

DEPARTMENT OF ENERGY, MINES AND RESOURCES

AWATTO

MINES BRANCH INVESTIGATION REPORT IR 74-49

DETERMINATION OF GOLD AND PLATINUM CONTENT IN A LOW-GRADE ALLUVIAL GRAVEL FROM THE TULAMEEN RIVER AREA OF BRITISH COLUMBIA

D. RAICEVIC AND R. W. BRUCE

by

NOTE:

COPY NO.

MINERAL PROCESSING DIVISION

THIS REPORT RELATES ESSENTIALLY TO THE SAMPLES AS RECEIVED, TH REFORT AND ANY CORRESPONDENCE CONNECTED THEREWITH SHALL NOT BE USED IN FULL OR IN FART AS PUBLICITY OR ADVERTISING MATTER.

> This document was produced by scanning the original publication

Ce document est le produit d'une numérisation par balayage de la publication originale.

AUGUST 22, 1974

Mines Branch Investigation Report IR 74-49

DETERMINATION OF COLD AND PLATINUM CONTENT IN A LOW-GRADE ALLUVIAL GRAVEL FROM THE TULAMEEN RIVER AREA OF BRITISH COLUMBIA

by

D. Raicevic* and R. W. Bruce**

- - -

SUMMARY OF RESULTS

Six samples of Tulameen gravel, weighing approximately 14 tons each, were received for this investigation.

The gold and platinum minerals in the alluvial gravels were free and sparsely disseminated, causing difficulties in proper sampling which result in unreliable gold and platinum analyses. To circumvent this problem, the precious metals in the whole 84 ton shipment of the Tulameen gravel were first concentrated from each sample by applying gravity and magnetic methods. The products were assayed and the gold and platinum content in each sample calculated.

The overall combined results, calculated from each gravel sample, are summarized in the following table:

Product	Weight	Assays	- oz/ton	Dist	n %
	%	Au	Pt	Au	Pt
Comb low intensity mag Comb cleaner gold conc Comb cl and ro tailings Comb + 20-mesh material	0.1662 0.0220 12.8805 86.9313	0.0052 0.213 0.0011 Nil	0.0059 0.031 N.D. Nil	4.5 24.1 71.4	67.6 32.4 - -
Comb feed (calcd)	100.0000	0.00019	0.000021	100.0	100.0

The average gold and platinum contents in the combined six samples, therefore, were as follows:

Au - 0.00019 oz/ton of gravelPt - 0.000021 oz/ton of gravel

* Research Scientist and ** Head, Non-Ferrous Minerals Section, Mineral Processing Division, Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

CONTENTS

î

Pag	<u>ge</u>
Summary of Results	Ĺ
Introduction	1.
Location of Gravel Purpose of Investigation Origin and Description of Sample Sampling and Analysis	1 1 2 2
Mineralogy of Tulameen Gravel	4
Outline of Investigation	6
Details of Investigation	7
Summary and Conclusion1	1
Acknowledgements 1	2
References 1	3
Appended Tables of Results 1	4 - 28

LIST OF TABLES

<u>No.</u>	<u><u> </u></u>	age
1.	Ledoux's and Mines Branch Analyses on "Umpire Samples"	4
2.	Specific Gravity of Minerals in Tulameen Gravel	7
3.	Jigging Conditions	10
4.	Results From Tulameen Gravel, Lot No. I	14
5.	Results From Tulameen Gravel, Lot No. II	15
6,	Results From Tulameen Gravel, Lot No. III	16
7.	Results From Tulameen Gravel, Lot No. IV	17
8.	Results From Tulameen Gravel, Lot No. V	18
9.	Results From Tulameen Gravel, Lot No. VI	19
10.	Results From Combined Concentrates and Tailings, Lot No. I	20
11.	Results From Combined Concentrates and Tailings, Lot No. II	21
12.	Results From Combined Concentrates and Tailings, Lot No. III	22
13.	Results From Combined Concentrates and Tailings, Lot No. IV	23
14.	Results From Combined Concentrates and Tailings, Lot No. V	24
15.	Results From Combined Concentrates and Tailings, Lot No. VI	25
16.	Gold and Platinum Distribution in Combined Tulameen Gravel Samples, Lot I-VI	26
17.	Summary of Results From Tulameen Gravel	27
18.	Overall Concentration Results from Combined Tulameen Gravel Samples, Lot I-VI	28

INTRODUCTION

It has been known for nearly a century that alluvial gravel along the Tulameen River in south-central British Columbia contains gold and platinum values as well as other metallic minerals. The recovery of precious metals from this gravel received intermittent attention from various mining companies particularly in the early 1900's, but no economic operation has been realized. Due to present high prices of gold and platinum, attention to the Tulameen gravel is active again.

