This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

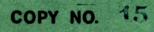
CANADA

Declassified Déclassifié

### DEPARTMENT OF MINES AND TECHNICAL SURVEYS

OTTAWA

MINES BRANCH INVESTIGATION REPORT IR 65-50


# CONCENTRATION TESTS OF DRILL CORE SAMPLES FROM MERRICAN INTERNATIONAL MINES LTD., BURNABY ISLAND, B. C.

### G. W. RILEY

by

### MINERAL PROCESSING DIVISION

NOTE: THIS REPORT RELATES ESSENTIALLY TO THE SAMPLES AS RECEIVED. THE REPORT AND ANY CORRESPONDENCE CONNECTED THEREWITH SHALL NOT BE USED IN FULL OR IN PART AS PUBLICITY OR ADVERTISING MATTER.



**JUNE 15, 1965** 

1-7987680 C



### Mines Branch Investigation Report IR 65-50

CONCENTRATION TESTS OF DRILL CORE SAMPLES FROM MERRICAN INTERNATIONAL MINES LTD., BURNABY ISLAND, B.C.

by

## G.W. Riley\*

#### SUMMARY OF RESULTS

Of the seventeen drill core samples crushed to 10 mesh, only two samples produced magnetic concentrates containing more than 62% Fe, considered the minimum grade for Japanese steel mills. Crushing the magnetic concentrates to minus 28 mesh followed by wet magnetic concentration made some improvement in grade but at this size all of the concentrates were finer than 30% minus 100 mesh and would not meet Japanese size specifications for sinter feed.

Davis tube tests made on composite samples ground to minus 100 mesh and minus 200 mesh indicated that it would be necessary to grind finer than 100 mesh to obtain a grade of 62% Fe from the composite samples.

\* Technical Officer, Mineral Processing Division, Mines Branch, Department of Mines & Technical Surveys, Ottawa, Canada

#### INTRODUCTION

#### Shipment

Two shipments of drill core were received; one on September 18, 1964, consisted of 9 core samples, weight  $9\frac{1}{2}$  lb, and another on October 22, 1964, of 8 core samples, weight  $24\frac{1}{2}$  lb. The shipments were submitted by Mr. A.J. McClellan, General Manager, Merrican International Mines Ltd., 202-114 West, 15th Street, North Vancouver, B.C.

#### Location of Property

The property of Merrican International Mines Ltd. is located on Burnaby Island, Queen Charlotte Islands, B.C. Mr. A.J. McClellan stated that the property adjoins that of Mastodon-Highland Bell Mines Ltd. and is some two miles from Jedway Iron Ore Ltd.

#### Purpose of Investigation

Mr. McClellan stated in his letter of September 17, 1964, that the company is negotiating with Jedway and Highland Bell for a possible contract to process the ore and that Jedway stipulated that it must be amenable to treatment with their present mill equipment.

The investigation was to determine the grade of iron which could be recovered by magnetic separation. The magnetic concentrate specifications requested were: over 62% iron, and less than 30% minus 100 mesh material, to be acceptable by the present Japanese market.

#### Analysis

The chemical analyses, shown in this investigation, were made by the Chemical Analysis Section, Extraction Metallurgy Division, Mines Branch.

