This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

CANADA

DEPARTMENT OF MINES AND TECHNICAL SURVEYS

OTTAWA

MINES BRANCH INVESTIGATION REPORT IR 63-37

INVESTIGATION OF IRON ORE FROM LODESTONE MOUNTAIN AREA, B. C., SUBMITTED BY IMPERIAL METALS AND POWER LIMITED, N. P. L., VANCOUVER, B. C.

ЬУ

W. S. JENKINS

MINERAL PROCESSING DIVISION

NOTE: THIS REPORT RELATES ESSENTIALLY TO THE SAMPLES AS RECEIVED. THE REPORT AND ANY CORRESPONDENCE CONNECTED THEREWITH SHALL NOT BE USED IN FULL OR IN PART AS PUBLICITY OR ADVERTISING MATTER.

COPY NO.16

FEBRUARY 6, 1963

Mines Branch Investigation Report IR 63-37

INVESTIGATION OF IRON ORE FROM LODESTONE MOUNTAIN AREA, B. C. SUBMITTED BY IMPERIAL METALS AND POWER LIMITED, N.P.L., VANCOUVER, B. C.

by

W. S. Jenkins^{*}

SUMMARY

The investigation was made to determine the grade of concentrate and recovery of iron from ore represented by the shipment. The sample assayed 26.47% soluble iron and 1.66% titanium dioxide.

A -150 m concentrate assayed, iron 66.43%, TiO₂ 2.32%. The recovery of iron was 83.8% at a ratio of concentration of 3.14:1. Cobbing at -20 m gave a concentrate assaying, iron 46.60%, TiO₂ 2.63%. The recovery of iron was 95.5% at a ratio of concentration of 1.8:1. Regrinding the concentrate to -150 m and reconcentrating it, produced concentrate assaying, iron 66.54%, TiO₂ 2.22%, sulphur 0.025%, SiO₂ 1.44%. The recovery of iron was 83.8% in terms of original feed. The ratio of concentration was 3:1. Infrasizing a -150 m concentrate showed that TiO₂ occurred in all fractions, from 2.58% in +58 microns to 1.87% in the -10 micron fraction.

* Senior Scientific Officer, Mineral Processing Division, Mines Branch, Department of Mines and Technical Surveys, Ottawa, Canada.

1

CONTENTS

	page
Summary	i
List of Tables	iii.
Introduction	1
Shipment Location of the Property Description of the Property Purpose of the Investigation	1 1 1 1
Sampling and Analysis of the Shipment	1
Mineralogical Examination	3
Summary of Test Procedure	3
Summary of Results	3
Details of Tests	5 .
Test 1 Magnetic Cobbing of $\frac{3}{4}$ in Ore	5
Test 2 Magnetic Concentration of $-\frac{3}{4}$ in Cobber Concentrate Crushed to $-\frac{1}{4}$ in and to -20 m	5
Test 3 Magnetic Concentration of Ore Crushed to $-\frac{1}{4}$ in, and to -20 m	7
Test 4 Magnetic Concentration of -150 m Ore and Infrasizer Test on the Magnetic Concentrate	8
Test 5 Wet Magnetic Cobbing of -20 m Ore, Reconcentration of Cobber Concentrate at -150 m	9
Test 6 Dry Magnetic Cobbing of -20 m Ore, Reconcentration of Ground Cobber Concentrate	11
Conclusions	14
Acknowledgements	14

1

)