Location of the Gravel

Metcon Resources Ltd. hold over sixty placer leases along a twenty mile stretch of the Tulameen River, but these leases are not continuous over that distance. They are grouped into five main blocks of which the largest is nearest to Princeton and is known as the "Peterson" leases. The other blocks are known as "Chinook, "Brown", "Coney Island", and "Lincoln" and are located, respectively, upstream of the "Peterson" block $\binom{6}{}$.

Purpose of Investigation

During the past ten years, a number of samples of Tulameen gravel from various locations along the Tulameen River in British Columbia have been investigated at the Mines Branch to determine the gold and platinum contents in these samples as well as to investigate the possibility of concentration of these precious metals. Although the results obtained showed that the contents of the precious metals in these samples were low and not economical to concentrate, it was felt that the samples investigated, weighing only several hundred pounds of gravel, might not be representative of the areas and thus the conclusion could be misleading.

At a meeting in Ottawa with representatives of Metcon Resources Ltd. from Vancouver, it was decided that the Mines Branch would carry out an investigation on a large sample of approximately .00 tons of Tulameen gravel to accurately determine gold and platinum values.

Origin and Description of Sample

Under the supervision of Dr. L. J. Cabri of the Mines Branch, approximately 84 tons of Tulameen gravel, including boulders, were taken for this investigation from the six test-pits on the "Peterson" block (PML-1833) located approximately half way between the villages of Coalmont and Princeton⁽⁶⁾. About 14-ton samples were taken from each pit and shipped to Mines Branch, Ottawa. Between 54 and 72% by weight of the samples were in the form of boulders and material coarser than 6 mesh. In five samples the gravel was loose and easy to separate from the other material, whereas Sample No. IV contained above-average amounts of angular and sub-angular material as well as above average amounts of mafic and ultramafic rocks ⁽⁶⁾ and less boulders than the other five samples.

It is felt that this large sample is representative of a significant quantity of alluvial material from the Tulameen River area. However, it was expected that the area sampled would contain finer-grained and probably poorer values, because it was located further downstream from the original source of the precious metals⁽⁶⁾.

Sampling and Analysis

Based on the results of the mineralogical examinations ⁽³⁾ ⁽⁴⁾ ⁽⁵⁾, it was agreed by Mr. Bainbridge of Metcon Resources Ltd., Mr. R. Ellerman, Consultant, Wright Engineers Ltd., both from Vancouver, B. C., Dr. L. J. Cabri of Mineral Sciences Division, Mines Branch, Ottawa and staff of Mineral Processing Division, Mines Branch, Ottawa, that the portion of Tulameen gravel coarser than six mesh had no gold and platinum values and, therefore, should be rejected by screening prior to concentration.

It was also agreed that, due to the nature of the material, a reliable gold and platinum analysis of the minus six-mesh material could not

be expected. As a result the minus 10-mesh fractions were screened out from the minus 6-mesh head samples and representative samples (about 500 grams) pulverized for fire assays. No detectable gold and platinum were found (0.003 oz/t) is the lower limit of the assay method); even by the X-ray fluorescence method, only scarcely detectable traces were indicated which showed that the Tulameen gravel samples for this investigation contained very low amounts of gold and platinum. The only alternative method for determining the gold and platinum contents in the gravel sample was to concentrate the precious metals and then calculate the metal content from the assayed products. To achieve the highest accuracy possible in sampling, where convenient, the total amounts of the concentrates were pulverized to minus 200 mesh and assayed. The pulverizing equipment was cleaned out with barren quartz and the pulverized quartz was also assayed.

Metcon Resources Ltd. requested that gold and platinum analyses on the products be done by the Analytical Chemistry Subdivision of the Mines Branch in Ottawa, as well as by B. H. Levelton and Associates Ltd. in Vancouver, British Columbia. When the gold and platinum analyses of the B. H. Levelton and Associates were 20 to 300 times higher than the Mines Branch assays, it was agreed to obtain an umpire analysis by a reliable third party. For this purpose, four identical sets of samples of the typical products were prepared. One set was analysed by Mines Branch, one by Levelton and Associates, and the third set by Ledoux and Company of New Jersey, U. S. A., with the agreement that Ledoux's values would be accepted as the umpire assays.

The Ledoux's and Mines Branch analyses of these "umpire" samples are given in Table 1.

