CANADA

DEPARTMENT OF MINES AND TECHNICAL SURVEYS OTTAWA

MINES BRANCH INVESTIGATION REPORT IR 60-111

FLOTATION OF ACID CONSUMERS FROM ELLIOT LAKE ORES

by

W. R. HONEYWELL, V. F. HARRISON, W. A. GOW & H. W. SMITH

EXTRACTION METALLURGY DIVISION

NOTE: THIS REPORT RELATES ESSENTIALLY TO THE SAMPLES AS RECEIVED. THE REPORT AND ANY CORRESPONDENCE CONNECTED THEREWITH SHALL NOT BE USED IN FULL OR IN PART AS PUBLICITY OR ADVERTISING MATTER.

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

COPY NO.

1

JANUARY 23, 1961

m. Djinghayian

Mines Branch Investigation Report IR 60-111

FLOTATION OF ACID CONSUMERS FROM ELLIOT LAKE ORES

by

W.R. Honeywell^{*}, V.F. Harrison^{*}, W.A. Gow^{*} *** and H. W. Smith

SUMMARY OF RESULTS

Laboratory flotation test work was done to investigate the possibility of removing acid consuming gangue minerals from Elliot Lake uranium ores by flotation prior to leaching in an effort to reduce acid leach costs.

Uranium which reported in the flotation concentrate was partially removed by magnetic means. This uranium product was combined with the flotation tailings for extraction by leaching.

Maximum uranium extraction on the flotation tailings plus magnetics was obtained with a sulphuric acid consumption of 21.3 lb/ton as compared to 35.8 lb/ton of the whole ore. \mathbf{The} loss of uranium by flotation was 7.6% and the overall extraction was 88.1%. The cost of the flotation reagents used would be between 7 and 10 cents per ton of ore.

It was found that the alumina and silica contents of the leach solutions were appreciably decreased by acid consumer flotation.

ste ste ste Senior Scientific Officers, Head, Ore Treatment Section and Senior Development Officer, Hydrometallurgy Sub-Division, Extraction Metallurgy Division, Mines Branch, Department of Mines and Technical Surveys, Ottawa, Canada.

3/2 3/2

i

CONTENTS

	Page,
Summary of Results	i
Introduction	1
Details of Investigation	2
Flotation Test Work	3
Feed Preparation	3
Flotation	3
Magnetic Separation	4
Leaching Test Work	6
Results	7
Discussion	18
Conclusion	19
Acknowledgment	20
Reference	20
Appendix	21
Leaching Test Methods	21
Acid Consumption Tests	21
Uranium Extraction Tests	21

INTRODUCTION

In the Elliot Lake ores some of the matrix gangue minerals are acid soluble and so account for part of the leach acid consumption. Elimination of these minerals by flotation offers a means to reduce operating costs. The object of the present flotation work was to investigate the possibility of floating off the acid consumers, including chlorite, carbonate, serpentine, micas, pyrrhotite, and then to check the acid consumption of the uranium-bearing flotation tailings and their amenability to acid leaching for uranium extraction. In current practice the acid consumption for mine ore is approximately 40 lb H_2SO_4 per ton of ore^{*}. In order for this work to be beneficial, the saving in overall acid requirement must be more than equal to the cost of the flotation process plus the value of the uranium lost by this procedure.

In addition to the saving in acid, an important consideration would be the partial elimination of soluble silica and alumina which could have adverse effects on thickening, filtration and ion exchange.

This work was designed to complement previous studies carried out by this Division to concentrate uranium by flotation⁽¹⁾. With respect to this investigation, since the ores in the Elliot Lake area are similar to one another, the results obtained on one ore would be applicable to other ores in this area.

1

Acid to maintain excess acidity not included.

DETAILS OF INVESTIGATION

The present investigation was carried out on a rod mill feed sample from an Elliot Lake area mine (our Ref. No. 6/59-11). A head sample cut from this material was analysed for uranium and other significant elements. The results are given in Table 1.

Chemical Analysis [*] of I	Head Sample
	. %
U ₃ O ₈	0.13
U ₃ O ₈ (secondary)	0.027
ThO ₂	0.04
CO ₂ (evolution)	0.14
CO_2 (combustion)	0.44
S (sulphate)	0.043
S (total)	2.92
As	< 0.01
P2O5	0.04
Fe	4.34
F	0.01
v ₂ o ₅	0.024
Ti	0.30
Мо	0.006
Mn	0.008

TABLE	: 1
-------	-----

Control Analysis Section laboratory number RF-1299.

Flotation Test Work

The general test procedure was to float off the acid consumers using a laboratory flotation cell and various reagents and reagent combinations. In some tests the flotation concentrate was cleaned by high intensity magnetic separation to recover uranium in the magnetic concentrate. The acid requirement of the beneficiated material was determined by an acid leach.

1. Feed Preparation

The flotation tests were carried out on 1150 g charges ground at 67% solids in distilled water for 20 minutes in an 8 inch porcelain Abbe jar mill with 20 lb of steel balls. This produced a grind of about 55% minus 200 mesh. The ground charge was filtered and the filtrate was used as make-up water for the flotation charge.

2. Flotation

The filter cake was repulped without desliming in a 500 g Fagergren cell using sufficient filtrate to bring the pulp up to the desired level. After the addition of the reagents, the pulp was conditioned for three minutes and a rougher flotation concentrate was removed. In some tests, the rougher concentrate was cleaned, but from results obtained it was found that a rougher float followed by a scavenger float was more beneficial and this procedure was followed in most of the tests. The scavenger concentrate was combined with the rougher concentrate to make up the acid consuming flotation concentrate.

