This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

CANADA

DEPARTMENT OF MINES AND TECHNICAL SURVEYS

OTTAWA

MINES BRANCH INVESTIGATION REPORT IR 62-28

COMPILATION OF TEST RESULTS AND STATISTICAL DATA ON PHASE III OF GALVANIZING RESEARCH PROJECT NF-16

J. J. SEBISTY & R. H. PALMER

by

PHYSICAL METALLURGY DIVISION

CANMET LIBRARY

COPY NO. 251

MAY 16, 1962

298912

Mines Branch Investigation Report IR 62-28

COMPILATION OF TEST RESULTS AND STATISTICAL DATA ON PHASE III OF GALVANIZING RESEARCH PROJECT NF-16

by

J.J. Sebisty*and R.H. Palmer**

- - - -

SUMMARY

For record purposes, experimental test results and other data on Phase III of Galvanizing Research Project NF-16 have been collected in the appendices which make up this report. This phase of the project, which was conducted by the Mines Branch under the auspices of the Canadian Zinc Research and Development Committee, was concerned with study of the galvanizing behaviour of a series of commercially-produced steel sheet materials. Work involved in preparation and testing of the experimental coatings made, was carried out in the period, October 1, 1959 to February 23, 1961.

The information included comprises test work done at the Mines Branch, Ottawa, Ontario, accelerated corrosion tests made by The Steel Company of Canada, Limited, Hamilton, Ontario, and statistical evaluation studies done by The Consolidated Mining and Smelting Company of Canada, Limited, Trail, B.C.

Discussion of this phase of the galvanizing project and of the results contained herein, is to be covered in a separate research report which will be issued at a later date.

*Senior Scientific Officer, Physical Metallurgy Division, Mines Branch, Department of Mines and Technical Surveys, Ottawa, Canada.

**Research Metallurgist, Canadian Zinc Research and Development Committee.

- i

CONTENTS

· · · ·			·.					Page
Summary		• • • •	· • · • •	••	•••	• • •		i
<u>Appendix I</u> - Ga	alvanizin Sating Pr	g Data opert	: a, Ex ies a	peri nd R	ment elat	al ed		
Te	ests	• • •		• •	•••••	• • •	• • • •	, 1
Introduction		• • •	• • • •	••	•••	• • •	••••	. 1
Tables 1 to 1	11	• • • •		••	••••			3 - 20
Metallograph: Examination	ic and Su of Steel	rface s		••		•••	••••	. 21
Figures 1 to	16	• • • •		• •	•••	• • •	••••	21 - 32
Appendix II - /	Accelerat Test Res	ed Con ults	crosi	on ••	•••	• ••	••••	. 33
Introduction.	•••••		· · · ·	••	•••	• • •	••••	33
Tables 1 and	2	••••	• • •	• •	•••	•••	•••••	35 - 39
<u>Appendix III</u> -	Statisti	cal Ar	lalys	is o	f	۰, ۲		
	Coating '	Test I	Data.	• • .	••••	• ••	••••	. 40
Introduction.	•••••		• • •	•.•	• • •	• ••	• • • •	40
Interpretatio	on of Dat	a	• • •	••	•••	• • •	••••	41
Experiment "A			• • •	••	•••	• • • •	• • • •	43
Experiment "E	3"	• • • •	• • •	••	••••	• • •	••••	65
Summary		• • • •		••	• • •	• • •		81
Figures 1 to	28	• • • •	•••	••	• • •		• • • •	83 - 95

- ii -

APPENDIX I

GALVANIZING DATA, EXPERIMENTAL COATING PROPERTIES AND RELATED TESTS

by

J.J. Sebisty and R.H. Palmer

- - - - -

INTRODUCTION

The results of experimental work conducted by the Physical Metallurgy Division, Mines Branch on the third phase of Galvanizing Research Project NF-16 are given in this appendix. In this phase, the galvanizing behaviour of a series of commercial steel sheet materials was investigated and assessed by tests on the laboratory-prepared coatings made. Miscellaneous related tests carried out included examination of the mechanical properties, microstructure and pickling behaviour of the steel base materials.

The data given in this section comprise the following:

Table 1. Steel grade, composition and mechanical properties.

Table 2. Experimental galvanizing conditions.

Table 3. Typical galvanizing melt log.

Table 4. Typical galvanizing log.

Table	5.	Chemical	composition	of	galvanizing	baths.
-------	----	----------	-------------	----	-------------	--------

- Table 6. Spectrographic analyses of chill-cast bath samples.
- Table 7. Coating test results for typical series of specimens (as-received steel grades).

Table 8. Average coating test results.

- Table 9. Ductility, adherence and surface appearance rating codes.
- Table 10. Steel weight lost by pickling.
- Table 11. Mechanical properties of alloy steels after galvanizing.

Metallographic and surface examination of steels.

LADLE .

Steel	Grade.	Composition	and Mechanical	Froperties*

Steel	Grade of Steel and Condition	Gauge	C .7	P %	S %	Mn Z	Si %	Cu z	Cr 3	Ni %	Al 3	VS	UTS kpsi	YS 0.23 offset kosi	Ratio YS to UTS	El. % in 2 in.	Rockwel	l Hardness Rb	Erichsen** Cup Depth -	in
l	, Galvanizing grade, as-received	24	0.05	0,010	0.026	0.30	<0.01	-	-	-	0.007	-	45.6	35.7	0.78	36.6	45.7	44	0.331	
2	Galvanizing grade, cold rolled- 5% reduction												50.1	45.3	0.90	26.7	65.3	73	0.294	
3	Galvanizing grade, cold rolled- 15% reduction									-		·	49.6	47.6	0.96	15.6	69.0	78	0.278	
4	Armco iron, as-received	24	0.019	0.010	0.017	0.03	0.03	-	-	-	-	-	-	-	-		41.0	38	0. 382	
5	Armco iron, cold rolled- 15% reduction												-	-	-	-	61.8	67	0.296	
6	Aluminum-killed, as-received	24	0.12	0.009	0.024	0.28	0.07	-	-	-	0.060	-	45.0	27.1	0.60	39.8	42.0	39	0.413	
7	Aluminum-killed, cold rolled- 15% reduction												50.4	48.0	0.95	21.6	63.2	70	0.315	
8	Hot-rolled normalized, as-received	14	0.04	0.003	0 .0 24	0.26	0.01	-	-	-	0.006	-	51.7	41.4	0.80	38.0	56.3	60	-	۰ ۱
9	Hot-rolled normalized, cold rolled-15% reduction												62.1	61.0	0.98	11.1	71.0	81	-	
10	Full hard, as-received	24	0.06	0.019	0.025	0.31	<0.01	-		-	0.004	-	103.0	99.2	0.96	2.0	81.0	99	0,200	
11	Bottle top, as-received	24	0.15	0.012	0.028	0.58	0.02	-	-	-	0.002	-	52.1	37.4	0.72	34.3	52.8	- 54	0.386	
12	Pottle top, cold rolled- 15% reduction												59.8	59•9	1.0	8.9	71.8	82	0.294	
13	Alloy steel A, as-received	14	0.09	0.025	0.029	0.49	0.38	0.27	0,29	0.32	-	-	72.4	55.9	0.77	30.5	70.8	81		
14	Alloy steel B, as-received	14	0.15	0.006	0.020	1.10	0.03	0. <i>3</i> 6	-	-	0.05 sol 0.01 insol	0.08	83.8	64.4	0.77	25.6	77.4	92	-	
. 15	Alloy steel C, as-received	16	0.08	0.075	0.031	0.38	0.29	0.31	0.45	0.30	-	-	67.9	53.8	0.79	29.7	70.9	81	-	:

*Tensile and hardness values are averages of six or more determinations.

**Diameter of ball and die orifice: 0.875 in. and 1.0 in., respectively.

4

Bath No.	Fe %	A1 5	_Pb_%_	Immersion Time, sec	Steel Dipping** Sequence
Experiment "A	n		·		
1	0.03	0.15	0.3	35	11,14,13,9,6,1,4,15,8,10,3,7,12,2,5
. 2	H	0.15	0.3	60	5,3,6,11,2,15,8,7,13,9,1,14,10,4,12
3	Ħ	0.075	0,3	60	8,9,3,2,14,1,5,11,15,10,13,12,4,6,7
4	tt	0.0	0.3	10	7,4,2,12,1,13,15,3,14,9,5,6,10,11,8
5	11	0.075	0.3	35	1,8,10,12,3,14,2,6,9,15,4,13,7,5,11
6	tī	0.0	0.3	35	13,7,15,3,9,4,2,5,12,1,11,8,6,10,14
7	ji .	0.15	0.3	10	8,2,4,3,14,7,13,10,6,5,9,11,12,15,1
8	. #	· 0 . 0	0.3	60	5,6,10,2,12,1,15,11,7,14,8,4,13,3,9
9	11 -	0.075	0.3	60	1,10,14,4,8,2,6,12,5,7,9,3,15,11,13
10	tt	0.075	0.3	3 5	13,8,7,9,11,15,1,2,10,3,12,5,6,4,14
11	tt - ^r	0.15	0.3	10	3,14,11,15,10,1,13,9,8,4,2,5,6,7,12
12	11	0.075	0.3	10	12,6,14,13,15,1,11,4,8,10,3,7,2,9,5
13	· 11	0.15	0.3	60	10,7,5,2,8,1,3,13,6,14,15,12,9,11,4
1.4		0.0	0.3	10	1,2,8,13,5,15,3,11,10,7,4,12,6,9,14
1.5	ŧł "	0.15	0.3	35	8,10,4,11,12,3,6,14,13,2,15,5,7,9,1
16	; n.	0.075	0.3	10	2,11,5,12,1,9,8,3,15,4,10,6,7,14,13
17	п	0.0	0.3	60	13,2,7,11,5,15,8,14,9,4,10,12,3,6,1
1.8	11	.,0 , 0	0.3	35	10,9,5,2,14,3,4,11,13,8,12,15,6,7,1
Experiment "B	<u>n</u>	÷			
19	1	0.0	1.0	240	7,4,2,12,1,13,15,3,14,9,5,6,10,11,8
20	· • • • •	0.0	1.0	120	13,7,15,3,9,4,2,5,12,1,11,8,6,10,14
21	ŧ	0.0	1.0	60	5,6,10,2,12,1,15,11,7,14,8,4,13,3,9
22	tt	0.0	1.0	240	1,2,8,13,5,15,3,11,10,7,4,12,6,9,14
23	11	0.0	1.0	60	13,2,7,11,5,15,8,14,9,4,10,12,3,6,1
24	, H	0.0	1.0	120	10,9,5,2,14,3,4,11,13,8,12,15,6,7,1
25	, tt	0.0	0.3	240	7,4,2,12,1,13,15,3,14,9,5,6,10,11,8
26	. п.	0.0	0⊾3	120	13,7,15,3,9,4,2,5,12,1,11,8,6,10,14
27	11	0.0	0.3	240	1,2,8,13,5,15,3,11,10,7,4,12,6,9,14
28	tter	0.0	0.3	120	10,9,5,2,14,3,4,11,13,8,12,15,6,7,1

Experimental Galvanizing Conditions*

*Bath temperature for all tests: 450°C (840°F).

**Four, 4 in. by 6 in. and two, 3 in. by 4 in. panels of each grade of steel were galvanized in order indicated in each bath. For tensile testing, three extra panels of each of the alloy grades, A, B and C, were galvanized in baths 2, 3, 4, 7, 8 and 12.

TABLE 3

Typical Galvanizing Melt Log

ŝ

٩

Mines Branch	NON	-FERROU	S SECTION	Project: NF-16
<u>Physical</u> Metallurgy Division	<u>GAL</u>	VANIZIN	<u>G MELT LOG</u>	Date: June 8, 1960
<u>Melt No.</u> KN (Bath No. <u>Charge</u> 36 lb	o. 13)			
Metal	Composit	ion	Form	Amount
Zn	99•99	×	ingot	30 lb, 3 oz
РЪ	99•99	%	sheet	47.7 g
Zn-Fe master	0.30%	Fe	shot	1590 g
Zn-Al master	4.0% A	1	shot	620 g
Procedure	Time	• • •	Тетр	Remarks
Furnace on	8.30 am			
Zinc charged	8.35 am			
Alloying: Pb Zn-Al maste Zn-Fe maste Zn-Al maste Poured to ingot after galvanizing	8.35 am er 10.30 am er 10.45 am er 6.30 pm		475°С 478°С	Extra additions made during galva- nizing
	E-d 11 d	DL d	Domon	lea
Bath composition	re / AL /		, , , , , , , , , , , , , , , , , , ,	
Nominal	0.03 0.15	0.3		
Actual				
Størt	0.028 0.155	0.30	Before galvanizing	
Second sample	0.027 0.149	0.31	Arter dipping stee	215 LU, 7, 2, 2, 2
Third sample	0.020 0.145	0.29		رل ور ول و ⁰
Fourth sample	0.029 0.147	0.30		0, 14, 17, 12
Final sample	0.030 0.142	0.30		У , 11, 4

.

- 6 -

TABLE 4

Typical Galvanizing Log

Mines Branc	<u>h</u>		NON	- FERRO	US SE	CTION .	Project: NF-16			
<u>Physical</u> <u>Metallurgy</u>	<u>Divisic</u>	m	<u>G</u>	ALVANI	ZING	LOG	<u>Date</u> : June 8, 1960			
<u>Melt No.</u> K	N (Bath	No. 13)	·	Material Treated						
			. 6 3	0 pane 0 pane	ls, 4 ls, 3	in. by 6 in. by 4	in. (steels 1 to 15) in. (steels 1 to 15)			
				Pic	kling					
Sample No.	Acid (oncentration .	Inhibit	or	Time	& Temp	Rinse			
All 5% H ₂ SO ₄ solution			1/2% by v of acid (Rodine 9	olume 2)	5 mi	n at 70°C	Scrubbed and rinsed for 1 min in cold running water. Dried in acetone			
		······································		Flu	ux ing					
Sample No.	Flux	Composition	Densit	y	Time	& Temp	Drying Time & Temp			
All Zine chloride- ammonium chloride (1.27:1.35 ratio flux)			10.4° Ba	une	1 mi	n at 80°C	1.5 to 2 min at 160° to 170°C			
	L		••••••••	Galve	nizin	Ľ.				
Sample No.	Steel	Bath Temp ; °C	Immersion Immersion Withdraw Speed Time Speed			Withdrawa Speed	l . Remarks			
10n 1 to 4	10	450 to 452	6 fpm	60	sec	3 fpm				
7N 1 to 4	7	448 to 450	n	ļ	1	H				
5N 1 to 4	5	450 to 451	tř	1	1	88				
2N 1 to 4	2	450 -	11	. 1	1	1 11 1	40 g Zn-Al master added			
8N 1 to 4	8	448 to 450	. 13	I	I	Ħ				
1N 1 to 4	1	450 -	н	1	1	n				
3N 1 to 4	3	450 to 452	Ŋ	ן י	ł					
13N 1 to 4	13	449 to 450	· n	•	ł	. 18 1	40 g Zn-Al master added			
6N 1 to 4	6	450 to 451	11		1	11				
14N 1 to 4	14	449 to 451	U.	. '	1	H				
15N 1 to 4	15	449 to 452	11	· 1	t	N N				
12N 1 to 4	12	450 to 451	11	1		. 1 1	40 g Zn-Al master added			
9N 1 to 4	9	450 to 452	11		• •	18 _.				
11N 1 to 4 4N 1 to 4	11	450 to 451.	11 , 13	· . · · · · · · · · · · · · · · · · · ·	1 - ł	11				
····		1	••••••••••••••••••••••••••••••••••••							

Steel Weight Loss Specimens

After galvanizing of each group of large panels, two, 3 in. by 4 in. panels of corresponding steel in each case were dipped for 60 sec by manual immersion and withdrawal (approx. 8 fpm).

