

O] ~779406¢ ¢ 2
(YiB

IMPRESSLIB
Fortran Impress Interface Library

by

N. Toews* and A. S. Wong**

ABSTRACT

This report describes a library of fortran callable routines. This subroutine library
makes it possible for users to control the Imagen laser printer directly. Both textual and

graphic output can be produced.

Keywords — Program, Fortran, Laser, Graphics, Interface Library.

* Research Scientist, Mining Research Laboratories, CANMET, Energy, Mines and

Resources, Ottawa, Canada.

** Physical Scientist, Mining Research Laboratories, CANMET, Energy, Mines and

- g,
| CPD

IMPRESSLIB
Bibliothéque d’interface Impress FORTRAN

par

.N. Toews* et A. S. Wong**

RESUME

Le présent rapport décrit une bibliothéque de programmes d’appel FORTRAN. Gréce
a cette bibliothéque de sous—programmes, les utilisateurs peuvent commander directement
Pimprimante & laser Imagen. Le texte et les graphiques peuvent étre produits.

MOTS-CLES : Programme, FORTRAN, laser, graphiques, bibliothéque d’interface.

* Chercheur scientifique, Laboratoires de recherche miniére, CANMET, Energie, Mines
et Ressources Canada, Ottawa, Canada.

“** Chercheur en sciences physiques, Laboratoires de recherche miniére, CANMET,
Energie, Mines et Ressources Canada, Ottawa, Canada.

i1

CONTENTS

ABSTRACT .
RESUME
INTRODUCTION ..
USING THE INTERFACE LIBRARY .
FORTRAN IMPRESS INTERFACE ROUTINES .
CONTROL ROUTINES
IMPOPN
IMPDMP C
ENDPAGE
PHYSICAL AND LOGICAL AXES
SET_HV_SYSTEM(ORIGIN, AXES,ORIENTATION)
POSITIONING
SET_ABS_H(NEW_H) and SET_ABS_V(NEW_V)
SET_REL_H(DELTA_H) and SET_REL.V(DELTA_V)
GRAPHICS ROUTINES
LOAD_TEXTURE (FAMILY,MEMBER , TEXTURE_ ND)
SET_TEXTURE (FAMILY ,MEMBER)
CREATE_PATH(COUNT,H,V)
SET_PUM(MODE)
DRAW_PATH(OPER) o
SET_PEN(DIAMETER)
FILL_PATH(OPER)

.....

......

.....

TEXT OUTPUT ROUTINES

SET_ADV_DIRS(MAIN, SECONDARY)
LOAD_FONT (FAMILY,FONT)
SET.FAMILY(FAMILY)
SET.SP (SPACE_WIDTH)
SET_BOL (LINE_BEGIN) .
SET_IL(INTER.LINE)
MMOVE (DELTA_M)
SMOVE(DELTA.S)
LINE_TEXT(STRING)
CHARS_TEXT (STRING)
EXAMPLES .

iii

.....

CONTENTS
(Continued) -

FIGURES .
Figure 1. Logical Coordinate Systems
Figure 2. Predefined Textures
Figure 3. Pie Chart with Textures
Figure 4. Pen Diameters
Figure 5. Clarification of “OPER”
Figure 6. Laser Printer Resident Fonts

................
..........
............
........
...................

.........

Figure 7. Graphical Fortran Demo Program

Figure 8. Output of Graphical Demo Program
Figure 9. Text Fortran Demo Program ,
Figure 10. Output of Text Demo Program

...........

TABLES ,
Table 1. Space Width for Resident Fonts

........

iv

Page No.

© 00 3 O B

11
14
15
16
17

11

INTRODUCTION

MRL has an Imagen 8/300 laser printer. The language understood by this printer is
called “IMPRESS”. To fully access all the capabilities of the laser printer, both graphics and
text, it is necessary to use “IMPRESS”. “IMPRESS” is a machine language with no high level
language interface available. This report describes a fortran interface library, written at
MRL, that accesses almost all of IMPRESS’s capabilities.

TEX is a text formatting language extensively used at MRL. TEX permits the direct
insertion of IMPRESS files. This allows graphics to be merged with text, in reports and
memos.

The fortran library, “IMPRESSLIB”, described in this report has been in use at MRL
for 2 years. “TEKIMP”, the program that converts tektronix graphical output to IMPRESS,
was written using this library. The maple leaf, on the report cover, was created using
“IMPRESSLIB”.