### TABLE 1

| Sample | Drill Hole<br>No.                                                                             | Core<br>Footage                                                  | Weight,<br>grams                                                                                                                                                                         |
|--------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | 2                                                                                             | 219-255                                                          | 917                                                                                                                                                                                      |
| 2      | . 3                                                                                           | <b>216-221</b>                                                   | 262                                                                                                                                                                                      |
| 3      | 3                                                                                             | 419-429                                                          | 426                                                                                                                                                                                      |
| 4      | 7                                                                                             | 54-65                                                            | 342                                                                                                                                                                                      |
| 5、     | 7                                                                                             | 128-148                                                          | 486                                                                                                                                                                                      |
| 6      | 8                                                                                             | 106-113                                                          | 375                                                                                                                                                                                      |
| 7      | 8                                                                                             | 197-208                                                          | 401                                                                                                                                                                                      |
| 8      | 9                                                                                             | 204-207                                                          | 366                                                                                                                                                                                      |
| 9      | . 10                                                                                          | 115-183                                                          | 698                                                                                                                                                                                      |
| 10     | 13                                                                                            | 46-68                                                            | 1178                                                                                                                                                                                     |
| 11     | 13                                                                                            | 68-88                                                            | 1165                                                                                                                                                                                     |
| 12     | 13                                                                                            | 88-108                                                           | 1522                                                                                                                                                                                     |
| 13     | 13 ,                                                                                          | 108-124                                                          | 1292                                                                                                                                                                                     |
| 14     | 13                                                                                            | 180-190                                                          | 1185                                                                                                                                                                                     |
| 15     | 13                                                                                            | 200-210                                                          | 1594                                                                                                                                                                                     |
| 16     | 13                                                                                            | 210-237                                                          | 1909                                                                                                                                                                                     |
| 17     | 13                                                                                            | 194-215                                                          | 1214                                                                                                                                                                                     |
|        | Sample<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | Drill Hole<br>No.12233347576878899101013111312131313141315131613 | Drill Hole<br>No.Core<br>Footage12219-25523216-22133419-4294754-6557128-14868106-11378197-20889204-207910115-183101346-68111368-88121388-1081313108-1241413180-1901513200-2101613210-237 |

### Description of Samples

### DETAILS OF INVESTIGATION

### Test 1 - Dry Magnetic Concentration at Minus 10 Mesh

The core samples were crushed to minus 10 mesh, for dry magnetic concentration by a laboratory size Ball-Norton belt separator. The magnetic concentrates and non-magnetic tailings were assayed for total iron and the analysis of the feed was calculated. A screen test was made on each concentrate.

|  | ΤA | BL | E | 2 |
|--|----|----|---|---|
|--|----|----|---|---|

Results of Magnetic Concentration at minus 10 mesh

| <b>ς</b> Δ | MPT | .E. | 1 |
|------------|-----|-----|---|

| Product  | Weight | Analysis % | Distn % |
|----------|--------|------------|---------|
|          | %      | Tot Fe     | Tot Fe  |
| Feed*    | 100.0  | 57.00      | 100.0   |
| Mag conc | 94.9   | 59.70      | 99.4    |
| Tailing  | 5.1    | 6.87       | 0.6     |

\* Calculated

### TABLE 2 (continued)

### Results of Magnetic Concentration at minus 10 mesh

SAMPLE 2

| Product  | Weight | Analysis %     | Distn % |
|----------|--------|----------------|---------|
|          | %      | Tot Fe         | Tot Fe  |
| Feed*    | 100,0  | 39.60          | 100.0   |
| Mag conc | 66,8   | 55. <b>0</b> 0 | 93.5    |
| Tailing  | 33,2   | 7.81           | 6.5     |

### SAMPLE 3

| Feed*    | 100.0 | 58,00 | 100.0 |
|----------|-------|-------|-------|
| Mag conc | 90.8  | 62,90 | 98.5  |
| Tailing  | 9.2   | 9,69  | 1.5   |
| Tailing  | 9.2   | 9.09  | т,о   |

SAMPLE 4

| Feed*    | 100.0 | 30.27 | 100.0 |
|----------|-------|-------|-------|
| Mag conc | 56.2  | 50.30 |       |
| Tailing  | 43.8  | 4.56  | 6.6   |

### SAMPLE 5

| 1        | 1     |       | 1     |
|----------|-------|-------|-------|
| Feed*    | 100.0 | 57.26 | 100.0 |
| Mag conc | 91.2  | 62.10 | 98.9  |
| Tailing  | 8.8   | 7,08  | 1.1   |

#### SAMPLE 6

| SAMPLE 6 | • • • • • • • • • • • • • • • • • • • |       |       |
|----------|---------------------------------------|-------|-------|
| Feed*    | 100.0                                 | 43.45 | 100.0 |
| Mag conc | 85.3                                  | 50.40 | 98.9  |
| Tailing  | 14.7                                  | 3.13  | 1.1   |

### SAMPLE 7

| Feed*    | 100.0 | 32.00 | 100.0 |
|----------|-------|-------|-------|
| Mag conc | 56.7  | 46,50 | 82.4  |
| Tailing  | 43.3  | 13,00 | 17.6  |