3

During the progress of the work a number of reagents were investigated. The main promoter reagents used were stearic acid, oleic acid, sodium oleate, R-801^{*}, Duomac T^{*} and di-(2-butyl octyl) amine^{*}. If, from the results obtained, a promoter showed some promise, several additional tests were carried out using this promoter in which other variables such as pH, uranium depressant, etc. were investigated. Flotation pH was controlled by using H_2SO_4 , Na_2CO_3 or NaOH. The flotation tests are listed in Tables 2 and 8.

Concentrates from flotation tests C-3, C-6, C-11 and C-12 were sent for a semi-quantitative spectrographic analysis for Fe, Mg and other significant elements, and the results are given in Table 3. Some of the flotation concentrates were examined mineralogically.

3. Magnetic Separation

While the present series of tests was being carried out, it was discovered that the uranium or associated minerals in the Elliot Lake ores were slightly magnetic in a high intensity magnetic field. Accordingly high intensity magnetic separator tests were run with the object of recovering the uranium from the acid consuming flotation concentrates.

The concentrates from flotation tests C-9 and C-10 were treated in a Jones Wet Magnetic Separator at various intensities with power settings from 0 to 25 amps (Table 4). In subsequent tests the flotation concentrates were treated at 25 amps. In each case the

Suppliers are listed in the Appendix

magnetic uranium products were combined with the flotation tailings for the acid consumption tests. The products used for the acid consumption tests are indicated by an asterisk in Tables 2 and 8.

After an efficient method for floating acid consumers had been developed, the next step was to produce a quantity of feed material ie uranium flotation tailings plus magnetics, for acid leaching tests to determine the extraction of uranium. The flotation technique used to produce this feed material was similar to the procedure used in test C-24, detailed below. These conditions were chosen since it was considered that they gave the best overall results on the basis of acid requirement for the flotation tailings and uranium losses in the flotation concentrate. Five replicate tests, numbered 104, 105, 106, 107 and 108 were done to produce the leach feed.

Reagents Added	lb/ton
H ₂ SO ₄	1.0
Na2SiO3	1.0
NaCN	0.25
Cyanamid Reagent 801	0.04
Cresylic acid	0.04
Conditioned - 3 min (pH 5.7,	temp 25°C)
Rougher float - 4 min	
Cyanamid Reagent 801	0.04
Conditioned - 3 min	
lst Scavenger float - 3 min	

5

The floats were combined and treated magnetically, the magnetic portion then being combined with the flotation tails for the uranium extraction test work.

The results of the above flotation and magnetic separation procedure are given in Table 5.

Leaching Test Work

The efficiencies of the flotation procedures were studied by comparing the data obtained in sulphuric acid consumption tests on some of the individual tailings and on the original ore. In these tests the leach feed was subjected to a hot sulphuric acid treatment for several hours, and the acid consumption measured. The acid consumption data obtained are given with the flotation data in Tables 2 and 8.

To ascertain the effects of the flotation procedures in both uranium extraction and acid consumption, sulphuric acid uranium leach tests were made on the combined sample of flotation tailings and magnetic fractions, and on the original ore. The test data are given in Tables 6 and 7.

Details of the methods to determine the acid consumption and uranium extraction are given in the Appendix.

RESULTS

The test data and results of the flotation and leaching test work

previously described are given in the following tables and figures.

- Table 2 Flotation Test Data and Results of Several Most PromisingTests, Including Acid Consumption Results.
- Table 3 Results of Semi-Quantitative Spectrographic Analyses on Flotation Concentrates.
- Table 4 Results with Jones Wet Magnetic Separator on Flotation Concentrates for Tests C-9 and C-10.
- Table 5 Results of Flotation and Magnetic Separation to Produce Feed for Uranium Extraction Tests.
- Table 6 Leach Charges and Test Results in Leaching of Composite Flotation Tailings.
- Table 7 Leach Product Analyses.
- Table 8 Flotation Test Data and Results and Acid Consumption Test Results.
- Figure 1 Acid Consumption Versus U₃O₈ Distribution in Flotation Tailings.

In Table 2 the results of flotation tests which are considered to be the most promising are tabulated. These are chosen from the point of view of low acid consumption and low uranium loss. Some tests given in the complete table of results, Table 8, have lower acid consumption but the loss in uranium is higher.

The results of the semi-quantitative spectrographic analyses on flotation concentrates from tests C-3, C-6, C-11 and C-12 are given in Table 3. In columns 11 to 15 of Table 3, the contents (weight x analysis) are given for the more significant elements. The actual quantity (contents) is significant since different amounts of concentrate are involved.