TABLE	5
-------	---

Bath No.	Sample No.	Fe %	Al %	Pb %
Experiment "	<u>A11</u>			
1	N 1 2 3 4 5	0.03 0.027 0.029 0.029 0.030 0.030	0.15 0.146 0.146 0.154 0.154 0.154	0.3 0.26 0.26 0.26 0.26 0.26 0.26
2	N 1 2 3 4 5	0.03 0.029 0.030 0.030 0.030 0.031	0.15 0.155 0.149 0.149 0.149 0.142 0.139	0.3 0.29 0.29 0.29 0.29 0.27 0.27
3	N 1 2 3 4 5	0.03 0.030 0.033 0.036 0.037 0.040	0.075 0.077 0.070 0.070 0.070 0.067 0.067	0.3 0.31 0.30 0.30 0.28 0.29
4	N 1 2 3 4 5	0.03 0.030 0.030 0.030 0.031 0.032	- - - -	0.3 0.33 0.34 0.33 0.33 0.34
5	N 1 2 3 4 5	0.03 0.029 0.032 0.034 0.036 0.037	0.075 0.073 0.070 0.067 0.068 0.065	0.3 0.31 0.31 0.31 0.28 0.28
6	N 1 2 3 4 5	0.03 0.030 0.032 0.030 0.032 0.033	-	0.3 0.30 0.32 0.33 0.33 0.33

1

Chemical Composition of Galvanizing Baths*

	TABLE	5	(Cont	'd.)
--	-------	---	-------	------

Chemical Composition of Galvanizing Baths*

			··· ·	· · · · · · · · · · · ·	
Bath No.	Sample No.	Fe %	Al %	Pb %	
7	N	0.03	0.15	0.3	
	· 1 .	0.030	0,152	0.30	
· · ·	2	0.028	0.148	0.29	
	. 3	0.028	0.147	0.31	
· · ·	4	0.028	0.146	0.28	
· -	5	0.029	0.147	0.30	
8	N	0.03	•••	0.3	
	1	0.030		0.32	
•	2	0.031		0.33	
,	3	0.030	-	0.31	
·	4	0.033	-	0.31	
	5	0.035	-	0.32	
9	N	0.03	0.075	0.3	
·	1	0.029	0.071	0.31	
· .	2	0.032	0.069	0.31	
	3	0.032	0,069	0.29	
	4	0.033	0.066	0.29	
,	· 5	0.033	0.065	0,28	•
10	N	0.03	0.075	0.3	
, ÷	1	0.030	0.072	. 0.29	
	2	0.033	0.069	0.31	
•	3	0.033	0.069	0.31	
	4	0.036	0,070	0.30	
	5	0.036	0.072	0, 31	
11	N	0.03	0.15	0.3	
	1	0.029	0.148	0.31	
	2	0.029	0.140	0.29	
	3	0.028	0.139	0.32	
•	4	0.028	0.140	0.31	
	5	0.027	0.145	0.31	
12	N	0.03	0.075	0.3	
	1	0.029	0.078	0.29	
	2	0.032	0.072	0.29	
	3	0.033	0.070	0.30	
	4	0.035	0.074	0.30	
*	5	0.036	0.079	0.31	

• .				· · · · · · · · · · · · · · · · · · ·	
Bath No.	Sample No.	Fe %	Al %	Pb %	
13	N 1 2 3 4 5	0.03 0.028 0.027 0.028 0.029 0.030	0.15 0.155 0.149 0.145 0.147 0.142	0.3 0.30 0.31 0.29 0.30 0.30	
14	N 1 2 3 4 5	0.03 0.029 0.031 0.032 0.031 0.033		0.3 0.31 0.31 0.28 0.28 0.29	
1.5	N 1 2 3 4 5	0.03 0.031 0.030 0.029 0.030 0.028	0.15 0.156 0.145 0.144 0.143 0.144	0.3 0.30 0.30 0.30 0.30 0.30 0.30	
1.6	N 1 2 3 4 5	0.03 0.028 0.030 0.032 0.035 0.036	0.075 0.073 0.069 0.074 0.078 0.076	0.3 0.31 0.31 0.28 0.31 0.32	
17	N 1 2 3 4. 5	0.03 0.033 0.035 0.035 0.035 0.035		0.3 0.32 0.32 0.31 0.29 0.29	
18	N 1 2 3 4 5	0.03 0.030 0.031 0.031 0.031 0.031		0.3 0.32 0.32 0.31 0.32 0.33	

Chemical Composition of Galvanizing Baths*

• • •

TABLE 5 (Cont'd)

Bath No.	Sample No.	Fe %	Al %	Pb %
Experiment "B"				
19	N 1 2 3 4 5	0.03 0.026 0.027 0.029 0.031 0.032		1.0 1.02 1.05 1.08 1.11 1.13
20	N 1 2 3 4 5	0.03 0.029 0.028 0.028 0.028 0.028 0.029		1.0 1.07 1.07 1.07 0.99 1.12
21	N 1 2 3 4 5	0.03 0.027 0.028 0.028 0.030 0.031		1.0 0.95 0.99 0.97 0.94 0.94
22	N 1 2 3 4 5	0.03 0.029 0.030 0.030 0.029 0.032		1.0 1.00 1.05 1.05 1.05 1.03
23	N 1 2 3 4 5	0.03 0.026 0.028 0.028 0.029 0.030	-	1.0 0.93 0.99 1.02 1.04 1.06
24	N 1 2 3 4 5	0.03 0.027 0.030 0.031 0.031 0.033		1.0 1.02 1.04 1.05 1.07 1.11

Chemical Composition of Galvanizing Baths*

- 10 -

TABLE 5 (Cont'd.)

Bath No.	Sample No.	Fe %	Al %	Pb %
25	N	0.03	-	0.3
	1	0.029	-	0.32
	2	0.033		0.34
	3	0.032 `	-	0.33
	4	0.031	دنم	0.33
	5	0.033	-	0.33
26	N	0.03	-	0.3
	1	0.029	-	0.31
	2	0.031		0.33
· ,	3	0.029	-	0.33
	Ĩ.	0.030	-	0.32
	5	0.032	-	0.34
27	N	0.03	. -	0.3
	1	0.029	-	0.32
	2	0.030	-	0.32
	3	0.033		0.34
	4	0.035	-	0.34
	5	0.036	,	0.34
28	N	0.03	_	0.3
•••	1	0.030		0.31
	2	0.033	-	0.32
	3	0.033	-	0.31
	4	0.033		0.33
• •	5	0.033	-	0.34
	19. AND ADDRESS AND A DREAM AND ADDRESS	1 <u>97 - 197 - 2019</u> - 104 - 104 - 105 - 107		

Chemical Composition of Galvanizing Baths*

۲

* N - Nominal composition.
1, 5 - Sample at start and end of run, respectively.
2, 3 & 4 - Samples taken after dipping 16, 32 and 48 large panels, respectively.

TABLE 6

Spectrographic Analyses of Chill-Cast Bath Samples*

	Digott						•		1
Bath No.	Sample	<u>Pb %</u>	<u>Cd %</u>	<u>Cu %</u>	Fe %	Mn %	Cr %	<u>Ni %</u>	<u>Al %</u>
19	KU 1 KU 2	0.81 0.93	0.0003 0.0003	0.0008 0.0014	0.032 0.035	ND <0.0001 0.0004	ND <0.0001. ND <0.0001	ND <0.0001 0.0003	ND <0.001 ND <0.001
20	KV 1 KV 2	0.95 1.11	0.0003 0.0003	0.0007	0.033 0.036	ND <0.0001 0.0006	ND <0.0001 0.0001	ND <0.0001 0.0003	ND <0.001 TR <0.001
21	KW 1 KW 2	0.99 1.17	0.0003	0.0009 0.0017	0.028 0.033	ND <0.0001 0.0007	ND <0.0001 0.0001	ND <0.0001 0.0003	ND <0.001 0.001
22	KX 1 KX 2	0.81 1.02	0.0003 0.0003	0.0006 0.0012	0.031 0.034	ND <0.0001 0.0004	ND <0.0001 ND <0.0001	ND <0.0001 0.0003	ND <0.001 ND <0.001
23	KY 1 KY 2	1.00 1.04	0,0003 0,0003	0.0009 0.0016	0.026 0.032	ND <0.0001 0.0007	ND <0.0001 0.0001	0.0001 0.0003	ND <0.001 ND <0.001
24	KZ 1 KZ 2	0.99 1.06	0.0003	0.0008 0.0014	0.029 0.030	ND <0.0001 0.0005	ND <0.0001 0.0001	0.0001 0.0003	ND <0.001 ND <0.001
25	LA 1 LA 2	0.31 0.33	0.0003 0.0003	0.0004 0.0013	0.031 0.033	ND <0.0001 0.0006	ND <0.0001 0.0001	0.0001 0.0003	ND <0.001 ND <0.001
26	LB 1 LB 2	0.30 0.32	0.0003 0.0003	0.0007	0.030 0.033	ND <0.0001 0.0007	ND <0.0001 0.0001	ND <0.0001 0.0003	ND <0.001 TR <0.001
27	LC 1 LC 2	0•32 0•33	0.0003 0.0003	0.0005	0.032 0.031	ND <0.0001 0.0006	ND <0.0001 0.0002	ND <0.0001 0.0003	ND <0.001 ND <0.001
28	LD 1 LD 2	0.30 0.33	0.0003 0.0003	0.0008 0.0015	0.034 0.033	ND <0.0001 0.0005	ND <0.0001 0.0001	ND <0.0001 0.0002	ND <0.001 ND <0.001
			•				· • • *		

.

*Si % and V % in all samples: ND <0.001% Ag % in all samples: 0.0002% Ca % in all samples: Tr

**Baths sampled at start and end of each galvanizing run.

-	13	-
-	L)	-

TABLE 7

Coating foat Accults for Typical Series of Specimens* (As-received Steel Grades)

Bath No.	Steel No,	Ceating Wt. oz/sq ft - sheet	Iron Cu mg/sq_ft	ntent g/112	Steel Mt. Loss g/m2	Alloy Thickness mn x 10-3	Proportion of lley	Ductility	Adherence	Spangles (or grains) per in.2	Spangle <u>Contrast</u>	Brightness	Roughness	Alusimm in Coating
5 5 10 10	1 1 1 1	1.35 1.33 1.32	1903 1374 1318	20.5 20.2 19.5	20.5 20.4 19.7 19.7	17.5	61.2 62.3	2.5	5.0 5.0	128 128 128 128	1.5 1.5 1.5 1.5	2,0 2.0 2.0 2.0	1.0 1.0 1.0	0.25 0.25 0.26
5 5 10 10	4 4 4	1.40 1.40 1.36	1846 1846 1832 -	19.9 19.9 19.7	20.9 20.4 19.4 19.7	13.1 17.3	61.1	2.5	5.0 5.0 5.0	128 128 128 128	1.5 1.5 1.5 1.5	2.0 2.0 2.0 2.0	1.5 1.0 1.5 1.0	0.20 0.27 0.29
5 5 10 10	6 6 6	1.41 1.47 1.39 -	1960 1903 1789	21.1 20.5 19.3	20.6 21.0 20.4 21.2	20.0 19.8	65.6 67.3	2.5	4.5 5.0 5.0	128 128 128 128	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5	0.23 0.28 0.28
5 5 10 10	ខ 8 8 8	1.63 1.66 1.65 -	2953 2939 3053	31.9 31.7 32.9	20.6 20.6 19.7 18.8	25.9 25.6	74.2	- - -		128 90 90 128	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	2.5 2.5 2.5 2.5 2.5	0.25 - 0.25 0.24
5 5 10 10	10 10 10 10	1.48 - 1.50 1.45	2016 2215 2116	21.7 23.9 22.8	25.6 24.6 24.1 24.4	17.5	56.0 56.0	2.5	5.5 - 5.5 5.5	256 256 256 256	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	1.0 1.0 1.0 1.0	0.23 0.24 0.27
5 5 10 10	11 11 11 11	1.35 1.37 1.35	2059 2144 2343	22.2 23.1 25.2	24.4 24.5 23.8 24.2	17.4	60.4 61.2	2.5 2.5 -	5.0 5.0 5.0	362 362 362 362	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	1.0 1.0 1.0 1.0	0.21 - 0.28 0.29
5 5 10 10	13 13 13 13	• 0.91 • • 90 • • 94	1164 1264 1179	12.5 13.6 12.7	20.9 20.4 21.0 20.9	5.3 4.5	27.5	-	-	256 256 256 256	2.5 2.5 2.5 2.5	2.0 2.0 2.0 2.0	2.0 2.0 1.5 2.0	0.19 - 0.23 0.22
5 5 10 10	14 14 14 14	1.91 	2485 1463 1647	26.8 15.3 17.7	18.5 18.6 13.8 19.7	23.5	53.2 66.8	- - -		256 256 256 256	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	4.0 4.0 4.0 4.0	0.19 - 0.2? 0.21
5 5 10 10	15 15 15 15	1.06 1.06 1.00	866 866 880	9.3 9.3 9.5	72.2 31.4 32.2 32.0	10.5	46.7			256 256 256 131	3.0 3.0 3.0 3.0 3.0	2.0 2.0 2.0 2.0	2.5 2.5 2.5 2.5	0.20 0.24 0.25

*Alley thickness values are averages of twenty measurements on single samples. For ductility, adherence and surface appearance rating codes, see Table 9.

١

-

- 14 -

TABLE 8

Average Coating Test Results*

				Steel Ut		Propuntion			Spangles (or grains)				Aluminum	Lend
Bath No.	Steel No.	Coating Wt.	Iron Content	Loss g/m ²	Thickness mm x 10-3	of Alloy	Ductility	Adherence	per in.2	Spangle Contrast	Brightness	Smoothness	Coating	Conting
Experi	imont "A"						,			. *				
1 , 1 5	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.50 0.49 0.52 0.52 0.52 0.55 0.61 0.72 1.27 0.54 0.54 0.56 0.79 0.77 2.26	241 2.6 241 2.6 204 2.2 222 2.4 232 2.5 170 1.8 213 2.3 324 3.5 565 6.1 2115 22.8 334 3.6 287 3.1 577, 6.2 26,0 28.5	4.4 4.5 3.9 5.4 4.8 5.4 6.1 5.9 7.2 25.5 6.8 8.0 18.2 11.7 33.4	1.5 1.5 1.5 1.5 0.8 0.8 1.5 2.5 16.1 1.5 1.5 1.1 0.8 1.9 19.4	14.2 14.0 10.1 14.2 13.3 6.9 6.2 11.6 16.2 59.2 13.2 9.1 4.5 11.7 39.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	128 128 128 128 128 128 128 128 128 128	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	1.0 2.0 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.5 1.5 1.9 1.8 2.0 3.1 3.4 1.5 1.6 1.5 3.0 4.0 1.6	0.60 0.61 0.65 0.60 0.52 0.67 0.65 0.60 0.64 0.56 0.64 0.56 0.57 0.57 0.57 0.48	-
2, 13	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.59 0.59 0.53 0.73 0.73 0.74 0.70 0.63 0.97 1.63 0.83 1.02 0.96 0.90 1.73	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.4 5.2 4.8 6.3 4.8 6.1 6.2 5.8 9.2 30.8 9.2 9.8 12.7 21.4 11.9 44.9	2.6 1.5 1.5 2.5 2.5 2.5 4.3 5.8 21.0 3.8 5.4 2.0 4.7 7.5	17.7 11.8 13.8 16.1 13.4 15.9 16.6 17.4 26.6 60.0 22.3 25.2 9.9 23.1 20.2	1.3 1.0 1.0 1.0 1.0 1.0 2.5 1.0 1.0 1.0	1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.0 - - 4.6 1.0 1.0	128 128 119 128 109 109 109 100 90 90 962 962 962 181 181 181	3.5 3.55 3.55 3.55 3.55 3.55 3.55 3.55	2.0 2.0 2.0 2.0 2.0 2.0 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0	1.9 2.0 2.0 2.0 2.0 3.5 3.4 1.0 2.0 1.8 3.0 4.0 1.5	0.63 0.72 0.66 0.73 0.68 0.77 0.68 0.57 0.61 0.61 0.61 0.60 0.60 0.60 0.67	
3, 9	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.66 1.63 1.64 1.78 1.66 1.88 1.91 2.06 2.03 1.91 1.91 1.91 1.91 1.91 1.91 1.69 1.01 2.20 2.14	2458 26.5 2478 26.7 2403 25.9 2365 25.5 2310 24.9 2460 26.5 2618 28.2 3640 39.2 2462 27.3 2853 30.8 2762 29.8 2700 29.1 1558 16.8 2805 30.9 2062 22.2	25.3 25.7 25.2 26.1 25.2 25.7 26.5 28.8 28.5 31.1 26.3 26.2 22.7 26.3 42.5	23.2 22.9 23.0 23.9 23.4 24.5 24.3 33.3 33.0 26.2 24.3 24.2 6.1 33.0 11.8	66.4 66.2 66.0 62.5 60.3 75.8 75.1 65.0 67.5 67.6 28.3 71.1 28.5	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	5.5 5.5 6.0 5.3 5.3 - - 6.0 5.5 5.5	50 45 35 112 64 50 45 83 83 109 181 200 181 256 181	1.4 1.4 1.6 1.5 1.5 2.5 2.5 1.9 2.0 2.0 2.5 3.0 3.0	1.8 1.5 1.8 2.0 2.0 2.0 2.3 2.5 2.0 2.0 2.0 2.0 3.0 3.0	1.0 1.0 1.0 1.5 1.5 2.5 2.5 1.0 1.0 1.0 2.0 4.0 2.5	0.27 0.27 0.25 0.25 0.26 0.25 0.27 0.27 0.27 0.27 0.28 0.29 0.25 0.25 0.27 0.27	
<i>(</i> , 14	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.41 1.32 1.31 1.35 1.41 1.40 1.63 1.67 1.43 1.32 1.34 2.03 2.08 1.64	1605 17.3 1532 16.5 1458 15.7 1578 17.0 1568 16.9 1642 17.7 1745 18.8 2262 24.4 2338 25.2 1708 18.4 1697 18.3 1485 16.0 2815 30.3 2660 28.7 2460 26.5	15.3 15.5 14.9 15.2 15.1 15.5 15.8 13.1 13.5 19.5 16.5 16.0 23.7 18.2 20.9	15.5 15.4 15.6 16.2 16.2 18.0 18.8 15.6 15.4 14.3 25.4 25.0 25.0	52.0 55.4 55.6 56.4 59.9 63.5 53.8 53.0 57.9 55.2 50.3 58.6 56.3 72.1	2.5 2.0 2.0 2.5 2.0 2.3 2.5 - - - 2.0 2.5 2.5 - -	5.5 5.3 5.5 5.5 5.5 5.5 5.5 5.4 -	23 23 23 23 23 23 32 23 32 32 18 16 16 16 8	2.00 2.00 2.55 2.55 2.55 2.55 2.55 2.55	3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 4.5 4.0	1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.0 2.0 1.5 1.5 1.5 1.5 3.0 1.5		0.18

- 15 -

•

ł

TABLE 8 (Cont'd)