### SAMPLE 8

| Feed*    | 100.0 | 26.28 | 100.0 |
|----------|-------|-------|-------|
| Mag conc | 30.7  | 51.50 | 60.2  |
| Tailing  | 69.3  | 15.10 | 39.8  |
|          |       | 10,20 |       |

\* Calculated

### Results of Magnetic Concentration at minus 10 mosh

### SAMPLE 9

| Product           | Wei.ght | Analysis % | Distn % |
|-------------------|---------|------------|---------|
|                   | %       | Tot Fe     | Tot Fe  |
| Feed <sup>‡</sup> | 100.0   | 47.35      | 1.00.0  |
| Mag conc          | 88.3    | 52.90      | 98.7    |
| Tailing           | 11.7    | 5.46       | 1.3     |

SAMPLE 10

| Feed*    | 100,0 | 49,75 | 100.0 |  |
|----------|-------|-------|-------|--|
| Mag conc | 90,7  | 53,80 | 98.1  |  |
| Tailing  | 9,3   | 10,20 | 1.9   |  |
| Tarring  | 500   | 10.00 |       |  |

### SAMPLE 11

| Feed*    | 100.0 | 50,55 | 100.0   |  |
|----------|-------|-------|---------|--|
| Mag conc | 87,0  | 57,40 | , 98, 8 |  |
| Tailing  | 13.0  | 4.70  | 1.2     |  |

### SAMPLE 12

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | بىرى يې يې دې يې |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feed*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.77                                                | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mag conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53,60                                                | 95.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Tailing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9,45                                                 | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CHEST WAS INTO A REPORT OF THE OWNER OF THE PARTY OF THE | A REAL PROPERTY AND AND ADDRESS OF ADDRESS O |                                                      | Laurence and the second s |

### SAMPLE 13

| Feed*    | 100.0 | 39,10 | 100.0 |
|----------|-------|-------|-------|
| Mag conc | 67.6  | 50,20 | 86.8  |
| Tailing  | 32.4  | 15,90 | 13.2  |

### SAMPLE 14

|          |       |       | and the second |
|----------|-------|-------|------------------------------------------------------------------------------------------------------------------|
| Feed*    | 100.0 | 34,00 | 100,00                                                                                                           |
| Mag conc | 62.3  | 50,80 | 93.1                                                                                                             |
| Tailing  | 37.7  | 6.22  | 6.9                                                                                                              |

### SAMPLE 15

| Feed*               | 100.0 | 49,20 | 100,0 |
|---------------------|-------|-------|-------|
|                     | 91.6  | 52,90 | 98,5  |
| Mag conc<br>Tailing | 8,4   | 8,94  | 1,5   |

\* Calculate

### TABLE 2 (concluded)

| Results of M | lagnetic | Concentration | at | minus | 10 | mesh |
|--------------|----------|---------------|----|-------|----|------|
|              |          |               |    |       |    |      |

| SAMPLE | 16 |  |
|--------|----|--|
|--------|----|--|

| Product    | Weight        | Analysis % | Distn % |
|------------|---------------|------------|---------|
|            | %             | Tot Fe     | Tot Fe  |
| Feed*      | 100 <b>.0</b> | 45.30      | 100.0   |
| Mag conc** | 77.4          | 55.26      | 94.4    |
| Tailing    | 22.6          | 11.23      | 5.6     |

SAMPLE 17

| Feed*    | 100.0 | 38.16 | 100.0 |
|----------|-------|-------|-------|
| Mag conc | 65.8  | 51.40 | 88.6  |
| Tailing  | 34.2  | 12.70 | 11.4  |

\* Calculated

\*\* Calculated from Test 2, Table 4.

