

Energy. Mines and
Resources Canada

Energie. Mines et
Ressources Canada

CANMET

Canada Centre Centre canadien for Mineral and Energy Technology de la technologie des minéraux et de l'énergie

FUNDAMENTAL INFORMATION FOR TIGER CODE CALCULATIONS (2)
determination of potential energy function parameters
D.E.G. Jones and R. Triebe

Canadian Explosives Research Laboratory

OCTOBER 1987

Presented (in part) at the American Chemical Society 1987 fall meeting, New Orleans, Louisiana - August 30 to September 4, 1987

FUNDAMENTAL INFORMATION FOR TIGER CODE CALCULATIONS (2) DETERMINATION OF POTENTIAL ENERGY FUNCTION PARAMETERS
by

D.E.G. Jonest and R. Triebe**

ABSTRACT

In all computer codes, using the hydrodynamic conservation conditions and equilibrium thermodynamics to calculate detonation parameters and detonation product composition, an equation of state (EOS) which adequately describes the products is required. This EOS is based on a particular potential energy function with potential parameters specific to that function. These parameters are used in the computer code and must therefore be representative of the EOS used. This report describes two methods for determining these parameters for a variety of potential energy functions, using second virial coefficient data, and demonstrates the effect of these parameters on the results of calculations using the TIGER code.

[^0]
INFORMATION DE BASE POUR LE CALCUL DU CODE MACHINE "TIGER" (2) détermination des paramètres d'Énergie potentilelle

par
D.E.G. Jones* et R. Triebe**

RESUME

Une équation d'état (EOS) décrivant adéquatement les produits est requise dans le cas de tous les codes machine qui utilisent des équations de conservation hydrodynamique et d'équilibre thermodynamique pour le calcul des paramètres relatifs à la détonation et la composition du produit de détonation. Cette équation d'état (EOS) est basée sur une fonction d'énergie potentielle particulière qui possède ses propres paramètres. Ces paramètres sont utilisés dans le code machine et doivent, par conséquent, être représentatifs de l'équation d'état (EOS) utilisée. Le rapport fait état de deux méthodes employées pour déterminer ces paramètres pour une gamme de fonctions d'énergie potentielle qui utilisent le deuxième coefficient virial et démontre l'effet de ces paramètres sur les résultats des calculs réalisés au moyen du code machine "Tiger".

Mots-clé :.
*Chercheur scientifique, Laboratoire canadien de recherche sur les atmosphères explosives, Laboratoires de recherche minière, Centre canadien de la technologie des minéraux et de l'énergie, Énergie, Mines et Ressources Canada, Ottawa.
**Étudiant faisant partie d'un projet coopératif, Génie chimique, Université de Waterlo.

INTRODUCTION

In the estimation of detonation parameters of explosives using hydrodynamic equilibrium computer codes, it is necessary to have available or be readily able to obtain fundamental molecular parameters of the expected gaseous detonation products. These molecular parameters are inherent in the equation of state (EOS) used both to represent the gases in the code and to calculate the thermodynamic properties of these gases. The JC3 EOS appears to be a useful EOS for this purpose (1). Selection of the EOS determines the required intermolecular parameters since the EOS is based on a particular intermolecular potential function. Unfortunately, these parameters are often unavailable in the literature and one is then forced to use the values obtained from the Lennard-Jones (L-J) potential function (2) as estimates.

It is the purpose of this report to describe methods by which the intermolecular parameters can be obtained for any potential function and hence any EOS. More particularly, these parameters are determined for the JC3 EOS and their use is illustrated in the TIGER code for calculating detonation parameters (3).

