
(2), b: 

AB = [(A): b] 	 Eq 13 

If all the data used for construction of the matrix AB are correct, 
then, for N = K + 1: 

det (AB) = 0 	 Eq 14 

The value of the determinant of the matrix AB can be treated as an 
indicator of correctness of the data. To use the determinant of a matrix is 
not convenient from a numerical point of view and it cannot be applied in 
the case when N - K > 1, as it is when the matrix AB is not a square one. 
This diffulcity may be overcome by the use of the SVD technique. In this 
case the condition number of the matrix AB, C(AB), may be used as the 
indicator. The presence of incorrect data will result in a smaller value of 
C(AB). Let us assume that we use N + 2 geophones to construct the system of 
N equations. Let M geophones register wrong (incorrect) time arrivals. If 
N -M > K, one may construct the matrices AB for subsets of all geophones, 
and calculate the condition numbers of matrices AB for all these subsets 
(combinations). By comparing condition numbers for different subsets of 
geophones it is possible to say which subsets should be used for the source 
location. 

For illustration let us consider the same system of geophones as 
previously (Quirke Mine). Let a set of 8 geophones record the P-wave time 
arrivals from a seismic source with the coordinates outside the geophone 
network: (1000, 1000, 1000). Let the time arrival recorded by Geophone No. 
2 be enlarged by 2%, to introduce an erroneous data. 

From the set of 8, 28 subsets of geoophones are chosen, each 
consisting of 6 geophones. For all these subsets the values of condition 
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numbers for matrices AB are shown on Figure 3 (1'it. Isa method), and on 
Figure 4 (USBM method). The values of condition numbers from the subsets of 
6 geophones numbered from 1 to 15, and from 22 to 27 are much smaller than 
for subsets 16 to 21 and for the subset 28. The reason is, that in subsets 
16 to 21 and 28 geophones, geophone No. 2 was not included. 

On Figure 5 and 6 are shown the errors of the source locations 
calculated by using the same subsets of geophones but different methods. 
Figure S shows the errors of the source locations when the Mt.  [sa  method 
was used, and Figure 6 shows the errors when the USBM method was applied. 
The errors were calculated by solving the system of equations for each 
subset of geophones, and then calculating the differences between the 
calculated and real source coordinates. These differences exist because the 
time arrival recorded by geophone No. 2 is not correct (i.e., it is enlarged 
by 27.). The high precision is obtained only for the subsets for which the 
condition numbers are large. 

To construct the errors shown on Figures 5 and 6 we needed to know 
where the source was really located (they are constructed only for 
demonstration), but the graphs shown on Figures 3 and 4 were built using 
only data which are used for source locations (coordinates of geophones and 
recorded time arrivals). 

Figures 5 and 6 also allow us to compare the performance of both 
methods. For the previously assumed source outside the geophone array, the 
errors in source location calculated by the USBM method are twice as large 
as the errors calculated by the Mt. Isa method. 

The above presented procedure works on a simple basis: it is assumed 
that the majority of geophones give correct data. 

This method seems to be better than the one which is commonly used: 
to locate the source using all data, and then check which recorded time 
arrivals are much different to those calculated. In this case the recorded 
time arrivals are being compared with time arrivals calculated from a 
possibly incorrectly located source, which may lead to serious errors, and 
even an iterative procedure does not always give satisfactory results. On 
the contrary, the above presented method allows us to make a selection of 
data prior to the first attempt to locate the seismic source, and it is its 
main advantage. 

The selection of a geophone (or geophones), which is a source of 
incorrect data can be accomplished by assigning a mark to all geophones in 
the given subset, the value of which depends on the value of the condition 
number for this subset, and then calculate the cumulative marks for every 
geophone. One such example is shown on Figure 7 where the arrival times 
recorded by geophones No. 3 and 4 were enlarged by 27., to create the set of 
incorrect data. On this picture geophones No. 3 and 4 have the lowest 
marks, which indicates that these geophones whould be removed from the 
source location procedure. 

The SVD technique may also be applied for scaling of the system of 
equations. All calculations performed by a computer are obtained using a 
final length of binary representation of the numbers, which results in their 
rounding off and truncation, so some time a proper scaling of the system is 
required prior to solving it. The scaling is accomplished by multiplication 
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Fig. 4 - Condition numbers calculated for the matrices created by USBM 
method for 28 combinations of 6 geophones from the global set of 8 
geophones. 
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Fig. S - The differences between the real and calculated source coordinates 
caused by enlarging the time arrival recorded by geophone No. 3 by 
27e. The source locations were calculated for different 
combinations of 6 geophones from the set of 8 (Mt. Isa method). 

SOURCE LOCATION ERRORS: X,Y,and Z COMP. 