Average Coating Test Results*

Bath No.	• Steel No.	Coating Wt. .oz/sg ft - sheot	Iron Content mg/sq_ft_g/m ²	Steel Wt. Loss g/m ²	Alloy Thickness mm x 10-3	Proportion of Alloy	Ductility	Adherence	Spangles (or grains) per in,2	Spangle Contrast	Brightness	Smoothness	Aluminum in Conting	Leai in Coating
5, 10	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.33 1.33 1.31 1.39 1.42 1.42 1.47 1.65 1.63 1.48 1.36 1.33 0.92 1.71 1.04	1865 20,1 1865 20,1 1838 19,8 1838 19,8 1800 19,4 1882 20,3 1882 20,3 2985 32,2 2922 31,5 2186 22,6 2162 23,3 1985 12,9 1865 20,1 872 9,4	20.1 19.8 19.6 20.1 20.4 20.8 20.3 19.9 20.6 24.7 24.2 24.2 24.2 24.2 24.2 24.8 18.9 32.0	17.5 17.4 17.2 18.0 17.5 19.9 19.8 25.8 24.6 17.5 17.5 16.7 4.9 23.2 10.3	61.8 62.5 62.3 61.5 62.0 66.5 67.5 73.8 71.4 56.0 60.8 58.9 25.3 62.5 46.4	2.5555 2.5555 2.5555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555 2.555555 2.55555 2.55555 2.55555 2.555555 2.555555 2.555555 2.555555 2.55555555	5.0 5.0 5.0 5.0 4.8 4.5 - 5.5 5.0 5.0 - -	128 128 128 128 128 128 129 129 128 256 256 256 256 237	1.5 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.0 1.0 1.3 1.3 1.5 2.5 2.5 1.0 1.0 1.0 1.0 2.5	0.25 0.24 0.26 0.25 0.26 0.26 0.25 0.24 0.25 0.24 0.25 0.24 0.25 0.22 0.21 0.21	
6, 18	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.79 1.55 1.55 1.78 1.66 1.99 1.92 1.98 2.14 1.82 1.79 1.59 2.50 2.87 2.53	2142 23.1 1985 21.4 1920 20.7 2118 22.8 2332 25.7 2403 25.7 2403 25.7 2403 25.4 2710 29.2 2538 28.4 2105 22.4 2105 22.4 2105 22.4 3135 33.6 3480 37.5	22.1 21.7 21.1 21.9 21.9 24.9 26.9 17.6 20.1 28.2 24.8 24.1 38.5 25.1 39.9	18.9 17.4 16.9 19.6 23.5 22.9 23.7 23.9 22.7 22.6 19.0 36.5 27.2 42.4	49.8 52.4 51.1 55.9 55.3 56.0 52.5 58.5 59.4 56.1 69.6 44.8 79.0	3.0 3.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	555555 55555 55555 5555 5555 	16 16 16 16 16 18 16 15 16 16 16 16 16 16 16 16 16	2.34 2.45 2.45 2.66 2.66 2.66 2.66 2.66 2.66 2.66 2.6	3.0 3.0 3.0 3.0 3.0 3.5 3.5 3.0 3.0 3.0 3.0 3.0 3.0	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		0.16 - - 0.15 - 0.19 0.16 - - 0.16 0.16 0.18 0.15
7, 11	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.43 0.40 0.42 0.44 0.45 0.52 0.57 0.71 0.78 0.50 0.45 0.94 0.94 1.27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.4 3.6 3.7 3.0 3.5 4.5 4.5 4.5 4.5 4.5 5.2 7.9 15.9 15.9 15.0	0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.5 6.6 0.8 0.8 0.8 0.8 0.8 1.5 1.0	8.1 8.7 8.3 8.1 7.9 7.4 6.8 6.2 10.2 40.0 7.2 8.1 3.8 7.7 37.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	155 155 181 155 183 181 181 181 181 181 355 362 362 256 256 256	35555555555555555555555555555555555555	1.0 1.0 1.3 1.0 2.0 2.0 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.5 1.5 2.0 2.0 2.0 3.4 3.0 1.5 1.6 1.5 3.0 4.0 2.0	0.48 0.47 0.49 0.51 0.47 0.48 0.47 0.54 0.49 0.45 0.49 0.49 0.49 0.49	
8, 17	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.05 1.81 1.76 1.92 1.84 2.20 2.34 2.44 2.20 2.34 2.46 2.11 2.07 1.89 3.24 2.93 3.95	2550 27.5 2383 25.7 2505 27.0 2400 32.1 2840 30.6 3380 36.4 3360 36.2 2675 28.8 2420 26.1 5050 54.5 3315 35.7	29.8 27.6 26.7 28.1 26.2 32.6 31.5 31.0 27.4 31.8 30.6 30.6 30.2 49.9 37.2 46.0	22.2 21.5 21.0 25.6 29.2 28.9 25.6 27.2 23.8 21.8 62.3 31.1 67.3	50. 55. 56.0 64.0 65.5 56.6 61.9 51.6 49.0 61.1 54.1 55.8 90.0 50.6 78.5	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	18 15 16 14 16 32 32 9 9 13 16 16 16 16 16 11	2.99 2.99 2.88 2.00 3.05 3.00 3.00 3.00 3.00 3.00 3.00 3	3.0 3.0 3.0 3.0 3.0 3.0 3.5 3.0 3.0 3.0 3.0 3.3 3.3 3.5	1.5 1.3 1.4 1.5 1.5 1.6 1.8 1.8 1.8 1.5 1.5 1.5 1.5 3.0 1.5		0.14 - - - 0.13 - 0.15 0.15 0.15 0.13 - - - - - - - - - - - - - - - - - - -

- 16 -

TABLE 8 (Cont'd)

Average Coating Test Results*

Bath No.	Stoel	Coating Wt.	Iron (Content St g/m ²	Steel Wt, Loss g/m2	Alloy Thiokness mm x 10-3	Proportion of Alloy	Ductility	Adherence	Spangles (or grains) per in.2	Spangle Contrast	Brightness	Smoothness	Aluminum in Coating	Lead in Conting L
12, 16	1234567890 1112345 1345	0.97 1.02 1.02 1.03 1.04 0.86 0.73 1.11 1.20 1.07 1.04 1.03 0.84 0.88 2.27	1225 1300 1225 1290 1262 1262 1058 2330 2295 1346 1540 1503 104d 1160 2200	13.2 13.9 13.6 13.6 11.4 24.7 14.5 16.6 16.2 11.2 12.5 23.7	13.1 11.7 12.2 12.5 12.6 12.3 10.7 10.3 10.6 16.5 13.9 14.6 18.1 13.0 16.6	11.4 11.0 11.2 11.5 10.6 11.4 11.0 14.9 14.5 11.4 11.0 10.4 10.4 3.1 9.3 20.0	55.4 50.5 51.9 52.8 48.4 69.3 64.9 56.7 49.6 50.0 47.7 17.3 50.3 41.6	2.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	3.5 3.4 3.9 3.8 3.5 3.5 5.0 3.6 3.5	128 128 128 119 128 128 140 256 362 355 362 256 256 256 256 256	1.5 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 1.5 1.5 2.5 3.0 3.0	2.0 2.0 2.0 2.0 2.0 2.5 2.3 2.3 2.3 2.0 2.0 2.0 3.0 3.0	1.0 1.0 1.5 1.5 1.5 1.0 2.5 2.5 1.0 1.0 1.0 2.0 4.0 2.5	0,21 0,23 0,23 0,26 0,29 0,26 0,23 0,24 0,23 0,24 0,23 0,21 0,21 0,21 0,20 0,20 0,18	
<u>Expor</u> 19, 22	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	" <u>B"</u> 2.75 2.67 2.84 2.87 2.80 3.40 3.31 3.04 3.04 2.84 2.83 2.58 7.98 4.14 7.78	4270 4120 4003 4000 4035 4910 4750 4435 4330 4640 4220 5440 10900	46.0 44.3 44.2 44.1 52.9 51.2 48.0 47.8 46.7 50.0 45.5 120.5 58.6 117.4	47.4 47.7 46.5 48.6 46.3 49.3 52.0 47.3 46.9 47.3 46.9 48.7 47.6 131.2 59.1 118.6	43.0 42.9 43.4 41.2 41.4 46.5 48.3 40.7 40.7 40.5 40.4 41.2 162.9 52.2 154.5	72.4 75.8 71.7 68.0 69.6 65.0 65.0 65.0 63.2 62.3 67.5 67.5 67.5 67.5 96.3 55.0 93.5	3.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 - - -	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	6 6 5 5 6 6 2 2 4 12 13 21 3 6	3.00 3.00 3.00 3.00 3.00 3.55 3.00 3.55 3.00 3.55 3.00 3.55 3.55	2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.3 3.5 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.0 5.0 0 3.0 0 4.0	1.5 1.3 1.5 1.5 2.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		0.36 - - 0.40 - 0.49 0.45 0.40 - - - - - - - - - - - - - - - - - - -
20, 24	1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 5	2.33 2.11 2.08 2.44 2.16 2.83 2.60 2.67 2.66 2.29 2.39 2.15 4.74 3.64 4.41	3265 3020 2955 3275 3018 3750 3620 3538 3715 3200 3740 3575 7050 4510 6400	35.2 33.2 31.8 35.3 32.5 40.4 39.0 38.1 40.0 34.5 40.3 33.5 76.0 48.6 68.9	36.7 37.9 36.5 36.8 32.7 40.1 39.7 34.6 36.5 38.8 37.9 37.2 75.8 46.2 79.2	30.2 29.8 29.5 32.6 31.3 36.2 36.0 34.2 34.5 30.0 30.7 30.6 99.2 45.9 84.9	61.3 67.4 67.7 68.5 60.4 65.5 60.2 61.1 63.5 60.9 67.5 98.9 59.7 89.5	3.3 3.3 3.0 3.0 3.0 3.3 3.0 - - 3.0 3.0 3.0 - - -	6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.0 3.0 3.0 3.0 3.0 3.0 3.5 3.5 3.0 3.0 3.0 3.0 3.5 2.5	2.5 2.0 2.3 2.3 2.0 2.3 3.5 2.0 2.5 2.0 5.0 3.0 4.3	1.5 1.5 1.5 2.0 1.5 1.5 1.5 1.5 1.5 3.5 1.5		0.42
21, 23	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.05 1.78 1.80 2.17 1.93 2.46 2.20 2.39 2.41 2.08 2.07 1.81 3.34 3.18 3.07	2535 2440 2358 2618 2415 3005 2835 2836 2935 2878 2935 2878 2935 2878 2935 2878 2935 2878 2935 2878 2935 2878 2935 2878 2935 2878 2935 2878 2935 2878 2935 2835 2935 2835 2935 2935 2935 2935 2935 2935 2935 29	27.3 26.3 25.4 28.2 26.0 32.4 30.5 30.9 31.6 31.0 29.2 26.2 253.8 40.3 46.2	24.4 26.3 26.9 27.5 26.6 31.5 32.6 23.9 27.4 30.3 30.3 28.2 52.4 40.3 47.1	23.9 22.6 22.8 25.1 24.3 29.7 28.3 25.3 25.4 23.4 21.6 55.9 35.4 52.3	55.0 59.7 59.7 57.5 61.1 57.1 60.5 51.3 40.3 57.9 53.6 56.1 70.9 52.5 80.4	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	8 8 6 6 6 6 4 4 7 16 16 16 4 3	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.6 1.5 1.5 1.5 2.0 2.0 2.0 2.0 1.5 1.5 1.5 1.5 3.5		0.47

- 17 -

TABLE 8 (Contid)

Average Conting Tost Results*

Bath Na.	Steel No.	Coating Wt. ez/sq ft - sheet	Iron mr/BQ	Centent ft g/m ²	Steel Wt. Loss g/m ²	Alley Thickness mm_x 10~3	Proportion of Alloy 3	Duotility	Adherence	Spangles (or grains) per in.2	Spangle Contrest	Brightness	Smoothneas	Aluminum in Coating	Lead in Conting
25, 27	1 2 3 4 5 6 7 8 9 10 11 12 13 14	2.80 2.73 2.84 3.03 3.22 3.18 3.23 2.85 2.93 2.60 7.86 4.15 7.63	4340 4250 4290 5030 4600 4460 4460 4460 4460 4460 4460 4	46.3 45.3 46.3 51.7 54.2 49.6 48.2 49.6 48.2 43.5 51.8 45.2 119.1 56.4	47.9 46.8 47.5 48.7 51.9 52.1 45.9 47.3 47.6 50.3 50.1 121.5 61.1 123.7	41.3 41.2 41.2 42.7 47.4 48.3 45.0 45.0 45.0 45.0 41.4 41.3 39.3 163.9 51.1 160.5	69.0 71.0 70.1 67.2 - 65.4 70.2 66.8 65.4 68.9 66.8 71.1 98.3 56.2 98.3	3.5 3.5 3.5 3.3 3.0 - 3.0 3.0 3.0	8.0 8.0 8.0 7.9 8.0 7.9 8.0 7.9 7.9 7.9 7.9	16 18 12 - 35 42 10 14 45 36 15 8 0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5 3.0	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		0.11 - - 0.13 0.15 0.15 0.15 0.11 -
26, 28	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.39 2.35 2.23 2.40 - - 2.83 2.53 2.35 2.35 2.35 2.41 2.14 4.38 3.63 4.67	3220 3265 3210 3250 - - 3665 3665 3680 3638 3490 3790 3692 3790 3625 6525	34.7 35.2 34.6 35.0 39.5 39.5 41.3 39.5 37.6 40.9 39.5 80.0 46.0 70.4	36.6 36.3 36.5 38.5 - 40.1 39.5 36.2 38.2 38.2 37.8 39.7 37.5 78.6 50.2 71.9	30.7 30.6 30.7 32.2 36.5 35.8 34.1 34.3 32.4 30.7 30.3 99.9 44.2 91.4	60.5 60.9 65.5 63.1 	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	6.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	39 42 23 16 - 9 42 10 8 18 18 18 18 18 18 8 8 8	2.6 2.6 2.6 2.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		0.13 - 0.13 0.15 0.15 0.15 0.12 - 0.12 0.12 0.12

*Each value shown is average of three determinations except for dustility (averaga of two determinations) and alloy thickness (avarage of twenty mensurements an single samples). Dustility and adherence tests and load anniyses were made on samples indicated only. For dustility, adherence and surface appearance rating codes, see Table 9.

TABLE 9

Ductility, Adherence and Surface Appearance Rating Codes

<u>Coati</u> Ratin	ng Ductility g: 1 = Excollent, no cracking 2 = Good, notwork of fine cracks		<u>Coating Adherence</u> Based on minimum be (90° bend plus 180	nd radius causing flaking ° reverse bend)	
	3 = Fair, general cracking, with coating 4 = Poor, wide separation of medium size 5 = Very poor, general pealing of coating	broken into small blocks blocks in large blocks	Rating: $1 = 0.050$ 2 = 0.070 3 = 0.100 4 = 0.144	in, bend radius $5 = 0.192$ in, bend radius $6 = 0.252$ in, bend radius $7 = 0.320$ in, bend radius $8 = 0.400$	in, bend redius in, bend radius in, bend radius in, bend radius
Spang	le Contrast of Conting	Coating Brightness		Conting Roughnoes	
Ratin	<pre>g: 1 = Good, spangles well defined 2 = Moderate, spangles well defined 3 = Low or no contrast. Spangles outlined only 4 = No contrast (no spangles)</pre>	Rating: $1 = 0$ to 1.25 r 2 = 1.5 to $2.753 = 3.0$ to $5.54 = 6.0$ to $11.05 = 11.5 +$	hotometer units photometer units photometer units photometer units photometer units	Rating: 1 = Very smoo 2 = Moderatel 3 = Fine to m sandpapo 4 = Rough bas	th y smooth odoratoly rough r-like texture ture ar uneven surface

TABLE 10

Steel Weight Lost by Pickling* (mg/sample and per cent on 3 in. by 4 in. sample)

Steel	······································	Pickling	, .		
No.	Grade of Steel and Condition	Time, min	55°C (130°F)	70°C (160°F)	85°C (185°F)
1	Galvanizing grade, as-received """" """"	2.5 5.0 7.5 10.0	2.6 (0.007) 3.2 (0.009) 4.5 (0.012) 6.2 (0.017)	$\begin{array}{c} 2.8 & (0.008) \\ 3.3 & (0.009) \\ 5.1 & (0.014) \\ 8.0 & (0.022) \end{array}$	$\begin{array}{c} 3.4 & (0.009) \\ 3.5 & (0.010) \\ 6.1 & (0.016) \\ 9.6 & (0.026) \end{array}$
3	Galvanizing grade, cold rolled - 15% reduction """"" """"""""""""""""""""""""""""""	2.5 5.0 7.5 10.0	1.9 (0.006) 2.2 (0.007) 3.6 (0.011) 5.1 (0.015)	1.8 (0.006) 2.4 (0.008) 4.6 (0.014) 5.3 (0.017)	2.6 (0.008) 3.1 (0.010) 5.6 (0.018) 6.5 (0.020)
4	Armco iron, as-received """"""""""""""""""""""""""""""""""""	2.5 5.0 7.5 10.0	0.9 (0.002) 1.7 (0.004) 2.4 (0.006) 3.1 (0.008)	1.0 (0.002) 2.2 (0.005) 2.7 (0.006) 3.5 (0.009)	1.3 (0.003) 2.8 (0.007) 3.0 (0.008) 4.7 (0.012)
5	Armco iron, cold rolled - 15% reduction """"""""""""""""""""""""""""""""""""	2.5 5.0 7.5 10.0	0.7 (0.002) 1.6 (0.004) 2.3 (0.005) 2.6 (0.008)	0.8 (0.002) 1.9 (0.006) 2.4 (0.007) 3.1 (0.009)	1.1 (0.003) 1.8 (0.006) 3.1 (0.009) 4.0 (0.012)
6	Aluminum-killed, as-received	2.5 5.0 7.5 10.0	4.0 (0.011) 4.7 (0.012) 5.4 (0.014) 6.8 (0.018)	$\begin{array}{c} 4.1 & (0.011) \\ 5.9 & (0.016) \\ 7.7 & (0.021) \\ 9.9 & (0.026) \end{array}$	4.4 (0.012) 8.9 (0.024) 16.0 (0.042) 18.2 (0.048)
7	Aluminum-killed, cold rolled - 15% reduction """"""""""""""""""""""""""""""""""""	2.5 5.0 7.5 10.0	1.8 (0.006) 2.4 (0.007) 2.9 (0.009) 5.3 (0.016)	2.0 (0.006) 2.3 (0.008) 3.5 (0.010) 6.8 (0.018)	2.1 (0.006) 4.3 (0.012) 5.6 (0.016) 7.0 (0.020)
8	Hot-rolled normalized, as-received """" """	2.5 5.0 7.5 10.1	565.0 (0.500) 678.5 (0.609) 680.0 (0.601) 683.1 (0.604)	677.1 (0.604) 679.7 (0.600) 675.7 (0.611) 689.3 (0.614)	687.3 (0.594) 683.6 (0.602) 696.1 (0.591) 698.1 (0.606)
9	Hot-rolled normalized, cold rolled - 15% reduction """"""""""""""""""""""""""""""""""""	2.5 5.0 7.5 10.0	508.4 (0.511) 490.8 (0.502) 497.6 (0.511) 531.5 (0.549)	533.0 (0.559) 534.0 (0.562) 533.1 (0.556) 532.6 (0.556)	533.7 (0.547) 538.0 (0.553) 537.9 (0.552) 544.2 (0.559)

.