Product	Chemical Analyses — oz/ton							
rioduci	Led	oux's	Mines Branch					
	Au	Pt	Au	Pt				
Rougher magnetics 1	0.018	0.007	0.011	0.004				
Cleaner concentrate 1 Cleaner tailing 1	0.502	0.047 <0.001	0.005	0.034				

Ledoux's and Mines Branch Analyses on "Umpire" Samples

These results showed that the Mines Branch assays were in close agreement with those of the Ledoux's procedure.

After B. H. Levelton and Associates Ltd. corrected their Au-Pt analytical procedure, their assays of these "umpire" samples were in close agreement with the Ledoux and Mines Branch assays. As a result, the metallurgical balances of the products from all gravel samples (lots) were done using Mines Branch assays.

MINERALOGY OF TULAMEEN GRAVEL

The geology of Tulameen River area has been described by C. Camsell in 1913⁽¹⁾. In recent years, other mineralogical investigations and technical publications ⁽²⁾ ⁽³⁾ ⁽⁴⁾ ⁽⁵⁾ ⁽⁶⁾ have been carried out on Tulameen gravel from various areas by Dr. L. J. Cabri of the Mineral Sciences Division, Mines Branch, Ottawa and by others. Only the pertinent summaries of these publications, related to the geology of the district and specific. 11y to the sample received for this investigation, will be recorded in this report.

"The main constituent of the placers in the Tulameen area is quartz with variable quantities of rock fragments and boulders. Magnetite and chromite are common heavy minerals; their relative proportion varies with location. Minor heavy minerals are garnets, (ferroan spessartite and manganoan almandine), hematite, zircon, sulphides (principally pyrite), ilmenite, gold, and hydrated iron oxides. Platinum-group minerals, as discrete mono-minerallic grains and as complex multi mineral nuggets and flakes, occur as minor constituents of these placer deposits. Tulameenite occurs associated with cubic iron-bearing platinum as rounded to irregular areas up to about 400 µm in diameter, as free grains, or as grains with complex inclusions (Fig. 1). When occurring as an outer zone on a nugget or flake of cubic iron-bearing platinum, tulameenite is distinguished by its relatively inferior polished surface"⁽³⁾.

Fig. 1. Photomicrograph of a complex tulameenite grain showing inclusion of geversite (1) - PtSb₂ - and chalcopyrite (3) - CuFeS₂ with, on the lower part, darker grey inclusions of a new Ir (Rh) - Sb-S mineral (2). Black areas are pits.

The tulameenite is distinctly magnetic in a low-intensity magnetic field while the cubic iron-bearing platinum mineral is non-magnetic in the same field.

The minerals of economic interest are iron-bearing platinum, tulameenite, platiniridium, and gold, all of which occur as liberated grains with respect to the silicate and oxide gangue. These economic minerals are in sizes smaller than 28 mesh. They can all be concentrated by gravity methods using heavy liquids. The tulameenite and magnetite can be further separated by means of a hand magnet. The platinum-group minerals contain some or several other metals such as Ir, Fe, Os, Ru, Cu, Ni and Sb in solid solution⁽⁴⁾.

OUTLINE OF INVESTIGATION

The mineralogical examination of the samples from the "Peterson" area indicated that most of the gold and platinum values were present in the gravel as free grains finer than 28 mesh. As the gravel material received for this investigation contained some waste material over 12 inches in diameter, this waste material had to be rejected by screening prior to concentration. To assure that no values were lost during the screening operation, it was agreed to reject material coarser than six mesh and carry out the concentration on the material finer than six mesh.

The mineralogical examinations of the samples from various Tulameen gravel areas showed that this gravel is composed of 15-20 different minerals of various chemical compositions with a various range of specific gravities as shown in Table 2.

Minerals	Amounts	Specific Gravity
Quartz Magnetite Chromite	main constituent major major	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Garnets Hematite Zircon Pyrite I.lmenite Fe oxides	minor minor minor minor minor minor	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Gold Platinum Pt minerals	very low very low very low	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Specific Gravity of Minerals in Tulameen Gravel

Because of the high specific gravity of the precious metal values, gravity concentration was used to concentrate them from the gangue minerals present in the gravel.

The magnetite and tulameenite present in the gravity concentrates were concentrated by low-intensity magnetic separation.

DETAILS OF INVESTIGATION

To concentrate most of the gold and platinum minerals effectively, and particularly the free grains, two-stage jigging was done on the unsized minus 6-mesh material using a Denver Duplex Mineral Jig. This produced two jig rougher concentrates.

