This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

DE	CL	455	TEII	ED
DATE	24/1			-
AUTHOR	ZED BY	ncc	unner	ghe_

CANADA

DEPARTMENT OF MINES AND TECHNICAL SURVEYS

OTTAWA

MINES BRANCH INVESTIGATION REPORT IR 62-21

CONCENTRATION OF ILMENITE FROM TITANIFEROUS MAGNETITE ORE FROM LAURENTIAN TITANIUM MINES, LIMITED, WEXFORD TOWNSHIP, QUEBEC

by

W. S. JENKINS

MINERAL PROCESSING DIVISION

NOTE: THIS REPORT RELATES ESSENTIALLY TO THE SAMPLES AS RECEIVED. THE REPORT AND ANY CORRESPONDENCE CONNECTED THEREWITH SHALL NOT BE USED IN FULL OR IN PART AS PUBLICITY OR ADVERTISING MATTER.

COPY NO. 21

MAY 2, 1962

Mines Branch Investigation Report IR 62-21

CONCENTRATION OF ILMENITE FROM TITANIFEROUS MAGNETITE ORE FROM LAURENTIAN TITANIUM MINES, LIMITED, WEXFORD TOWNSHIP, QUEBEC

by

W. S. Jenkins^{*}

SUMMARY OF RESULTS

The ore assayed:

Soluble iron		19.86 %
Titanium dioxide		9.48 "
Phosphorus pentoxide	-	1.63 "
Su1phur		0.36 "

The ilmenite could be recovered by cobbing the ore at -20M or -65M and concentrating the reground rougher concentrate by the Jones high intensity separator. When cobbing at -20M, the finished -150M ilmenite concentrate assayed 42.87% TiO₂ and the recovery was 31.9%. At -65M the finished -150M ilmenite concentrate assayed 37.54% TiO₂ and the recovery was 49.0%. The P_2O_5 in both concentrates was lower than 0.05%.

The concentrate from flotation assayed TiO₂, 27.72%; P₂O₅, 0.02%; silica, 20.16%. The recovery of TiO₂ was 48.1%. The concentrate was of lower grade on account of the large amount of gangue which did not float. It was also difficult to depress ilmenite.

* Senior Scientific Officer, Mineral Processing Division, Mines Branch, Department of Mines and Technical Surveys, Ottawa, Canada.

CONTENTS

	Page
Summary of Results	i
List of Tables	1 11
Introduction	1
Shipments Location of the Property	1 1 1 2 2
Mineralogical Examination	2
Summary of Procedure and Results of Tests	. 3
Details of the Tests	5
Test 1 - Recovery of Ilmenite from -200M Ore by High Intensity Magnetic Concen- tration of Wilfley Table Concentrate.	5
Test 2 - Recovery of limenite from -20M Ore by High Intensity Magnetic Concen- tration of Stearns Concentrate at -150M	7
Test 3 - Recovery of Ilmenite from -65M Ore by High Intensity Magnetic Concen- tration of Stearns Concentrate at -150M	10
Test 4 - Recovery of Ilmenite from -2014 Ore and Flotation of Apatite from the Ilmenite Concentrate at -150M	13
Conclusions	16
Acknowledgements	16

.

LIST OF TABLES

Table		Page
1	Chemical Analysis of the Head Sample of the Remaining Ore of Shipment 1	2
2	Summary of Tests	4
3	Results of Magnetic Concentration of -200M Ore by the Jeffrey- Steffensen Separator	5
4 .	Results of Gravity Concentration of the Jeffrey-Steffensen Tailing by the Wilfley Table	6
5	Results of High Intensity Magnetic Concentration of the Table Concen- trate by the Jones Separator	6
[•] 6	Results of Magnetic Concentration of -20M Ore by the Ball-Norton Separator	8
7	Results of Gravity Concentration of the Ball-Norton Tailing by the Wilfley Table at -20M	8
8	Results of High Intensity Magnetic Concentration of the Wilfley Table Concentrate by the Stearns Dry Separator at -20M	9
9	Results of High Intensity Magnetic Concentration of the Stearns Con- centrate by the Jones Separator at -150M	9
10	Results of Magnetic Concentration of -65M Ore by the Crockett Separator	10