### TABLE 3

### Results of Screen Tests on the Magnetic Concentrates

at Minus 10 Mesh

|            |          |          | Wei      | įght %   |          |          |
|------------|----------|----------|----------|----------|----------|----------|
| Mesh       | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 |
| + 10       | 0.3      | 0.4      | 0.6      | 0.6      | 0.2      | 0.6      |
| - 10 + 14  | 8.3      | 13.2     | 14.3     | 12.2     | 10.0     | 11.3     |
| - 14 + 20  | 16.3     | 21.5     | 22.2     | 20.8     | 19.4     | 20.2     |
| - 20 + 28  | 14.5     | 18.4     | 17.5     | 17.9     | 16.6     | 16.6     |
| - 28 + 35  | 11.6     | 12.6     | 11.5     | 12.3     | 11.9     | 11.4     |
| - 35 + 48  | 8.3      | 7.4      | 7.9      | 8.4      | 7.7      | 7.3      |
| - 48 + 65  | 7.1      | 5.4      | 6.4      | 6.5      | 6,6      | 5.6      |
| - 65 + 100 | 6.3      | 4.4      | 5.1      | 4.9      | 6.2      | 5.4      |
| -100       | 27.3     | 16.7     | 14.5     | 16.4     | 21.4     | 21.6     |
|            | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    |

### TABLE 3 (concluded)

Results of Screen Tests on the Magnetic Concentrates

at Minus 10 Mesh

|                                                      | Weight %                                                   |                                                         |                                                         |                                                            |                                                        |                                                        |
|------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Mesh                                                 | Sample 7                                                   | Sample 8                                                | Sample 9                                                | Sample 10                                                  | Sample 11                                              | Sample 12                                              |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $0.5 \\ 13.2 \\ 21.4 \\ 17.1 \\ 11.7 \\ 7.5 \\ 5.4 \\ 4.5$ | 0.5<br>9.8<br>17.4<br>14.5<br>11.0<br>7.6<br>6.7<br>5.9 | 0.3<br>9.2<br>17.7<br>15.8<br>12.2<br>7.9<br>6.3<br>5.3 | $0.4 \\ 11.1 \\ 10.0 \\ 13.7 \\ 12.8 \\ 8.6 \\ 7.1 \\ 6.0$ | 0,2<br>8,7<br>9,9<br>13,6<br>13,9<br>9,3<br>7,8<br>6,8 | 0.4<br>6.8<br>9.2<br>14.9<br>14.7<br>9.5<br>7.5<br>6.2 |
| -100                                                 | 18.7                                                       | 26,6                                                    | 25.3                                                    | 30.3                                                       | 29,8                                                   | 30,8                                                   |
|                                                      | 100,0                                                      | 100.0                                                   | 100.0                                                   | 100.0                                                      | 100.0                                                  | 100.0                                                  |

|                        | Weight %  |              |               |              |              |  |  |
|------------------------|-----------|--------------|---------------|--------------|--------------|--|--|
| Mesh                   | Sample 13 | Sample 14    | Sample 15     | Sample 16    | Sample 17    |  |  |
| + 10                   | 0,4       | 0.1          | 0.1           | 0.3          | . 0.6        |  |  |
| -10 + 14               | 9.9       | 3.6          | 6.6           | 6.2          | 12.0         |  |  |
| - 14 + 20              | 10.3      | 7.1          | 13.4          | 9,1          | 11.9         |  |  |
| - 20 + 28<br>- 28 + 35 | 10.7      | 10.8<br>14.1 | 15.6<br>/11.7 | 16,9<br>14,0 | 16.7<br>14.8 |  |  |
| - 35 + 48              | 9,9       | 11.8         | 8.1           | 9.3          | 9.2          |  |  |
| - 48 + 65              | 7.4       | 9.2          | 6,6           | 8.0          | 7.3          |  |  |
| - 65 + 100             | 6.2       | 7.0          | · 6,5         | 6,3          | 5.6          |  |  |
| -100                   | 30.1      | 36,0         | 31.4          | 29,9         | 21,9         |  |  |
|                        | 100.0     | 100.0        | 100.0         | 100.0        | 100.0        |  |  |

### Test 2 - Wet Magnetic Concentration at Minus 28 Mesh

The magnetic concentrates from Test 1 were crushed to minus 28 mesh for wet magnetic concentration by a laboratory size Sala separator.

The magnetic concentrates were assayed for total iron and a screen test was made on each concentrate.

