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FUNDAMENTAL INFORMATION FOR TIGER CODE CALCULATIONS (2) 

DETERMINATION OF POTENTIAL ENERGY FUNCTION PARAMETERS 

by 

D.E.G. Jones* and R. Triebe** 

ABSTRACT 

In all computer codes, using the hydrodynamic conservation 

conditions and equilibrium thermodynamics to calculate detonation 

parameters and detonation product composition, an equation of state (EOS) 

which adequately describes the products is required. This EOS is based on 

a particular potential energy function with potential parameters specific 

to that function. These parameters are used in the computer code and must 

therefore be representative of the EOS used. This report describes two 

methods for determining these parameters for a variety of potential energy 

functions, using second vinai coefficient data, and demonstrates the 

effect of these parameters on the results of calculations using the TIGER 

code. 

KEYWORDS: intermolecular potential function parameters analytical 
expression reduced second vinai coefficient numerical method for 
determining reduced second potential function parameters  vinai coefficient 
gaseous detonation products. 
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INFORMATION DE BASE POUR LE CALCUL DU CODE MACHINE "TIGER" (2) 

DÉTERMINATION DES PARAMÈTRES D'ÉNERGIE POTENTIELLE 

par 

D.E.G. Jones* et R. Triebe**  

RÉSUMÉ 

Une équation d'état (EOS) décrivant adéquatement les produits est 

requise dans le cas de tous les codes machine qui utilisent des équations 

de conservation hydrodynamique et d'équilibre thermodynamique pour le calcul 

des paramètres relatifs à la détonation et la composition du produit de 

détonation. Cette équation d'état (EOS) est basée sur une fonction d'énergie 

potentielle particulière qui possède ses propres paramètres. Ces paramètres 

sont utilisés dans le code machine et doivent, par conséquent, être  

représentatifs de l'équation d'état (EOS) utilisée. Le rapport fait état de 

deux méthodes employées pour déterminer ces paramètres pour une gamme de 

fonctions d'énergie potentielle qui utilisent le deuxième coefficient virial 

et démontre l'effet de ces paramètres sur les résultats des calculs réalisés 

au moyen du code machine "Tiger". 

Mots-clé :. 
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INTRODUCTION 

In the estimation of detonation parameters of explosives using 

hydrodynamic equilibrium computer codes, it is necessary to have available 

or be readily able to obtain fundamental molecular parameters of the 

expected gaseous detonation products. These molecular parameters are 

inherent in the equation of state (EOS) used both to represent the gases in 

the code and to calculate the thermodynamic properties of these gases. The 

JC3 EOS appears to be a useful EOS for this purpose (1). Selection of the 

EOS determines the required intermolecular parameters since the EOS is 

based on a particular intermolecular potential function. Unfortunately, 

these parameters are often unavailable in the literature and one is then 

forced to use the values obtained from the Lennard-Jones (L-J) potential 

function (2) as estimates. 

It is the purpose of this report to describe methods by which the 

intermolecular parameters can be obtained for any potential function and 

hence any EOS. More particularly, these parameters are determined for the 

JC3 EOS and their use is illustrated in the TIGER code for calculating 

detonation parameters (3). 

RELATION OF THE INTERMOLECULAR POTENTIAL 

FUNCTION TO SECOND VIRIAL COEFFICIENT 

The link between the forces of intermolecular interaction and 

macroscopic experimental quantities is the relation between the second 

virial coefficient at temperature T, B(T) and the intermolecular potential 

energy function, U(r) (4) 

B(T) = (2rNA/3kT) f r s [d U(r)/dr] exp(-U(r)/kT)dr 	 [1] 

where NA and k are, respectively, Avogadro's and Boltzmann's constants 

and r is the distance of intermolecular separation. This equation is valid 

for angle independent U(r) and for substances independent of quantum 

effect. Experimental values for B(T) (5) are obtained from pVT 
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measurements and use of the vinai  EOS. For any potential function of the 

form (see Appendix A) 