RELATION OF THE INTERMOLECULAR POTENTIAL FUNCTION TO SECOND VIRIAL COEFFICIENT

The link between the forces of intermolecular interaction and macroscopic experimental quantities is the relation between the second virial coefficient at temperature $T, B(T)$ and the intermolecular potential energy function, $U(r)$ (4)

$$
\begin{equation*}
B(T)=\left(2 \pi N_{A} / 3 k T\right) \int r^{3}[d U(r) / d r] \exp (-U(r) / k T) d r \tag{1}
\end{equation*}
$$

where N_{A} and k are, respectively, Avogadro's and Boltzmann's constants and r is the distance of intermolecular separation. This equation is valid for angle independent $U(r)$ and for substances independent of quantum effect. Experimental values for $B(T)(5)$ are obtained from $p V T$
measurements and use of the virial EOS. For any potential function of the form (see Appendix A)

$$
\begin{equation*}
U(r)=f(n, m) \varepsilon\left[(\sigma / r)^{n}-(\sigma / r)^{m}\right] \tag{2}
\end{equation*}
$$

where ε is the maximum energy of interaction (depth of the potential well) and σ is the value of r for which $U(r)=0$ (other than $r=\infty$), an analytical expression for $B(T)$ can be obtained. (Figures 1 and 2 show the dependence of $U\left(r^{*}\right)$ on r^{*} and the effect of variations of $T *$ and the exponent n on the form of this function). This method has been outlined (4) for the L-J potential function ($n=12, m=6$ and $f(n, m)=4$) and can be generalized as follows:

Substitution of [2] into [1] gives

$$
\begin{align*}
\mathrm{B} *(\mathrm{~T} *)= & -[f(\mathrm{n}, \mathrm{~m}) / \mathrm{T} *] \int\left(\mathrm{m} / \mathrm{r} * \mathrm{~m}_{-\mathrm{n}} / \mathrm{r} \star^{\mathrm{n}}\right) \mathrm{r} *^{2} \exp \{-[f(\mathrm{n}, \mathrm{~m}) / \mathrm{T} *] \tag{3}\\
& \left.\left(1 / \mathrm{r} * \mathrm{n}_{-1 / r} / \mathrm{*}\right)\right\} \mathrm{dr*}
\end{align*}
$$

where $B *\left(T^{*}\right)=3 B(T) / 2 \pi N_{A} \sigma^{3}$, a dimensionless quantity.

Equation [3] can be integrated analytically and the details can be found in Appendix B. The result is:
$B *(T *)=\sum_{i=1}^{\infty}\left\{a^{i-f_{1}} \Gamma\left(f_{1}\right) m / n-a i_{2} \Gamma\left(f_{2}\right)\right\} /(i-1)!$
where $a=f(n, m) / T *, f_{1}=(i m-3) / n$, and $f_{2}=[n+(i-1) m-3] / n$ and $\Gamma(x)$ is the gamma function (6).

In practice, as T^{*} increases from 0.3 to 1.5 , the number of terms required in the summation of expression [4] decreases from 50 to 25, in order that $B *\left(T^{*}\right)$ be determined to at least 10 significant figures.

For more complex potential functions, $U(r)$, where the integration
cannot be carried out analytically, a numerical technique can be used to determine $B *$. The Gauss-Aitken method has been described (7) and has been found effective here, with due regard for singularities in the integrand function.

Both methods have been used to calculate $B *$ for the $L-J$ potential function and for the potential function for which $n=13.5$ and $m=6$, i.e. that function on which the JC3 EOS is based (1). Additionally, B* has been calculated numerically, using the modified Buckingham-Corner potential function (4)

$$
\begin{equation*}
U(r)=\varepsilon\left[6 \exp \left\{\alpha\left(1-r / r_{m}\right)\right\} / \alpha-\left(r_{m} / r\right)^{6}\right] /(1-6 / \alpha) \tag{5}
\end{equation*}
$$

for $r \geq r_{\max }$, and $U(r)=\infty$ for $r<r_{\text {max }}$, where $r_{\max }$ is the value of r for which $U(r)$ given by [7] has a spurious maximum. The parameters, r_{m} and α in [7] are, respectively, the value of r when $U(r)$ is a minimum, and the number of nearest neighbour contacts in the crystalline structure of the substance.

Figures 3.1 and 3.2 show the dependence of $U\left(r^{*}\right)$ on $r *=r / r_{m}$ and the effect of variations of $T *$ and the parameter α on the form of this function.