F	lotation Test	Data and	i Results c	of Several M	lost Promising	Tests. Inc	cluding Acid	Consumption Results	

Test				U ₃ 08	Leach Acid Consumption	_	Flotation R	eagent Addition	(lb/ton of ore)		
No.	Products	Wt (%)	U ₃ O8 (%)	distn. (%)	(lb/ton Leach Feed)	NaCN	Na ₂ SiO ₃ .	Collector	PH Regulator	Cresylic Acid	рH	Remarks
	Original Ore				37.2							Comparative acid consumption test.
C-24	Non-mags Magnetics Tailings Products	-2.90 0.62 94.48 100.00	0.16 0.71 0.117 0.123	6.3 3.6* 90.1* 100.0	15.9 .	0.25	0,5	R 801 0.10 0.04	H ₂ SO ₄ 1.0	0.04	5.1	Rougher float followed by a scavenger float. Floats combined and treated magnetically.
, C-25	Floats Tailings Products	4.02 95.98 100.00	0.30 0.13 0.137	8.8 91.2* 100.0	13.0	0.25	1.0	R 801 0.10 5.04	H ₂ SO ₄ 1.0	0.04	5.7	Rougher float followed by a scavenger float.
C-31	Non-mags Magnetics Tailings Products	+.77 0.43 94.80 100.00	0.058 0.27 0.14 0.137	2.0 0.9* 97.1* 105.0	20,5	1.0		Duomac T 0.1 0.1	NaOH 1.0		9.9	Rougher float followed by a scavenger float. Floats combined and treated magnetically.
C-32	Floats Tailings Products	6.92 93.08 100.00	0.093 0.14 0.137	4.7 95.3* 100.0	18.8			Duomac T .0.1 0.1	NaOH 1.0		9.9	Rougher float followed by a scavenger float. NaCN not usec in test.
C-34	Floats Tailings Products	3.68 96.32 100.00	0.33 0.13 0.137	8.8 91.2* 100.0	14.4	0.25	0.5	R 801 0.1 0.04	H ₂ SO ₄ 1.0	0.04	5.7	Rougher float followed by a scavenger float. Float temp = 51°C
C-36	Floats Tailings Products	1.98 98.02 100.00	0.39 0.12 0.125	6.1 93.9* 100.0	16.2	0.25	2.0	R 801 0.1 0.04	H ₂ SO <u>4</u> 1.0	0.04 0.04	5.6	Larger quantity of Na2SiO3 used. Very light float. Rougher float followed by a scavenger float.

* Indicates products leached

TAE	ा स	3	
1 7 5	1.1.1	2	

Results of Semi-Quantitative Spectrographic Analyses on Flotation Concentrates

•			• •	<u>.</u>			001100111	<u> </u>		· · · ·		•			
Flotation Concentrate Test No.				Analyses %					Contents (Weight x Analysis)						
	Al	Fe	Mg	Рb	Ca	Cu	Ti	Zn	Р	Al	Fe	Mg	Ca	P	
C-3	3.5	5	0.2	0.7	0.08	0.1	0.2	Tr	ND	0.052	0.075	0.003	0.001	-	-
C-5	4,5	8	0,2	0.6	0.06	0.1	0.3	Tr	ND	0.206	0.366	0.009	0.003	-	
C-11	4	7	0.2	0.7	0.8	0.1	0.25	0.9	ND	0.050	0.087	0.0025	0.010	-	
G-12	3.5	4	0.2	0.3	Tr	0.05	.0.2	Tr	0.5	0.389	0.444	0.022	0.001	0.055	

The mineralogical study indicated that on one of the flotation concentrates examined, 90% of the concentrate consists of quartz and sericite, while sulphides account for 8-10% of the material floated. Chlorite was not detected.

The results of treating the combined flotation concentrate from tests C-9 and C-10 on the Jones Wet Magnetic (high intensity) Separator are given in Table 4.

TABLE 4

Results with Jones Wet Magnetic Separator on Flotation Concentrates for Tests C-9 and C-10

Products	W t (%)	U ₃ O ₈ (%)	U ₃ O ₈ Distn (%)
Magnetics at 0 Amps	2.0	0.22	2.0
Magnetics at 3 Amps	2.2	0.94	9.5
Magnetics at 7 Amps	2.4	0.95	10.4
Magnetics at 17 Amps	2.0	0, 90	8,2
Magnetics at 25 Amps	2.8	0.72	9.2
Non-Magnetics	88.6	0.15	60.7
Flotation concentrates	100.0	0.22	100.0

The distribution of uranium in the flotation concentrates of tests C-9 and C-10 was 14.6%. Since 39.3% of this amount, or 5.7% of the original uranium, was recovered magnetically, the overall recovery of uranium for the leach feed would be 91.1% (85.4% + 5.7%).

TABLE 5

Products	W t (%)	U ₃ O ₈ Assay (%)	U ₃ 0 ₈ Distn (%)
Float, non-magnetics	4.08	0.24	. 7.6
Float, magnetics	0.29	1.44	3.3*
Tailings	95.63	0.12	89.1*
	100.00	0.13	100.0

** of Flotation and Magnetic Separation to Produce Feed Results for Uranium Extraction Tests

These products were combined for the extraction and acid consumption leach tests.

** The above results are those obtained by combining the products from five similar flotation tests.

TABLE 6

.

•

.

.

CONTRACT IN ADDRESS

- 11 -

٠

-

Leach Charges and Test Results in Leaching of Composite Flotation Tailings

	I	Leach Charge		Test Results							
Test	Ore	H ₂ SO ₄	NaClO3	H ₂ SO ₄ C (1b/	onsumed ton)	U ₃ O ₈ Extraction (%)					
No.	Treated	(lb/ton)	(lb/ton)	for leach feed	overall	for leach feed	overall				
114	Orignal Ore	nal Ore 89 3		35.8	35.8	95.0	95.0				
104		99	3	22.2	21,3	95.4	88.1				
105	Composite	78	3	21.2	20.2	94.6	87.4				
106	Tailings	68	3	20.8	19.9	92.4	85.4				
107		57	3	19.6	18.8	90.0	83.2				
108		46	3	18.4	17.6	85.4	79.0				