TABLES

Table		Page
1	Chemical Analysis of the Head Sample	2
2	Semi-Quantitative Spectrographic Analysis of the Head Sample	2
3	Summary of Magnetic Concentration Tests	4
4	Results of Magnetic Cobbing of $-\frac{3}{4}$ in. Ore	5
5	Results of Magnetic Concentration of $-\frac{3}{4}$ in.Cobber Concentrate crushed to $-\frac{1}{4}$ in.	6
6	Results of Magnetic Concentration of $-\frac{3}{4}$ in Cobber Concentrate crushed to -20 m	6
7	Results of Magnetic Concentration of $-\frac{1}{4}$ in.Ore	7
8	Results of Magnetic Concentration of -20 m Ore	7
9	Results of Magnetic Concentration of -150 m Ore	8
10	Results of Infrasizing the -150 m Concentrate	9
11	Results of Magnetic Cobbing of -20 m Ore	1.0
12	Results of Magnetic Concentration of Cobber Concentrate ground to -150 m	1.0
13	Results of Dry Magnetic Cobbing of -20 m Ore	11
14	Results of Magnetic Concentration of Cobber Concentrate ground 15 min	12
15	Results of Magnetic Concentration of Cobber Concentrate ground 30 min	12
1.6	Screen Tests on the Products	13

INTRODUCTION

Shipment

A shipment, consisting of 5 bags of lump ore, net weight 500 lb, was received at the Mineral Processing laboratories on November 7, 1962. It was submitted by Mr. C. W. Eppard, Managing Director, Imperial Metals and Power Itd., N.P.L., 230 West Broadway, Vancouver 10, B. C.

Location of the Property

The property is located in the Lodestone Mountain area near Coalmont, 20 miles west of Princeton, B. C.

Description of the Property

From the Mineral Resources Division, Iron Ore Review 1960, page 102, under the name of Royal Canadian Ventures Limited, the following description is taken:

The property consists of 40 claims in the Lodestone Mountain Area. Veins and lenses of magnetite in ultrabasic rocks in zones from 3 to 30 feet in width occur in an 11 by 4 mile area. No reserve estimate has been made. The host rock contains from 4 to 10% iron while the magnetite-bearing zones grade up to 60% iron.

Purpose of the Investigation

The purpose of the investigation was to determine the grade of concentrate and recovery of iron to be expected from ore represented by the shipment.

SAMPLING AND ANALYSIS OF THE SHIPMENT

The shipment was crushed to $-\frac{3}{4}$ inch and a head sample was obtained. Specimens were selected for a mineralogical examination by the Mineralogy Section of the Mineral Sciences Division, of the Mines Branch.

Total iron	28.09%
Bisulphate fusion (soluble) iron	26.47%
Titanium dioxide	1.66%
Phosphorus pentoxide	0.022%
Sulphur	0.067%
Silica	29.76%
Calcium oxide (CaO)	11.48%
Magnesium oxide Mg0	10.95%

* From Internal Report MS-AC-62-1445

TABLE 2

Semi-Quantitative Spectrographic Analysis ** of the Head Sample

Major constituents	Fe, Mg, Ca, Si
Intermediate constituents	Al, Ti
Minor constituents	Mn, V, Cr, Cu, Ni
Trace constituents	Со

The elements were listed in order of decreasing abundance.

****** Analysis by Spectrographic Laboratory SL-62-295 From Internal Report MS-AC-62-1086

TABLE 1

Chemical Analysis of the Head Sample

The following statements are extracted from the report "Mineralogical Investigation of an Iron Ore from the Lodestone Mountain Area in British Columbia." *

> "The iron ore consists of magnetite in a serpentinized pyroxene-rich rock. The magnetite contains minute blebs and lamellae of ilmenite and possibly spinel, and some of the gangue minerals contain needle-shaped inclusions of magnetite."

> "The ilmenite occurs in magnetite as (a) irregular grains and (b) tiny grains and lamellae.--- The tiny grains and lamellae range from nearly sub-microscopic sizes to blebs that are up to 3 microns in diameter, and lamellae that range up to 3 microns in width and 50 microns in length."

> "Some of the gangue minerals contain fine needle-like magnetite inclusions. These minerals, therefore, are somewhat magnetic."

SUMMARY OF TEST PROCEDURE

The ore was concentrated magnetically, at sizes ranging from $-\frac{3}{4}$ in. to -150 m. Cobber concentrates were made at $-\frac{3}{4}$ in, $-\frac{1}{4}$ in, and at -20 m. Ore at -20 m was cobbed by both wet and dry separators, and the -20 m concentrates were ground to -65, -100 and -150 mesh, and reconcentrated by a wet drum separator.