Equation [1] cannot be integrated analytically, when [7] is substituted therein. For the purpose of carrying out the numerical integration, the following expression for $B *$ is used

$$
\begin{equation*}
B *(T *)=-6 / X \int\left(1 / r^{*^{4}}-r^{* 3} f\left(r^{*}\right)\right) \exp \left\{\left[1 / r^{*}-6 f\left(r^{*}\right) / \alpha\right] / X\right\} d r^{*} \tag{6}
\end{equation*}
$$

where $r *=r / r_{m}, X=T *(1-6 / \alpha)$ and $f(r *)=\exp \left[\alpha\left(1-r^{*}\right)\right]$.

In equation [6] the integrand is singular when $r *=1$.
Singularities in equation [3] occur at values of $r *$ given by

$$
r^{\star}=(n / m)^{1 /(n-m)}
$$

These points of singularity represent limits in the integration. It is usually practical to carry out the numerical integration in four parts and establish the lower and upper limits by trial and error, using plots of the integrand functions (see Figs. 4.1 and 4.2) as a guide. Generally, the integrand function is negligibly small in the range $5.0<r *<0.5$, the exact range being dependent on $T *$ and exponents n and m.

DETERMINATION OF ε / k AND σ (4)

The experimental data for $B(T)(5)$ can be used to calculate k_{B} given by

$$
\begin{equation*}
k_{B}=B\left(T_{1}\right) / B\left(T_{2}\right) \tag{7}
\end{equation*}
$$

This value of k_{B} is compared with that determined from

$$
\begin{equation*}
k_{B} *=B *\left(k T_{1} / \varepsilon\right) / B_{*}\left(k T_{2} / \varepsilon\right) \tag{8}
\end{equation*}
$$

using the values of $B *$ for a particular potential function and an estimated ε / k as a starting point. The parameter ε / k is then adjusted so that k_{B} and $k_{B *}$ correspond within the limits of the uncertainty in k_{B} (usually approximately $\pm 5 \%$) and σ can then be calculated from (4),

$$
\begin{equation*}
1.2615 \sigma^{3}=B\left(T_{j}\right) / B *\left(k T_{j} / \varepsilon\right) \tag{9}
\end{equation*}
$$

DETERMINATION OF "BEST" POTENTIAL FUNCTION

Smith et al (8) (9) have described a method for determining the form of $U(r)$ from reasonably accurate experimental $B(T)$ values over a wide range of T. This method starts with an initial approximate potential function, such as the Lennard-Jones function, to obtain an inversion function $G\left(T^{*}\right)$ by determining $B+T(d B / d T)$ for the approximate potential function. From $G\left(T^{*}\right)$ a new potential function is determined and used to calculate a new inversion function and this process is repeated until convergence is obtained.

DISCUSSION OF RESULTS

Table 1 shows the agreement between the values of $B *$ calculated for the L-J potential function using both the analytical and numerical methods of integration and also the values of $B *$ reported by Hirschfelder (4). The calculated and literature values of ε / k and σ in Table 2 are in reasonable agreement.

Similarly, Table 3 presents the agreement between the analytical and numerical results for the 13.5 - 6 potential function. The calculated values of ε / k and σ for common gases produced on detonation are listed in Table 4 , along with those values currently in use in the TIGER code library for the JC3 EOS.

TABLE 1

Values of $\mathrm{B} *(\mathrm{~T} *)$ for the $\mathrm{L}-\mathrm{J}$ Potential Function

T*	From	From Gauss -	From Analytical
0.3	-27.88058100	Aitken Method	Integration
1.0	-2.53808140	-27.88058209	-27.88058276
2.5	-0.31261340	-2.53808134	-2.53808134
4.0	0.11541691	-0.31261337	-0.31261337
5.0	0.24334251	0.11541692	0.11541692
10.0	0.46087529	0.24334350	0.24334350
40.0	0.51857502	0.46087528	0.46087528
80.0	0.46406948	0.51857502	0.51857502
100.0	0.41143168	0.47979010	0.47979010
200.0	0.35835117	0.46406947	0.46406947
400.0		0.41143168	0.41143168