TABLE 7

Leach Product Analyses

Fe		Feed Conc		Leach Liquor						Wash Filtrate					Leach Residue	
	Leach Feed (% U3O8)		рH	Vol (ml)	U3O8 (g/1)	H ₂ SO ₄ (g/1)	Al (g/l)	SiO2 (g/1)	pH	Vol (ml)	U ₃ O ₈ (g/1	H ₂ SO ₄ (g/1	Al (g/l)	SiO ₂ (g/1)	Wt (g)	U ₃ O ₈ (%)
114 104 105 106 107 108	0.12 0.13 0.13 0.13 0.13 0.13 0.13	80 80 70 60 50 40	0.35 0.30 0.30 0.40 0.49 0.65	377 367 365 374 350 368	2.38 2.30 2.18 2.46 2.37 2.13	52.0 66.0 55.0 44.0 36.0 24.6	2.93 1.11 1.13 1.11 0.98 0.82	1.94 1.07 1.24 1.14 1.19 1.12	0.61 0.82 0.88 1.00 1.10 1.18	725 745 730 725 735 738	0.61 0.37 0.48 0.46 0.46 0.41	14.7 13.9 11.7 9.6 8.2 6.4	0.73 0.19 0.19 0.18 0.17 0.16	0.47 0.18 0.19 0.20 0.20 0.19	1124 884 982 987 986 986 986	0.006 0.006 0.007 0.010 0.013 0.019

Flotation Test Data and Results and Acid Consumption Test Results

		Ψt.	- υ ₃ 0 ₈	U ₃ O ₈	Leach Acid		Flotation Reas	gent Addition (lb,	/ton of ore)			
Test No.	Products	(%)	(%)	Distn (%)	Consumption (lb/ton leach feed)	NaCN	Na2SiO3	Collector	pH Regulator	Frother	pH	Remarks
Or	riginal Ore				37.2							Comparative acid consumption test.
C-1	R. Float ist Scav. Float Tailings	0.60 0.63 <u>98.77</u> 100.00	0.32 0.25 <u>0.12</u> 0.12	1.6 1.3 97.1^*	24.4	0.5		Alpha Sulpha Stearic 0.02 0.02			7.3	
	Products Cl: Float	0,88	0.12	2.1		0.5			· · ·		7.3	1
C2	Cl. Tailings Tailings Products	4.42 94.70	0.27 0.21 <u>0.12</u> 0.13	7.4* <u>90.5</u> * 100.0	28.2	0.025		Alpha Sulpha Stearic 0.5 0.5				
	Products R. Float	1.49	0.13			0.5				Pine Oil	7.3	
C-3	Tallings	98.51	0.14	5.2 <u>94.8</u> * .	20.6	0.5		R-301 0.1		0.04	1.5	
ي حي	Products	100.00	0,14	100.0								
C-4	R. Float Tailings Products	3.04 96.96 100.00	0.37 0.14 0.147	7.6 92.4* 100.0	19.0	0,5		-R-801 0.1	H ₂ SO ₄ 1.0	Cres. Acid 0.04	5.0	pH lowered with H ₂ SO4.
												·
C-5	R. Float Tailings	2,70 97,30	0.30	6.5 93.5 [*]	19.6	0.5	0.5	R-801 0_1	H ₂ SO ₄ 1.0		5.9	
	Products	100.00	0.125	100.0								
C-6	Cl. Float Cl. Tailings Tailings	0.72 3.85 95.43	0.41 0.24 0.12	2.3 7.3 90.4*	18.6		· · · · · · · · · · · · · · · · · · ·	R-801 0.1	H ₂ SO ₄ 1.0	Cres. Acid 0.04	5.0	
	Products	100.00	0.127	100.0		•				н. 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 -		
C-7	Cl. Float Cl. Tailings Tailings	1.13 14.26 <u>84.61</u>	0.41 0.33 <u>0.996</u>	3.5 35.4 [*] 61.1	22.2	0.1	· · · · · · · ·	D.D. Olcic Acid 0.5	Na ₂ CO ₃ - 2.0		9.8	pH increased with Na ₂ CO ₃ .
	Products	100.00	0.37	100.0	· · ·							
C-8	Cl. Float Cl. Tailings Tailings	1.19 10.65 <u>88.16</u>	0.37 0.16 <u>0.12</u>	3.4 13.4* <u>83.2</u> *	22.0	0.05		R-825 0.1		Pine Oil 0.04	7.0	
	Products	100.00	0.127	100.0	· · ·							

* Indicates products leached

TABLE 8 (continued)

-

-

-

٠

• •

-

.