U(r) = f(n,m)  c  [(a/r)n - (air)m] 

where c is the maximum energy of interaction (depth of the potential well) 

and a is the value of r for which U(r) = 0 (other than r = oe), an 

analytical expression for B(T) can be obtained. (Figures 1 and 2 show the 

dependence of U(r*) on r* and the effect of variations of T* and the 

exponent n on the form of this function). This method has been outlined 

(4) for the L-J potential function (n = 12, m = 6 and f(n,m) = 4) and can 

be generalized as follows: 

Substitution of [2] into [1] gives 

B*(T*) = -[f(n,m)/T*]  J  (m/r*m-n/r*n)r* 2  expf-[f(n,m)/T*] 	[3] 

(1/r*n-1/r*m)jdr* 

where B*(T*) = 3 B(T) / 2uNAa 3 , a dimensionless quantity. 

Equation [3] can be integrated analytically and the details can 

be found in Appendix B. The result is: 

B*(T*)  =E  (ai-2 1  r(f l )m/n - a i-f2 F(f 2 )3/(i-1)! 
i=1 

where a = f(n,m)/T*, f l  = (im-3)/n, and f 2  = [n+(i- 1 )m-3]/n and r(x) is the 

gamma function (6). 

In practice, as T* increases from 0.3 to 1.5, the number of terms 

required in the summation of expression [4] decreases from 50 to 25, in 

order that B*(T*) be determined to at least 10 significant figures. 

[2] 

[4] 

For more complex potential functions, U(r), where the integration 
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cannot be carried out analytically, a numerical technique can be used to 

determine B*. The Gauss-Aitken method has been described (7) and has been 

found effective here, with due regard for singularities in the integrand 

function. 

Both methods have been used to calculate B* for the L-J potential 

function and for the potential function for which n = 13.5 and m = 6, i.e. 

that function on which the JC3 EOS is based (1). Additionally, B* has been 

calculated numerically, using the modified Buckingham-Corner potential 

function (4) 

U(r) = c[6 exp fa(1-r/rm)Pa -(rm/r) 6 1/(1-6/a) 	[5] 

for r> rmax , and U(r) = = for r< rmax , where rmax  is the value of r 

for which U(r) given by [7] has a spurious maximum. The parameters, rm  

and a in [7] are, respectively, the value of r when U(r) is a minimum, and 

the number of nearest neighbour contacts in the crystalline structure of 

the substance. 

Figures 3.1 and 3.2 show the dependence of U(r*) on 

r* = r/rm  and the effect of variations of T* and the parameter a on the 

form of this function. 

Equation [1] cannot be integrated analytically, when [7] is 

substituted therein. For the purpose of carrying out the numerical 

integration, the following expression for B* is used 

B*(T*) = -6/X f (1/r* 4 -r* 3 f(r*))expi[1/r* 6 -6f(r*)/a]/Xldr* 	[6] 

where r* = r/rm, X = T*(1-6 1a) and f(r*) = exp[a(1-r*)]. 

In equation [6] the integrand is singular when r* = 1. 

• 	Singularities in equation [3] occur at values of r* given by 

r* = (n/m)11(n-m). 
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These points of singularity represent limits in the integration. It is 

usually practical to carry out the numerical integration in four parts and 

establish the lower and upper limits by trial and error, using plots of the 

integrand functions (see Figs. 4.1 and 4.2) as a guide. Generally, the 

integrand function is negligibly small in the range 5.0<r*<0.5, the exact 

range being dependent on T* and exponents n and m. 

DETERMINATION OF c/k AND a (4) 

The experimental data for B(T)(5) can be used to calculate kg 

given by 

kg = B(T1)/B(T2). 	 [7] 

This value of kg is compared with that determined from 

kg* = B*(kT 1 /c)/B*(kT 2 /c) 	 [8] 

using the values of B* for a particular potential function and an estimated 

E/k as a starting point. The parameter c/k is then adjusted so that kg 

and kg* correspond within the limits of the uncertainty in kg (usually 

approximately ±5%) and a can then be calculated from (4), 

1.2615 a' = B(Ti)/B*(kTi/e). 