TABLE 2

Parameters for the L-J Potential Function

Parameters

$$
\varepsilon / \mathrm{k} / \mathrm{K} \quad \sigma / \mathrm{nm}
$$

| Substance | This work | Literature | This work | Literature ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ar | 118 ± 4 | 122 | 0.349 ± 0.005 | 0.340 |
| Xe | 217 ± 8 | 217 | 0.422 ± 0.010 | 0.396 |
| H_{2} | 32 ± 2 | 29.2 | 0.278 ± 0.016 | 0.287 |
| O_{2} | 116 ± 6 | 118 | 0.354 ± 0.010 | 0.346 |
| $\mathrm{~N}_{2}$ | 95 ± 5 | 95.5 | 0.379 ± 0.010 | 0.371 |
| $\mathrm{CO}_{\mathrm{CO}}^{2}$ | 99.9 ± 0.1 | 100.2 | 0.372 ± 0.001 | 0.376 |
| CH_{4} | 213 ± 5 | 205 | 0.392 ± 0.007 | 0.407 |
| $\mathrm{C}_{2} \mathrm{H}_{6}$ | 144 ± 12 | 148.2 | 0.393 ± 0.009 | 0.382 |
| $\mathrm{NO}_{\mathrm{N}_{2} \mathrm{O}}$ | 211 ± 12 | 243 | 0.479 ± 0.014 | 0.395 |
| SO_{2}^{3} | 107 ± 16 | 131 | 0.401 ± 0.035 | 0.317 |
| HCl^{3} | 202 ± 25 | 189 | 0.433 ± 0.041 | 0.459 |

1. Hirschfelder et al
2. neglecting quantum effects
3. derived from viscosity data

TABLE 3

Values of $\mathrm{B} *(\mathrm{~T} *)$ for the 13.5-6 Potential Functions

B*

	From Gauss -	From Analytical
$T *$	-25.61765821	Integration
0.3	-2.26327726	-25.61765823
1.0	-0.21203785	-2.26327727
2.5	0.18213251	-0.21203785
4.0	0.29979037	0.18213250
5.0	0.49915552	0.29979037
10.0	0.54855155	0.49915552
80.0	0.51021198	0.54855155
100.0	0.49479998	0.51021198
200.0	0.44317908	0.49479998
400.0	0.39084684	0.44317908
		0.39084684

TABLE 4

Parameters for the 13.5 - 6 Potential Function

Substance	$\varepsilon / \mathrm{k} / \mathrm{K}$		σ / nm	
	Calculated	Library	Calculated	Library
Ar	129 ± 10	-	0.345 ± 0.007	-
Xe	227 ± 4	-	0.427 ± 0.020	-
$\mathrm{H}_{2}{ }^{1}$	35 ± 3	37.0	0.276 ± 0.018	0.334
O_{2}	126 ± 6	132.0	0.352 ± 0.013	0.373
N_{2}	103 ± 6	120.0	0.375 ± 0.009	0.405
CO	110 ± 1	120.0	0.370 ± 0.002	0.405
CO_{2}	233 ± 8	200.0	0.395 ± 0.026	0.420
CH_{4}	153 ± 6	154.0	0.395 ± 0.017	0.429
$\mathrm{C}_{2} \mathrm{H}_{6}$	236 ± 9	-	0.471 ± 0.007	-
NO	119 ± 18	105	0.393 ± 0.034	0.397
$\mathrm{N}_{2} \mathrm{O}$	220 ± 21	-	0.438 ± 0.029	-
SO_{2}	217 ± 30	-	0.642 ± 0.058	-
HCl	219 ± 59	360	0.469 ± 0.062	0.331

1. neglecting quantum effects

A comparison of the calculated values of $B *$ using the numerical integration technique and the values given in the literature for the modified Buckingham-Corner potential function at $\alpha=14$, is included in Table 5. The parameters calculated for this potential function are in reasonable agreement with those reported by Hirschfelder et al (4), as shown in Table 6.