Flotation Test Data and Results and Acid Consumption Test Results

	Wt	₩308	U308	Leach Acid Consumption		Flotation Rea	gent Addition (1	b/ton of Ore)			
Products	(%)	(%)	Distn (%)	(lb/ton leach feed)	NaCN	Na ₂ SiO ₃	Collector	pH Regulator	Frother	pH	Remarks
R. Float Ist Scav. Float Tailings	5.39 1.77 <u>92.84</u>	0.23 0.20 <u>0.12</u>	9.74 2.75 <u>87.51</u> *	18.8		0.5	R-801 0.1 0.1	H ₂ SO ₄ 1.0	Cres.Acid 0.04	5.3	
Products	100.00	0.127	100.00								
R. Float lst Scav. Float Tailings	6.10 2.53 91.37	0.28 0.19 0.12	$ \begin{array}{r} 13.0 \\ 3.7 \\ \underline{83.3}^{*} \end{array} $	18.8	0.25	0.5	R-801 0.1 0.1	H ₂ SO ₄ 1.0	Cres.Acid 0.04	5.3	
Products	100.00	0.13	100.0								
Carb. Float Tailings	1.24 98.76	0.20 0.12	2.1 97.9*	23.6		1.0	Na Oleate 1.5	Na ₂ CO ₃ 2.0		9.5	Carbonate float conditions tried
Products	100.00	0.12	100.0								
R. Float lst Scav. Float Tailings	8.31 2.80 88.89	0.26 0.22 0.13	15.1 4.3 80.6*	17.0	0.25	0.5	R-801 0.2	H ₂ SO ₄ 1.0	Cres.Acid 0.04	5.5	
Products	100.00	0.14	100.0								
R. Float Tailings Products	5.64 <u>94.36</u> 100.00	0.35 0.12 0.13	14.8 _* <u>85.2</u> 100.0	18.8	0.25	0.5	R-801 0.2 0.1	Hexameta- phosphate 0.3	Pine Oil 0.04 Fuel Oil 0.1	7.3	
Tailings	95.43	0.14	88.2	22.0	0.25		R-801	Hexameta- phosphate 0.3	Fuel Oil 0.1 Pine Oil	7.2	
Products	100.00	0.15	100.0						0.04		
Floats Tailings Products	10.29 89.71 100.00	0.22 0.10 0.11	20.1 79.9 [*] 100.0	20.6	0.25	0.5	R-801 0.4	H ₂ SO ₄ 1.0	Cres.Acid 0.04	5.6	Another ore used. The original ore consumed 29.9 Ib, acid/ton
Carb. Floats Cl. Float Cl. Tailings	0.98 11.66 39.32	0.19 0.30 0.12	1.6 28.6 38.5 ⁴		0.25	1.0	Na Oleate 1.0 R-801	Na ₂ CO ₃ 2.0 H ₂ SO ₄		9.7	Combination of carb. and chlorite float
Tailings	48.04	0.08		19.4			0.2	2.0		J . I	
Floats ** Tailings	7.82 92.18	0.32	21.3 <u>78.7</u> [#]	18.0	0.25	2.0	R-801 0.1	Na ₂ CO ₃ 2.0 H ₂ SO ₄	Na Oleate 0.5	9.6 4.8	Test similar to C-16, except additional Na ₂ SiO ₃ used
	st Scav. Float Tailings Products R. Float st Scav. Float Tailings Products Carb. Float Tailings Products R. Float St Scav. Float Tailings Products R. Float Floats Floats** Floats Floats Floats Floats Carb. Floats Cl. Float Cl. Float Cl. Float Stailings Products Products Floats Floats Floats Floats Floats Products Carb. Floats Cl. Float Cl. Floa	st Scav. Float 1.77 Tailings 92.84 Products 100.00 R. Float 6.10 st Scav. Float 2.53 Tailings 91.37 Products 100.00 Carb. Float 1.24 Tailings 98.76 Products 100.00 Carb. Float 1.24 Tailings 98.76 Products 100.00 R. Float 8.31 st Scav. Float 2.80 Tailings 94.36 Products 100.00 R. Float 5.64 Tailings 94.36 Products 100.00 R. Float 5.64 Tailings 95.43 Products 100.00 Floats** 4.57 Tailings 39.71 Products 100.00 Floats 1.29 Tailings 39.32 Failings 48.04 Products 100.00	st Scav. Float 1.77 0.20 Tailings 92.34 0.12 Products 100.00 0.127 R. Float 6.10 0.28 st Scav. Float 2.53 0.19 Failings 91.37 0.12 Products 100.00 0.13 Carb. Float 1.24 0.20 Failings 98.76 0.12 Products 100.00 0.13 Carb. Float 1.24 0.20 Failings 98.76 0.12 Products 100.00 0.12 R. Float 8.31 0.26 St Scav. Float 2.80 0.22 Failings 94.36 0.12 Products 100.00 0.14 R. Float 5.64 0.35 Failings 94.36 0.12 Products 100.00 0.13 Products 100.00 0.14 Products 100.00 0.15 Floats** 4.57 0.39 Failings 89.71	st Scav. Float 1.77 0.20 2.75 Tailings 92.84 0.12 87.51° Products 100.00 0.127 100.00 R. Float 6.10 0.28 13.0 st Scav. Float 2.53 0.19 3.7 Failings 91.37 0.12 83.3° Products 100.00 0.13 100.0 Carb. Float 1.24 0.20 2.1° Failings 98.76 0.12 97.9° Products 100.00 0.12 100.0 Carb. Float 1.24 0.20 2.1° Failings 98.76 0.12 97.9° Products 100.00 0.12 100.0 R. Float 8.31 0.26 15.1 st Scav. Float 2.80 0.22 4.3 Failings 94.36 0.12 85.2 Products 100.00 0.14 100.0 Relatings 95.43 0.14 88.2° Produ	st Scav. Float 1.77 0.20 $2.75^{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_$	st Scav. Float 1.77 0.20 2.75 18.8 Products 100.00 0.127 100.00 0.00 R. Float 6.10 0.28 13.0 0.25 st Scav. Float 2.53 0.12 83.3° 18.8 Products 100.00 0.12 83.3° 18.8 Products 100.00 0.13 100.0 0.25 Carb. Float 1.24 0.20 2.1 23.6 Products 100.00 0.12 100.0 0.25 Products 100.00 0.12 100.0 0.25 R. Float 8.31 0.26 15.1 0.25 Products 100.00 0.14 100.0 0.25 Products 100.00 0.13 80.6 [±] 17.0 Products 100.00 0.13 100.0 0.25 Products 100.00 0.13 100.0 0.25 Products 100.00 0.13 100.0 0.25 Products 100.00 0.13 100.0 0.25	ist Seav, Float 1.77 0.20 2.75 18.8 Products 100.00 0.12 87.51° 18.8 0.25 0.5 R. Float 6.10 0.28 13.0 0.25 0.5 0.5 St Seav, Float 2.53 0.19 3.7 83.3 18.8 0.25 0.5 Products 100.00 0.13 100.0 0.12 97.9 23.6 1.0 Carb, Float 98.76 0.12 97.9 23.6 1.0 1.0 Products 100.00 0.12 100.0 0.25 0.5 0.5 Products 100.00 0.12 100.0 0.25 0.5 0.5 Products 100.00 0.12 100.0 0.25 0.5 0.5 Products 100.00 0.14 100.0 0.25 0.5 0.5 Products 100.00 0.14 100.0 0.25 0.5 0.5 Products 100.00 0.13 100.0 0.25 0.5 0.5 Products 100.00<	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* Indicates products leached ** Combined rougher and scavenger floats