### TABLE 4

### Results of Magnetic Concentration at Minus 28 Mesh

| SAMPLE 1             |             |              | •          |                      |              |  |
|----------------------|-------------|--------------|------------|----------------------|--------------|--|
|                      | Weight %    |              | Analysis % | Distribution % Tot F |              |  |
| Product              | In test     | In orig feed | Tot Fe     | In test              | In orig feed |  |
| Feed                 | 100.0       | 94.9         | 59.7       | 100.0                | 99,4         |  |
| Mag Conc             | 81.6        | 77.4         | 60,9       | 83.3                 | 82.8         |  |
| Tailing*             | 18.4        | 17.5         | 54,2       | 16.7                 | 16.9         |  |
|                      |             |              |            |                      |              |  |
| SAMPLE 2             |             | ·····        |            |                      |              |  |
| Feed                 | 100.0       | 66.8         | 55.4       | 100.0                | 93.5         |  |
| Mag Conc             | 93.0        | 62.1         | 57.6       | 96.7                 | 90.4         |  |
| Tailing*             | 7.0         | 4.7          | 26,1       | 3.3                  | 3.1          |  |
| ·                    |             |              |            |                      |              |  |
| SAMPLE 3             |             |              |            |                      |              |  |
| Feed                 | 100.0       | 90,8         | 62,9       | 100.0                | 98,5         |  |
| Mag Conc             | 96.5        | 87.6         | 63.0       | 96.6                 | 95.2         |  |
| Tailing*             | 3.5         | 3.2          | 61.1       | 3.4                  | 3.3          |  |
|                      | 1           |              |            | 1                    | {<br>        |  |
| SAMPLE 4             |             |              |            |                      | •            |  |
| Feed                 | 100.0       | 56,2         | 50.30      | 100.0                | 93.4         |  |
| Mag Conc             | 88.5        | 49.7         | 54,60      | 96.1                 | 89.8         |  |
| Tailing*             | 11.5        | 6.5          | 17.06      | 3.9                  | 3.6          |  |
| SAMPLE 5             |             |              | •          | ·                    | I            |  |
|                      | 100.0       | 0 10         | 60 T       | 1 100 0              |              |  |
| Feed                 | 100.0       | 91 <b>.2</b> | 62.1       | 100.0                | 98.9         |  |
| Mag Conc<br>Tailing* | 96.3<br>3.7 | 87.8         | 63.1       | 97.8                 | 96,7         |  |
|                      | 3.1         | 3.4          | 36.9       | 2,2                  | 2.2          |  |
| SAMPLE 6             |             |              |            |                      |              |  |
| Feed                 | 100,0       | 85.3         | 50,4       | 100.0                | 98,9         |  |
| Mag Conc             | 92.4        | 78.8         | 53.3       | 97.7                 | 96.6         |  |
| Tailing*             | 7.6         | 6.5          | 15,3       | 2.3                  | 2.3          |  |
|                      | I           |              |            | L                    |              |  |
| SAMPLE 7             | •           |              | ······     | 1                    |              |  |
| Feed                 | 100.0       | 56 <b>.7</b> | 46.5       | 100.0                | 82.4         |  |
| Mag Conc             | 90.8        | 51.5         | 50.3       | 98.2                 | 80.9         |  |
| Tailing*             | 9.2         | 5,2          | 9.1        | 1,8                  | 1.5          |  |