An infrasizer test was made on a -150 m concentrate and screen-sizing tests were made on the products of several tests.

SUMMARY OF RESULTS

The results of the tests are summarized in Table 3.

* Mines Branch Investigation Report IR 62-114, December 18, 1962. By W. Petruk, Scientific Officer, Mineralogy Section, Mineral Sciences Division, Mines Branch, Department of Mines and Technical Surveys, Ottawa, Canada.

TABLE 3	
---------	--

Fest	Product		1		Weight %	Analysis %			Dist	R/C
	Mag. Concs		In orig feed	Fe	TiO2	SiO2	Fe	g feed TiO2		
1	Cobbing ore	<u>3</u> 11 4	96.0	27.9	1,55	28.8	99.2	96.7	1.04:	
2	Cobber conc reground	$-\frac{1}{4}$ " -20	71.3 53.8	35.9 46.9	2.05 2.38	22.68 14.54	95.6 94.6	88.0 83.7	1.4:1 1.86:	
3	Conc from Ore	$-\frac{1}{4}$ " -20	74.4 55.4	33.58 44.62	2.01 2.30	24.44 16.52	96 . 2 95.0	91,6 83,2	1.34: 1.81:	
4	Conc from Ore	-150	31.8	66.43	2,32		83.8	46.1	3.14:	
5	Wet cobbing Ore Conc reground	-20 -150	55.4 33.4	46.6 66.54	2.63 2.22	14.58 1.44	95.5 83.8	88 ,1 47 . 8	1.81: 3:1	
6	Dry cobbing Ore Conc grd 15 min	-20 -65	51.5 34.9	47.12 63.75	2.46 2.52	2.48	92.6 81.1	80,6 57,8	1.94: 2.86:	
	Conc grd 30 min	-100	33.5	66,35	2.51	1.46	84.4	50.1	3:1	

Summary of Magnetic Concentration Tests

R/C - ratio of concentration

4

DETAILS OF TESTS

Test 1 Magnetic Cobbing of - 7 in. Ore

The test was made with ore crushed to pass a $\frac{3}{4}$ in.screen. The $-\frac{3}{4}$ in. ore was concentrated on a dry belt separator of pilot mill size.

The products were a concentrate and a tailing.

TABLE 4

Product	Weight	Neight Analysis, % **			Dist	R/C	
	70	Fe	Ti02	Si02	Fe	TiO2	
Feed *	100.0	27.0	1.54		100.0	100.0	
Mag Conc	96.0	27.9	1.55	28.80	99,2	96.7	1.04:1
Tailing	4.0	5,48	1.25		0,8	3.3	

Results of Magnetic Cobbing of $-\frac{3}{4}$ in, Ore

* Calculated

** From Internal Report MS-AC-62-1445

Test 2 Magnetic Concentration of $-\frac{3}{4}$ in Cobber Concentrate crushed to $-\frac{1}{4}$ in, and to -20 m

Two portions of $-\frac{3}{4}$ in.cobber concentrate from Test 1 were crushed to $-\frac{1}{4}$ in, and to -20 m. The $-\frac{1}{4}$ in, feed was concentrated by a laboratory-size Ball-Norton dry belt separator. A concentrate and a tailing were produced.

The -20 m feed was concentrated by a laboratory-size Crockett wet belt separator which produced a concentrate and a tailing. The concentrate was repassed; the tailing was designated as a middling.