.

TABLE 8 (continued)

Flotation Test Data and Results and Acid Consumption Test Results

Cest	Products	Wt	0308	U ₃ O ₈ Distn	Leach Acid Consumption		Flotation Reag	ent Addition (lb/	ton of Ore)		_ ***	Remarks
No.		(%)	(%)	(%)	(lb/ton leach feed)	NaCN	Na ₂ SiO3	Collector	pH . Regulator	Frother	PH	Remarks
	Floats *** Tailings	5.72 94.28	0.38 0.14	14.1 85.9*	19.2	0.25	0.5	R-801	Hexameta- phosphate	Pine Oil	7.2	Reagents recommended
2-18	Products	100.00	0.15	100.0				0.4	0.3	0.04 Fuel Oil 0.1		for talc float
;-19	Floats Tailings	13.35 86.65	0.19 0.075	28.1 71.9*	17.3	0.25	0.5	R-801	Hexameta- phosphate 0.3	Pine Oil 0.04	5.0	Similar to C-19, except pH
	Products	100.00	0.09	100.0				0.1	0.5 H ₂ SO ₄ 0.5	Fuel Oil 0.5		
	Floats ^{**} Tailings	7.46 92.54	0.28	12.4 87.6*	22.0		0.5	R-801	Hexameta- phosphate	Cres.Acid	6.7	
- 20	Products	100.00	0.17	100.0				0.1	0.3	0.04	×	1 -
	Floats ^{**} Tailings	9.62 90.38	0.18	13.8 86.2*	21.2		0.5	R-801	Hexameta- phosphate	Cres.Acid	9.7	pH adjusted with NaOH
-21	Products	100.00	0.13	100.0				0.1	0.3 NaOH 0.5	0.04		
- 22	Floats Tailings	7.37 92.63	0.077 0.125	4.7 <u>95.3</u> *	21.0	1.0	· · · · · · · · · · · · · · · · · · ·	Duomac T 0.2	NaOH I.0		10.7	
	Products	100.00	0.12	100.0		· .					· .	
-23	Non-mags. Magnetics Tailings	3.17 0.44 96.39	0.22 0.79 0.13	5.2 2.6* 92.2*	16.8	0.25	0.5	R-801 0.10 0.04	H ₂ SO ₄ 1.0	Cres.Acid 0.04	5.3	R. Float, Scavenger Float Floats combined and treated
	Products	100.00	0.136	100.0						×		magnetically
- 24	Non-mags. Magnetics Tailings	4.90 0.62 94.48	0.16 0.71 <u>0.117</u>	6.3 3.6 [*] <u>90.1</u> *	15.9	0.25	0.5	R-801 0.10 0.04	H ₂ SO ₄ 1.0	Cres.Acid 0.04	5.1	R. Float, Scavenger Float Floats combined and treated
	Products	100.00	0.123	100.0					•			magnetically
-25	Floats ^{***} Tailings	4.02 95.98	0.30 0.13	8.8 <u>91.2</u> *	13.0	0.25	1.0	R-801 0.10 0.04	H ₂ SO ₄ 1.0	Cres.Acid 0.04	5.7	
	Products	100.00	0.137	100.0	•							
-26	Float Tailings	2.68 97.32	0.32	5.6 94.4 [*]	13.0	0.25	0.5	R-801 0.1	H ₂ SO ₄ 1.0	Cres.Acid 0.04	4.0	-100 + 325M only floated
	Products	100.00	0.155	100.0	· · · · ·	*** *						

* Indicates products leached ** Combined rougher and scavenger floats

TABLE 8 (continued)

.

-

.

-

.

•

.

.