LIST OF TABLES (Cont'd)

Tab1e		Page
11	Results of Magnetic Concentration of -65M Crockett Concentrate by the Jeffrey-Steffensen Separator	11
12	Results of Gravity Concentration of 65M Crockett Tailing by the Wilfley Table	11
13	Results of High Intensity Magnetic Concentration of the -65M Wilfley Table Concentrate by the Stearns Dry Separator	12
.14	Results of High Intensity Magnetic Concentration of the Stearns Con- centrate by the Jones Separator at -150M.	12
15	Results of Magnetic Concentration of -20M Ore by the Crockett Separator.	14
16	Results of Gravity Concentration of the Crockett Sand Tailing by the Deister Table	14
17	Results of High Intensity Magnetic Concentration of Deister Table Concentrate by the Stearns Dry Separator	15
18	Results of Flotation of Apatite from the Stearns Concentrate	15

INTRODUCTION

Shipments

Three shipments of ore were received at the Mines Branch laboratories in 1960, from Mr. B. C. Salamis, President, Laurentian Titanium Mines Limited, 4462 St. Denis Street, Montreal, Quebec. The first shipment was received on June 3, 1960, weight 250 lb. The ore of this shipment was used for tests in this investigation. An investigation on magnetite concentration from the three shipments of ore received during 1960, was reported in Mines Branch Investigation Report IR 60-78.

Location of the Property

The shipments originated from the property of Laurentian Titanium Mines Limited, in Wexford Township, Terrebonne County, Quebec, about 60 miles northwest of Montreal.

Description of the Property

The property was described in Report IR 60-78, as a titaniferous-magnetite ore body of low grade, estimated at 100 million tons.

Purpose of the Investigation

On January 31, 1962, Mr. Salamis requested that the investigation of the ore in Shipment 1 be continued to determine (1) the recovery and grade of ilmenite concentrate that could be obtained from the non-magnetic tailing after concentrating the magnetite in the ore, and (2), if the ilmenite concentrate would have the specifications required for a commercial grade of titanium concentrate. The specifications include a low phosphorus content with a maximum of 0.05% P205.

Sampling and Analysis of Shipment 1

The ore remaining from Shipment 1 was crushed to -20M and a head sample was riffled out for analysis of the feed for the tests.

	TA	BLE	1
--	----	-----	---

Chemical Analysis of the Head Sample of the Remaining Ore of Shipment 1

	%
Total iron	24.06
Soluble iron	19.86
Titanium dioxide	9.48
Silica	30.74
Phosphorus pentoxide	1.63
Sulphur	0.36

No semi-quantitative spectrographic analysis was made on this head sample. A spectrographic analysis of the original head sample of Shipment 1 is shown in Table 2 in Report IR 60-78^{\pm}. In addition to the above major constituents, tungsten, manganese, vanadium and copper are present in minor or trace amounts.

MINERALOGICAL EXAMINATION

The mineralogy of Shipment 1 was described in Report IR 60-78. It was taken from the Internal Report MS-60-64, by W. E.

*Mines Branch Investigation Report IR 60-78, "Concentration of Titaniferous Magnetite Ore from Laurentian Titanium Mines Limited, Nexford Township, P.Q.", December 13, 1960. White, Mineral Sciences Division, July 4, 1960.

Ilmenite (and magnetite) are distributed unevenly through the gangue as coarse to fine irregular grains and aggregates. Magnetite and ilmenite are not intimately and finely intergrown and both minerals are largely free of small inclusions of gangue. Gangue minerals are plagioclase and dark pyroxene with minor amounts of apatite, sulphides and garnet as small scattered grains.

Although hematite was not reported in the examination of this shipment, it is intimately associated with the ilmenite in some samples from Shipments 2 and 3. Since complete liberation would be impossible, any ilmenite concentrate would contain some hematite altering the magnetic properties of the mineral and lowering the TiO₂ grade obtainable.