TABLE 10 (Cont'd)

<u>Steel Weight Lost by Pickling*</u> (mg/sample and per cent on 3 in. by 4 in. sample)

Steel No.	Grade of Steel and Condition	Pickling Time, min	55°C (130°F)	70°C (160°F)	85°C (185°F)
10	Full hard, as-received	2.5 5.0 7.5 10.0	4.8 (0.012) 7.6 (0.019) 9.3 (0.023) 10.7 (0.027)	6.1 (0.015) 8.4 (0.021) 11.3 (0.028) 14.1 (0.036)	6.3 (0.016) 8.7 (0.024) 12.3 (0.032) 17.0 (0.044)
11	Bottle top, as-received 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	2.5 5.0 7.5 10.0	5.9 (0.015) 6.2 (0.016) 7.2 (0.019) 9.1 (0.024)	6.7 (0.018) 8.7 (0.023) 10.8 (0.029) 12.6 (0.034)	6.9 (0.019) 9.8 (0.026) 11.0 (0.029) 12.7 (0.034)
12	Bottle top, cold rolled - 15% reduction """"" """""""""""""""""""""""""""""	2.5 5.0 7.5 10.0	3.3. (0.010) 4.2. (0.013) 5.6. (0.018) 6.4. (0.020)	3.6 (0.011) 4.6 (0.014) 5.9 (0.018) 7.1 (0.022)	4.6 (0.014) 6.0 (0.018) 7.0 (0.021) 8.4 (0.026)
13	Alloy Steel A, as-received """"""""""""""""""""""""""""""""""""	2.5 5.0 7.5 10.0	323.2 (0.279) 343.2 (0.295) 347.3 (0.299) 363.3 (0.312)	353.7 (0.304) 373.2 (0.320) 434.7 (0.374) 516.5 (0.446)	403.0 (0.346) 497.7 (0.426) 589.5 (0.506) 720.4 (0.618)
14	Alloy Steel B, as-received n n n n n n n n n n	2.5 5.0 7.5 10.0	11.4 (0.010) 20.9 (0.018) 24.0 (0.021) 27.5 (0.024)	17.7 (0.016) 36.1 (0.032) 39.0 (0.034) 44.5 (0.039)	30.4 (0.027) 38.2 (0.034) 44.8 (0.039) 64.4 (0.057)
15	Alloy Steel C, as-received	2.5 5.0 7.5 10.0	10.0 (0.011) 16.3 (0.018) 21.9 (0.024) 26.4 (0.028)	22.9 (0.025) 34.9 (0.037) 40.4 (0.043) 59.1 (0.063)	56.3 (0.060) 129.5 (0.138) 342.2 (0.365) 598.4 (0.637)

*Acid solution as given in Galvanizing Log, Table 4. Values are averages of two determinations; figures in brackets represent weight loss per cent.

TABLE 11

Steel No. and Grade	Bath No.	Al %	Pb %	Immersion Time, <u>sec</u>	UTS kpsi	YS 0.2% offset kpsi	Ratio <u>YS to UTS</u>	El. <u>% in 2 in.</u>			
13, Alloy Steel A	:		•.	• . •	÷	`		5			
(a) as-received (b) galvanized " " " " "	- 4 12 3 7 2	0.0 0.0 0.075 0.075 0.15 0.15	- 0.3 0.3 0.3 0.3 0.3 0.3	- 60 10 60 10 60	72.4 72.0 70.0 72.8 74.0 73.1 73.9	55.9 60.9 60.9 62.0 63.6 61.9 62.9	0.77 0.85 0.87 0.85 0.86 0.85 0.85	30.6 29.8 29.0 28.2 28.6 31.1 30.2			
14, Alloy Steel B	•	· .			•	· · · .	••••	•			
(a) as-received (b) galvanized " " " " " " "	4 8 26 27 12 3 7 2	0.0 0.0 0.0 0.0 0.0 0.075 0.075 0.15 0.15	0.3 0.3 1.0 1.0 0.3 0.3 0.3 0.3	- 10 60 120 240 10 60 10 60	83.8 81.7 80.8 83.4 83.7 82.8 83.4 83.4 82.9 82.7	64.4 69.3 68.0 71.3 70.8 70.4 70.0 69.7 69.0	0.77 0.85 0.84 0.86 0.84 0.85 0.84 0.84 0.84 0.84	25.6 25.0 24.9 24.6 22.8 24.9 25.4 25.5 25.3			
15, Alloy Steel C			•	· · ·	•	•		· , 、			
(a) as-received (b) galvanized " " " " " " "	4 8 26 27 12 3 7 2	0.0 0.0 0.0 0.0 0.075 0.075 0.15 0.15	- 0.3 1.0 1.0 0.3 0.3 0.3 0.3	10 60 120 240 10 60 10 60	67.9 68.0 66.6 63.2 66.5 67.2 68.4 66.1	53.8 57.5 57.5 56.2 55.5 57.8 58.1 59.8 56.0	0.79 0.85 0.87 0.87 0.88 0.87 0.87 0.87 0.87 0.85	29.7 24.9 25.6 25.2 24.8 25.0 26.5 25.0 25.5			

Mechanical Properties of Alloy Steels After Galvanizing*

*As-received values are averages of 36 tests. Galvanized values are averages of 6 to 12 tests.

METALLOGRAPHIC AND SURFACE EXAMINATION OF STEELS

Photomicrographs illustrating the grain structure and typical inclusion distribution of the various steels in the as-received condition are given in Figures 1 to 9 which follow. Grain size measurements are indicated.

The surface roughness of the complete series of steels prior to galvanizing was measured and the Talysurf traces obtained are reproduced in Figures 10 to 16. Accompanying photomacrographs illustrate the surface texture in each case.

as-polished

etched (2% nital)

Figure 1. X100

Typical inclusion distribution and grain structure of galvanizing grade steel, as-received (No. 1). Fine equiaxed grains (ASTM grain size number 8), low inclusions.

etched (2% nital)

Figure 2. X100

Typical inclusion distribution and grain structure of Armco iron sheet, as-received (No. 4). Medium equiaxed grains (ASTM grain size number 5), low inclusions.

1558

etched (2% nital)

as-polished

Figure 3. X100

Typical inclusion distribution and grain structure of aluminum-killed steel, as-received (No. 6). Fine pancake grains (ASTM grain size number 7), low inclusions.

etched (2% nital)

Figure 4. X100

Typical inclusion distribution and grain structure of hot rolled normalized steel, as-received (No. 8). Fine equiaxed grains (ASTM grain size number 8), low inclusions.

as-polished

etched (2% nital)

Figure 5. X100

Typical inclusion distribution and grain structure of full-hard steel, as-received (No. 10). Elongated grains, low inclusions.

etched (2% nital)

Figure 6. X100

Typical inclusion distribution and grain structure of bottle-top steel, as-received (No. 11). Very fine equiaxed grains (ASTM grain size number 9), low inclusions.

etched (2% nital)

as-polished

Figure 7. X100

Typical inclusion distribution and grain structure of Alloy Steel A (No. 13). Very fine equiaxed grains (ASTM grain size number 10), low inclusions.

etched (2% nital)

Figure 8. X100

Inclusion distribution and grain structure of Alloy Steel B (No. 14). Very fine, equiaxed grains (ASTM grain size number 10). Note elongated stringer-type inclusions.

as-polished

Figure 9. X100

Typical inclusion distribution and grain structure of Alloy Steel C (No. 15). Fine equiaxed grains (ASTM grain size number 8).

- 26 -

Figure 10. Talysurf traces for galvanizing grade steel (No. 1, 2 and 3), as-received (top), cold rolled 5% (middle) and 15% (bottom).

Roughness readings were 44, 25 and 20 micro in., respectively. Photomacrographs of corresponding surfaces are shown below. X100

(a) as-received

(b) reduced 15% by cold rolling

Figure 11. Talysurf traces for Armco iron sheet (No. 4 and 5), as-received (top) and after 15% rolling reduction (bottom).

Roughness readings were 20 and 18 micro in., respectively. Photomacrographs of corresponding surfaces are shown below. X100

(a) as-received

cold rolling

(b) reduced 15% by

- 27 -

Figure 12. Talysurf traces for aluminum-killed steel (No. 6 and 7), as-received (top) and after 15% rolling reduction (bottom).

Roughness readings were 75 and 19 micro in., respectively. Photomacrographs of corresponding surfaces are shown below. X100

(a) as-received

(b) reduced 15% by cold rolling

Figure 13. Talysurf traces for hot-rolled normalized steel (No. 8 and 9), asreceived and pickled (top) and after 15% rolling reduction and pickling (bottom).

Roughness readings were 52 and 42 micro in., respectively. Photomacrographs of corresponding surfaces are shown below. X100

(a) as-received and pickled

the soon man pur bot

Figure 14. Talysurf trace for full hard steel (No. 10), surface as-received.

Roughness reading was 38 micro in. Photomacrograph of surface is show below. X100

blog of RCL Beombers (d) belief for grifting Full hard steel, as-received

Figure 15. Talysurf traces of bottle top steel (No. 11 and 12), as-received (top) and after 15% rolling reduction (bottom).

Roughness readings were 33 and 12 micro in., respectively. Photomacrographs of corresponding surfaces are shown below. X100

(a) as-received

(b) reduced 15% by cold rolling

S.C. A.

Figure 16. Talysurf traces of Alloy Steel A (No. 13), Alloy Steel B (No. 14), and Alloy Steel C (No. 15), from top to bottom, respectively, all in as-received and pickled condition. Roughness readings were 60, 60 and 44 micro in., respectively. Photomacrograph of surface of Alloy Steel C is shown below. X100

Alloy Steel C, as-received and pickled

APPENDIX II

ACCELERATED CORROSION TEST RESULTS

by.

D.B. Clay The Steel Company of Canada, Limited, Hamilton, Ont. January 11, 1961

INTRODUCTION

In this appendix, results are given of humidity and water film corrosion stack tests run by The Steel Company of Canada, Limited, to determine the storage-stain susceptibility of the galvanized test panels prepared at the Mines Branch. The test procedures corresponded to those used in previous Mines Branch galvanizing investigations and are described in Mines Branch Investigation Report IR 58-149. Separate panels were used for each test and, in the case of the humidity test, the diffusivity measurements on each panel were made according to the pattern "B" distribution.

Because single panels only could be provided for this work, and for other reasons, the humidity test was run on the thin gauge materials, grades 1, 2, 3, 4, 5, 6, 7, 10, 11 and 12 and the water film test on the thick gauges remaining, i.e., grades 8, 9, 13, 14 and 15. The corrosion index values listed for the latter are estimates of the amount of the test panel showing corrosion. White and black staining were evaluated separately according to the scale below. Two index
values appear together, e.g. l_2 , the upper being the index for the numbered side of a panel, the lower that of the opposite side.

IndexQ1234% of Surface Corroded01 to 2526 to 5051 to 7576 to 100The data tabulated in this appendix are as follows:Table 1. Humidity Test ResultsTable 2. Water Film Test Results

TABLE 1

Humidit	y Test	Results
a second and the second s	the second se	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER

		Weight	Change awyle	Average Diffusivity**			
Bath	Sample	Gain From	Loss From	Before	After		
No.	No.*	Corrosion	Corrosion	Corrosion	Corrosion	Gain	% Gain_
,,							
· 9	l J-5	30.0	82.7	13.9	18.9	5	36
18	2 J-5	29.0	87.9	9.3	12.7	3•4	36.6
**	3 J- 5	16.8	54.1	9.7	14.9	5.2	53.6
tt	4 J-5	20.2	51.4	14.8	16.6	1.8	12.2
R1	5 J-5	23.5	80.3	14.1	18.4	4.3	30.5
**	. 6 J-5	13.0	77.5	12.3	16.9	4.6	31.4
18	7 J-5	27.7	92.2	17.3	18.4	1.1	6.4
11	10 J-5	17.5	42.5	14.3	15.2	0.9	6.3
11	11 J-5	31.6	63.1	11.0	12.2	1.2	10.9
11	12 J-5	31.3	100.1	13.9	16.0	2.1	12.1
	ר ע ג	15 0	108 7	151	1/5	-0.6	
10	1 K=9 2 K-6	25 1	67 0	10 /	12.5	0.1	-4 0.8
11	2 K-5	22 Q	50 0	1/ 8	16.2	1.4	9.5
tr	J K-5	13 0	17.7	11.8	18.6	6.8	57.6
11	4 N-J 5 V-5	21 2	66 0	11.1	14.2	3.1	27.9
11	6 K-5	16.0	36.0	10.8	14.9	4.1	38
11	7 K_5	181	55.6	11.9	14.0	2.1	17.7
11	10 K-5	15.6	54.4	16.1	14.9	-1.2	-7.5
1	10 1-5	17.3	16.3	14.9	14.4	-0.5	-3.4
11	10 K-5	15.0	40.5	16.6	15.3	-1.3	-7.8
	12 N-7	±	40 . 7				· · · ·
11	1 L-5	11.7	31.5	8.8	11.2	2.4	27.3
	2 L-5	19.2	39.5	8.0	15.1	7.1	88.8
11	3 L-5	18.2	48.3	9.7	11 . 9	2.2	22.7
11	4 L-5	16.2	34.3	10.9	13.6	2.7	24.8
11	5 L-5	12.5	36.6	10.3	13.8	3.5	34
11	6 L-5	37.1	94.4	14.3	17.6	3.3	23.1
11	7 L-5	37.8	104.6	14.1	19.4	5.3	37.6
11	10 L-5	38.4	115.3	23.3	19.0	-4.3	-18.5
tt.	11 L-5	37.1	110.6	11.5	16.1	4.6	40
11	12 L-5	36.0	97.3	11.3	13.1	1.8	15.9
· · ·					<u>م کر اتر</u>	<u> </u>	· 60 5
13	1 N-5	31.5	70.3	9.9	10.1	22	2/1
	2 N-5	3,11	24.02	13.1	1/•0	2.2	7/ 7/
	3 N-5	28.9	102+0	11.4 7/7	15.0	25	17.7
	4 N-D	20.2	50.U	12 0	14.5	2.5	20.8
) 1V)	×1	200.0	12.5	15 6	31	24.8
	0 11-2	, ביי איני ביי	27 I	16 5	15 0	-1.5	-9.1
		11.0	21+4 62 1	20.1	16.3	-5.1	-23.8
		20.7	10 8	21.4	16.6	-5	-23.2
11	12 N-5	15.5	35.1	22.4	18.6	-3.8	-17
<u></u>							
]./.	1 P-5	24.1	35.4	. 20.0	34.0	14	70
	2 P-5	22.6	35.4	16.2	32.9	16.7	100.3
11	3 P-5	25.5	41.4	20.4	34.4	14	68.7
it	4 P-5	27.9	41.5	1.5.9	36.6	20.7	130
18	5 P-5	10.6	40.6	16.2	34.3	18.1	111.8
It	6 P-5	23.0	48.1	25.5	37.1	11.6	45.5
It	7 P-5	23.2	52.0	21.9	33.7	11.8	53.9
11	10 P-5	17.2	38.1	20.3	33.4	13.1	64.5
11	11 P-5	24.6	45.2	22.5	36.1	13.6	60.5
11	12 P-5	100.9	134.5	22.4	36.2	13.8	61.6
				•			

TABLE 1 (Cont'd)

Humidity Test Results

		Weight mg/s	Change ample		Average Diffu	sivitv**	
Bath. No.	Sample No.*	Gain From Corrosion	Loss From Corrosion	Before Corrosion	After Corrosion	Gain	% Gain
15 "" " " " " "	1 Q-5 2 Q-5 3 Q-5 4 Q-5 5 Q-5 5 Q-5 7 Q-5 10 Q-5 12 Q-5	12.8 16.4 11.8 14.6 12.3 10.7 15.6 25.9 12.7 14.4	40.4 52.0 31.6 40.9 33.5 29.0 50.9 90.1 59.8 48.9	11.4 11.5 10.1 9.8 9.8 16.6 19.7 21.1 16.4 16.8	29.5 28.2 22.9 28.3 28.0 30.8 30.2 31.2 28.6 29.2	18.1 16.7 12.8 18.5 18.2 14.2 10.5 10.1 12.2 12.4	159 145 127 189 186 85.5 53.4 47.9 74.5 74
16 " " " " " " "	1 R-5 2 R-5 3 R-5 4 R-5 5 R-5 6 R-5 7 R-5 10 R-5 11 R-5 12 R-5	26.7 26.7 10.6 18.7 9.2 16.3 10.1 22.2 22.5 15.9	78.4 63.6 34.4 54.0 21.7 46.4 39.6 50.0 66.6 59.2	18.5 	27.5 27.8 28.5 24.6 22.0 27.3 29.3 29.0	9 11 11.2 8.2 7.5 7.2 10.4 9.8	48.6 65.5 64.7 50 51.7 39.4 55 51
17 "" " " " " " "	1 S-5 2 S-5 3 S-5 4 S-5 5 S-5 6 S-5 7 S-5 10 S-5 11 S-5 12 S-5	12.9 8.4 40.5 10.5 11.8 24.9 10.6 19.2 12.6 13.4	53.3 27.3 122.0 79.2 31.6 62.7 32.6 55.6 39.6 70.6	23.1 21.0 21.1 22.3 23.6 32.9 18.0 25.2 26.8 29.7	34.8 31.5 32.7 34.2 34.9 36.8 31.1 35.8 35.0 36.8	11.7 10.5 11.6 11.9 11.3 3.9 13.1 10.6 8.2 7.1	50.6 50 55 53.4 47.8 11.9 72.8 42.1 30.6 23.9
18 11 11 11 11 11 11 11 11 11 11 11 11 1	1 T-5 2 T-5 3 T-5 4 T-5 5 T-5 6 T-5 7 T-5 10 T-5 11 T-5 12 T-5	10.0 10.3 10.1 7.4 5.4 16.4 9.5 13.7 11.3 9.9	40.8 36.9 28.3 21.9 26.2 125.1 44.0 37.8 33.1	20.6 21.8 25.0 26.4 22.6 22.3 25.3 26.1 28.6 22.0	34.5 34.1 34.0 35.5 33.1 34.4 34.3 35.1 35.5 34.0	13.9 12.3 9 9.1 10.5 12.1 9 9 6.9 12	67.5 56.4 36 34.5 46.5 54.3 35.6 34.5 24.1 54.5
22 11 11 11 11 11 11	1 Y-5A 2 Y-5A 3 Y-5A 4 Y-5A 5 Y-5A 6 Y-5A 7 Y-5A 10 Y-5A 11 Y-5A 12 Y-5A	9.7 8.5 9.6 10.7 9.9 11.7 13.1 9.4 9.9 12.4	37.9 39.3 30.1 41.0 24.7 38.4 48.1 25.5 26.0 31.5	30.1 22.4 28.3 28.1 26.2 23.1 26.8 21.6 30.2 25.4	35.7 34.1 34.6 35.6 31.6 35.5 35.5 33.8 37.5 34.9	5.6 11.7 6.3 7.5 5.4 12.4 8.7 12.2 7.3 9.5	18.6 52.2 22.2 26.7 20.6 53.7 32.5 56.5 24.2 37.4