Flotation Test Data and Results and Acid Consumption Test Results

Test		Wt U ₃ O ₈		U308	Leach Acid		Flotation Rea					
No.	Products	(%)	(%)	Distn (%)	Consumption (lb/ton leach feed)	NaCN	N22SiO3	Collector	pH Regulator	Frother	рH	Remarks
C-27	Floats Tailings	3.02 96.98	0.38	$9.0 \\ 91.0^{*}$	16.3		0.2	Kerosene 0.25	Na ₂ CO ₃ 1.0	Pine Oil 0.12	9.1	Pine oil and kerosene used
	Products	100.00	0.13	100.0								
-28	Floats ^{##} Taílings	23.68 76.32	0.18 0.13	30.0 70.0 [#]	12.3	0.5		Duomac T 0.2	NaOH 1.0	Pine Oil 0.08	10.0	-
,-20	Products	100.00	0.14	100.0								
- 29	Floats ^{**} Tailings	5.71 <u>94.29</u>	0.27 0.12	12.0 88.0*	16.9		0.2	Fuel Oil 0.25	Na ₂ CO ₃ 1.0	Pine Oil 0.12	9.0	Pine oil and fuel oil used
	Products	100.00	0.13	100.0								
;-30	Float Tailings	12.96 87.04	0.17 0.12	17.4 82.6*	19.3	0.3		Duomac T 0.1	NaOH 1.0	Pine Oil 0.04	9.9	
	Products	100.00	0.126	100.0								
;-31	Non-mags. Magnetics Tailings	4.77 0.43 94.80	0.058 0.27 0.14	2.0 0.9* 97.1*	20.5	1.0		Duomac T 0.1 0.1	NaOH 1.0		9.9	R. Float and Scavenger Float combined and treated
	Products Floats**	6.92	0.137	4.7		ļ <u></u>						magnetically
C-32	Tailings	93.08	0.14	95.3*	18.8			Duomac T 0.2	NaOH 1.0		9.9	
	Products	100.00	0.137	100.0								
C-33	Floats ^{**} Tailings	4.01 95.99	0.31 0.12	9.72 90.28**	13.4	0.25	0.3	R-801 0.1 0.04	H ₂ SO ₄ 1.0	Cres.Acid 0.04	5.5	Float temp 43°C
	Products	100.00	0.128	100.00								
C-34	Floats ^{**} Tailings	3.68 96.32	0.33 0.13	8.8 91.2*	14.4	0.25	0.5	R-801 0.1 0.04	H ₂ SO ₄ 1.0	Cres.Acid 0.04	5.7	Float temp 51°C
	Products	100.00	0.137	100.0								
C-35	Non-mags. Magnetics Tailings	4.77 0.50 94.73	0.14 0.80 0.12	5.4 3.2* 91.4*	19.7	0.25	1.0	R-801 0.1 0.04	H ₂ SO ₄ 1.0	Cres.Acid 0.04	5.7	Coarser grind used 32.1% -200M
	Products	100.0	0,127	100.0								

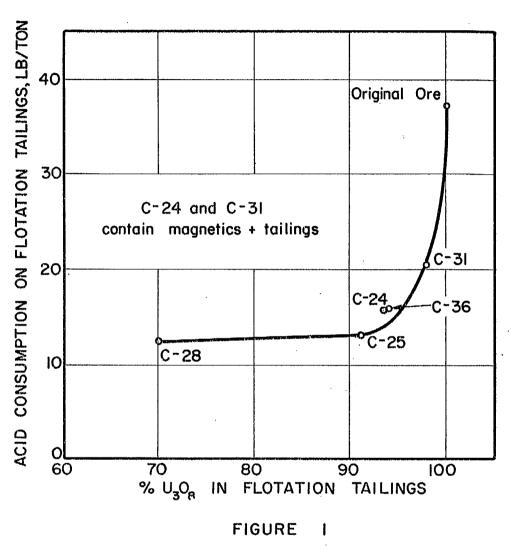

* Indicates products leached ** Combined rougher and scavenger floats

TABLE 8 (concluded)

Test	Products .	Wt	vt U ₃ O ₈	U ₃ O ₈ Distn	Leach Acid Consumption (lb/ton leach feed)		Flotation Reag					
No.		(%)	(%)	(%)		NaCN	Na ₂ SiO ₃	Collector	pH Regulator	Frother	pH	Remarks
C-36	Float ** Tailings Products	1.98 98.02 100.00	0.39 <u>0.12</u> 0.125	6.1 <u>93.9*</u> 100.0	16.2	0.25	2.0	R-801 0.1 0.04	H ₂ SO ₄ 1.0	Cres. Acid 0.04 0.04	5.6	Double quantity of Na ₂ SiO3 used. Very light float.
C-37	Float Tailings Products	5.06 <u>94.94</u> 100.00	0.17 <u>0.13</u> 0.132	6.5 <u>93.5*</u> 100.0	17.0			Amine 0.08	· · · · · · · · · · · · · · · · · · ·	Cres. Acid 0.04	6.1	Di-(2-Butyl Octyl) Amine used.
C-38	Sul. Float Chlorite Fl. Tailings Products	3.52 9.85 <u>86.63</u> 100.00	0.050 0.18 0.12 0.124	1.5 14.3 <u>84.2*</u> 100.0	16.2		1.0	R-SO1 0.1 Duomac T	N2OH 1.0 H2SO4 2.0	Cres. Acid 0.04	10.8	Both Duomac T and R-801 used.
C-39	Float ** Tailings Products	5.14 94.86 100.00	0.28 0.11 0.12	12.1 87.9* 100.0	15.1	0.25	1.0	R-801 0.1 0.04	H ₂ SO ₄ 1.0	Cres. Acid 0.04	5.5	

Flotation Test Data and Results and Acid Consumption Test Results

* Indicates products leached. ** Combined rougher and scavenger floats.

_ 17 _

DISCUSSION

In the flotation work, tests C-24 and C-25 have shown the best overall results on the basis of acid requirement for the flotation tailings and uranium losses in the flotation concentrates, and thus it appears that the fatty acid reagent Cyanamid R-801 was the most efficient of the reagents investigated. The diamine type, Duomac T, shows good possibilities, as indicated by test C-31. Flotation reagent costs should be moderate, of the order of 7-9 cents/ton.