Fig. 6 - The differences between the real and calculated source coordinates 
caused by enlarging the time arrival recorded by geophone No. 2 by 
2. The source locations were calculated for different 
combinations of 6 geophones from the set of 8 (USBM method.) 
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Fig. 7 - Evaluation of geophones using condition numbers of the matrices

created by the Mt. Isa method. The time arrivals for geophones No.
3 and 4 were disturbed by 2%. These geophones are selected from the

set of 8.

of the matrix A of system (2) by row scaling matrix Sr and column scaling
matrix Sc. After scaling, the system of equations which are to be solved are
the following:

(Sr) * A * (Sc) * (Sc-1*x) = (Sr) * b Eq 15

The matrices Sr and Sc are diagonal. To demonstrate the effect of
scaling on the solution 1et us consider the next system of linear equations:

C.000101, .000202J [y] = [3303] Eq 16

The solution of the system is: x= 1000, y= 1000. Using Gauss

Elimination method (subroutine "GELG" from System/360 Scientific Subroutine

Package, IBM Application Program) and the IBM XT computer, the result is:

x= 1500, y = 0. Let us multiply the second equation of the system (16) by

a scaling factor s (row-scaling, when Sr(1,1) = 1, Sr(2,2) = s). For

different scaling factors the solution (x,y) is different. The results are

shown in Figure 8. Squares represent relative errors of the solution (x,y)

calculated by Gauss-Elimination as a function of the scaling factor, where

4
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relative error, RE, is defined as: 

RE = 1007.E(x-1000) 2  + (y-1000) 2 1 1 / 2/(1000 2+10002 )i/ 2  

From this Figure it follows that for only one scaling factor, s = 
10000, the result is acceptable. On the same Figure are shown the relative 
errors of the solution (x,y) when the SVD method was used for solving the 
scaled system (triangles). The acceptable results are obtained for a wider 
range of scaling factors (from 0.01 to 1.E+8), which shows that the SVD 
method has a much higher performance than the Gauss-Elimination method. 

Once again, the condition number may be used to find out the best 
value of the scaling parameters. For equation 16 the condition number as 
the function of the scaling factor is shown on Figure 9. The minimum value 
of C(Sr  * A) occurs for s = 10000, which demonstrates the applicability of 
the condition number as an indicator of proper or unproper scaling. 

For every system of linear equations the diagonal parameters of the 
matrices Sr  and Sc  may be found using optimization methods. In such a case 
as the object function, the condition number of the scaled matrix may be 
used. 

NON-LINEAR METHODS 

Non-linear iterative methods are widely used in seismology for 
Earthquake location. They are also useful for rockburst location when the 
linear method cannot be applied. These methods include direct search 
methods when only the value of the object function is used (e.g., SIMPLEX 
method), gradient methods which use the first derivative of the object 
function (e.g., NEWTON LEAST SQUARE method), and methods with higher orders 
of the derivatives of the object functions, such as DUMPED LEAST SQUARE with 
the second order corrections. They belong to a well developed group of 
methods known as Non-linear Optimization Methods (see, for example, 
Himmelblau, 1972; Polak, 1971; Luenberger, 1973). Extensive literature 
on the non-linear methods used for source location is presented by Lee and 
Stewart (1981). 

A non-linear method for source location was first used by Geiger 
(1910) for Earthquake locations, and this method with some modifications is 
widely used presently for the same purpose. 

Let us assume that N time arrivals, ti, (i=1,...,N), were registered 
by N receivers. The vector X or the source parameters, (Cartesian 
coordinates and the time of origin t o ), is assumed as a starting value. If 
the geological structure and the seismic wave velocity is known, then for 
all receivers the residual vector r can be calculated: 

r i  = ti(observed) - ti(calculated), i = 1,...,N 	Eq 17 

The square of the Euclidean norm of the residual vector r may be used 
as an object function F(X), which is to be minimized through an iterative 
procedure: 

F(X) = TT * r 	 Eq 18 
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Fig. 8 - Relative errors of solution of two equations from the text. The 
errors can be diminished when the second equation is multiplied by 
proper scaling factor (row-scaling). Squares show results obtained 
by Gauss Elimination method, triangles - when Singular Value 
Decomposition was applied. 
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Fig. 9 - Condition numbers for the system of two linear equations. The 
second equation was multiplied by a scaling factor. The best 
scaling factor is indicated by the lowest value of the condition 
number. 
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ati  at. at. 
A = 	 7 I 	7 	 

aX 3Y aZ 
Eq 20 

This function is usually expanded into a Taylor series to construct a 
linear approximation of the function F(X), (e.g., Adby and Dempster, 1974): 

F(X + (SX) = F(X) + gT * 6X +  •5 * SXT * H * 6X 	Eq 19 

where, SX is the adjustment vector, g is the gradient vector, and H stands 
for the Hessian matrix. Let us define the new matrix A, which gives the 
variation of ri due to the variation of source parameters: 

The gradient vector g and Hessian H may be expressed through the 
matrix A: 

g = 2 * AT * r 

H = MAT * A - (V AT) * r1 

where, V is the gradient vector operator. 

The object function F is minimized when: 

- H * SX = g 

Eq 21 

Eq 22 

The solution of the above equation gives the correction SX to the 
previously used value X. 

The second component in the expression for Hessian in (22), 
-2 * (V AT) * r, is sometimes abandoned. If the system is then solved 
directly, it gives the Least Square (or Gauss-Newton) solution (e.g., 
Geiger, 1910). If the second term in Hessian is present, then the method is 
known as Dumped Least Square (Herrman, 1979). As the dumping factor one can 
use a simple number, small enough not to lose the resolution of the system 
(e.g., Wiggins, 1972), or thus this second term in the expression for 
Hessian, as suggested by Thurber (1985). A lot of other methods are also 
used such as QR decomposition (Buland, 1979), generalized inverse method 
(Bolt, 1970), or step-wise regression (Lee and Lahr, 1975). In every case 
the solution gives the new location of the source, and the whole process is 
repeated until the calculated corrections are smaller than a prescribed 
value. 

For non-linear methods the choice of the starting value of the vector 
X(xl, x2, x3, t o ) is very important. If this vector is chosen close enough 
to the real source, then the selection of the data by using the Singular 
Value Decomposition prior to  the source location itself, can also be 
applied. 
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