SUMMARY OF PROCEDURE AND RESULTS OF TESTS

After concentrating the ore magnetically to recover magnetite, the tailings were concentrated by gravity and by high intensity magnetic concentration to recover a finished ilmenite concentrate.

The gravity concentrate was reconcentrated by a Stearns high intensity dry separator. In three tests, this concentrate was reground to -150M and concentrated by the Jones high intensity wet separator. In Test 4, flotation was used to concentrate the apatite remaining in -150M ilmenite concentrate from the Stearns separator.

The test procedures and results for the four tests are summarized in Table 2.

- 3 -

TABLE 2

Summary of Tests

	· · · · ·	and the second		
	Test 1	Test 2	Test 3	Test 4
Initial grind Magnetite concentration Iron conc % Fe Ilmenite product % TiO2 TiO2 recovery %	-200M wet drum 69.12 10.31 95.5	-20M dry belt 9.83 91.5	-65M wet be1t 65.26 [±] 10.58 91.9	-20M wet belt 44.76 8.70 76.0
Ilmenite concentration Ilmenite conc % TiO ₂ TiO ₂ recovery %	₩ilfley Table 27.25 41.2	Wilfley Table 19.41 73.6	Wilfley Table 18.97 82.7	Deister Table 18.47 64.4
Ilmenite cleaning Ilmenite conc % TiO2 TiO2 recovery %	Jones separator	Stearns (dry bel 32.53 47.9	t)Stearns (dry belt) 30.51 70.9	Stearns (dry belt) 30.86 54.1
Ilmenite recleaning Regrind Ilmenite conc % TiO2 % P2O5 TiO2 recovery %		Jones separator -150M 40.85 0.045 36.5	Jones separator -150M 35.79 0.043 55.1	Flotation of Apatite -150M
Ilmenite 2nd recleaning <u>Final Product</u> Assay % TiO2 % Fe % P2O5 % SiO2 Recovery TiO2 %	38.50 31.50 0.05 7.70 35.7	Jones separator 42.87 0.01 3.92 31.9	Jones separator 37.54 0.03 6.18 49.0	27.72 23.42 0.02 20.16 48.1

*Recleaned on wet drum

DETAILS OF THE TESTS

Test 1 - <u>Recovery of Ilmenite from -200M Ore by High Intensity</u> Magnetic Concentration of Wilfley Table Concentrate

A 2000 g sample of the ore was ground to -200M and concentrated by the Jeffrey-Steffensen separator to recover magnetite.

The Jeffrey-Steffensen tailing was concentrated by gravity on a Wilfley table and the table concentrate was concentrated by the Jones high intensity magnetic separator to recover ilmenite.

TABLE 3

Product	Weight	Analy	Analysis %		Distn %	
	1/0	Fe	Ti02	Fe	Ti02	R/C
Feed ^X Mag conc	100.0 12.6	20.26 69.12	9.35 0.89	100.0 43.1	100.0	7.9:1
Midds Tailing	4.8 82.6	36.60 11.84	6.45 10.81	8.6 48.3	3.3 95.5	

Results of Magnetic Concentration of -200M Ore by the Jeffrey-Steffensen Separator

*calculated

Additional analyses of the mag conc -

Phosphorus	pentoxide	 0.04 %
Sulphur		 0.075 %
Silica		 0.44 %

- 5 -

- O -		
-------	--	--

	Weight %		Ana 1y	Analysis %		Distn %				
Product	In	Iņ			In t	est		orig ed	R/C	
•	test	orig feed	Fe	Ti02	Fe	TiO2	Fe	Ti02	·	
Feed	100.0	82.6	11.84	10.81	100.0	100.0	48.3	95.5		
Table conc	17.1	14.1	25.22	27,25	36.4	43.1	17.6	41.2	7.1:1	
Tailing	82.9	68. 5	9.08	7.42	63.6	56.9	30.7	54.3		

Results of Gravity Concentration of the Jeffrey-Steffensen Tailing by the Wilfley Table