-		Weight mg/sa	Change ampl.e		Average Diffu	sivity**	
Bath	Sample	Gain From	Loss From	Before	After	. .	dat
<u>No.</u>	No.*	Corrosion	Corrosion	Corrosion	Corrosion	Gain	<u>% Gain</u>
22	ז ע_51	י כו	11.6	34.5	36.1	1.9	5.5
<u>ر</u> م ا	1 A=9A		31-6	28.0	35.9	7.9	28.2
11. 11.	2 X-51	フ・エ コク グ	36 1	27.2	35.9	8.7	32
) X-JA / V-5A	16 1	120	22.7	3/.9	2.2	6.7
	4 A-JA 5 V_51	10.1	42+7	30.2	35.6	5./	17.9
	5 X-5A	151	42+2	36.7	35.4	_1	-2.7
	· 77 V-54	1/ 2	11.7	29.0	36.8	7.8	26.9
11	10 V.51	120	18 2	29.7	34.8	5.1	17.2
	10 A-9A	122	30 7	30.1	38.3	8.2	27.2
	LL AT JA	10 5	27•7	30.2	35.7	5.5	18.2
	12 A")A			J0•2,			
	7 7 64	10 5	0/ 5	30.1	38.2	8.1	26-9
24	1 4~7A	19.5	13 0	ン0+エ ング グ	36.0	8.3	30
	2 4-21	10.9	22 8	31.0	35.5	4.5	14.5
 11	5 249K	10.0	37.7	27.0	3/.9	7.9	29.3
	4 24 JA 5 7 51	77.1	28 7	26.1	36.1	10	38.3
11	5 4-54	. 9.0	15.4	30.4	38.8	8.4	27.6
** 11	0 2 - 98 77 7_61	10.8	21 2	27.0	38.8	11.8	43.7
11	10 7-54	1 77	11.3	31.5	35.5	4.0	12.7
17	10 2 - 5A	105	22.3	30.8	39.6	-0.2	-0.5
11	12 Z. 5A	16.5	34.5	31./	36.1	4.7	15
······································			J4+J				
27	1 ¥~5	5,3	17.7	30.5	34.4	3.9	12.8
~1	2 Y-5	8.7	41.7	28.6	35.4	6.8	23.8
11	3 v -5	5,9	35.7	27.0	32.4	5.4	20
11	1 X-5	6.8	39.4	19.6	29.5	9.9	50.5
ff	6 x -5	10.6	30.1	30.3	34.9	4.6	15.2
Ħ	7 7-5	8.2	36.5	28.3	30.8	2.5	8.8
11	10 Ŷ-5	6.9	62.3	27.6	34.0	6.4	23.2
It	11 Y-5	10.2	30.3	27.2	35.9	8.7	32
H	12 ¥-5	12.8	40.4	27.2	33.3	6.1	22.4
28	1 Z-5	14.9	36.1	28.8	35.7	6.9	24
tt .	2 Z-5	6.1	20.4	20.7	32.2	11.5	· 55.6
It	3 Z-5	9.3	35.1	28.0	34•4	6.4	22.8
11	6 Z-5	19.0	-	35.7	38.1	2.4	6.7
lt	7 Z-5	10.7	54.1	28.2	35.3	7.1	25.2
11	10 Z-5	15.0	50.7	27.8	32.4	4.6	16.6
ft	11 Z-5	11.3	34.1	29.6	36.4	6.8	23
11	12 Z-5	11.4	34.6	21.4	31.6	10.2	47.7

÷

*First number in sample designation indicates grade of steel. **Values are averages of five measurements on each sample.

TABLE 2

Water Film Test Results

Bath	Sample	2/ hr Corro	sion Index Black	<u>48 hr Corre</u> White	sion Index Black
9 11 11 11	8 J-5 9 J-5 13 J-5 14 J-5 14 J-5	2 3 3 2 2 3 2 3 4 4	0 0 0 0 0 0 0 0 0 0 0 0	2 3 3 2 3 4 3 3 4 4	0 0 0 0 0 0 0 0 0 0 0 0
10 11 11 11 11	8 K-5 9 K-5 13 K-5 14 K-5 15 K-5	33 23 32 32 34 33	0 0 0 0 0 0 0 0 0 0 0 0	33 34 43 44 44	0 0 0 0 0 0 0 0 0 0
11 11 11 11 11	8 L~5 9 L-5 13 L~5 14 L~5 15 L~5	4 3 3 2 4 3 3 3 3 3	0 0 0 0 0 0 0 0 0 0	4 4 4 3 4 3 3 3	
13 "" "	8 N-5 9 N-5 13 N-5 14 N-5 15 N-5	33 42 33 33 33	0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 3 3 4 3 3 3 4 3 4	0 0 0 0 0 0 0 0 0 0 0 0
14 11 11 11	8 P-5 9 P-5 13 P-5 14 P-5 15 P-5	1 2 2 2 1 2 1 3 3 1		1 2 2 3 2 2 2 3 2 3 4 1	0 0 0 0 0 0 0 0 0 0 0 0
15 11 11 11 11	8 Q-5 9 Q-5 13 Q-5 14 Q-5 15 Q-5	4 4 4 4 4 3 4 4 3 2	0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 4 4 3 4 4 4 3	0 0 0 0 0 0 0 0 0 0
16 " " "	8 R-5 9 R-5 13 R-5 14 R-5 15 R-5	2 2 3 3 3 3 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0	3 3 3 3 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0

TABLE 2 (Cont'd.)

Water	Film	Test	Results
Charles and the second in such as	States of the local division of the local di	the second state of the se	

Bath	Sample	24 hr Corr	osion Index	48 hr Corr	osion Index
No.	<u>No.*</u>	White	Black	White	Black
17 " " "	8 S-5 9 S-5 13 S-5 14 S-5 15 S-5	2 3 3 3 3 2 3 2 3 2 3 1	0 0 0 0 0 0 0 0 0 0	23 34 42 42 41	0 0 0 0 0 0 0 0 0 0
18 "" "	8 T-5 9 T-5 13 T-5 14 T-5 15 T-5	33 23 34 43 44	0 0 0 0 0 0 0 0 0 0	43 44 44 44	0 0 0 0 0 0 0 0 0 0
22 11 11 11	8 Y-5A 9 Y-5A 13 Y-5A 14 Y-5A 15 Y-5A	2 2 2 3 3 3 3 4 4 4		2 2 2 3 4 4 4 4	0 0 \ 0 0 0 0 0 0 0 0
23 11 11 11	8 X-5A 9 X-5A 13 X-5A 14 X-5A 15 X-5A	33 33 34 34 34 33	0 0 0 0 0 0 0 0 0 0 0 0	3 4 3 4 4 4 4 4 3 4	0 0 0 0 0 0 0 0 0 0
24 11 11 11	8 Z-5A 9 Z-5A 13 Z-5A 14 Z-5A 15 Z-5A	23 333 234 32 32	0 0 0 0 0 0 0 0 0 0	33 34 334 33 24 24	0 0 0 0 0 0 0 0 0 0
27 11 11 11	8 Y-5 9 Y-5 13 Y-5 14 Y-5 15 Y-5	2 3 3 3 2 2 4 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0	33 44 23 43 3	0 0 0 0 0 0 0 0 0 0
28 11 11 11	8 Z-5 9 Z-5 13 Z-5 14 Z-5	2 3 2 3 2 3 2 3 2 3		34 34 33 24	0 0 0 0 0 0 0 0

*First number in sample designation indicates grade of steel.

,

APPENDIX III

STATISTICAL ANALYSIS OF COATING TEST DATA

by

H.L. Williams Consolidated Mining and Smelting Company of Canada Limited, Trail, B.C. July 3, 1961

INTRODUCTION

This appendix covers statistical studies made by the Consolidated Mining and Smelting Company of Canada, Limited, on the test data produced at the Mines Branch, Ottawa, Ontario, and the Steel Company of Canada Limited, Hamilton, Ontario, in the project dealing with the galvanizing behaviour of commercial steel sheet materials. The data consisted of test logs obtained in two statistically-designed experiments.

In experiment "A", the effect of varying the aluminum content of the bath from nil to 0.15% and the immersion time from 10 to 60 seconds was studied for each of 15 grades of steel sheet. The lead content was kept constant at 0.3%.

In experiment "B", the effect of varying the lead content of the bath from 0.3 to 1.0% and the immersion time from 1 to 4 minutes was studied for the same materials. The aluminum content of the bath was nil for all tests in this series. The galvanizing test conditions comprising 0.0% Al and 60 seconds immersion time were common to both experiments.

INTERPRETATION OF DATA

A description of the data was obtained by developing empirical equations since the true functional form of the various relationships it was desired to study was unknown.

Levels of the independent variables studied were coded; actual variables were related to the coded variables as in Table 1.

TABLE 1

Coded Values of Independent Variables

Experiment	Variahles	Coded Values			
	ער געריין איז	. eə]	0	+]	
"A"	x ₁ - Aluminum content - % x ₂ - Immersion time - sec	0 10	0.075 35	0 .1 5 60	
u Bn	x_1^1 - Lead content - % x_2^1 - Immersion time - sec	0•3 60	120	1.0 240	

The independent variables were related to the coded

variables as follows:

$$x_{1} = \underline{\text{Aluminum content}, \ \ 3 - 0.075}_{0.075}$$

$$x_{2} = \underline{\text{Immersion time, sec} - 35}_{25}$$

$$x_{1}^{1} = \underline{\text{Lend content}, \ \ 3 - 0.65}_{0.35}$$

$$x_{2}^{1} = \underline{\text{Log (Immersion, sec)} - 2.0792}_{0.3010}$$

The 15 grades of steel used in the experiments comprised the following:

1.	Galvanizing grade, as-received, 24 gauge.
2	Galvanizing grade, cold rolled - 5% reduction.
3	Galvanizing grade, cold rolled - 15% reduction.
4	Armco iron, as-received, 24 gauge.
5	Armco iron, cold rolled - 15% reduction.
6	Aluminum-killed, as-received, 24 gauge.
7	Aluminum-killed, cold rolled - 15% reduction.
8	Hot rolled normalized, as-received, 14 gauge.
9	Hot rolled normalized, cold rolled - 15% reduction.
10	Full hard, as-received, 24 gauge.
11	Bottle top, as-received, 24 gauge.
12	Bottle top, cold rolled - 15% reduction.
13	Alloy Steel A, as-received, 14 gauge.
14	Alloy Steel B, as-received, 14 gauge.
15	Alloy Steel C, as-received, 16 gauge.

For experiment "A" an equation of the form $y = b_0 + b_1x_1 + b_2x_2 + b_{11}x_1^2 + b_{22}x_2^2 + b_{12}x_{1x_2}$ was fitted to the data for each dependent variable. The non significant terms were then discarded and the equations recalculated.

For experiment "B", the same procedure was followed except that the term $"b_{11}x_1^2"$ was omitted because only two levels of lead were used.

Graphs have been plotted to illustrate the relationships where appropriate. For plotting and comparative purposes, the 15 grades of steel were separated into six groups as listed below. Evaluation of each of the dependent variables for experiments "A" and "B" is discussed in following sections of this appendix.

- (a) 1, 2, 3
- (b) 4,5
- (c) 6,7
- (d) 8, 9, 10
- (e) 11, 12
- (f) 13, 14, 15

EXPERIMENT "A"

Y1 - Coating Weight (oz/sq ft - sheet)

The regression coefficients of the empirical equations are listed below, together with their standard errors. The standard deviation "S" about the regression is also listed. If a regression coefficient was less than three standard errors in magnitude it was considered to be non significant. Any non significant terms that were left in the equations are marked by an asterisk.

The data used to calculate each equation consisted of 27 coating weights. The equations have been plotted in Figures 1 and 2.

	Regression Coefficients for Y_{1}						
	• • • • • • • •	<u></u>	· · · · · · · · · · · · · · · · · · ·	· · · · · ·			
Steel	<u>b</u> o	bı	<u>b2</u>	<u>b11</u>	<u>b12</u>		
1	1.321	-0.621	0.248	-0.194	-0,122		
2	1.327	-0.538	0.216	-0.293	-0.076		
์จ	1.322	-0.529	0.198	-0.311	-0.088		
, ,	1.400	-0.566	0.269	-0.281	-0.072		
5	1, 339	-0.561	0.196	-0.277	-0.101		
6	1,389	-0.684	0.386	-0.123	-0.192		
7	1,371	-0.623	0.361	-0.157*	-0.156		
Ŕ	1.606	-0.691	0.283	-0.312	-0.162		
ġ ·	1.638	-0.646	0.322	-0.191	-0.133		
10	1.483	-0.278	0.396	0.025*	0.041*		
11	1,366	-0.553	0.290	-0.192	-0.105		
12	1,351	-0.466	0.296	-0.208	0.003*		
13	0.920	-0.847	0.232	0.822	-0.296		
11	1,598	-0.877	0.355	0.149*	-0.220		
15	1.737	-0.477	0.403	0.493*	-0.463*		
-	•						

Standard Errors of Regression Coefficients

Steel.	<u>SE b</u> o	<u>SE b</u>	SE b2	<u>SE bij</u>	SE b12	<u>S</u>
l	0.039	0.028	0.028	0,048	0.034	0.118
2	0.024	0.017	0.017	0.029	0.021	0.072
3	0.027	0.019	0.019	0 . 03 3 .	0.024	0.081
Ĩ.	0.030	0.021	0.021	0.037	0.026	0.091
5 :	0.026	0.018	0.018	0.032	0.023	0.079
6	0.032	0.023	0.023	0.040	0.028	0.097
7	0.054	0.038	0.038	0.066	0.046	0.161
8	0.043	0.030	0.030	0.053	0.037	0.129
9	0.034	0.024	0.024	0.042	0.030	0.104
10	0.014	0.010	0.01.0	0.018	0.012	0.043
11	0.020	0.014	0.014	0.024	0.017	0.059
12	0.022	0.016	0.016	0.027	0.019	0.067
13	0.042	0.030	0.030	0.051	0.036	0.125
14	0.082	0.058	0.058	0.101	0.071	0.247
15	0.203	0.143	0.143	0.248	0.176	0.608

The coating weight equations for the various steels indicated

the following:

- (a) The equations for steels 1, 2, 3, 4, 5 and 11 did not differ to a statistically-significant degree.
- (b) Steels 6 and 7 did not differ either except that the equation for steel 6 fitted the data better than the equation for steel 7.

- (c) Steels 8 and 9 were also similar except that the equation for steel 9 was a better fit than the equation for steel 8. As shown by the graphs, the equation for steel 10 was quite different from the equations for steels 8 and 9.
- (d) The equations for steels 11 and 12 showed marked differences in "b1" and "b12".
- (e) The equations for the alloy steels 13, 14 and 15 showed marked differences. This may have been due in part to the fact that the equations for steels 14 and especially 15 were poor fits. The standard errors were an indirect measure of the goodness of fit.

The nature of the relationships may be seen from the graphs.

\underline{Y}_2 - Iron Content (g/m²)

The format used for Y_1 will also be used here and in the following sections.

The data used to calculate each equation consisted of 27 iron content measurements. The equations have been plotted in Figures 3 and 4.

Regression	Coefficients	for Yo	•
	O O O L L L V MOTI V M		

<u>Steel</u>	bo	bl	b ₂	<u>b</u> 11	<u>b</u> 12
1	19,956	- 9.978	4.167	- 7.313.	-2.192
2	20.278	- 9.372	3.856	- 8.472	-2.000
3	19.656	- 9.178	3.828	- 8.289	-2.225
4	19.767	- 9.733	3.989	- 7.256	-1.917
5	19.289	- 9.656	3.638	- 7.233	-2.142
6	20,156	-11.328	4.939	- 6.306	-3.033
7	19.967	-11.294	5.150	- 6.139	-2.400
8	32.156	-13.011	4.650	-15.422	-2.550
9	31.156	-11.483	4.783	-12.450	-1.442
10	22.700	- 1.661	7.156	- 0.517*	1.475*
11	23.311	- 9.439	4.744	- 9.028	-1.292*
12	22.856	- 7.989	4.622	- 9.222	-1.317*
13	13.667	-16.067	5.194	12.289	-5.692
14	21,156	-13.044	4.472	- 1.489*	-1.400*
15	17.233	-10,839	3.833*	10,850	-6.083*

	Standard Errors of Regression Coefficients									
Steel	<u>SE</u> bo	<u>SE bı</u>	<u>SE b</u> 2	<u>SE b11</u>	<u>SE_b</u> 12	<u>s</u>				
1	0.592	0.419	0.419	0.725	0.513	1.776				
2	0.542	0,383	0.383	0.664	0.469	1.625				
3 '	0.556	0.393	. 0•393 -	0,681	0.481	T•008				
L.	0.404	0.286	0.286	0.495	0.350	1.213				
5	0.466	0.330	0.330	0.571	0.404	1.399				
6	0.367	0.259	0.259	0.449	0.317	1.100				
7	0.734	0.519	0.519	0.899	0.636	2,202				
ġ	0.615	0.435	0.435	0.753	0.532	1.844				
ġ	0.503	0.356	0.356	0.616	0.436	1.509				
10	0.576	0.408	0.408	0.706	0.499	1.729				
11	0.521	0.368	0.368	0.638	0.451	1.562				
12	0.655	0.163	0.463	0.802	0.567	1.965				
12	0.584	0.113	0./13	0.715	0.506	1.752				
1/	1.223	0.865	0.865	1./98	1.059	3.669				
15	2.872	2.031	2.031	3.517	2.487	8.615				

The iron content equations for the various steels indicated the following:

- (a) The equations for steels 1, 2, 3, 4 and 5 did not differ to a statistically-significant degree.
- (b) The equations for steels 6 and 7 did not differ either.
- (c) The equations for steels 8 and 9 were similar except for small but significant differences in "b₁" and "b₁₁". The equation for steel 10 was quite different from those for steels 8 and 9.
- (d) The equations for steels 11 and 12 were similar except for a small but significant difference in "b1".
- (e) The equations for the alloy steels 13, 14 and 15 showed marked differences. The equations for steels 14 and especially 15 were poor fits.

Y3 - Steel Weight Loss (g/m2)

The data used to calculate each equation consisted of 36 steel weight loss measurements. The equations have been plotted in Figures 5 and 6.