TABLE 5

T*	B*	From Literature
	From Gauss - Aitken Method	
0.4	-9.332257	-9.3320
1.0	-1.682281	-1.6823
5.0	0.178865	0.1789
10.0	0.317475	0.3175
20.0	0.352159	0.3522
50.0	0.328168	0.3281
100.0	0.288627	0.2885
200.0	0.243787	0.2438
400.0	0.199435	0.1994

TABLE 6

Parameters for the Modified Buckingham-Corner
Potential Function

	$\mathrm{r}_{\mathrm{m}} / \mathrm{nm}$		$\varepsilon / \mathrm{k} / \mathrm{K}$					
			a					
Substance	This work	Litera ture ${ }^{1}$			This work	Litera ture ${ }^{1}$	This work	Litera ture ${ }^{1}$
H^{2}	0.313 ± 0.023	0.334	33 ± 3	37.3	14.0	14.0		
Ar	0.392 ± 0.007	0.387	122 ± 6	123.3	14.0	14.0		
Xe	0.502 ± 0.034	0.445	201 ± 25	231.2	13.5	13.0		
CH_{4}	0.450 ± 0.018	0.421	145 ± 17	152.8	14.0	14.0		
N_{2}	0.414 ± 0.011	0.401	112 ± 7	101.2	17.0	17.0		
CO	0.404	0.394	122	119.1	17.0	17.0		

1. Hirschfelder et al
2. neglecting quantum effects

The calculated values of ε / k and σ from the 13.5-6 potential function have been used to replace the current values in the TIGER code. Calculations of detonation parameters and products have been made for the systems methylammonium nitrate + water (10) and ANFO. The results in Tables 7 and 8 are compared with those obtained using the "original" library values of ε / k and σ for the detonation products.

Although the detonation parameters are not affected significantly, the composition of the detonation products for the system methylammonium nitrate + water is altered substantially, when the new values of ε / k and σ are used in the TIGER code calculations. The amounts of $\mathrm{CO}, \mathrm{H}_{2}$ and CH_{4} are increased whereas the amount of NH_{3} is decreased and there is no $C(s)$ predicted. Furthermore, as a result of the change in molecular parameters used in the TIGER code library, the potential classification of this system has changed from an explosive acceptable for underground use based on its fume characteristics to one that is no longer acceptable. Also, the detonation products are now predicted to include a significant proportion ($\sim 9 \mathrm{~mol} \%$) of combustible gases i.e. H_{2} and CH_{4}.

In the case of ANFO, the detonation pressure is reduced significantly and the amounts of NH_{3} and H_{2} are, respectively, decreased and increased.

It is noted here that these calculations were done without altering the TIGER code library values of the parameters for $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}. The origin of these values is unknown but it is significant that $n-m$ potential function calculations give drastically different values of ε / k and ofor these substances. Finally, it is well known that simple potential functions do not adequately describe such polar and hydrogen bonded species, for which the $U(r)$ is clearly angle dependent.

TABLE 7

Detonation Parameters and Products for

Methylamonium nitrate + water

Detonation Parameters

Source of parameters	$\mathrm{p} / \mathrm{kbar}$	$\mathrm{V} / \mathrm{cm}^{3} / \mathrm{g}$	T / kK	$-\mathrm{E} / \mathrm{kJ} / \mathrm{g}$	$\mathrm{D} / \mathrm{km} / \mathrm{s}$
original	101.4	0.605	2.11	8.41	5.77
calculated in	96.3	0.601	2.06	8.25	5.58
this report					

Composition of Detonation Products/mol/kg

		Calculated in this report
$\mathrm{H}_{2} \mathrm{O}$	Original	20.04
NH_{3}	9.94	19.77
CO_{2}	7.40	7.05
$\mathrm{~N}_{2}$	4.18	7.16
CO^{2}	0.34	5.61
H_{2}	0.11	1.11
CH	0.07	3.10
$\mathrm{C}(\mathrm{s})$	1.33	0.88