\* Calculated

### Results of Magnetic Concentration at Minus 28 Mesh

|                  | We                                     | ight %                        | Analysis % | Distribu                              |              |
|------------------|----------------------------------------|-------------------------------|------------|---------------------------------------|--------------|
| Product          | In test                                | In orig feed                  | Tot Fe     | In test                               | In orig feed |
| Feed             | 100.0                                  | 30.7                          | 51.5       | 100.0                                 | 60.2         |
| Mag Conc         | 91.0                                   | 27.9                          | 54.6       | 96.4                                  | 58.0         |
| Tailing*         | .9.0                                   | 2.8                           | 20,6       | 3.6                                   | 2.2          |
|                  |                                        |                               |            |                                       |              |
| SAMPLE 9         |                                        |                               | h          |                                       |              |
| Feed             | 100.0                                  | 88.3                          | 52,9       | 100.0                                 | 98.7         |
| Mag Conc         | 92.7                                   | 81.9                          | 55,6       | 97.4                                  | 96.1         |
| Tailing*         | 7.3                                    | 6.4                           | 18.8       | 2.6                                   | 2.6          |
|                  | ······································ | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | <u> </u>   | - <u> </u>                            |              |
| SAMPLE 10        | 1                                      |                               |            |                                       |              |
| Feed             | 100.0                                  | 90.7                          | 53.8       | 100.0                                 | 98.1         |
| Mag Conc         | 94.0                                   | 85.3                          | 55.6       | 97.1                                  | 95.5         |
| Tailing*         | 6.0                                    | 5.4                           | 26.0       | 2.9                                   | 2.6          |
| SAMPLE 11        |                                        | · · · · ·                     | u.         |                                       |              |
|                  | 100.0                                  | 87.0                          | 57.4       | 100.0                                 | 98,8         |
| Feed             |                                        |                               |            |                                       |              |
| Mag Conc         | 95.7                                   | 83.3                          | 59.6       | 99.4                                  | 98.2         |
| Tailing*         | 4.3                                    | 3.7                           | 8.0        | 0.6                                   | 0.6          |
| SAMPLE 12        |                                        | · · ·                         |            | ·····                                 | ,            |
| Feed             | 100.0                                  | 80.0                          | 53.6       | 100.0                                 | 95.8         |
| Mag Conc         | 92,5                                   | 74.0                          | 56,9       | 98.2                                  | 94.1         |
| Tailing*         | 7.5                                    | 6.0                           | 12.9       | 1.8                                   | 1.7          |
|                  |                                        |                               |            |                                       | ~{=≟━━━━+    |
| SAMPLE 13        | 1                                      | 1                             | 1          | 1                                     | 1            |
| Feed             | 100.0                                  | 67.6                          | 50.2       | 100.0                                 | 86,8         |
| Mag Conc         | 90.4                                   | 61.1                          | 52.6       | 94.7                                  | 82.2         |
| Tailing*         | 9,6                                    | 6.5                           | 27.7       | 5.3                                   | 4.6          |
| SAMPLE 14        |                                        |                               |            |                                       |              |
| Feed             | 100.0                                  | . 62.3                        | 50,8       | 100.0                                 | 93.1         |
| reed<br>Mag Conc | 92,0                                   | 57.3                          | 52.9       | 95.8                                  | 89.1         |
| Tailing*         | 1                                      |                               |            |                                       | 1            |
| Tatttl8.         | 8,0                                    | 5.0                           | 26.7       | 4.2                                   | 4.0          |
| SAMPLE 15        |                                        |                               |            | · · · · · · · · · · · · · · · · · · · |              |
| Feed             | 100.0                                  | 91.6                          | 52,9       | 100.0                                 | 98.5         |
| Mag Conc         | 94,2                                   | 86.3                          | 54.4       | 96.9                                  | 95.4         |
| Tailing*         | 5.8                                    | 5.3                           | 28.3       | 3.1                                   | 3.1          |
|                  |                                        |                               |            |                                       |              |

- 8 -

### TABLE 4 (concluded)

#### SAMPLE 16 Distribution % Tot Fe Weight % Analysis % In test In orig feed Tot fe In test In orig feed Product 94.4 77.4 55.26 100.0 Feed\* 100.0 93.2 72,9 57,91 98.7 Mag Conc 94.2 12,50 1,3 1.2 Tailing 5.8 4.5

### Results of Magnetic Concentration at Minus 28 Mesh

SAMPLE 17

| Feed<br>Mag Conc | 100.0<br>91.8 | 65.8<br>60.4<br>5.4 | 51.4<br>53.7<br>27.7 | 100.0<br>95.9<br>4 1 | 88.6<br>85.0<br>3.6 |
|------------------|---------------|---------------------|----------------------|----------------------|---------------------|
| Tailing*         | 8,2           | 5.4                 | 27.7                 | 4.1                  | 3,0                 |

\* Calculated

### TABLE 5

Results of Screen Tests on the Magnetic Concentrates at Minus 28 Mesh

|            | Weight % |          |          |          |          |          |  |
|------------|----------|----------|----------|----------|----------|----------|--|
| Mesh       | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 |  |
| + 35       | 17.7     | 24.6     | 10.0     | 16.2     | 12.1     | 12.0     |  |
| - 35 + 48  | 19.2     | 18.3     | 22.3     | 15.8     | 20.2     | 21.4     |  |
| - 48 + 65  | 12.9     | 12.5     | 17.3     | 11.7     | 15.0     | 14.5     |  |
| - 65 + 100 | 10.6     | 9.6      | 12.8     | 9.4      | 11.5     | 11.6     |  |
| -100       | 39.6     | 35.0     | 37.6     | 46.9     | 41.2     | 40.5     |  |
|            | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    |  |