IMPRESS has no predefined textures or patterns to use in area fill operations. A
number of textures have been developed at MRL. These are included in the fortran library

and are described in this report.
USING THE FORTRAN IMPRESS INTERFACE LIBRARY

The user creates a fortran program (e.g. myprog.for), which calls various fortran/-
impress routines. This is then compiled:
$for myprog

This is then linked:
$1link myprog,impresslib/lib

The “impress” file produced when myprog.exe is run is stored on a file with logical
name “impout”. The user can assign any filename to “impout”:
$define impout myprog.imp
$run myprog

The user then submits myprog.imp to “imprint”. “Imprint” queues the file for print-
ing on the laser printer.

$imp/noreverse myprog.imp

Note that imprint realizes that the file is an impress file from the file extension “.imp”.
If “impout” had been assigned to myprog.dat, for instance, then it would be necessary to
submit myprog.dat to imprint as follows:

$imp/impress/noreverse myprog.dat

FORTRAN IMPRESS INTERFACE ROUTINES
CONTROL ROUTINES
IMPOPN

The first impresé routine called must be IMPOPN. This opens the impress output file
with logical name “impout”.

IMPDMP

IMPDMP is the last impress routine called. It empties the internal buffer by writing it
to file “impout”.

ENDPAGE

ENDPAGE tells the laser printer that the current page is complete. A new page will
be started if there is additional output.

PHYSICAL AND LOGICAL AXES

The physical coordinate system is called the (x,y) system, and is at the upper left
hand corner of the page (longside of page vertical). The x-axis is to the right and the y-axis
is down. This is shown in figure 1.

The logical coordinate axes, called the (h,v) system, is the system within which the
user defines coordinates. The user can define this system anywhere on the printer page.
The default logical (h,v) system coincides with the physical (x,y) system.

The laser coordinates of a point on the printer page, are the number of laser dots
measured from the origin in the current (h,v) system. The number of dots per inch in the
physical x-direction is approximately 286 and the number of dots per inch in the physical
y-direction is approximately 303.

SET_HV_SYSTEM

The (h,v) system used, can be redefined by a call to “SET_HV_SYSTEM”.
SET HV_SYSTEM(ODRIGIN,AXES,ORIENTATION)
where
ORIGIN — an integer with possible values 0 to 3
=0 or 1, no change.
=2, set origin to “top left corner”.

=3, set origin to current location.

2

X

AXES — an integer with possible values 0 to 3.
=0, no change.
=1, invert the relationship of h and v axes.
=2, h to v is 90 degrees clockwise.

=3, h to v is 90 degrees counterclockwise.

ORIENTATION — an integer with possible values 0 to 7. It defines
a new h-axis.
=0, 0 degrees from current h-axis (no change).
=1, 90 degrees from current h-axis.
=2, 180 degrees from current h-axis.
=3, 270 degrees from current h-axis.
=4, 0 degrees from physical x-axis.
=5, 90 degrees from physical x-axis.
=6, 180 degrees from physical x-axis.
=7, 270 degrees from physical x-axis.

Figure 1 shows some possible (h,v) logical systems.
POSITIONING
SET_ABS_H(NEW_H) and SET_ABS_V(NEW.V)
Move to the point (NEW_H,NEW_V) in the current logical coordinate system.

SET_REL._H(DELTA_H) and SET_REL_V(DELTA_V)

Move from current point a relative distance (DELTA_H,DELTA.V).

GRAPHICS ROUTINES

The user specifies a polygonal line using “CREATE_PATH”. This line can then be drawn,
with specified width, using “DRAW_PATH”. Alternatively, the inside of the region defined can
be filled, using “FILL_PATH”. The line or fill can be black, or can be any of the predefined
textures. '

LOAD_TEXTURE (FAMILY,MEMBER,TEXTURE_NO) -

This causes a texture to be defined and made available to the laser printer.
Arguments

call set hv.system(2,2,4)

1.

call set_hv_system(2,2,6)\

> <
Yy \
call set.hv_system(2,2,5)
>
X
Vy
<~
N
FS
o >

call set hv_system(2,2,7)

FIGURE 1. Logical Coordinate Systems

4

X

-

FAMILY — is an integer in the range 0 to 95.

MEMBER — is an integer in the range 1 to 127.

TEXTURE_.NO — is and integer specifying the texture. Currently the
maximum is 15. The various textures available, with

associated texture number is shown in figure 2.

Note that a (FAMILY, MEMBER) identifier cannot be redefined once it has been used.
There can only be one current texture. This is defined by calling the following routine.

SET_TEXTURE (FAMILY,MEMBER)

This sets the current texture. The (FAMILY,MEMBER) must have been previously de-
fined by a call to “LOAD_TEXTURE”.

CREATE_PATH(COUNT,H,V)

This command defines a polygonal path by the coordinates (H(1),V(1)), to
(H(COUNT) ,V(COUNT)). The coordinates are relative to the current logical coordinate system.

arguments
COUNT — an integer specifying the number of points.
H,V — integer arrays defining the point coordinates.