DETERMINATION OF "BEST" POTENTIAL FUNCTION 

Smith et al (8) (9) have described a method for determining the 

form of U(r) from reasonably accurate experimental B(T) values over a wide 

range of T. This method starts with an initial approximate potential 

function, such as the Lennard-Jones function, to obtain an inversion 

function G(T*) by determining B + T (dB/dT) for the approximate potential 

function. From G(T*) a new potential function is determined and used to 

calculate a new inversion function and this process is repeated until 

convergence is obtained. 

[9 ] 
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DISCUSSION OF RESULTS 

Table 1 shows the agreement between the values of B* calculated 

for the L-J potential function using both the analytical and numerical 

methods of integration and also the values of B* reported by Hirschfelder 

(4). The calculated and literature values of c/k and a in Table 2 are in 

reasonable agreement. 

Similarly, Table 3 presents the agreement between the analytical 

and numerical results for the 13.5 - 6 potential function. The calculated 

values of c/k and a for common gases produced on detonation are listed in 

Table 4, along with those values currently in use in the TIGER code library 

for the JC3 EOS. 
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Values of B*(T*) for the L - J Potential Function 
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Literature 	Aitken Method 	 Integration T* 

'11-f 
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TABLE 2 

Parameters for the L-J Potential Function 

Parameters 

c/k/K 	 a/nm 

Substance 	This work Literature' 	This work 	Literature' 

Ar 	 118 ± 4 	122 	0.349 ± 0.005 	0.340 

Xe 	 217 ± 8 	217 	0.422 ± 0.010 	0.396 

H2 	 32 ± 2 	 29.2 	0.278 ± 0.016 	0.287 

0 2 	 116 ± 6 	118 	0.354 ± 0.010 	0.346 

N2 	 95 ± 5 	 95.5 	0.379 ± 0.010 	0.371 

CO 	 99.9 ± 0.1 	100.2 	0.372 ± 0.001 	0.376 

CO 2 	 213 ± 5 	205 	0.392 ± 0.007 	0.407 

CH4 	 144 ± 12 	148.2 	0.393 ± 0.009 	0.382 

C 2 H 6 	 211 ± 12 	243 	0.479 ± 0.014 	0.395 

NO 	 107 ± 16 	131 	0.401 ± 0.035 	0.317 

N2 0 	 202 ± 25 	189 	0.433 ± 0.041 	0.459 

S0 2 3 	 196 ± 27 	252 	0.655 ± 0.059 	0.429 

HC1 3 	 203 ± 58 	360 	0.473 ± 0.079 	0.331 

1. Hirschfelder et al 

2. neglecting quantum effects 

3. derived from viscosity data 
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TABLE 3 

Values of B*(T*) for the 13.5-6 Potential Functions 

B* 

From Gauss - 	 From Analytical 

T* 	 Aitken Method 	 Integration 



	

c/k/K 	 a/nm 

	

Calculated 	Library 	Calculated 	Library 

V 

Substance 

TABLE 4 

Parameters for the 13.5 - 6 Potential Function 

a' 

Ar 	 129 ± 10 	 - 	0.345 ± 0.007 	 - 

Xe 	 227 ± 4 	 - 	0.427 ± 0.020 	 - 

H21 	 35 ± 3 	 37.0 	0.276 ± 0.018 	0.334 

0 2 	 126 ± 6 	 132.0 	0.352 ± 0.013 	0.373 

Ny 	 103 ± 6 	 120.0 	0.375 ± 0.009 	0.405 

CO 	 110 ± 1 	 120.0 	0.370 ± 0.002 	0.405 

CO 2 	 233 ± 8 	 200.0 	0.395 ± 0.026 	0.420 

CH, 	 153 ± 6 	 154.0 	0.395 ± 0.017 	0.429 

C 2 11 6 	 236 ± 9 	 - 	 0.471 ± 0.007 	 - 

NO 	 119 ± 18 	 105 	 0.393 ± 0.034 	0.397 

N 2 0 	 220 ± 21 	 - 	0.438 ± 0.029 	 - 

SO 2 	 217 ± 30 	 - 	 0.642 ± 0.058 	 - 

HCI 	 219 ± 59 	 360 	 0.469 ± 0.062 	0.331 

1. neglecting quantum effects 

• 
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A comparison of the calculated values of B* using the numerical 

integration technique and the values given in the literature for the 

modified Buckingham-Corner potential function at a=14, is included in 

Table 5. The parameters calculated for this potential function are in 

reasonable agreement with those reported by Hirschfelder et al (4), as 

shown in Table 6. 
V 
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TABLE 5 