Regression Coefficients for Y3

<u>Steel</u>	bo	<u>b</u> 1	<u>b</u> 2	<u>b11</u>	<u>b</u> 12
1	19.467	-8,833	4.617	-5.917	-3.356
2	19.033	-8.579	4.612	-6.021	-2.619
3	18.967	-8.371	4.312	-6.446	-2.656
4	19.550	-8.412	4.992	-6.238	-2.358
5	19.383	-8.204	4.142	-6.829	-2.456
6	19.617	-9.446	5.333	-4.771	-3.912
. 7	19.1 58	-9.550	5.550	-4.050	-3.538
8	19.650	-7.675	6.375	-6.750	-4.019
9	19.933	-6.467	5.888	-6.075	-2.631
10	24.050	-0.675*	6.442	1.792	-0.181*
11	21.467	-8.350	5.171	-5.850	-2.375
12	21.542	-6.925	5.179	-5.100	-2.412
13	20.550	-9.438	6.042	7.371	-5.162
14	19.392	-8.129	6.121	-0.771*	-3.312
15	30.342	-2.079	13.421	2.938	1.075*

Standard Errors of Regression Coefficients

<u>Steel</u>	<u>SE b</u> o	<u>SE b</u> 1	<u>SE b</u> 2	<u>SE b</u> ll	<u>SE b</u> 12	<u>S</u>
1	0.319	0.226	0.226	0.391	0.276	1.106
2	0.460	0.325	0.325	0.563	0.398	1.593
3	0.431	0.304	0.304	0.527	0.373	1.492
4	0.361	0.255	0.255	0.442	0.312	1.250
5	0.424	0.300	0.300	0.519	0.367	1.468
6	0,319	0.225	0.225	0.390	0.276	1.104
7	0.559	0.395	0,395	0.685	0.484	1.936
8	0.673	0.476	0.476	0.324	0.583	2.331
9	0.599	0.423	0.423	0.733	0.519	2.074
10	0.309	0.213	0.218	0.378	0.267	1.069
11	0.448	0.317	0.317	0.548	0.388	1.551
12	0.442	0.312	0.312	0.541	0.383	1.530
13	0.712	0.551	0.551	0.372	0.617	2.468
14	0.345	0.244	0.244	0.422	0.298	1.194
15	0.713	0.504	0.504	0.874	0.618	2.471

The steel weight loss equations for the various steels indicated

the following:

- (a) The equations for steels 1, 2, 3, 4 and 5 showed only minor differences of doubtful significance.
- (b) The equations for steels 6 and 7 were similar except that equation 6 was a better fit than 7.

- (c) The equations for steels 8 and 9 were similar except for small but significant differences in "b1" and "b12". The equation for steel 10 was quite different from those for steels 8 and 9.
- (d) The equations for steels 11 and 12 were similar except for a small but significant difference in "b]".
- (e) The equations for the alloy steels 13, 14 and 15 showed marked differences. The equations for steels 13 and 15 were not as good a fit as equation 14.
- (f) The equations for steels 7, 8, 9, 13 and 15 did not fit the data as well as the equations for steels 1, 2, 3, 4, 5, 6, 10, 11, 12 and 14.

Y, - Alloy Thickness (mm x 10-3)

The data used to calculate each equation consisted of 18 alloy thickness measurements. The equations have been plotted in Figures 7 and 8.

Regression Coefficients for YA

<u>Steel</u>	bo	<u>b1</u>	<u>b</u> 2	<u>b11</u>	<u>b</u> 12
1	17.367	-8.617	3.375	-7.150	• ,
2	17.067	-8.425	3.133	-7.392	· ·
3	17.117	-8.333	2,984	-7.658	
4	17.767	-9.425	3,992	-6.758	-2.000
5	17.133	-9.600	3.325	-6.283	-2,150
6	18.567	-11.108	4.342	-6.125	-2.362
7	18.350	-11.092	4.183	-5.925	-2.075
8	24.633	-10,575	4.525	-12.558	
9	23.983	-9.758	4.925	-10.975	
10	18.367	-3.933	6.492	0.133×	
11	17.583	-9.267	4.125	-6.300	
12	17.083	-7.950	4.325	-6.725	
13	4.700*	-20.092	6.358	16.558	-8.912
14	21.817	-12.525	5.500	-6.608	
15	14.000	-16.133	5.108*	14.767	-11.450

<u>Steel</u>	SE b	<u>se b</u> 1	SE b2	<u>SE b11</u>	SE b ₁₂	2
l	0.791	0.559	0.559	0.968		1.937
2	0.382	0.624	0.624	1.081		2.161
3	0.884	0.625	0.625	1.082		2.164
4	0,675	0.478	0.478	0.827	0.585	1.654
5	0.758	0.536	0.536	0.928	0.656	1.857
6	0.677	0.478	0.478	0.829	0.586	1.657
7	0.758	0.536	0.536	0.929	0.657	1.858
8	1.363	0.964	0.964	1.672		3.338
9	1.221	0.863	0.863	1.496		2.991
10	0.564	0.399	0.399	0.690		1,381
11	0.884	0.625	0.625	1.083		2,166
12	0.805	0.569	0.569	0.986		1.972
13	1,798	1.271	1.271	2.202	1.557	4.404
14	1.784	1.262	1.262	2.185		4.370
15	3.428	2.424	2.424	4.198	2 .9 69	8.397

Standard Errors of Regression Coefficients

The alloy thickness equations for the various steels indicated

the following:

- (a) The equations for steels 1, 2 and 3 were similar and did not differ to a statistically-significant degree.
- (b) The equations for steels 4 and 5 were similar.
- (c) The equations for steels 6 and 7 were also similar.
- (d) The equations for steels 8 and 9 were similar but the equation for steel 10 was quite different.
- (e) The equations for steels 11 and 12 were similar and also did not differ statistically from the equations for steels 1, 2 and 3.
- (f) The equations for steels 13, 14 and 15 showed marked differences.
- (g) The equations for steels 1 to 12 inclusive fitted the data better than the equations for steels 13 and 14, and especially 15.

<u>5 - Proportion of Alloy (%)</u>

The data used to calculate each equation consisted of 18 proportion-of-alloy measurements. The equations have been plotted in Figures 9 and 10.

50

· ·	Regression Coefficients for 15							
<u>Steel</u>	<u>b</u> o	bı	<u>b</u> 2	<u>b</u> 11	<u>b</u> 12			
1	61.167	-18,792	3.258	-29.075	.*			
2	59.700	-21.525	3.217*	-26.692				
3	60.034	-21.742	3.325	-27.592				
4	59.134	-22.175	4,300	-24.192				
5	58.800	-23.875	5.358	-23.392	· .			
-6	63.784	-23.600		-30.133				
7	65.684	-25.350		-30,500				
8	71.484	-21.042	3.333	-38.742	3.338			
9	67.717	-16.908	5.150	-33.142	5.088			
10	56.850	- 2.992	6.458	- 0.708*	4.200			
11	59.434	-21.008	5.250	-24.225	4.050			
12	58,050	-19,958	7.083	-23.958	2.912			
13	23.600	-33.342	8.083	15.758	-6.325			
14	61.284	-18.208		-28.958				
15	38.817	-22.092		. 15.592*	· · ·			

Standard Errors of Regression Coefficients

		,				
<u>Steel</u>	<u>SE</u> bo	<u>SE b</u> 1	SE b2	<u>SE b</u> 11	SE b12	<u>S</u>
1	0.750	0.530	0.530	0.900		1.788
2	1.589	1.123	1.123	1.946	•	3.892
3	1.391	0.984	0,984	1.704		3.408
4	1.355	0,958	0.958	1.659		3.318
5	1.390	0.983	0.983	1.703		3.406
6	1,369	0.968	i -	1.677	· .	3.354
7	1.863	1.317	-	2.282	·. ·.	4.564
8	0.948	0.670	0.670	1.161	0.821	2.322
9	1.506	1.065	1.065	1.844	1.304	3.688
10	1.324	0.936	0,936	1.621	1.146	3.242
11	1.252	0.885	0,385	1.533	1.084	3.067
12	1.718	1.215	1.215	2,105	1.400	4.209
13	1.265	0.895	0.895	1.550	1.096	3.100
14	3.135	2.217		3.840		7.679
15	4.391	3.105		5.377	·	10.755

The proportion-of-alloy equations for the various steels

indicated the following:

- (a) The equations for steels 1, 2 and 3 did not differ to a statistically-significant degree. Since the three equations were similar they were combined for plotting to avoid confusion.
- (b) The equations for steels 4 and 5 were similar and were also combined.
- (c) The equations for steels 6 and 7 were similar. For these steels, the proportion of alloy was not significantly related to immersion time.
- (d) The equations for steels 8, 9, 10 differed to a significant degree. The nature of their differences may be seen in their plots.
- (e) The equations for steels 11 and 12 showed a small but statistically-significant difference in b₂.
- (f) The equations for alloy steels 13, 14 and 15 were significantly different. The effect of immersion time on proportion alloy was not significant for steels 14 and 15.
- (g) The equations for steels 1 to 13 fitted the data better than the equations for steels 14 and 15.

Y₄ - Coating Ductility

- Rating: 1 = Excellent, no cracking.
 - 2 = Good, network of fine cracks.
 - 3 = Fair, general cracking, small blocks.
 - 4 = Poor, wide separation of medium-sized blocks.
 - 5 = Very poor, general peeling of coating in large blocks.

The data used here to calculate each equation consisted of 18 ductility ratings. The equations have been plotted in Figure 11.

	regression coefficients for 16										
Steel	bo	<u>b1</u>	<u>b2</u>	<u>b11</u>	<u>b</u> 12						
1 2 3 4 5 6 7 10 11 12	2.500 2.250 2.250 2.333 2.333 2.333 2.417 2.500 2.333 2.333	-0.875 -0.833 -0.750 -0.833 -0.750 -0.833 -0.833 0.083* -0.833 -0.833	0.292 0.458 0.458 0.333 0.417 0.375 0.292 0.417 0.333 0.333	-0.542 -0.417* -0.500 -0.583 -0.583 -0.500 -0.583 -0.417 -0.500 -0.500	0.375						

Standard Errors of Regression Coefficients

<u>steel</u>	<u>SE b</u> o	<u>SE bj</u>	<u>SE b</u> 2	<u>SE bil</u>	SE b12	<u>S</u>
1 2 3 4 5 6 7 10 11	0.079 0.161 0.148 0.126 0.122 0.133 0.110 0.041 0.126	0.056 0.114 0.105 0.089 0.086 0.094 0.078 0.029 0.089	0.056 0.114 0.105 0.089 0.086 0.094 0.078 0.029 0.089	0.096 0.198 0.182 0.155 0.149 0.163 0.135 0.050 0.155	0 .03 5	0.193 0.396 0.364 0.309 0.299 0.325 0.270 0.100 0.309
12	0.126	0 .089	0.089	0.155		0.309

The ductility rating equations for the various steels indicated

the following:

ŝ

- (a) The equations for steels 1, 2, 3, 4, 5, 6, 7, 11 and 12 did not differ statistically. They were therefore combined for plotting.
- (b) The equation for steel 10 differed from the others. The residual variance about the regression line was significantly smaller than for the other equations, i.e., the equation fitted the data a little better.

52 -

Rating:	1 =	0.050	in.	bend	radius	5	=	0.192	in.	bend	radius
	2 =	0.070	11	H	11	6	=	0.252	11	11	11
	3 =	0.100	11	11	11	7	=	0.320	11	11	n
	4 =	0.144	11	.n	11	8	=	0.400	n	tt	tt

The data used here to calculate each equation consisted of 18 adherence ratings. The equations have been plotted in Figure 12.

	<u>R</u>	egression Co	efficients	for Y7	
<u>Steel</u>	<u>b</u> o	<u>b</u> 1	<u>b</u> 2	<u>b</u> 11	<u>b</u> 12
1 2 3 4 5 6 7 10 11 12	4.667 4.633 4.600 4.967 4.967 4.533 4.433 5.500 4.717 4.667 Standa	-2.333 -2.300 -2.300 -2.308 -2.308 -2.308 -2.308 -0.792 -2.333 -2.317 rd Errors of	0.417 0.467 0.458 0.458 0.458 0.408 0.408 0.542 0.392 0.433	-1.333 -1.333 -1.300 -1.608 -1.608 -1.175 -1.075 -0.575 -1.383 -1.350	0 . 388
Steel	SE bo	SE b ₁	SE b ₂	SE bij SE	bio

<u>Steel</u>	<u>SE b</u> o	<u>SE b</u>	<u>SE b</u> 2	<u>SE b11</u>	SE b12	<u>s</u>
1	0.175	0,124	0.124	0.215		0.429
2	0,181	0.128	0,128	0.221		0.442
3	0.177	0.125	0.125	0.217		0.433
4	0.166	0.118	0,118	0.204		0.407
5	0.1.66	0,118	0.118	0.204		0.407
6	0.149	0.105	0.105	0.182		0.364
7	0 . 14 1	0.099	0.099	0.172		0.344
10	0 .0 89	0.063	0.063	0.109	0.077	0.218
11	0.162	0.114	0.114	0.198		0.396
12	0.173	0.122	0.122	0.212		0.423

The adherence rating equations for the various steels indicated

the following:

(a) The equations for steels 1, 2, 3, 6, 7, 11 and 12 did not differ statistically. They were therefore combined for plotting.

- (b) The equations for steels 4, 5 were also similar and were combined for plotting.
- (c) The equation for steel 10 differed from the other equations to a marked degree in the high aluminum range.

Yg - Coating Spangle Size (Spangles per sq. in.)

The data used here to calculate each equation consisted of 18 spangle size measurements. The equations have been plotted in Figures 13 and 14.

	ne	gression o	Oell I ICTEILOS	TAT TR	
Steel	bo	<u>b1</u>	<u>b</u> 2	<u>b11</u>	<u>b</u> 12
1	102.0	59.0	-18.3	- 24.0	
2	100.3	59.5	-19.7	- 22.8	
3	97.2	62.1	-27.0	- 16.8	,
1	119.5	59.7	- 7.1*	- 42.2	
5	106.7	59.2	-16.2	- 28.8	
6	103.3	56.7	-26.0	- 20.7	• •
7	101.7	56.0	-28.1	- 18.3	
8	143.3	51.2	-32.8	- 76.1	·
9	155.8	58.7	-46.2	- 81.5	
10	2/2.3	90.9	-86.2	-131.1	-56.6
11	292.8	172.7	-	-103.5	:
12	308.0	172.7	-	-118.7	•
13	239.8	107.5	-29.4	-116.3	
17	256.0	107.5	-	-132.5	
15	260.2	128.7	-	-122.5	

Standard Errors of Regression Coefficients

Steel	<u>SE b</u> o	<u>SE b</u> 1	SE by	<u>SE bil</u>	SE b12	<u>S</u>
1	7.84	5.54	5.54	9.60	· ·	19.20
2	8,16	5.77	5.77	9.99		19,99
3	9.43	6.67	6.67	11.55	· . ·	23.10
4	4.11	2.91	2.91	5.03		10.07
5	6.34	4.48	4.48	7.76	• • •	15.52
6	9.40	6.65	6.65	11.52	,	23.03
7	9.18	6.49	6.49	11.25	. , ,	22.49
8	14.06	9.94	9.94	17.22		34.45
9	13.39	9.47	9.47	16.39		32.79
10	12.96	9.16	9.16	15.87	11.22	31.74
11	20.99	14.84		25.70		51.40
12	19.92	14.09		24.40		48.80
13	10.69	7.56	7.56	13.10		26.19
14	9.13	6.45		11.18		22.36
1.5	27.50	19.45		33.68		67.37

The spangle size equations for the various steels indicated the following:

- (a) The equations for steels 1 and 2 did not differ significantly and were combined for plotting. The equation for steel 3 showed a small but significant difference in " b_2 ".
- (b) The equations for steels 4 and 5 differed to a significant degree mainly in the coefficients "b₀, b₂" and "b₁₁".
- (c) The equations for steels 6 and 7 were similar and were combined for plotting.
- (d) The equations for steels 8, 9 and 10 differed to a significant degree. The extent of their differences may be seen from their plots.
- (e) The equations for steels 11 and 12 differed to a minor but significant degree, mainly in the coefficients "bo" and "bjj". The effect of immersion time variations on spangle size was not significant for these two steels.
- (f) The equations for the alloy steels 13, 14 and 15 were significantly different. The effect of immersion time variations on spangle size was not significant for steels 14 and 15.
- (g) The equations for steels 1 to 7, 13 and 14 fitted the data better than the others.

Yo - Spangle Contrast of Coating

Rating: 1 = Good, spangles well defined.

2 = Moderate, spangles well defined.

3 = Low or no contrast, spangles outlined only.

4 = No contrast (no spangles).

The data used here to calculate each equation consisted of 18

spangle contrast ratings. The equations have been plotted in Figure 15.

			•	
<u>b</u> o	<u>b1</u>	<u>b</u> 2	<u>b11</u>	<u>b</u> 12
1.47	0.56	0.13*	1.48	-0.23
1.47	0.53	0.13	1.50	-0.23
1.47	0.53	0.13	1.50	-0.23
1.55	0.53	0,16	1.42	-0.20
1.50	0.53	0.13	1.47	-0.20
1.83	0.39	-	1.28	-
1.83	0.39	***	1.28	
2.17	0.50		0.83	
2.17	0.49	· · · ·	0.84	-
1.97	-0.28	-	0.48	 ,
1.83	0.43		1.32	•••
1.83	0.43		1.32	
2.50	0.17		0.83	-
3.00		***	0.50	-
2.07	0.54		-0.34	

Standard Errors of Regression Coefficients

<u>Steel</u>	<u>SE b</u> o	<u>SE b</u>	SE b2	<u>SE b₁₁</u>	SE b12	S
. 1	0.07	0.05	0.05	0.09	0.06	0.18
2	0.06	0.04	0.04	0.07	0.05	0.14
3	0.06	0.04	0.04	0.07	0.05	0.14
Ĺ	0.04	0.03	0.03	0.05	0.03	0.09
5	0.04	0.03	0.03	0.05	0.03	0.10
6	0.08	0.06		0.10		0.21
7	80.0	0.06	· —	0.10		0,21
8	0.06	0.04		0 07	·•••	0.15
ĝ.	0.07	0.05		0.09	алан алан алан алан алан алан алан алан	0.18
ıó	0.09	0.06		0.1)	•••	0.21
11	0.10	0.07	. .	0.12		0.24
12	0.10	0.07		0.12	х н ч	0.24
13	0.06	0.04	· •••	0.07		0.15
14	0.00	-		0.00	-	0.00
15	0.08	0.06		0,10		0.19

The spangle contrast equations for the various steels indicated

the following:

<u>Steel</u>

1

2

3

456

13 14 15

- (a) The equations for steels 1 to 5 did not differ significantly and were combined for plotting.
- (b) The effect of immersion time variations on spangle contrast was not significant for steels 6 to 15.
- The equations for steels 6 and 7 were identical. (c)

56 -

Regression Coefficients for Yo

- (d) The equations for steels 8 and 9 did not differ significantly and were combined for plotting. The equation for steel 10 was significantly different.
- (e) The equations for steels 11 and 12 were identical.
- (f) The equations for the alloy steels 13, 14 and 15 differed to a significant degree. The equation for steel 14 fitted the data exactly.