*calculated

of the Table Concentrate by the Jones Separator Weight % Analysis % Distn % In orig feed Product In R/C In test In orig TiO2 P205 Ti02 test T102 Feed 100.0 14.1 24.66 1.16 100.0 41.2 35.7 C1 conc @ 7 amp 7.8 38.50 0.05 86.7 12.7:1 55.6 C1 midds # 5.7 0.8 15.41 0.30 3.6 1.5 C1 tailing Ħ 0.3 9.73 1.11 0.7 0;3 1.9 Rougher conc " * 63.2 1.03 8.9 35,56 91.0 37.5 11.2:1 Rougher midds

7.05

4.06

1.92

4.92

6.9

2.1

2.8

0.9

Results of High Intensity Magnetic Concentration

TABLE 5

*calculated

24.1

12.7

3.4

1.8

@ 7 amp

@7 amp

Rougher tailing

Additional analyses of the cleaner concentrate

Iron	, .	31.50 %
Sulphur	-	0.17 %
Silica	 · .	7.70 %
Inso1ub1e	-	18.58 %

Test 2 - <u>Recovery of Ilmenite from -20M Ore by High Intensity Magnetic</u> Concentration of Stearns Concentrate at -150M.

A sample of 6000 g of -20M ore was magnetically concentrated by the Ball-Norton dry belt separator at low intensity to recover magnetite. The tailing was concentrated by gravity on a Wilfley table. The table concentrate was concentrated by a Stearns high intensity dry separator at -20M. The Stearns concentrate was ground by stage grinding to pass 150M. This material was the feed for the Jones high intensity wet separator. Three passes were made of material through the Jones separator. The first pass was made at 0 amp to recover magnetite freed by grinding to -150M. The second pass was made at 7 amp which produced a rougher concentrate, a middling, and a tailing. The rougher concentrate was passed again at 7 amp.

The products were designated as cleaner concentrate, middling and tailing. As the critical element in ilmenite concentrate is phosphorus, the products have been analyzed for TiO_2 and P_2O_5 , to show the distribution in Table 9. The analysis of the rougher concentrate was calculated from analyses of the cleaner concentrate, middling and tailing.

It is expected that a maximum of 0.05% P₂0₅ would be allowable in the finished ilmenite concentrate.

- 7 -

TABLE 6

Product	Weight	Analys	sis %	Dist	R/C	
	%	Ti02	P205	Ti02	P205	
Feed ¹⁴ Mag conc Tailing	100.0 18.6 81.4	8.90 4.85 9.83	1.52 0.69 1.71	100.0 10.2 89.8	100.0 8.5 91.5	5.4:1

Results of Magnetic Concentration of -20M Ore by the Ball-Norton Separator

☆calculated

TABLE 7

Results of Gravity Concentration of the Ball-Norton Tailing by the Wilfley Table at -20M

	Weight %		Ana1y	Analysis %			Distn %			
Product	In	In orig			In t	est	In o fee	\$	R/C	
	test	feed	Ti02	P205	Ti02	P205	Ti02	P205		
Feed [*] Table conc	100.0 41.5	81.4 33.7	9.83 19.41	1.71 0.83	100.0 81.9	100.0	89.8 73.6	91.5 18.5	6.4:1	
Tailing	41.5 58.5	47.7	3.04	2.33	18.1	79.8	16.2	10.5 73.0	0.411	

#calculated

Additional Analyses of the Ball-Norton Concentrate -

Iron	-	56.62 %
Sulphur	-	0.29 %
Silica	-	6.08 %
Insoluble		15.92 %

Results of High Intensity Magnetic Concentration of the Wilfley Table Concentrate by the Stearns Dry Separator at -20M

	Weig	sht %	Analysis %			Distn %				
Product	In	In orig			In t	est	In orig	-	R/C	
	test	feed	Ti02	P205	Ti02	P205	TiO2	P205		
Feed	100.0	33.7	19.41	0.83	100.0	100.0	73.6	18.5		
Mag conc	38.9	13.1	32.53	0.53	65.1	24.0	47.9	4.4	7.6:1	
Midds	39.8	13.4	13.94	0.78	28.6	36.5	21.1	6.7		
Tailing	21.3	7.2	5.71	1.58	6.3	39.5	4.6	7.4		