Product	Weig	ht %	Analysis 73131		Distn, %				R/C
	In test	In orig			In	test	In ori	g feed	
	1691	feed	Fe	TiO2	Fe	TiO ₂	Fe	Ti02	1
Feed [#]	100.0	96.0	27.68	1.67	100.0	100.0	99 . 2	96.7	
Mag conc	74.3	71,3	35,90	2.05	96.4	91.0	95.6	88,0	1.40:1
Tailing	25.7	24.7	3.88	0.59	3.6	9.0	3.6	8.7	

Results of Magnetic Concentration of $-\frac{3}{4}$ in Cobber Concentrate crushed to $-\frac{1}{4}$ in,

* Calculated

SiO₂ in mag conc 22.68%

** From Internal Report MS-AC-62-1445

TABLE 6

Results of Magnetic Concentration of $-\frac{3}{4}$ in Cobber Concentrate crushed to -20 m

Product	duct Weight %		Analysis 7		Distn, %				R/C
	In test	In orig			In	test	In ori	g feed	· .
	00,90	feed	Fe	Ti.0 ₂	Fe	Ti02	Fe	T102	
Feed [*]	100.0	96.0	27, 59	1,54	100.0	100.0	99.2	96.7	
Mag conc	56.1	53.8	46.90	2.38	95.4	86.6	94.6	83.7	1.86:1
Midds	2.6	2.5	4.28	0.81	∙0_è4 ⊸	1.4	0,4	1.3	
Tailing	41.3	39.7	2.83	0.45	4.2	12.0	4.2	11.7	

* Calculated

SiO₂ in mag conc 14.54%

** From Internal Report MS-AC-62-1445

Test 3 Magnetic Concentration of Ore crushed to -4 in.and to -20 m

Two samples of ore were crushed to $-\frac{1}{4}$ in and to -20 m. The $-\frac{1}{4}$ in, feed was concentrated by the Ball-Norton separator which produced a concentrate and a tailing.

The -20 m feed was concentrated by a Crockett separator which produced a concentrate and a tailing. The concentrate was repassed and the tailing was designated as a middling.

TABLE 7

Product	Weight	Analysis, % ***		Dis	tn, %	R/C
	70	Fe	Ti02	Fe	TiO2	
Feed ^{**}	100.0	26.0	1.63	100.0	100.0	
Mag conc	74.4	33.58	2.01	96.2	91.6	1.34:1
Tailing	25.6	3.89	0.54	3.8	8.4	

Results of Magnetic Concentration of -4 in. Ore

* Calculated

th From Internal Report MS-AC-62-1445.

TABLE 8

Results	of	Magnetic	Concentration	of	-20 m Ore	•

Product	Weight	Analys	is, % ***	Distn, %		R/C
	70	Fe	TiO2	Fe	Ti02	
Feed [#]	100.0	26.0	1.53	100.0	100.0	
Mag conc	55.4	44.62	2.30	95.0	83.2	1.81:1
Midds	2.8	4.98	0.66	0.5	1.2	
Tailing	41.8	2.79	0.57	4.5	15.6	

* Calculated

*** From Internal Report MS-AC-62-1445

Additional Analyses of Concentrates

$-\frac{1}{4}$ in , conc.	-20 m conc.
$P_2 0_5 0.020 \%$	0.004 %
້Sັ 0.006 %	0.009 %
SiO ₂ 24.44 %	16.52 %

Test 4 Magnetic Concentration of -150 m Ore and Infrasizer Test on the Magnetic Concentrate

A sample of the ore was stage ground to --150 m and concentrated by a Jeffrey-Steffensen wet drum separator. The products were a concentrate, a middling and a tailing.

The concentrate was screened on 200 m and the -200 m portion was infrasized by the Haultain Infrasizer. Each fraction was analysed for iron and titanium dioxide.

Product	Weight	Analys	sis, % **	Distr	r/c	
	70	Fe	Ti02	Fe	Ti02	
Feed [*]	100.0	25.22	1.60	100.0	100.0	
Mag conc*	31.8	66.43	2.32	83.8	46.1	3.14:1
Midds	1.8	57.18	2.33	4.1	2.6	
Tailing	66.4	4.61	1.24	12.1	51.3	