Values of B*(T*) for Modified Buckingham - Corner 

Potential Function at a = 14 

B* 

From Gauss - 	 From 

T* 	 Aitken Method 	Literature 
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TABLE 6 

Parameters for the Modified Buckingham-Corner 

Potential Function 

Parameters 

rm/nm 	 c/k/K 	 a 

Subs- 	 Litera 	 Litera 	This 	Litera 

tance 	This work 	ture 	This work 	turel 	work 	turel 

H 2 	0.313 ± 0.023 	0.334 	33 ± 3 	37.3 	14.0 	14.0 

Ar 	0.392 ± 0.007 	0.387 	122 ± 6 	123.3 	14.0 	14.0 

Xe 	0.502 ± 0.034 	0.445 	201 ± 25 	231.2 	13.5 	13.0 

CH4 	0.450 ± 0.018 	0.421 	145 ± 17 	152.8 	14.0 	14.0 

N2 	 0.414 ± 0.011 	0.401 	112 ± 7 	101.2 	17.0 	17.0 

CO 	0.404 	 0.394 	122 	 119.1 	17.0 	17.0 

1. Hirschfelder et al 

2. neglecting quantum effects 
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The calculated values of c/k and a from the 13.5 - 6 potential 

function have been used to replace the current values in the TIGER code. 

Calculations of detonation parameters and products have been made for the 

systems methylammonium nitrate + water (10) and ANFO. The results in 

Tables 7 and 8 are compared with those obtained using the "original" 

 library values of c/k and a for the detonation products. 

Although the detonation parameters are not affected 

significantly, the composition of the detonation products for the system 

methylammonium nitrate + water is altered substantially, when the new 

values of c/k and a are used in the TIGER code calculations. The amounts 

of CO, H, and CH, are increased whereas the amount of NH 3  is decreased and 

there is no C(s) predicted. Furthermore, as a result of the change in 

molecular parameters used in the TIGER code library, the potential 

classification of this system has changed from an explosive acceptable for 

underground use based on its fume characteristics to one that is no longer 

acceptable. Also, the detonation products are now predicted to include a 

significant proportion ( -9 mol %) of combustible gases i.e. H2 and CH4 . 

In the case of ANFO, the detonation pressure is reduced 

significantly and the amounts of NH 3  and 112  are, respectively, decreased 

and increased. 

It is noted here that these calculations were done without 

altering the TIGER code library values of the parameters for H 2 0 and 

NH 3 .  The origin of these values is unknown but it is significant that n-m 

potential function calculations give drastically different values of c/k 

and a for these substances. Finally, it is well known that simple 

potential functions do not adequately describe such polar and hydrogen 

bonded species, for which the U(r) is clearly angle dependent. 
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TABLE 7 

Detonation Parameters and Products for 

Methylammonium nitrate + water 

Detonation Parameters 

p/kbar 	V/cm3 1g 	T/kK 	-E/kJ/g 	D/km/s 

original 

calculated in 

this report 

101.4 

96.3 

0.605 	2.11 

0.601 	2.06 

8.41 	5.77 

8.25 	5.58 

Composition of Detonation Products/mol/kg 

Calculated 

Product Original 	 in this report 



Source of 

parameters 

original 

calculated in 

this report 

0.739 	2.80 

0.734 	2.80 

8.27 	 5.51 

8.24 	 5.17 

79.3 

71.0 
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TABLE 8 

Detonation Parameters and Products for ANFO 

Detonation Parameters 

p/kbar V/cm 3 /g 	T/kK 	-E/kJ/g 	D/km/s 

Composition of Detonation products/mol/kg 

Calculated 

Product Original 	 in this report 

H 2 0 	 27.11 	 27.15 

N2 	 11.45 	 11.69 

CO 2 	 3.92 	 3.87 

NH 3 	 0.59 	 0.11 

CO 	 0.29 	 0.33 

H2 	 0.22 	 0.90 

NO 	 0.00 	 0.00 
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Appendix A 