#calculated

TABLE 9

Results of High Intensity Magnetic Concentration of the Stearns Concentrate by the Jones Separator at 150M

				·					·····	
	Weight %		Analys	Analysis %		Distn %				
Product	In	In orig			In t	est	ln orig	feed	R/C	
	test	feed	T102	P205	TiO2	P205	TiO2	P205		
1000	1.00.0	13.11	32.04	0.64	100.0	100.0	47.9	4.42		
Conc @ Osatip	5.07	0.66	16.20	0.14	2.5	1.1	1.2	0.05	152:1	
C1 coñc © 7 amp	49.78	6.53	42.87	0.01	66.6	0.8	31.9	0.04	15.3:1	
C1 midds	5.97	0.78	30.51	0.23	5.7	2,2	2.7	0.10		
" tailing Rougher conc [%]	3.95	0.52	31.11	0,20	3.9	1,2	1.9	0.05		
@ 7 amp	59.70	7.83	40.85	0.045	76.2	4.2	36.5	0.19	12.7:1	
Rougher midds	18.76	2.46	18.05	1.52	10.6	44.7	5.1	1.98		
Rougher tailing	16.47	2.16	20.83	1.94	10.7	50.0	5.1	2.20		

#calculated

The Jones cleaner concentrate is the final ilmenite concentrate recovered from the sample of ore. It assayed:

In terms of the original feed, 31.9% of the TiO₂ in the ore was recovered at a ratio of concentration of 15.3:1. The P₂O₅ was reduced to 0.01\%. The rougher concentrate, assaying 40.85% TiO₂ and 0.045% P₂O₅, contains 36.5% of the TiO₂ in the feed at a ratio of concentration of 12.7:1.

Test 3 - Recovery of Ilmenite from -65M Ore by High Intensity Magnetic Concentration of Stearns Concentrate at -150M

A sample of 10 1b of -65M ore was magnetically concentrated by the Crockett wet separator. The Crockett tailing was concentrated by the Wilfley table. The table concentrate was concentrated by the Stearns high intensity dry separator followed by high intensity magnetic concentration of the Stearns concentrate at -150M by the Jones separator.

In this test the -65M Crockett concentrate was cleaned on the Jeffrey-Steffensen separator without regrinding.

TABLE 10

Results	of Ma	agne	tic	Concer	ntration	of	-65M	0ŕ	e	1
	by	the	Cro	ockett	Separate)r			7	

	and a second		and the second se		1.671			· · · · · · · · · · · · · · · · · · ·
D	Weight	Ana1	ysis %			Distn 🏾 🖉	6	· /0
Product	%.	Fe	T102	P205	Fe	T102	P205	R./C
Feed ^A Mag conç ^A	100.0 21.6	19.86 53.49	9.33 3.49		100.0 58.3	100.0 8.1	100.0 18.0	4.6:1
Tailing ^N	78.4	10.58	10.94	1.60	41.7	91.9	82.0	

Acalculated

Results of Magnetic Concentration of -65M Crockett Concentrate by the Jeffrey-Steffensen Separator

	Weig	ht %	Ana	lysis	51 10		Distn	%		
Product	In	In orig				In t	est	ln o fee		r/C
	test	feed	Fe	Ti02	P205	Fe	Ti02	Fe	Ti02	
Feed ^A	100.0	21.6	53.49	3.49		100.0	100.0	58,3	8.1	
Mag conc	75.9	16.4	65.26	2.53	0.28	92.6	55.0	54.0	4.5	6.1:1
Midds	9.1	2.0	23.76	6.42		4.0	16.7	2.4	1.4	
Tailing	15.0	3.2	11.92	6.60		3.4	28.3	1.9	2.2	

#calculated

Additional analyses of the Jeffrey-Steffensen concentrate -

Su1phur	-	0.15 %
Silica		2.16 %
Insolub1e		6.54 %

TABLE 12

Results of Gravity Concentration of the -65M Crockett Tailing by the Wilfley Table

