CAT. NO. 4 L.-M.CO.
CANADA
DEPARTMENT OF MINES AND TECHNICAL SURVEYS
OTTAWA

Mines Branch Investigation Report IR 58/108

FINE AGGREGATE PRODUCTION
NATIONAL SLAG ITMTIED
HAMILTON, ONTARIO
by
V.A.Haw

Industrial Minerals Division

Note: This report relates essentially to the samples as received. It shall not, nor any correspondence connected therewith, be used in part or in full as publicity or advertising matter.

June 26, 1958.

ETUS ACOMGGARE MODTETTON

WaRYovar shia rixamed

MAMTITON, OMPHEO

Watiomal Slag Gimited of Hamiton, Ontario produce expanded slag aggregate for use in concrete. They are faced whth the problem of obtainting an lncreased proportion of -100 mosh in the fing size range or thatr aggregate and requested asststanoe from the radustrial Mamala mivision.

At present the plant is producing obout six per cent - 100 mosh in the $-1 / 4$ in. fraction of thesir product. it is dostrea to tnerease the athount to about 12 pew cent and to determine the best bype of equapnent necessary to acconplish this purpose. The company paxticularly requested that a hamer mill be investigatod as a possible method to produco the mequired additional sines.

Fron the flow sheet provided by the company the prinary orusher in a 10.28360 bonded soake wolls, and the secondary oruchew, a A-ft. Bynons short head cone. Both erushows are in cloged caxcuit wh th soreons. The final moduct consists of a $-3 / 8+1 / 4-$ in. coarse stized aggregate, and a $-1 / 4-1 n$. fine stzed agerogate.

Description of Sampe
Tho conpany has shipped several 1000 -2000 1b. buak samples of the orpanded slag aggrogate to the Thaustrial minerais for
thats and other investigations. For the worle descrabed bolow onyy the $-3 / 8+1 / 4-1 n$. ghze has been used.

Eampuent and Methods

It appears ovidont from a study of the problon that some adational wit of equipaent in tho fine exoshing range is necessary to produce the extra - -100 mesh naterial required. Tho two most practheal possibilithos are the hamer mill and the double smooth eaced rollas.

Both or these orushing unt ws wew used to assess thetr eharacteristices in reduchug expanded slag. With the humer Hat $2 / 8$ and $3 / 16-\operatorname{La}$. grates were used; in soparate tests settings of the wolle wore varied with difforent wates of teed. The produets Trom aech tost run nsing the two types of erushers weve ovaluated In terms of a sereen analysts. Tho foed row gach tost wun consisted of $70-\mathrm{Ib}$. of $-3 / 6+2 / 4-\mathrm{in}$. exponded alag.

ThBS

Goneme matyos on mge

OII	\% Hatajned	Gum. 2 Pass.
3/3'1	0	100.0
1/4'	4.2	95.8
\% 4 mesh	75.6	20.2
\#8	20.2	
	100.0	

MELWR

(1) Hamer 1111

 feed opening. Tha agergate was ohote fed as is uswaz praotioe with hamer ratis.

RABLE 2 I
Haverar 145 Pronnces

O4	
	mesh
8	
14	*
28	"
48	"
100	"
-100	"

1/819 Grates	
0.0	0.0
1.1	98.2
17.4	81.5
20.1	61.4
17.4	4.0
25.8	28.6

$\frac{3 / 16^{0}}{\text { Bet }}$	$\frac{\text { Grateg }}{\text { Gnimos passe }}$
7.5	92.5
23.2	69.3
21.1	48.2
14.1	34.7
10.5 8.6	23.6
15.0	-

Theso resuzts are also photted on the accomanying
grephs.
(3) Rolls
in 12×22 in, smooth faced double rolls was used in the testb. The following operating wariables were used sor the trial runs.

$$
\begin{aligned}
& \text { A - rate of feed - - } 300 \text { 3b/hr } \\
& \text { and wolls set at } 1 / 16 \text { in. spacing } \\
& 3 \text { - rate or Reed --- } 300 \mathrm{jb} / \mathrm{hr} \\
& \text { and roins set at } 1 / 32 \text { in. spacing } \\
& 0 \text { - rate ar food --- } 330 \mathrm{Ib} / \mathrm{hr} \\
& \text { and rolls set at } 0-1 / 32 \mathrm{in} \text {. } \\
& \text { D - wate of fecd --. } 270 \text { 1b/br } \\
& \text { and youls set as in "C" }
\end{aligned}
$$

Notas The 0-1/32 in . seting refers to a condititon where the two rolas are not gume touching.