TABLE 8

Detonation Parameters and Products for ANFO

Detonation Parameters

Source of
parameters $\quad \mathrm{p} / \mathrm{kbar} \quad \mathrm{V} / \mathrm{cm}^{3} / \mathrm{g} \quad \mathrm{T} / \mathrm{kK} \quad-\mathrm{E} / \mathrm{kJ} / \mathrm{g} \quad \mathrm{D} / \mathrm{km} / \mathrm{s}$

original	79.3	0.739	2.80	8.27	5.51
calculated in	71.0	0.734	2.80	8.24	5.17
this report					

Composition of Detonation products/mol/kg

Product	Original	Calculated in this report
$\mathrm{H}_{2} \mathrm{O}$	27.11	27.15
$\mathrm{~N}_{2}$	11.45	11.69
CO_{2}	3.92	3.87
NH_{3}	0.59	0.11
$\mathrm{CO}^{\mathrm{H}_{2}}$	0.29	0.33
NO	0.22	0.90
	0.00	0.00

REFERENCES

1. Cowperthwaite, M. and Zisler, W.H. "JCZ equations of state for . detonation products and their incorporation into the TIGER code"; Proc. Sixth Symposium on Detonation; Office of Naval Research; 1976.
2. Jones, J.E. "On the determination of molecular fields - II. From the equation of state of a gas"; Proc. Roy Soc. (London); A106; 463; 1924.
3. Jones, D.E.G. and Feng, K.K. "Calculation of detonation properties and fume composition of slurry and emulsion explosives (TIGER code)"; CANMET ACEA/MRL 86-148(CF); December 1986.
4. Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B. "Molecular Theory of Gases and Liquids"; John Wiley and Sons, 1954.
5. Dymond, J.H. and Smith, E.B. "The Virial Coefficients of Pure Gases and Mixtures. A Critical Compilation"; Clarendon Press; Oxford; 1980.
6. Handbook of Mathematical Functions; edited by Abramowitz, M. and Stegun, I.A.; National Bureau of Standards; 1972.
7. Smith, D.M. "A program for approximating integrals"; Byte; 11; 113; 1986.
8. Cox, H.E., Crawford, F.W., Smith, E.B. and Tindell, A.R. "A complete iterative inversion procedure for second virial coefficient data I The Method"; Molecular Physics; 3; 705; 1980.
9. Smith, E.B., Tindell, A.R. Wells, B.H. and Crawford, F.W. "A complete iterative inversion procedure for second virial coefficient data II Applications"; Molecular Physics; 4; 937; 1981.
10. Jones, D.E.G. and Feng, K.K. "Fundamental information for TIGER code calculations on explosives (1)". CANMET ACEA/MRL 85-143(TR); December 1985.

Appendix A

n-m Potential Energy Functions

The $n-m$ potential energy function is given by

$$
\begin{equation*}
U(r)=A / r^{n}-B / r^{m} \tag{1}
\end{equation*}
$$

for $n>m$, and where A / r^{n} is the repulsive term and B / r^{m} is the attractive term. Equation [1] can be transformed to one including σ and ε as follows:

$$
\begin{equation*}
\text { At } U(r)=0, \quad r=\sigma \text { and } \sigma=(A / B)^{1 /(n-m)} \tag{2}
\end{equation*}
$$

Substitution of [2] into [1] gives

$$
\begin{align*}
& U(r)=A(B / A)^{n /(n-m)}\left[(\sigma / r)^{n}-(\sigma / r)^{m}\right] \tag{3}\\
& \text { At } \quad U(r)=-\varepsilon, r=r_{\varepsilon} \text { and } d U(r) / d r_{\varepsilon}=0 .
\end{align*}
$$

Use of [4] in equation [3] yields

$$
\begin{equation*}
U(r)=\varepsilon(n / m)^{m /(n-m)} n /(n-m)\left[(\sigma / r)^{n}-(\sigma / r)^{m}\right] \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{U}\left(\mathrm{r}^{*}\right) / \mathrm{kT}=\mathrm{f}(\mathrm{n}, \mathrm{~m}) / \mathrm{T} *\left[1 / \mathrm{r} * \mathrm{n}-1 / \mathrm{r} *^{\mathrm{m}}\right] \tag{6}
\end{equation*}
$$

where $f(n, m)=(n / m)^{m /(n-m)} n /(n-m), r *=\sigma / r$ and $T *=k T / \varepsilon$, all dimensionless quantities.