Conditions found to be beneficial with the reagent R-801 were the use of sulphuric acid to give a float pH of 5-6, and heating the pulp to $50^{\circ}C$

Some of the uranium or associated minerals were found to be slightly magnetic and the high intensity Jones Magnetic Separator recovered approximately one third of the uranium lost in the flotation concentrate. There are commercial size separators of this type available which could be suitable for an operating plant.

Flotation of the acid consuming minerals did not reduce the amount of free acid initially required for leaching, and therefore recycling part of the leach liquor would be essential if the reduction in acid consumption is to be realized.

An important result from flotation of the acid consuming minerals from Denison ore was the reduction, in the subsequent leaching step, of the amount of dissolved Al and SiO₂. Since SiO₂ can be detrimental to ion exchange operations, the lower concentration figure obtained from the tailings sample might assist in extending resin life. Presence of soluble Al is said to hinder filtration of the neutralized leach slurries, and keeping it to a minimum value would be helpful in plant practice. Filtration of the leach pulp was observed to be normal for a vacuum of 25 in. of Hg, but the solids washing rate was slower than that for leached solids from the original ore.

CONCLUSION

The significant features in the beneficiation of this ore by acid consumer flotation could be (1) a saving of up to 40% of the acid actually consumed, (2) a decrease in acid soluble impurities, (3) little change in the filtration properties of the leach slurries, (4) a reduction of 7% in overall uranium recovery in solution, (5) an additional reagent cost of 7-9 cents/ton for flotation.

Promoters R-801 and Duomac T were the most suitable of the reagents tried.

ACKNOWLED/GMENT

The authors wish to acknowledge the assistance given by Mr. R.A. Wyman, of the Mineral Processing Division, Mines Branch, who was responsible for the magnetic separation tests using the Jones Wet Magnetic Separator.

REFERENCE

1. W.R. Honeywell. Flotation of Uranium Ores from the Elliot

Lake Area, Ontario, Mines Branch Technical Bulletin TB 2,

Department of Mines and Technical Surveys, Ottawa, (1959).

APPENDIX

Leaching Test Methods

Acid Consumption Tests

The flotation tailings samples C-1 to C-39, weighing from 292 to 1000 grams, and a 1000 gram original ore sample were leached with sulphuric acid for 4 hours retention time at a constant temperature of 88°C and at a solution concentration of 60 to 65 g H_2SO_4/l . The 55 to 60% minus 200 mesh leach feeds were dried, weighed and mixed with a sufficient quantity of distilled water and the required amount of acid to give a pulp density of 60% solids. The equipment consisted of a pyrex beaker with cover and glass stirrer, and an electric heating The final slurries were filtered in a buchner funnel and flask, mantle. and the solids washed three times with distilled water to recover all the unused acid. The total acid present in solution at the end of leaching was estimated from the volumes and free H_2SO_4 analyses of the leach liquor and combined wash filtrates. The acid consumption was then calculated on the difference between the H_2SO_4 added and the unreacted H_2SO_4 in solution, and the weight of the leach feed treated.

Uranium Extraction Tests

Extraction tests were made on five batches of the composite tailings sample and on one batch original ore sample in a covered pyrex beaker, with glass sturrers, set in a water bath. Nine hundred grams of feed were leached in test 104, 1000 grams in tests 105, 106, 107 and 108 and 1140 grams in test 114. The following leaching

conditions were employed: 55 to 60% minus 200 mesh feed, 50°C temperature, 48 hr retention time, 3 lb $NaClO_3/ton$ of feed, 65% solids pulp density and from 40 to 80 g $H_2SO_4/1$ initial acid concentrations. On the original ore, an initial acid concentration of 80 g $H_2SO_4/1$ was used because this particular concentration yielded optimum uranium extraction for the combined tailings sample. The slurries were prepared for leaching by mixing the moist feed with distilled water and sulphuric acid, and adding the oxidizing reagent one half hour after beginning of agitation. The filtered leach pulp was washed twice with 250 ml of 1/4% H₂SO₄ and once with 250 ml of distilled water. The solutions were analyzed for U_3O_8 , free H_2SO_4 , Al and SiO₂, and the leach residue for U_3O_8 . Uranium extraction was based on the $U_{3}O_{8}$ analyses of the feed and residue. Acid consumption was based on the difference between the amount of acid added and that remaining in the solution after leaching.

Close agreement was noted in acid consumptions obtained by the rapid method of leaching the ore at 88°C for 4 hr and the standard method of leaching at 50°C for 48 hr. The rapid method gave a figure of 37.2 lb H_2SO_4/ton compared to 35.8 lb H_2SO_4/ton for standard leaching. The acid consumption at the mine leach plant is approximately 40 lb H_2SO_4/ton . No difference could be observed in the filtering characteristics of the leach slurries or in the clarity of the solutions between those of the original ore and the flotation tailings. Flotation Reagent Sources

R-801	Cyanamid of Canada, 160 Bloor St. East, Toronto 1, Ont.
Duomac T	Armour Chemical Division, 1355 West 31st, Chicago 9, Ill., U.S.A.
di-(2-butyl octyl)amine	Carbide and Carbon Chemicals Co., 30 East 42nd St., New York 17, N.Y., U.S.A.

WRH/VFH/WAG/HWS/im