TABLE 9

Results of Magnetic Concentration of -150 m Ore

Calculated

** From Internal Report MS-AC-62-1445

Results	of	Infrasi	izing	the	-150	m	Concentrate

Product	Weig	ht %	Analysi	3 % ^{###}		Dist	n %	
	In	In orig		mto	In test		In orig feed	
	test	feed	Fe	TiO2	Fe	Ti02	Fe	Ti02
Feed [#]	100.0	31.80	66.43	2.32	100.0	100.0	83.8	46.1
+200 mesh	10.5	3,35	62,11	2.73	9.9	12.4	8,3	5.7
+56 microns	29.7	9.44	66,55	2,58	29.7	33.0	24.9	15.2
+40 "	16.6	5.29	66.29	2.34	16.6	16.8	13.9	7.7
+28 "	13.3	4,23	67 . 43	2,22	1.3.5	12.7	11.3	5.9
+20 "	10.7	3.41	68,15	2.04	11.0	9.4	9.2	4.3
+14 "	7.1	2.23	68,05	2,00	7.2	6.0	6.1	2.8
+10 "	3.9	1.25	67.43	1.83	4.0	3.1	3.3	1.4
10 "	8.2	2.60	66.13	1.87	8.1	6,6	6.8	3.1

* Calculated

** From Internal Report MS-AC-63-148

Test 5 Wet Magnetic Cobbing of -20 m Ore Reconcentration of Cobber Concentrate at -150 m

A portion of -20 m ore was concentrated by the Crockett separator which produced a concentrate and tailing. The concentrate was repassed and the products were a concentrate and tailing. The two tailings were combined for analysis. A portion of the cleaned concentrate was analysed and the remainder was stage ground to -150 m. The -150 m concentrate was repassed on the Jeffrey-Steffensen wet drum separator which produced a concentrate, a middling and a tailing.

Product	Weight	Analys	is % ***	Dis	R/C	
	<i>%</i>	Fe	Ti02	Fe	Ti02	ور به دور در وی رو پر ور در ور بر در در در
Feed [#]	100.0	27,0	1.65	100.0	100.0	
Mag conc	55,4	46.6	2.63	95 . 5	88.1	1.81:1
Tailing	44.6	2.69	0.44	4,5	11.9	, ,

Results of Wet Magnetic Cobbing of -20 m Ore

* Calculated

Additional analyses of mag conc SiO₂ - 14.58% *** From Internal Report MS-AC-63-203

TABLE 12

Results of Magnetic Concentration of Cobber Concentrate ground to -150 m

Product	Weigh	Weight %		Analysis % ***		Distn %			
	In test	In orig feed	Fe	Ti02	 Fe	test TiO2	In ori Fe	g feed TiO2	
Feed [#]	100.0	55,4	45,81	2.47	100.0	100.0	95.5	88.1	**************************************
Mag conc	60.4	33.4	66,54	2 22	87.7	54.2	83.8	47.8	3:1
Midds	3.8	2.1	59,68	2 .81	4.9	4.3	4.7	3.8	
Tailing	35.8	1.9.9	9,38	2 "86	7.4	41.5	7.0	36.5	

* Calculated

Additional analyses of mag conc, S - 0.025% SiO₂ - 1.44%

From Internal Report MS-AC-63-203

A semi-quantitative spectrographic analysis *** was made on the -150 m concentrate.

The elements reported in order to decreasing abundance were:

Major constituents - Fe Intermediate constituents - Ti, Al Minor constituents - Si, Mg, V, Mn Trace constituents - Ca, Co, Ni, Cr, Cu, Ag

**** From Internal Report MS-AC-63-16, SL-63-010

Test 6 Dry Magnetic Cobbing of -20 m Ore, Reconcentration of ground Cobber Concentrate

A sample of -20 m ore was concentrated by a Ball-Norton dry belt separator, which produced a concentrate and a tailing.

Two portions of Ball-Norton concentrate were reground, one for 15 minutes and the other for 30 minutes. Reconcentration was made on the Jeffrey-Steffensen wot drum separator. Screen tests were made on the products of the tests.