A path can be self intersecting. If a fill operation is to be carried out it is not
necessary that the first and last points coincide. Impress will join the first and last points

if necessary.

Successive calls to “CREATE_PATH” will replace the old path with the new path, unless
the update mode is set to “append”. If the update mode is “append”, then a new path is

created by joining the last point of the old path to the first point of the new path.
SET.PUM(MODE)

This routine sets the current path update mode.

MODE — an integer :
=0, no append (old path is discarded). This is the default.
=1, update mode is append.

DRAW.PATH(QPER)

This routine draws a polygonal line, of specified width, on the path defined by
“CREATE_PATH".
OPER — an integer

=0, causes a white line to be drawn. Note that this

5

will not be visible unless previous graphics or

text output is being overwritten.

=3, in this case the current texture is used. Existing

output is overwritten.

=7, An “or” operation between the current texture and

what is already on the page is carried out.

output is not destroyed.
=15, causes a black line to be drawn.

Line width is defined by a call to “SET_PEN”.

SET_PEN(DIAMETER)

i.e. old

DIAMETER — an integer in the range 1 to 20. The default

is 1. The width is specified in laser coordinates. See

Figure 4.

pen
pen
pen
pen
pen
pen
pen
pen
pen
pen
pen
pen
pen
pen
pen
pen
. pen
pen
pen
pen

FIGURE 4: Pen Diameters

FILL_PATH(OPER)

The operation fills the polygon defined by the current path. If necessary, the first

and last points are joined.

diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter
diameter

N T 1 T | O |

]
o

OoO~IO Utk WM =

I Y N ol el
WCO-TOHUTI WN=O

A

TEXT OUTPUT ROUTINES

Text output is constrained to lines parallel to the page edges. The direction of a
line of characters, called the main axis, can only have one of four directions (up, down,
left, right). Given the main axis, then the direction in which additional lines are inserted,
called the secondary axis, is perpendicular to the main axis. It can be either direction. The
default main axis is in the direction of increasing logical “h”, and the default secondary

axis is in the direction of increasing logical “v”. The user can define other (m,s) axes by
calling “SET_ADV_DIRS”.

SET_ADV_DIRS (MAIN,SECONDARY)

where
MAIN — an integer with possible values 0,1,2 or 3.
=0, 0 degrees from current h-axis.
=1, 90 degrees from current h-axis
=2, 180 degrees from current h-axis
=3, 270 degrees from current h-axis
SECONDARY — an integer with possible values 0 or 1.

=0, clockwise 90 degrees from the m-axis.

=1, counterclockwise 90 degrees from the m-axis.

All the resident fonts on the laser printer are available for use. See figure 6. It is also

possible to download the TgX fonts from the Vax. A font is made ready for use, by calling
the routine “LOAD_FONT”. '

LOAD_FONT (FAMILY,FONT)

where

FAMILY — an integer from 0 to 95. Note a family,
once defined, cannot be redefined.

FONT — a character string defining the font.

e.g. CALL LOAD_FONT(1,’cour10’)

loads resident font “cour10”.

CALL LOAD_FONT(2,’cmrio. 1200',)

loads TEX font “cmrl0” magnified “magstepl”.

Before text output can be produced, one of the loaded fonts must be defined as the
current font. This is done by a call to routine “SET_FAMILY”.

10

This is an example of resident font cour07

This is an example of resident font cour08

This is an example of resident font cour09

This is an example of resident font courl0

This is an example of resident font courl2

This is an example of resident font courl4
This is an example of resident font coubl0

This is an example of resident font coubl2

This is an example of resident font zurm20

FIGURE 6. Laser Printer Resident Fonts

TABLE 1
Space Width For Resident Fonts
Resident Font | Space
cour(7 15
cour(8 20
cour(9 23
courlO 25
courl2 30
courl4 37
coubl0 25
coubl2 30
zurm20 55

11

SET_FAMILY(FAMILY)
where
FAMILY — an integer. This must have been previously

associated with a font.

There is no space character in the fonts. The user must define the width of the space
character by calling “SET_SP”.

SET_SP(SPACE_WIDTH)
where

SPACE_WIDTH — an integer specifying the space width in laser units.

Table 1 shows appropriate values to use with resident fonts.

A space is created by a call to “SP”, CALL SP. This uses the space width previously
defined by a call to “SET_SP”.

The location of the beginning of the line (the left margin) and the interline spacing
are set by calls to “SET_BOL” and “SET_IL” respectively.

SET_BOL(LINE_BEGIN)
where
LINE BEGIN —an integer defining the beginning of line in

laser coordinates from the current logical origin.

SET_IL(INTER_LINE)
where
INTER.LINE — an integer defining the interline spacing in

laser coordinates.