-4-

MA3LETI

HOTLE CDUSEER BRODUGRS

	H	B	0	$\mathrm{p}^{* *}$
ON	\% Hot. ${ }^{\text {dass* }}$	\& not. \% pass	\% Rot. \% Pass	\% Het. \% pass
4.7 mosh	5.544 .5	1.1980	$0.7 \quad 99.3$	0.799 .3
8	57.3 37.2	0.8 99.1	$0.9 \quad 98.4$	$\begin{array}{ll}6.5 & 92.8 \\ 3.8 & 89.0\end{array}$
14	$20.9 \quad 16.3$	18.78	6.3 3 92.7	$\begin{array}{rr}3.8 & 89.0 \\ 12.7 & 76.9\end{array}$
28	$\begin{array}{ll}6.4 & 9.9 \\ 3.6 & 6.3\end{array}$	$\begin{array}{ll}34.2 & 45.2 \\ 17.0 & 28.2\end{array}$	32.8 23.2 29.3	$\frac{12.75}{25.6} 51.9$
100	2.34	11.157	14.2	19.0 32.3
-100	4.0 -	17.1 -	$21.9-$	32.3

* Gumative per cemt passing.
** In thas xun a large proportion of the to mesh fraction constited of apmented aggrogates of fizer sizes. The gradiag show does not thereroro glve a true represen tation of the greating.

Mscusgion and Conolns\%oxs
The problen of increasting tho amount of - 700 mesh in
the fing size range of the agregate appars best rosolved by diverting part of the plate hlow to a scparate pane orushing wat. The best stize and typo of unit to do the job is denendent on the naximm size, gradiag and mownt of reed to the undt, and buss in tran will of course depend at what point in the flow Ine of the plant tho erusher is placed.

The bost location for an addtional crusher with depend on the physical Say-gut or che plant. Howver, constacation or three prinotpal points in this rogand are necesary for efficient

-5

and low cost operationg (1) Seed to the now mith should be kept down to the smallest pmectionl size, (2) the feed shomba contatn a minmm of fimes, and (3) the quantity on feed should be rem duced to a rainiman constatant wt th the production of the segutred fines. Observance of these points will permit the selection or the smallost practicabze erusher whteh oan bo oporated at least powes consumption.

In the 5 low wheet of the plant provided by thes company the serecrisees in the orushing muns were not given. Nevertheloss a study of the existing RLow sheet tudiaates that the food ron a fine cawher might be tasen fron tho botton deck ox the vibrating screans wheh awe ded by the th3 conveyor bedte

毀 1 poukt of the wown completed in thats investigation indioate that a hamer mill ushag $1 / 8$ in. grates would apprectably inorease tha propoztion on -100 mesh available. the $3 / 26$ in. grates woutd not be erfective in treating only a fraction of the total reed. These observations reter onty to the stre on foed treated, iee $-3 / 6+3 / 4$ the A very impontant Sactor in the wse of hamer milas is tho hath matntenanoe cost due to the mbrastve meat. tt ta our opinton the stag would be highly abrasive compared to Ziwestone which is often erushed by means of hamars mitus.

The rolls also were found to be oticettre in rem ductug the ompanded slat to a hith proporthons of - 100 mesh. It 3 s apparent gom mabo It that the set ot the rome and the

-6

rate of food are important in governing tho grading of the product. The size of the rolls with respect to the stag of fred ta also fupoptant. A laxer size rolls would of cone take larger reed and produce results comprabza to those obtained here.

The results of the work completed and conclusions reached are intended to assist the company in roach eng a decision
 product. other actors such as oosts, physical layout of plant, existing load distributions of agerceate, will of course have to be considered.

Tune 26, 2958.
Thiustricil Minerals Division.

SAND AGGREGATE GRADINGS

No.I-HAMMER MILL $1 / 8$ 'GRATES
No.2-HAMMER MILL $3 / 16$ GRATES

SAND AGGREGATE GRADINGS

> No.1-ROLLS TRIAL RUN A
> No.2-ROLLS TRIAL RUN B

CHART
TABLE

$\%$ PASSINS				
TYLER MESH				
4 MESH				
8 MI				
14				
28				
48				
100				
F.M.				
$\%$ VOIDS				

No.I-ROLLS TRIAL RUN C
No.2-ROLLS TRIAL RUN D