APPENDIX B

Analytical expression for $B *$ for $n-m$ potential functions

For a $n-m$ potential function, $B *$ is given by
$B *(T *)=-a \int(m / r *(m-2)-n / r *(n-2)) \exp (-U(r *) / k T) d r *$
where $a=f(n, m) / T *$, and
$U(r *) / k T=f(n, m)\left[1 / r * n_{-1 / r * m}\right] / T *$

Equation [1] can be integrated when [2] is substituted therein, by writing for the term
$e^{a / r^{m}}=\sum_{i}\left(a / r^{m}\right)^{i-1 /(i-1)!}$.
(Note that the $*$ designation has been dropped)

The first term in the series is (omitting the integration limits)
$-a \int\left(m / r(n-2)-n / r^{(n-2)}\right) e^{-a / r^{n}} d r$
which transforms to
$-a \int t^{-3 / n} e^{-a t} d t+a(m / n) \int t^{-(n-m+3) / n} e^{-a t} d t$
by substituting $t=1 / r^{n}$.

Use of the gamma function given by [5]
$\Gamma(x)=b x \int t^{x-1} e^{b t} d t$
in [4] gives
$-a^{1-(n-3) / n} \Gamma([n-3] / n)+(m / n) a^{1-(m-3) / n} \Gamma([m-3] / n)$.

The second term in the series is
$-a^{2} \int(m / r(m-2)-n / r(n-2)) e^{-a / r^{n}} d r$
which transforms to
$-a^{2} \int t(m-3) / n e^{-a t} d t+(m / n) a^{2} \int t^{(2 m-n-3) / n} e^{-a t} d t$
and substitution of [5] into [6] gives
$-a^{2-(n+m-3) / n} \Gamma([n+m-3] / n)+(m / n) a^{2-(2 m-3) / n} \Gamma([2 m-3] / n)$.

The subsequent terms in the series are obtained in a similar fashion and are listed in the Table.

TABLE 9

Terms in equation for $B *$ for $n-m$ potential functions

Term

Expression
$1(m / n) a^{1-(m-3) / n} \Gamma([m-3] / n)-a^{1-(1-3 / n) \Gamma(1-3 / n)}$
$2(m / n) a^{2-(2 m-3) / 3 n} \Gamma([2 m-3] / n)-a^{2-(1+[m-3] / n)} \Gamma(1+[m-3] / n)$

3

$$
\begin{aligned}
& 3(m / n 2!) a^{3-(3 m-3) / n} \Gamma([3 m-3] / n)-(1 / 2!) a^{3-(1+[2 m-3] / n)} \Gamma(1+[2 m-3] / n) \\
& 4(m / n 3!) a^{4-(4 m-3) / n} \Gamma([4 m-3] / n)-(1 / 3!) a^{4-(1+[3 m-3] / n)} \Gamma(1+[3 m-3] / n) \\
& i \quad(m / n[i-1]!) a^{i-f_{1}} \Gamma\left(f_{1}\right)-(1 /[i-1]!) a^{i-f_{2}} \Gamma\left(f_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}=(i m-3) / n \\
& f_{2}=(n+[i-1] m-3) / n
\end{aligned}
$$

FIGURE 1

12-6 potential functions

[^0]: KEYWORDS: intermolecular potential function parameters analytical expression reduced second virial coefficient numerical method for determining reduced second potential function parameters virial coefficient gaseous detonation products.

 * Research Scientist, Canadian Explosives Research Laboratory, Mining Research Laboratories, Canada Centre for Mineral and Energy Technology, Energy, Mines and Resources Canada, Ottawa.
 ** Co-op Student, Chemical Engineering, University of Waterloo.