n-m Potential Energy Functions 

The n-m potential energy function is given by 

U(r) = A/rn - B/rm 	 [1] 

for n>m, and where  Air"  is the repulsive term and B/rm is the 

attractive term. Equation [1] can be transformed to one including a and E 
as follows: 

At U(r) = 0, r = a and a = (A/B) 1 /(n-m). 

Substitution of [2] into [1] gives 

U(r) = A(B/A) n/ (n-m ) [(a/O n  - (a/r)m] 	 [3] 

At U(r) = - E, r = r c  and dU(r)/drc  = 0. 	 [4] 

Use of [4] in equation [3] yields 

U(r) = c  (n/m)mi(n-m) n/(n-m) [(°/ 1- ) n 	(n/r)m ] 	[ 5 ] 

Or 

U(r*)/kT = f(n,m)/T*[1/r*n - 1/r*m] 	 [6] 

where f(n,m) = (n/m)mi(n-m) n/(n-m), r* =  air and T* = kT/E, all 

dimensionless quantities. 

[2] 

\e' 
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APPENDIX B 

Analytical expression for B* for n-m potential functions 

For a n-m potential function, B* is given by 

B*(T*) = -a f (m/r*( m-2 ) - n/r*(n-2 )) exp(-U(r*)/kT)dr* 	[1] 

where a = f(n,m)/T*, and 

U(r*)/kT = f(n,m)[1/r*n-1/r*m]/T* 	 [2] 

Equation [1] can be integrated when [2] is substituted therein, 

by writing for the term 

e a/rm = E (a/rm)1-1/(i-1)!. 

(Note that the * designation has been dropped) 

The first term in the series is (omitting the integration limits) 

-a f (m/r(n-2 ) - n/r(n-2)) e-a/rn  dr 

which transforms to 

- a f t-3 /n e -at  dt + a(m/n) f t- (n-m+ 3 )/fl e - at dt 	 [4] 

by substituting t = l/rn. 

Use of the gamma function given by [5] 

r(x) 

[3] 
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in [4] gives 

-al - (n-3  )/n r([n-3]/n) + (m/n)al - (m-3 )/n r([m-3]/n). 

The second term in the series is 

• 

-a 2  f (m/r(m-2 ) - n/r(n-2)) e-a/rn  dr 

which transforms to 

-a 2  f t(m-3 )/n et  dt + (m/n) a 2 f t(2m-n-3)/n e-at dt 	 [6] 

and substitution of [5] into [6] gives 

_a2_(m3)/i r([n+m-3]/n) + (m/n)a 2- ( 2m-3 )/n r([2m-3]/n). 

The subsequent terms in the series are obtained in a similar 

fashion and are listed in the Table. 

J 
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TABLE 9 

Terms in equation for B* for n-m potential functions 

Term 	 Expression 

1 	(m/n)a 1- (m-3) /n r([m-3]/n) - a l- 

2 	(m/n)a2- ( 2m-3 )/ 3 n ra2m-3],/n)-a2- ( 1 +[m-3 ]/n) r(1+[m-3]/n) 

n 3 	(m/n20a3- ( 3m-3 )/n r([3m-31/n)-(1/20a 3 ( 1-142m-3 ]/ )  r(1+[2m-3]/n) - 

4 	(m/n31)a4- ( 4m-3 )/n r([4m-3]/n)-(1/31)a4-(1+ [ 3m-3 iin)  r(1-1[3m-3]/n) 

i 	(m/n[i-1]!)ai - f 1  r(2 1 ) - (1/[i-1]!)ai - f2 r(f2) 

fi = (im-3)/n 

f2 = (n+[i-1]m-3)/n 

( 1-3 /n) r (1 -3/n) 
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FIGURE 2 
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