TABLE 13

Product	Weight	Analysis % **		Dis	R/C	
	%	Fe	TiO2	Fe	Ti02	
Feed [*]	100.0	26.22	1.57	100.0	100.0	
Mag conc	51.5	47.12	2.46	92.6	80.6	1.94:1
Tailing	48,5	4,00	0.63	7.4	19.4	

Results of Dry Magnetic Cobbing of -20 m Ore

* Calculated

** From Internal Report MS-AC-63-203

TABLE 14

Results of Magnetic Concentration of Cobber Concentrate ground 15 min

Product	Weigh	t %	Analysis % ""					Ŕ/C		
	In	In orig				In test		In ori	g feed	
	test	feed	Fe	Ti.02	Si02	Fe	TiO2	F'e	TiO2	
Feed [#]	100.0	51.5	49.39	2.38		100.0	100.0	92.6	80.6	
Mag conc	67.8	34.9	63.75	2.52	2,48	87.5	71.7	81.1	57.8	2.86:1
Midds	3.1	1.6	47.77	2.94		3.0	3.8	2.8	3.1	·.
Tailing	29.1	15.0	16.10	2,01	and	9,5	24.5	8.7	19.7	

* Calculated

TABLE 15

Results of Magnetic Concentration of Cobber Concentrate ground 30 min

Product	Weigh	rt %	Ana1	ysis %	**		Dist	n %	. R/C	
	In	In orig		In test In orig feed		In test		g feed		
	test	feed	Fe	Ti02	Si02	Fe	Ti02	Fe	Ti02	
Feed [*]	100.0	51.5	47,32	2,63		100.0	100.0	92.6	80.6	
Mag conc	65.0	33.5	66-35	2,51	1.46	91.1	62.1	84.4	50.1	3 : 1
Midds	2.8	1.4	55.98	3,23		3.3	3.5	3.1	2.8	
Tailing	32.2	16.6	8.16	2,81	100 (A)	5.6	34.4	5.1	27.7	

* Calculated

** From Internal Report MS-AC-63-203

TABLE	16

Screen Tests on the Products

Mesh	Ba11-No	rton Con	<u>Weight</u> centration	1	Steffense	n Concen	tration
	Feed	Conc	Tailing	15 mir Conc	Grind Tailing	30 mi Conc	n Grind Tailing
+20	0.4	0.6	0.2				
+28	9.7	13.4	5.4				
+35	19.4	24.8	18.0				
+48	12.4	13.2	11.8	0.3			
+65	10.8	11.2	11.0	1.0	1.0	0.2	
+1.00	10.5	9.0	10.5	7.4	5.6	0.7	
+1.50	8.0	6.4	8.4	21.0	12.4	5.0	6.0
+200	5,8	1.4	6.7	21.6	13.6	15.2	11.2
-200	23.0	20.0	28.0				
	100.0	100.0	100.0				
+325	9990 mil	9449 9457		20.0	15.6	27.2	22.2
-325				28.7	51,8	51.7	60.6
	-	4-11 LTT		100.0	100.0	100.0	100.0
-200 m		Calif. (1965)		48.7	67.4	78,9	82.8

Weight %

.

ł

,

٦

CONCLUSIONS

The ore represented by the shipment is amenable to magnetic concentration. The concentrates from grinds of -65 to -150 m assayed from 63.75% Fe to 66.54% and the TiO₂ content was from 2.52% to 2.22%.

The mode of occurrence of the TiO₂ in the ore makes its removal by ore dressing methods impossible. It is expected that concentrates recovered from ore represented by this shipment would contain at least 2% TiO₂. It will be necessary to determine if a market for this type of concentrate exists or if a suitable smelting procedure can be used to exploit the deposit.

ACKNOWLEDGEMENTS

The writer acknowledges the assistance of the staff of the Mineral Sciences Division, for spectrographic analysis by Miss E. M. Kranck of the Spectrographic Laboratory, and for chemical determinations by D. J. Charette, F. W. Brethour, Miss E. Mark, and W. L. Chase of the Analytical Chemistry Subdivision.