Y10 - Coating Brightness

.

Rating:	1 =	0	to	1.25	photometer	units	
	2 =	1.5	to	2.75	11	11	
	3 =	3.0	to	5.5	, H	π	
	4 =	6.0	to	11.0	11	Ħ	
	5 =	11.5	+		11	11	

The data used here to calculated each equation consisted of 18 brightness ratings. The equations have been plotted in Figure 16.

Regression Coefficients for Y10

Steel	bo	<u>b</u>]	<u>b</u> 11
1	2,11	-0.79	-
2	2.17	-0.67	
3	2.14	-0.75	-
4	2.19	-0.71	-
5	2.11	-0,83	-
6	2.00	-0.50	0.50
7	1.92	-0.50	0.58
8	2.25	-0.83	0.58
ğ	2.25	-0.50	0.75
10	2,00	-0.50	0.50
11	2.00	-0.50	0.50
12	2.00	-0.50	0.50
13	2,00	-0.75	0.58
עב ער	2-86	-0.79	
15	2.67	-0.50	0.67

· ·	Standard	Errors of Regres	<u>sion Coefficier</u>	nts
<u>Steel</u>	<u>SE</u> bo	<u>SE b</u> 1	<u>SE b</u> 11	<u>.</u>
1.	0.08	0.10	, .	0.33
2	0.10	0.13	. 🕳 .	0.45
3	0.08	0.09		0,32
, ,	0.07	0.09		0.31
5	0.07	0.09		0.30
6	0.00	0.00	0.00	0.00
7	0.05	0.03	0.06	0.12
Å.	0.12	0.08	0.14	0.28
<u> </u>	0.19	0.14	0.24	0.47
10	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00
12	0.00	0.00	0.00	0.00
12	0.11	0-08	0.14	0.28
1/	0.10	0.12		0.42
14 15	0.17	0.12	0.20	0.41

The brightness reading equations indicated the following:

- (a) The equations for steels 1, 2, 3, 4 and 5 did not differ significantly and were combined for plotting.
- (b) The equations for steels 6 and 7 were similar and were also combined for plotting.
- (c) The equations for steels 8, 9 and 10 differed to a significant degree.

(d) The equations for steels 10, 11 and 12 were identical.

(e) The equations for steels 13, 14 and 15 differed to a significant degree.

Y11 - Coating Roughness

Rating: 1 = Very smooth.

2 = Moderately smooth.

- 3 = Fine to moderately rough sandpaper texture.
- 4 = Rough texture or uneven surface caused by various defects (ridges, dewetting, black spots, pimples).

The data used here to calculate each equation consisted of 18 roughness ratings. The equations have been plotted in Figure 17.

<u>Steel</u>	<u>b</u> o	<u>b</u> l	<u>b</u> 2	<u>b</u> 11	<u>b</u> 12	·
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.00 1.00 1.00 1.27 1.27 1.50 1.15 2.50 2.50 1.10 1.00 1.00 1.97 4.00 2.50	0.07% 0.12* 0.10* 0.23 0.22 0.23 0.21 0.71 0.75 -0.08 0.13 0.05* 0.75 0.50 0.11	-0.13	0.57 0.55 0.57 0.47 0.45 0.28 0.64 0.14* 0.12* 0.32 0.63 0.55 0.28 -0.50 -0.89	0.10 0.18 0.15 - - - - - - - - - - - - - - - - - - -	
	Stand	lard Errors	of Regres	sion Coeffic	ients	
<u>Steel</u>	<u>SE b</u> o	<u>se b</u> l	<u>SE b2</u>	<u>SE b₁₁</u>	<u>SE b₁₂</u>	5
1 2 3 4 5 6 7 8 9 10 11 12 13	0.04 0.04 0.05 0.06 0.06 0.03 0.06 0.03 0.05 0.03 0.04 0.05 0.04 0.05 0.04 0.02	0.03 0.03 0.04 0.04 0.02 0.04 0.02 0.04 0.02 0.03 0.03 0.04 0.03 0.04		0.05 0.05 0.06 0.07 0.07 0.03 0.08 0.06 0.04 0.05 0.04 0.05 0.04 0.04 0.02	0.04 0.04 	0.10 0.10 0.12 0.14 0.14 0.07 0.15 0.13 0.09 0.09 0.13 0.09 0.04
14	0.00	0.00	-	0.00	· _	0.00

Regression Coefficients for Y11

The coating roughness equations for the various steels indicated

0.04

0.03

0.09

the following:

0.05

0.03

15

(a) The equations for steels 1, 2 and 3 did not differ to a significant degree and were combined for plotting.

0.03

- (b) The equation for steels 4 and 5 were also similar and were combined for plotting.
- (c) The equations for steels 6 and 7 were significantly different.
- (d) The equations for steels 8 and 9 were similar and were combined for plotting. The equation for steel 10 was significantly different.

(f) The equations for steels 13, 14 and 15 differed to a significant degree.

60 -

(g) The effect of immersion time variations on roughness was found to be significant for steels 1, 2, 3, 10 and 15, but not for the others.

(h) The equation for steel 14 fitted the data exactly.

Y12 - Average Gain in Diffusivity (%)

Variation in aluminum content of the bath and in immersion time failed to show a significant effect upon diffusivity during the humidity tests. Steels 8, 9, 13, 14 and 15 were not included in this test. Nine figures were available for each steel except for steels 2 and 3 where one figure was missing.

The average diffusivities for each steel together with the 95% confidence limits for each average are shown below. There are no significant differences within this group of averages.

Steel	Average Gain in Diffusivity (3)
. <u>1</u> ,	58 ± 34
: 2	63 ± 38
3	48 ± 31
4	65 ± 44
5	63 ± 40
6	41. ± 16
7	36 ± 20
10	20 ± 24
1].	30 ± 24
12	30 ± 24

<u>Y13 - Weight Gain After Humidity Test (g)</u>

Variation in aluminum content of the bath and in immersion time failed to show a significant effect upon weight gain from corrosion for most of the steels. Steels 1, 2 and 10 did show some statistically significant effects. However, these may be of no practical value. Steels 8, 9, 13, 14 and 15 were not included in this test. Nine figures were available for each steel studied.

The significant relationships have been plotted in Figure 18.

Regression	Coefficients	for Y1:	2
		the second s	

Steel	bo	<u>b1</u>	<u>b</u> 2	<u>b11</u>	<u>b</u> 22	<u>b12</u>
l	0.0171	-		-0.0067	0.0102	0.0078
2	010269	1947	-	-0.0122	 .	
10	0.0150	0.0068	-0.0024	0.0051	0.0051	-0.0035

Standard Errors of Regression Coefficients

<u>Stee</u>].	<u>SE b</u> o	<u>SE bı</u>	<u>SE b</u> 2	<u>SE b</u> ll	<u>SE b</u> 22	SE b12
1	0.0023	-		0.0022	0.0022	0.0015
2	0.0028	**	-	0.0034	-	-
10	0.0006	0.0003	0.0003	0.0006	0,0006	0.0004

The average weight gain from corrosion for each steel together with the 95% confidence limits for each average are shown below. There are no significant differences within this group of averages. The readings for steel 12 showed significantly more scatter than for the other steels.

<u>Steel</u>	Average Weight Gain (g)
1	0.0194 ± 0.0066
2	0.0188 ± 0.0058
3	0.0206 ± 0.0077
4	0.0165 ± 0.0047
5	0.0149 ± 0.0058
6	0.0190 ± 0.0063
7	0.0189 ± 0.0072
10	0.0218 ± 0.0059
11	0.0216 ± 0.0069
12	0.0280 ± 0.0221

<u>Y₁₁ - Weight Loss After Humidity Test (g)</u>

Variation in aluminum content of the bath and in immersion time failed to show a significant effect upon weight loss from corrosion for most of the steels. Steels 1, 2 and 10 did show some statistically significant effects but these may be of no practical value. Steels 8, 9, 13, 14 and 15 were not included in this test. Nine figures were available for each steel studied.

The significant relationships have been plotted in Figure 19.

Regression Coefficients for Y1/

<u>Steel</u>	bo	<u>b</u> j	<u>b</u> 11
1 2 3	0.0899 0.0731 0.0490	0.0218	-0.0446 -0.0373 0.01.87*
Standard	l Errors of	Regression (Coefficients
Steel	<u>SE b</u> o	<u>SE b</u> 1	SE bij
1 2 10	0.0086 0.0063 0.0094	- - 0.006(0.0106 0.0077 5 0.0115

The average weight loss from corrosion for each steel together with the 95% confidence limits for each average are shown below. There are no significant differences within this group of averages.

Steel Average Weight Loss	(g)
$1 = 0.0602 \pm 0.0203$	
2 0.0483 ± 0.0163	
0.0583 ± 0.0251	
4 0.0480 ± 0.0114	
$5 0.0445 \pm 0.0166$	
6 0.0500 ± 0.0183	
7 0.0656 ± 0.0256	
10 0.0615 ± 0.0195	
11 0.0576 ± 0.0172	
12. 0.0697 ± 0.0264	

<u>Y₁₅ + Y₁₆ - Corrosion Index (Water Film Test)</u>

Variations in aluminum content of the bath and in immersion time failed to show a significant effect upon either the black or the white corrosion indices for both the 24 and 48 hour tests for all steels. Nine figures were available for each steel for each test.

Some variation in the indices for white corrosion was obtained but no significant relationships were found. The indices for black corrosion were all "o", i.e. no corrosion was observed.

The average white corrosion indices for each steel together with the 95% confidence limits for each average are shown below. There are no significant differences within these two groups of averages. Only steels 8, 9, 13, 14 and 15 were tested in this manner.

Steel	Average White C	orrosion Index
	24 hr	<u> 48 hr</u>
8	2.8 ± 0.6	3.1 ± 0.7
9	2.3 ± 0.4	3.3 ± 0.4
13	2.9 ± 0.5	3.4 ± 0.5
14	·3 . 1 ± 0.5	3.4 ± 0.4
15	3.1 ± 0.6	3.4 ± 0.5

- 63 -

Y17 - Aluminum Content of Coatings (%)

The data used here to calculate each equation consisted of 18 aluminum analyses. Only coatings deposited from baths containing 0.075%and 0.15% aluminum were analysed for aluminum content. The experiment, as far as this variable is concerned, is therefore a 2 x 3 factorial design, two levels of aluminum in the bath and three immersion times. The equations derived have been plotted in Figure 20.

Regression Coefficients for 117					
Steel	<u>b</u> o	<u>b</u> 1	<u>b12</u>		
1	0.243	0.321	0.045*		
3	0.252	0.321	0.093		
. 4.	0.244 0.254	0.321	0.102		
6	0.252	0.357	0.087		
7 8	0.256	0.367	0.157 0.055		
9	0.249	0.320	D 059		
10	0.257	0.317	: * :		
12	0.254	0.293	~		
14	0.227	0.350	0.058*		
15	0.224	0.259			

Standard Errors of Regression Coefficients

<u>Steel</u>	<u>SE bo</u>	<u>se d</u> i	SE b12	<u>.</u>
1	0.021	0.030	0.026	0.063
2	0.016	0.023	0.020	0.049
3	0.013	0.018	0.016	0.039
4	0.015	0.021	-	0.044
5	0.021	0,030	0.026	0.064
6	0.016	0.022	0.019	0.047
7	0.007	0.010	0,009	0.022
8	0.012	0.017	0.014	0.035
. 9	0.016	0.023	· -	0.048
10	0.010	0.015	0.013	0.031
11	0.021	0.029	· . 🗕 ·	0.063
12	0.015	0.021	. —	0.044
13	0.018	0.026		0.055
14	0.022	0.031	0.027	0.066
15	0.017	0.023	.	0.050

64 -

The aluminum content of coating equations for the various steels indicated the following:

- (a) The equations for steels 1, 2, 3, 5, 6, 7, 8, 10 and 14 did not differ significantly and were combined for plotting.
- (b) The equations for steels 4, 9, 11, 12, 13 and 15 were also similar and were combined for plotting.
- (c) The two groups differed mainly in the presence or absence of the interaction term "b12".

EXPERIMENT "B"

\underline{Y}_1 - Coating Weight (oz/sq ft - sheet)

The data used to calculate each equation consisted of 18 coating weight measurements except for steel 5 where only 12 were available. In the data received, the results for four baths, 25, 26, 27 and 28, were omitted for steel 5. The equations have been plotted in Figure 21.

Regression Coefficients for Y1

bo	bl	<u>b</u> 2	<u>b</u> 22	<u>b12</u>
2.401		0.371		
2.243		0,452		
2,153		0.528	0.155	
2.423		0.450	0.073*	-0,102
2.160		0.459	0.184	
2.830		0.477	0,100	
2,562		0.534	0,171	
2.744		0.372		
2.779		0.360		
2.322		0.373	0,150	
2,398		0.405	0.077*	
2.147		0.371	0.076	
4.807		2.317	0.797	
3.611		0.546		
4.542	-0.164	2.095	1.067	0.258
	$\frac{b_0}{2.401}$ 2.243 2.153 2.153 2.423 2.160 2.830 2.562 2.744 2.779 2.322 2.398 2.147 4.807 3.611 4.542	$ \underline{b}_{0} \qquad \underline{b}_{1} $ 2.4(1) 2.243 2.153 2.153 2.423 2.160 2.830 2.562 2.744 2.779 2.322 2.398 2.147 4.807 3.611 4.542 -0.164	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

<u>Steel</u>	<u>SE ba</u>	<u>SE b</u> 1	<u>SE b</u> 2	SE b22	SE b ₁₂	<u>S</u>
1 2 3 4 5 6 7 8	0.012 0.019 0.027 0.021 0.026 0.011 0.020 0.017		0.015 0.023 0.019 0.015 0.016 0.008 0.014 0.021	0.033 0.026 0.031 0.013 0.024	0.015	0.052 0.080 0.066 0.053 0.045 0.026 0.028 0.048 0.073
9 10 11 12	0.014 0.019 0.024 0.015	ан (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0.017 0.014 0.017 0.011	0.023 0.029 0.018		0.059 0.047 0.058 0.036
13 14 15	0.042 0.048 0.059	0.034	0.030 0.034 0.042	0.051 0.073	0.042	0.117

Standard Errors of Regression Coefficients

The coating weight equations for the various steels indicated

the following:

- (a) The equations for steels 1, 2 and 3 differed to a statisticallysignificant degree. The effect of variations in lead content of the bath upon coating weight was only significant for steels 4 and 15.
- (b) The equations for steels 4 and 5 differed to a statisticallysignificant degree.
- (c) The equations for steels 6 and 7 differed to a statisticallysignificant degree.
- (d) The equations for steels 8 and 9 did not differ significantly and were combined for plotting. They did differ from the equation for steel 10.
- (e) The equations for steels 11 and 12 differed to a statisticallysignificant degree.
- (f) The equations for steels 13, 14 and 15 also differed.
- (g) The equations for steels 1 to 12 fitted the data a little better than the equations for steels 13, 14 and 15.

\underline{Y}_2 - Iron Content (g/m²)

The data used to calculate each equation consisted of 18 iron content measurements except for steel 5 where only 12 were available. The equations have been plotted in Figure 22.

<u>Steel</u>	<u>b</u> o	<u>b</u> 1	<u>b</u> 2	b	22	<u>b</u> 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14	34.95 34.17 33.18 35.13 32.47 39.95 39.25 39.97 39.58 36.07 40.58 38.97 78.00 47.68 69.67	-1.80 -0.69*	9.50 9.53 10.26 8.83 8.96 10.02 11.08 7.58 7.05 7.59 11.11 9.60 32.83 9.63 33.54	1 2 1 2 2 2 2 1 1 1 1 1 1 3 8	.93 .35 .42 .27 .68 .32 .41 .28 .35 .44 .61 .20 .97	0.98 1.03
Т)					• JU	~ • 0~
	Stan	dard Errors	of Regres	sion Goer	<u>ficients</u>	
Steel	SE b	<u>SE b</u> 1	<u>SE b</u> 2	<u>SE b</u> 22	SE b12	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.28 0.37 0.49 0.36 0.13 0.71 0.45 0.33 0.43 0.83 0.43 0.83 0.76 0.36 0.92 0.48	0.19 0.25	0.20 0.26 0.35 0.25 0.08 0.50 0.32 0.23 0.31 0.59 0.54 0.25 0.65 0.34	0.35 0.45 0.60 0.44 0.16 0.87 0.55 0.40 0.53 1.02 0.93 0.44 1.13	0.23 0.31	0.70 0.90 1.21 0.88 0.23 1.74 1.10 0.81 1.06 2.03 1.86 0.87 2.26 1.17
15	0.55	0.32	0.39	0.67	0.39	1.34

The iron content equations for the various steels indicated

the following:

- (a) The equations for steels 1, 2, 3, 4 and 5 did not differ to a significant degree. The equations for steels 1, 2 and 3 were combined for plotting as were also the equations for steels 4 and 5.
- (b) The equations for steels 6 and 7 were similar and were combined for plotting.

- (c) The equations for steels 8 and 9 were similar and were combined for plotting. The equation for steel 10 differed from those for steels 8 and 9. The effect of variations in lead content of the bath upon iron content of the coating was small and only significant for steels 8, 9, 14 and 15.
- (d) The equations for steels 13, 14 and 15 differed to a statistically significant degree.
- (e) The equations for steels 1 to 4, 7 to 9, 14 and 15 fitted the data better than the equations for steels 6, 10, 11, 12 and 13. The equation for steel 5 fitted the data better than any of the others.

Y3 - Steel Weight Loss (g/m2)

The data used to calculate each equation consisted of 24 steel weight loss measurements except for steel 5 where only 16 were

available. The equations have been plotted in Figure 23.