· · · · · · · · · · · · · · · · · · ·	Weig	ht %	Analysis %		Distn %				
Product	In	Tn			In t	est	In o fe		r/C
	test	orig feed	Ti02	P205	Ti02	P205	Ti02	P205	
t Feed	100.0	78.4	10.94	1.60	100.0	100.0	91.9	82.0	
Table conc	48.9	38.3	18.97	0.70	89.9	27.5	82.7	22.5	2.6:1
Tailing	51.1	40.1	3.26	2.45	10.1	72.5	9.2	59.5	

"calculated

TΛ	BLE	13

Ī		Weig	ht %	Analy	sis %		Dist	n %			
	Product	In	In			In t	est	In orig		R/C	
		test	orig feed	Ti02	P205	Ti02	P205	Ti02	F205		
	Feed	100.0	38.3	18.97	0.70	100.0	100.0	82.7	22.5		
	Mag conc Midds	.53.4 9.6	20.4	30.51 17.45	0.97	85.8 8.8	73.6 6.3	70.9 7.3	16.6 1.4	4.9:1	
	Tailing	37.0	14.2	2.74	0.38	5.4	20.1	4.5	4.5		

Results of High Intensity Magnetic Concentration of the -65M Wilfley Table Concentrate by the Stearns Dry Separator

*calculated

Additional analyses of the Stearns concentrate and midds:

 Conc
 Midds

 Iron
 25.96%
 14.70%

 Sulphur
 0.21%

TABLE 14

Results of High Intensity Magnetic Concentration of the Stearns Concentrate by the Jones Separator at -150M

••••••••••••••••••••••••••••••••••••••	Weigl	nt %	Analy	sis %	· · · · · · · · · · · · · · · · · · ·	Distn	%		
Product		In			In te	st	In orig		R/C
	In test	orig feed	Ti02	P205	Ti02	P205	Ti02	P205	
Feed [#] Conc @ 0 amp	100.0 2.8	20.43 0.57	29.14 36.29	0.28 0.26	100.0 3.5	100.0 2.6	70.9 2.5	16.6 0.5	<u>175:1</u>
C1 conc 7 amp	53.7	10.96	37.54	0,03	69.1	5.7	49.0	0.9	9.1:1
C1 midds " C1 tailing "	6.2 3.4	1.26 0.69	27.06 24.06	0.09 0.17	5.7 2.8	1.9 2.1	4.1 2.0	0.3 0.4	
Rougher conc ¹ @ 7 amp	63.3	12.91	35.79	0.043	77.6	9.7	55.1	1.6	7.75:1
Rougher midds " tailing	19.0 14.9	3.90 3.05	15.59 16.98	0.56	10.2 8.7	37.5 50.2	7.2	6.2 8.3	

*calculated

Additional analyses of the Jones cleaner concentrate .

Sulphur -Silica -

- 0.080 % - 6.18 %

12 -

The results of this test indicated that the cleaner ilmenite concentrate contained 49.0% of the TiO2 in the original feed, at a ratio of concentration of 9.1:1.

The rougher ilmenite concentrate assayed 0.043% P₂0₅ by calculation, with a recovery of 55.1% of the TiO₂ in the feed at a ratio of concentration of 7.75:1.

The amount of P_{205} in the ilmenite concentrate for commercial use is said to be limited to 0.05%.

Test 4 - Recovery of Ilmenite from -20M Ore, Flotation of Apatite from the Ilmenite Concentrate at -150M

A sample of 10 1b of -20M ore was magnetically concentrated by the Crockett wet separator. The Crockett tailing was concentrated by gravity on a Deister table. The Deister table concentrate was concentrated by the Stearns high intensity dry separator. The Stearns separator rejected some apatite free of magnetic particles at -20M. The apatite was freed from locked grains by grinding the Stearns concentrate to -150M and was eliminated by flotation. In this test the flotation tailing is the ilmenite concentrate.

The concentrate, ground to -150M was conditioned in a flotation machine for 5 minutes with soda ash at the rate of 3 lb/ton of feed, pH of pulp 10.2. Hardesty No. 4 oleic acid was used as a collector for apatite and was stage fed; 3/4 lb/ton was used in the test. No frother was used. The rougher float was cleaned twice with an addition of 0.05 lb/ton of oleic acid to each cleaner stage, but no acceptable product was obtained.