| Mesh       | Sample 7 | Sample 8 | Sample 9 | Sample 10 | Sample 11 | Sample 12 |
|------------|----------|----------|----------|-----------|-----------|-----------|
| + 35       | 18.5     | 8,9      | 11.2     | 15.4      | 16.8      | 13.2      |
| - 35 + 48  | 20.4     | 10.9     | 14.2     | 17.8      | 18.8      | 15.4      |
| - 48 + 65  | 12.3     | 15.0     | 14.3     | 13.5      | 12.6      | 11.9      |
| - 65 + 100 | 9.7      | 15.0     | 11.5     | 10.4      | 10.1      | 12.0      |
| -100       | 39.1     | 50.2     | 48.8     | 42.9      | 41.7      | 47.5      |
|            | 100.0    | 100.0    | 100.0    | 100.0     | 100.0     | 100.0     |

| Mesh       | Sample 13 | Sample 14 | Sample 15 | Sample 16 | Sample 17 |
|------------|-----------|-----------|-----------|-----------|-----------|
| + 35       | 18.6      | 17.1      | 16.2      | 16.7      | 17.4      |
| - 35 + 48  | 20.0      | 18.1      | 18,1      | 18.8      | 22.5      |
| - 48 + 65  | 13.0      | 13.1      | 12.2      | 13.9      | 15.8      |
| - 65 + 100 | 9.9       | 10.2      | 10.3      | 10.2      | 10.5      |
| -100       | 38,5      | 41.5      | 43.2      | 40.4      | 33.8      |
|            | 100.0     | 100,0     | 100.0     | 100.0     | 100.0     |

Three composite samples were made from the magnetic concentrates of the minus 28 mesh Sala tests by combining the concentrates from samples 1, 3, and 5; 2, 4, 6, 7, 8, and 9; and,10, 11, 12, 13, 14, 15, 16, and 17. One portion of each composite sample was ground to minus 100 mesh and another to minus 200 mesh. Each sample was concentrated by a Davis tube and concentrates assayed for Tot Fe.

#### TABLE 6

### Results of Davis Tube Tests on Minus 28 Sala Magnetic Conc Ground to Minus 100 Mesh and 200 Mesh.

|                                 | % Tot Fe  |           |  |  |
|---------------------------------|-----------|-----------|--|--|
| Composite Sample                | -100 mesh | -200 mesh |  |  |
| 1, 3 & 5                        | 66.8      | 67.1      |  |  |
| 2, 4, 6, 7, 8 & 9,              | 61.8      | 65.3      |  |  |
| 10, 11, 12, 13, 14, 15, 16 & 17 | 61.9      | 63.7      |  |  |

### TABLE 7

Chemical Analyses of the Davis Tube Minus 100 Mesh Magnetic Concentrates

|                                 | Analysis % |         |       |     |      |
|---------------------------------|------------|---------|-------|-----|------|
| Composite Sample                | Tot Fe     | $SiO_2$ | Р     | ន   | Ti   |
| 1, 3 & 5                        | 66,8       | 5.26    | 0.025 | 0.1 | 0.22 |
| 2, 4, 6, 7, 8 & 9               | 61.8       | 8,82    | 0.031 | 0.1 | 0.28 |
| 10, 11, 12, 13, 14, 15, 16 & 17 | 61.9       | 6.40    | 0.034 | 0.1 | 0.25 |

#### CONCLUSIONS

Results of the tests on core samples crushed to minus 10 mesh showed that only samples 3 and 5 produced concentrates above the minimum grade of 62% Fe and crushing to minus 28 mesh gave only a slight improvement in grade.

Grinding of composite samples of below grade magnetic concentrates to minus 100 mesh gave concentrates still below the required grade. Concentrates above 62% Fe were produced only after grinding to minus 200 mesh. The Davis tube concentrates contained tolerable levels of P,  $SiO_2$  and  $TiO_2$ .

Present size specifications were met when samples were crushed to minus 10 mesh, however, concentrates were too fine at minus 28 mesh.

GR:hm