Regression Coefficients for Y3

<u>Steel</u>	bo	<u>b</u> 2	<u>b</u> 22
1	36.62	9.26	· 1.71
2	37.21	.9.99	· .
. 3	36.76	10.12	: '
Ĺ.	38,02	10.42	
5	35.37	9.61	• •
6	40.89	9.29	
7	39.39	10.00	2.62
8	36.50	9.72	· · · · · · · · · · · · · · · · · · ·
. 9	37.35	9.97	
10	38.81	8.05	
11	3 9. 58	9.51	
12	37.29	9.90	1.69
13	77.19	37.59	11.51
14	49.05	10.57	. *
15	75.52	37.31	8.22

Steel	<u>SE b</u> o	<u>SE by</u>	SE b22	<u>s</u>
1	0.28	0.20	0.34	0.79
2	0.22	0.27		1.09
3	0.07	0.08		0.32
4	0.16	0.20		0.80
5	0.41	0.48		1.58
6	0.30	0.33		1.31
7	0.35	0.24	0.42	0.98
8	0.52	0.63	ι.	2.53
9	0.18	0.22		0.88
10	0.19	0.24		0.94
11	0.27	0.33		1.33
12	0.46	0.32	0.50	1.29
13	1.28	0,91	1.57	3.63
14	0,54	0.66		2.63
15	1.73	1.23	2.12	4.90

The steel weight loss equations for the various steels

indicated the following:

- (a) The equations for steels 2 and 3 did not differ to a statisticallysignificant degree and were combined for plotting. The equation for steel 1 differed only slightly but significantly from those for steels 2 and 3.
- (b) The equations for steels 4 and 5 differed to a significant degree.
- (c) The equations for steels 6 and 7 showed minor but significant differences.
- (d) The equations for steels 8 and 9 were similar and have been combined for plotting. The equation for steel 10 differed significantly from those for steels 8 and 9.
- (e) The equations for steels 11 and 12 showed minor but significant differences.
- (f) The equations for steels 13 and 15 were similar and were combined for plotting. The equation for steel 14 differed significantly from those for steels 13 and 15.
- (g) The effect of variation in lead content of the bath upon steel weight loss was not significant for any of the steels tested.
- (h) The equation for steel 3 fitted the data slightly better than the equations for steels 1, 2, 4, 6, 7 and 9 to 12. The equations for this group fitted the data better than the equation for steel 5 which in turn fitted the data better than the equations for steels 8 and 14. The equations for steels 13 and 15 were the poorest fit of all.

Standard Errors of Regression Coefficients
Y₄ - Alloy Thickness (mm x 10⁻³)

The data used to calculate each equation consisted of 12 alloy thickness measurements except for steel 5 where only 8 were available. The equations have been plotted in Figure 24.

	Regr	ession Coeff	<u>icients fo</u>	<u>r Y</u> 4	
Steel.	bo	<u>b</u> 1		<u>b</u> 2	<u>b</u> 22
1 2 3 4	31.85 31.42 31.39 33.26 32.73			9.55 9.99 10.21 8.21 7.93	
6 7 8 9	36 • 30 35 • 90 34 • 24 34 • 23			8.74 9.86 8.54 8.71	1.86 2.51
10 11 12	31.60 30.70 30.78			7.26 8.64 9.26	2.06 1.49
13 14 15	99•52 43•31 88•15	-4.51	L	52.16 9.19 48.74	11.71 20.61
	Standard	Errors of Re	gression C	oefficients	· .
<u>Steel</u>	<u>SE</u> bo	<u>SE b</u> 1	SE b2	SE b22	5
1 2 3 4 5 6 7 8	0.39 0.35 0.41 0.26 0.41 0.19 0.16 0.40	· · ·	0.48 0.43 0.50 0.32 0.47 0.14 0.11 0.49	0.24 0.19	1.35 1.21 1.43 0.92 1.11 0.39 0.32 1.40
9 10 11 12 13 14	0.41 0.41 0.21 0.19 1.21 0.67		0.50 0.29 0.15 0.24 0.86 0.82	0.51 0.26 1.48	1.41 0.83 0.42 0.67 2.42 2.33
15	1.54	0,89	1.09	1.89	3.09

70

The alloy thickness equations for the various steels indicated the following:

- (a) The equations for steels 1, 2 and 3 did not differ to a significant degree and were combined for plotting.
- (b) The equations for steels 4 and 5 were also similar and were combined for plotting.
- (c) The equations for steels 6 and 7 showed a minor but significant difference in "b2".
- (d) The equations for steels 8 and 9 were similar and were combined for plotting. The equation for steel 10 differed from those for steels 8 and 9.
- (e) The equations for steels 11 and 12 differed to a minor but significant degree. The equation for steel 11 had a significant term for "b₂₂", that for steel 12 did not.
- (f) The equations for steels 13, 14 and 15 differed to a significant degree. Alloy steels 13 and 15 differed to a very marked degree in alloy thickness from all the other steels tested.
- (g) The effect of variation in lead content of the bath upon alloy thickness was only significant for steel 15.
- (h) The equations for steels 6, 7 and 11 fitted the data a little better than the equations for steels 1 to 5, 8 to 10 and 12, which group in turn fitted the data better than the equations for steels 13, 14 and 15.

<u>Y5 - Proportion of Alloy (%)</u>

The data used to calculate each equation consisted of 12 proportion-of-alloy measurements except for steel 5 where only 8 were available. The equations have been plotted in Figure 25.

and the second se		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Steel	<u>b</u> o	<u>b</u> 2
1	61.49	8.88
2	.65.11	7.81
3	65.09	6.54
4	63.21	4.19
5	67.01	3.33
6	60.83	4.18
7	65.76	4.34
8	58.28	6.78
9	57.34	7.32
10	63.92	4.35
11	60.43	6.52
12	65.52	8.59
13	93.34	6.18
14	56.31	5.52
15	88.68	8.39

Regression Coefficients for Yr

Standard Errors of Regression Coefficients

Steel	<u>SE</u> bo	SE b2	Ś
1	0.56	0.69	1.94
2	0.88	1.08	3.05
3	1.15	0.81	2.29
4	0.92	1.12	3,18
5	0.83	0.96	2.26
6	0.15	0.18	0.52
7	. 0.35	0.43	1.20
8	0.56	0.69	1.95
9	0,62	0.76	2.14
10	0.45	0.56	1.57
11	0.24	0.29	0,82
12	0.62	0.76	2.14
13	1.42	1.74	4.91
14	1.23	1.50	4.25
15	0.81	0,99	2.81

The proportion of alloy equations for the various steels indicated the following:

(a) The equations for steels 2 and 3 did not differ to a statisticallysignificant degree and were combined for plotting. The equation for steel 1 differed from those for steels 2 and 3.

- (b) The equations for steels 4 and 5 differed to a significant degree.
- (c) The equations for steels 6 and 7 differed to a significant degree.
- (d) The equations for steels 8 and 9 were similar and were combined for plotting. The equation for steel 10 differed significantly from those for steels 8 and 9.
- (e) The equations for steels 11 and 12 differed to a significant degree.
- (f) The equations for steels 13, 14 and 15 differed to a significant degree.
- (g) The effect of variation in lead content of the bath upon proportion of alloy was not significant for any of the steels tested.
- (h) The equations for steels 6 and 11 fitted the data a little better than the equations for steels 1, 3, 5 and 7 to 10, which group in turn fitted the data better than the equations for steels 2, 4 and 15. The equations for steels 13 and 14 were the poorest fit of all.

<u>Y6 - Coating Ductility</u>

Rating: See experiment "A".

The data used here to calculate each equation consisted of 12 ductility ratings except for steel 5 where only 8 were available. The equations have been plotted in Figure 26. Panels from steels 8, 9, 13, 14 and 15 were not tested for ductility. Ratings for steels 7, 11 and 12 were estimated.

Regr	<u>ession Coe</u>	<u>Cficients f</u>	or Y ₆
<u>Steel</u>	bo	<u>b</u> 2	<u>b</u> 22
1	3.25	0,31	
2	3.21	0.25	
3	3.00	0.25	0.25
4	3.21	0.31	
5	3.00	0.25	0.25
6	3.17		
7	3.08		
10	2.79	0.44	
11	3.08		
12	3.08		

Standard Errors of Regression Coefficients							
Steel	<u>SE b</u> o	SE b2	<u>SE b22</u>	<u>S</u>			
1 2 3 4 5 6 7 10 11	0.06 0.04 0.00 0.06 0.00 0.06 0.06 0.08 0.08	0.08 0.06 0.00 0.08 0.00 0.07 0.09	0.00 0.00	0.22 0.16 0.00 0.21 0.00 0.19 0.20 0.20 0.26 0.20			
12	0.06			0.20			

The ductility equations for the various steels indicated

the following:

- (a) The equations for steels 1, 2 and 4 did not differ to a significant degree.
- (b) The equations for steels 3 and 5 were identical and fitted the data exactly.
- (c) The equation for steel 10 differed from the others.
- (d) Steels 7, 11 and 12 failed to show a ductility, immersion time relationship. The ratings used for these steels were estimated.
- (e) The effect of variation in lead content of the bath upon ductility rating was not significant for any of the steels tested.

Rating: See Experiment "A".

The data used here to calculate each equation consisted of 12 adherence ratings except for steel 5 where only 8 were available. Since the ratings given for the various steels for each experimental condition were very uniform, only one equation was developed. This applied to all the steels tested.

This equation is given below together with the standard errors of the "b_s". It is plotted in Figure 27.

 $Y_7 = 6.54 + 0.99 \text{ x}_2^1 + 0.46 \text{ x}_2^{12}$ SE b's 0.01 0.01 0.01 S = 0.073

Y₈ - Coating Spangle Size (Spangles per sq in.).

The data used here to calculate each equation consisted of 12 spangle size measurements except for steel 5 where only 8 were available. The equations have been plotted in Figure 28.

Regression Coefficients for Yg

<u>Steel</u>	bo	<u>b1</u>	<u>b</u> 2	<u>b</u> 22	<u>b</u> 12
1	1.5.00	- 9.33			
2	14.83	- 9.50			
3	12.00	- 6.50			
4	9.33	- 4.83			
5	10.67	- 6.33			
6	19.75	-15.08			
7	21.75	-16,92			
8	6.17	- 3.50			
9	5.83	- 3.17			
10	9.67	- 5.33			
11	13.00	- 6.92	6.62	9.62	-7.88
12	13.00	- 5.58	4.38	7.38	-5.88
13	13.42	- 2.92	4.12		4.62
14	5.00	- 3.83	-2.25	2.75	1.75
15	6.67	- 2.83			

Steel	<u>SE b</u> o	<u>SE b1</u>	SE b2	SE b22	<u>SE b</u> 12	<u>8</u>
1	2.39	2.39			· .	8.26
2	2.88	2.88	· · · · ·			9.97
3	0.79	0.79			· · ·	2.74
Ĺ	0.57	0.57	•			1.96
5	0.99	0.99				2.43
6	1.07	1.07				3.69
7	1.27	1.27				4.41
8	0.20	0.20		1	0.24	0,68
9	0.25	0.25			0.31	0.87
ıó	0.82	0.82				2.85
1 1	1.23	0.71	0.87	1.51	0.87	2.46
12	1. 20	0.69	0.85	1.47	0.85	2.41
13	0.98	0.98	1.20		1.20	3.38
14	0.39	0.22	0.27	0.47	0.27	0.24
15	0.59	0.59				1.74

Standard Errors of Regression Coefficients

The spangle size equations for the various steels indicated

the following:

- (a) The equations for steels 1 and 2 did not differ to a statistically-significant degree and were combined for plotting. The equation for steel 3 differed from those for steels 1 and 2.
- (b) The equations for steels 4 and 5 did not differ to a statisticallysignificant degree and were combined for plotting.
- (c) The equations for steels 6 and 7 were also similar and were combined for plotting.
- (d) The equations for steels 8 and 9 were similar and were combined for plotting. The equation for steel 10 differed significantly from those for steels 8 and 9.
- (e) The equations for steels 11 and 12 were similar and were combined for plotting.
- (f) The equations for steels 13, 14 and 15 differed to a significant degree.
- (g) The effect of variation in immersion time upon spangle size was significant for steels 11, 12, 13 and 14, but not for the others.
- (h) The equations for steels 8, 9 and 14 fitted the data better than the equations for steels 3 to 7, 10 to 13 and 15, which group in turn fitted the data better than the equations for steels 1 and 2.

Yo - Spangle Contrast of Coating

Rating: See experiment "A".

The data used in these calculations consisted of 12 spangle contrast ratings except for steel 5 where only 8 were available.

The spangle contrast ratings recorded varied from 2.0 to 3.5 in steps of 0.5. About 77% were rated as 3.0, 13% as 2.5 and 9% as 3.5.

Steels 6, 7, 10, 11 and 13 showed no variation at all. Data for the other steels indicate that there was a small increase in contrast rating with an increase in lead content of the bath from 0.3 to 1.0%. There was also a tendency for the rating to increase with an increase in immersion time. These changes were small and no graphs have been plotted.

The average spangle contrast ratings for the various steels were as follows:

<u>Steel</u>	Contrast Rating
1, 2, 3, 4, 5	2.9
8, 9	3.1
14 15	3•3 2•5
	•

Y10 - Coating Brightness

Rating: See experiment "A".

The data used in these calculations consisted of 12 brightness measurements except for steel 5 where only 5 were available.

Steels 1 to 7 and 10 to 12 inclusive taken as a group indicated that an increase in immersion time from 1 to 4 minutes decreased the brightness rating from about 3.0 to about 2.5. An increase in lead content of the galvanizing bath from 0.3 to 1.0% tended to decrease the brightness rating by about 0.5 units for the 2 and 4 minute immersion times.

Steel 8 followed the same general pattern but the measurements were about 0.5 units higher.

With steel 9 an increase in lead content of the galvanizing bath from 0.3 to 1% increased the brightness measurement from 3.0 to 3.5. No other effect was apparent.

With steel 13 an increase in lead content of the bath from 0.3 to 1% increased the brightness measurement from about 3.8 to 5.0.

Steel 14 showed a small drop (0.5 units) in brightness rating with an increase in immersion time.

Steel 15 showed a tendency toward an increase in brightness measurement with an increase in immersion time.

The average brightness ratings for the various steels are as follows:

Steel	Brightness Rating
1, 11	2.8
2, 3	2.5
4, 5, 7, 12	2.0
6, 10	2.7
8	3.0
9	3.2
13	4.4
14	3•1
15	3•8

No graphs have been plotted for this section.

Y11 - Coating Roughness

Rating: See experiment "A".

The data used in these calculations consisted of 12 roughness ratings except for steel 5 where only 8 were available.

Steels 8 and 9 showed a tendency for the roughness rating to increase about 0.3 with an increase in lead content of the galvanizing bath from 0.3 to 1% Pb.

Steel 13 showed a tendency for the roughness rating to increase about 0.5 with an increase in immersion time from 1 to 4 minutes.

The other steels failed to show significant relationships for the roughness rating.

The average roughness ratings for the various steels are as follows:

Steel					Roughness	Rating
ı,	3, 4, 5, 12, 15	7,9	, 10,	11	1.5	
2 6 8, 9 14	13				1.4 1.9 1.3 1.7 3.4	

No graphs have been plotted for this section.

- 80 -

Y₁₂ - Average Gain in Diffusivity (%) Y₁₃ - Weight Gain After Humidity Test (g) Y₁₄ - Weight Loss After Humidity Test (g) Y₁₅ - Corrosion Index (White), 24 hr Water Film Test Y₁₆ - Corrosion Index (White), 48 hr Water Film Test

Variation in lead content of the bath and in immersion time failed to show a significant effect upon any of the above dependent variables. Six figures were available for each steel for most of the tests. In all there were nine missing figures in these tests.

The indices for black corrosion were all "o", indicating no observable black corrosion.

The averages for each steel for each of these variables together with the 95% confidence limits for each average are as follows:

<u>Steel</u>	¥12	<u>¥</u> 13	⊻ <u>14</u>	¥15	⊻16
	(%)	(g)	(g)	(Index)	(Index)
1 2 3 4 5 6 7 8 9 10 11 2 3 14 15	$23 \pm 16 \\ 40 \pm 15 \\ 28 \pm 15 \\ 33 \pm 24 \\ 31 \pm 23 \\ 19 \pm 21 \\ 35 \pm 23 \\ - \\ 28 \pm 18 \\ 23 \pm 12 \\ 27 \pm 13 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$12 \pm 5 \\ 9 \pm 2 \\ 15 \pm 13 \\ 11 \pm 4 \\ 11 \pm 3 \\ 15 \pm 7 \\ 11 \pm 2 \\ - \\ 11 \pm 7 \\ 12 \pm 1 \\ 14 \pm 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$36 \pm 14 \\ 34 \pm 9 \\ 49 \pm 38 \\ 47 \pm 23 \\ 34 \pm 13 \\ 40 \pm 19 \\ 41 \pm 9 \\ - \\ 48 \pm 13 \\ 34 \pm 6 \\ 41 \pm 15 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$ \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$ \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$

There are no significant differences within each set of

averages.

SULMARY

The nature of the relationships studied may be seen by reference to the equations listed and their plots on the attached graphs.

The effect of immersion time upon the various dependent variables in experiment "A" appears in general to be linear. If the 0.3% Pb tests in experiment "B" were combined with the experiment "A" series, it would be found that many of these variables would show a curvilinear relationship with immersion time.

The full hard steel, 10, and the alloy steels 13, 14 and 15 do not a ppear to follow quite the same pattern as the others. The steel 14 relationships resemble the others more than do those for steels 13 and 15. The steel 14 coating buildup tended to taper off after the first minute of immersion time as did most of the others, but the coating buildup for steels 13 and 15 continued at a high rate.

Variation in the lead content from 0.3 to 1.05 had very little effect (experiment "B") upon most of the dependent variables measured. Its main effect appeared to be on spangle size. An increase in lead content tended to increase the spangle size.

For each variable throughout the foregoing text, the number of figures used in the regression calculations has been provided. For variables Y_7 , Y_8 , Y_9 , Y_{10} , Y_{11} , Y_{15} and Y_{16} each individual figure used in the calculations was an average of two individual figures obtained from the experiment under identical conditions. The data obtained from the accelerated corrosion tests in both experiments failed to yield concrete information. Such information as was provided was inconclusive and reappraisal of the tests used appears advisable.

It is to be noted that atmospheric corrosion tests at a fully instrumented semi-industrial site are in progress and the results obtained will be made available at a later date.

YI- COATING WEIGHT VS ALUMINUM CONTENT AND IMMERSION TIME

-83

FIG. 3

Y2-IRON CONTENT VS ALUMINUM CONTENT AND IMMERSION TIME

.

0.05

0.10

0.15

85

FIG. 6

40

30

IMMERSION TIME - SEC

10 20 50

60

FIG. 7

.

8

.

.

-87-

 \bullet

-88-

.

-90-

-92-

-93-

0.3 0.5

LEAD CONTENT OF BATH - %

1.0

FIG. 28

-95

0.39

1.0%

Pb

1.0%

0.3%

0.3% 1.0%

IMMERSION TIME - MINI