A call to “CRLF”, (CALL CRLF), causes the laser to position itself at the beginning of
the next line using the values specified by “LINE_BEGIN” and “INTER_LINE”.

Movement in the main and secondary directions can be achieved by calls to “MMOVE”
and “SMOVE” respectively.

MMOVE (DELTA.M)
where .
DELTAM — an integer specifying an incremental move along

the main axis, in laser coordinates.

SMOVE(DELTA_S)

where

12

~—

DELTA_S — an integer specifying an incremental move along

the secondary axis, in laser coordinates.

Two routines, “LINE_TEXT” and “CHARS_TEXT”, are used to output text data.

LINE_TEXT(STRING)
where
STRING — a string of characters that are to be output

at the current location

Blank characters in the string “STRING” cause a call to “SP”. At the end of the string,
“CRLF” is called automatically.

“CHARS_TEXT” is identical to “LINE_TEXT” except that there is no automatic call to
“CRLF”, at the end of the string. This allows font changes within a line, etc.

EXAMPLES

Two fortran demo programs with output are shown. Figure 7 shows an example
of a fortran program using graphical commands. Figure 8 displays the output from this
example. Figure 9 shows and example of a fortran program using text commands. Figure

10 displays the output from this example.

13

10

20

30

PROGRAM GRAF

TO DEMONSTRATE GRAPHICS COMMANDS
INTEGER H(5),V(5),QH(5),QV(5)
DEFINE A QUADRILATERAL

DATA QH /-200,-100,300,200,-200/
DATA QV /200,-100,-300,200,200/ -
CALL IMPOPN

TRANSLATE QUAD AND DRAW WITH SOLID LINE
DO 10 I=1,5

H(I)=QH(I)+1200

V(I)=QV(I)+800

CALL SET_PEN(5)

CALL CREATE_PATH(5,H,V)

CALL DRAW_PATH(15)

TRANSLATE QUAD AND FILL WITH BLACK
DO 20 I=1,5 '
H(I)=QH(I)+1200

V(I)=QV(I)+1500

CALL CREATE_PATH(5,H,V)

CALL FILL_PATH(15)

TRANSLATE QUAD AND FILL WITH TEXTURE 2
DO 30 I=1,5

H(I)=QH(I)+1200

V(I)=QV(I)+2200

CALL LOAD_TEXTURE(1,1,2)

CALL SET_TEXTURE(1,1)

CALL CREATE_PATH(5,H,V)

CALL FILL_PATH(3)

ADD BLACK BORDER

CALL SET_PEN(10)

CALL DRAW_PATH(15)

CALL ENDPAGE

CALL IMPDMP

STOR

END

FIGURE 7: Graphical Fortran Demo Program

14

]

FIGURE 8: Output of Graphical Demo Program

15

PROGRAM TEXT

TO DEMONSTRATE TEXT COMMANDS

CALL IMPOPN ‘

LOAD RESIDENT FONT COUR10

CALL LOAD_FONT(1,’COUR10’)

LOAD SOME TEX FONTS

CALL LODAD_FONT(2,’CMR10.1200°)
CALL LOAD_FONT(3,’CMBX10.12007)

CALL LOAD_FONT(4,’CMTI10.1200°)

CALL LOAD_FONT(5,’CMINCH.1000’)

SET LEFT MARGIN AND LINE SPACING
CALL SET_BOL(300)

CALL SET_IL(80)

SET SPACE WIDTH

CALL SET_SP(28)

CALL SET_ABS_H(300)

CALL SET_ABS_V(300)

OUTPUT TEXT

CALL SET_FAMILY(1) :
CALL LINE_TEXT(’Text output using resident couri0 font’)
CALL SET_FAMILY(2)

CALL LINE_TEXT(’Text output using TEX font cmri0.1200’)
CALL CHARS_TEXT(’There is a’)

CALL SET_FAMILY(3)

CALL CHARS_TEXT(’ bold’)

CALL SET_FAMILY(2)

CALL CHARS_TEXT(’ and an’)

CALL SET_FAMILY(4)

CALL CHARS_TEXT(’> italic’)

CALL SET_FAMILY(2)

CALL CHARS_TEXT(’ in this sentence’)
CALL SET_ADV_DIRS(1,1)

CALL SET_ABS_H(900)

CALL SET_ABS_V(525)

CALL SET_FAMILY(5)

CALL LINE_TEXT(’GOODBYE’)

CALL ENDPAGE

CALL IMPDMP

STOP

END

FIGURE 9: Text Fortran Demo Program

16 .

—

Text output using resident courlO0 font
Text output using TEX font cmrl10.1200

There is a bold and an italic in this sentence

3AdAd00D

FIGURE 10: Output of Text Demo Program

17