A microscopic examination of the ilmenite concentrate showed a considerable amount of gangue minerals to be present.

Results of Magnetic Concentration of -20M Ore by the Crockett Separator

					,	
Product	Weight	Analys	sis %	Dis	tn %	R/C
	7.	Fe	Ti.02	Fe	T102	, , , , , , , , , , , , , , , , , , ,
Feed ^k Mag conc Sands tailing Slime tailing		18.95 44.76 8.70 8.96	9.04 6.52 10.26 6.78	100.0 67.1 30.7 2.2	100.0 20.5 76.0 3.5	3.5:1

Acalculated

TABLE 16

Results of Gravity Concentration of the Crockett Sand Tailing by the Deister Table

				17 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -		t ,		• .	
	Weight %		Analysis %						
Product	In	In orig			· · ·	test	In orig	feed	R/C
	test	feed	Fe	Ti02	Fe	T102	Fe	Ti02	
Feed ^A	100.0	67.0	9.86	9.93	100.0	100.0	30.7	76.0	
Table conc	40.0	26.8	18.47	18.47	74.9	84.7	23.0	64.4	3.7:1
Tailing	60.0	40.2	4.12	2.53	25.1	15.3	7.7	11.6	

#calculated

ted

S

Results of High Intensity Magnetic Concentration of the Deister Table Concentrate by the Stearns Dry Separator

	Wei	.ght %	Analy	sis %	Distn %				
Product	In	In orig			In test			n feed	R/C
	test	feed	Fe	Ti.02	Fe	Ti02	Fe	TiO2	
Feed ^A	100.0	26.8	18.47	21.03	1.00.0	100.0	23.0	64.4	
Mag conc	57,3	15.3	25.96	30,86	80.5	84.0	18.5	54.1	6.5:1
Midds	20.8	5.6	8,50	8.26	9.6	8.2	2.2	5.3	
Tailing	21.9	5.9	8.36	7,50	9.9	7.8	2.3	5.0	
				-i-					

Acalculated

TABLE 18

Results of Flotation of Apatite from the Stearns Concentrate

an finn an a	Weight %		Analysis % Distn %		% Analysis %		<i>¶</i> 0	
Product	In	In orig			In test		In orig feed	R/C
	test	feed	Ti02	P205	TiO2	P205	TiO ₂	
Feed ^Å	100.0	15.3	30,76	0.56	100.0	100.0	54.1	
Apatite float	16.0	2.5	33.83	3.07	17.6	87.2	9.5	41:1
C1 tailing 1	21.3	3.3	34.22	0.16	24.2	5.8	13.1	
C1 " 2	8.8	1.3	35.12	0.29	10.1	4.7	5.4	
Rougher tailing ilmenite conc	g 53.4	8.2	27.72	0.02	48.1	2.3	26.1	12.2:1
Rougher concentrate ^{\$}	46.6	7.1	34.26	1.18	51.9	97.7	28.0	14:1

Acalculated

Additional analyses of ilmenite concentrate -

Iron - 23.42 % Sulphur - 0.23 % Silica - 20.16 %

In this test, the rougher flotation tailing is the ilmenite concentrate.

CONCLUSIONS

The results indicated that grinding to -65M was best for magnetite concentration and rougher concentration of the ilmenite by gravity (Test 3).

Grinding of the rougher ilmenite concentrate to -150M was necessary to liberate the apatite. At this grind the Jones high intensity wet magnetic separator produced acceptable ilmenite concentrates with less than 0.05% P205.

Although dry high intensity (Stearns) treatment reduced the tonnage to the Jones separator, the cost of drying would make this step uneconomic.

Apatite flotation successfully reduced the P_2O_5 content to less than 0.05% P_2O_5 but the resulting concentrate contained too much . gangue mineral.

ACKNOWLEDGEMENTS

All chemical analyses were made in the Analytical Chemistry Sub-division of the Mineral Sciences Division, by F. W. Brethour, J. Hole and Miss E. Mark.

WSJ:EBM