As jigging of an unsized material containing particles of a wide. range of sizes is not very effective in recovering fines of even heavy minerals, most of the fine material remained in the jig tailings including some gold and platinum values. These heavy fines are lost to the jig tailings unless they are concentrated by an additional treatment. To determine the distribution of the precious metals, jig tailings were separated by screening into various size fractions. When the assays showed that no gold and platinum values could be detected in the plus 20-mesh fraction of the tailings, this fraction was discarded and the minus 20-mesh fraction of the jig tailing was tabled on a Wilfley sand-deck table. This produced a third rougher concentrate.

Slimes from the Wilfley table were tabled on a Deister slime deck table to recover a fourth rougher concentrate.

Each rougher concentrate was then treated by a low-intensity magnetic separator to eliminate magnetite. Each non-magnetic portion of the four rougher concentrates was then tabled to produce cleaner concentrates; the first, second and third on a Deister sand-deck table and the fourth on a slime-deck table.

In one case (Lot III), the cleaner concentrate #1 was subjected to a dry high-intensity Stearns magnetic separator (not shown on the flowsheet) to observe the effect of this kind of magnetic treatment on the separation of the low-magnetic minerals contained in the cleaner concentrate.

The flowsheet of this procedure is presented in Figure 2 and jigging conditions in Table 3. Detailed results of the investigation, attached to this report, are given in Tables 4 to 9, pages 14 to 19, with calculated gold and platinum contents in each lot; the results from combined concentrates and tailings from each lot are recorded in Tables 10 to 15, pages 20 to 24. Based on the results from Tables 4 to 9, the assays and gold and platinum distributions in the combined feed (all six lots combined) are calculated in Table 16, page 26. The summer of the results from all lots combined is given in Table 17, page 27.

The overall concentration results, with the average gold and platinum contents in all six lots combined, are recorded in Table 18, page 28.

- 9 -

Jigging Conditions

COMPANY :	Metcon Resources Limited, Vancouver, B.C.
SAMPLE:	Tulameen Alluvial Gravel,Samples I to VI
JIG:	Denver Duplex Mineral Jig, 8 in.x 12 in.
OPERATING (CONDITIONS:
Speed:	250 rpm
Stroke:	1/4 in.
Ragging:	Hutch No. 1 Hutch No. 2
Type.	Samson Shots
Size.	1/4 inch and 3/16 inch, mixed - approx 3:1 ratio
Weight.	28 1b 24 1b
Supporting	g Screen: 1/16 inch wedge bars
Water:	U.S. gal/min
Тор	2.3
Bottom	6.7
Feed.	

Feed:

.

.

۲.

Rate (average): 800 lb/hr

Size: -6 mesh

.. . .

SUMMARY AND CONCLUSION

The main constituents in the Tulameen placer deposit are quartz, variable amounts of rock fragments and boulders, with magnetite and chromite as major heavy minerals. Garnets, hematite, zircon, sulphides (principally pyrite), ilmenite, hydrated iron oxides, gold, platinum-bearing minerals and some gangue minerals, are the minor constituents in the gravel, with gold and platinum being the only constituents of an economic interest.

Six Tulameen gravel samples processed by applying jigging, tabling and low-intensity magnetic separation, contained very low amounts of gold and platinum minerals averaging 0.00019 oz Au/ton and 0.000021 oz Pt/ton. All of the gold and platinum values were in the minus 20-mesh fraction of the gravel comprising about 13% of the gravel by weight (see Table 17).

Due to low gold and platinum contents in the gravel, the magnetic and gravity concentrates produced had low gold and platinum grades (see Table 18).

All of the platinum in the gravel was recovered in two concentrates but only 28.6% of the gold in the gravel was recovered in the same two concentrates (see Table 18). Over 71% of the gold, therefore, remained in the rougher and cleaner tailings. No platinum was detected in either rougher or cleaner tailings (see Table 18). Particularly high gold losses occurred in rougher and cleaner tailings from Lot IV where about 90% of the gold in this sample remained in the tailings, reducing the overall gold recovery considerably.

It appears, therefore, that gold present in the gravel from the sample was either not as free as the platinum or in very fine sizes and thus it was less amenable to concentration.

No grinding of the tailings was applied in this investigation.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the assistance of Mr. A. Boisonnault and the mill staff for initial screening of the gravel and setting and Operating the pre-concentration circuit.

Acknowledgements are also extended to laboratory technicians, J. C. Banks, M. Raicevic and L. Gratton, for the upgrading operations and, to the latter two, for sample preparation of the mill products.

Specific acknowledgements are extended to the Analytical Chemistry Subidivision of the Mines Branch, Department of Energy, Mines and Resources in Ottawa, namely, Mr. P. E. Moloughney and his analysts, for carrying out a large number of gold and platinum analyses.

Acknowledgement is also extended to Dr. L. J. Cabri for providing Figure No. 1, reports as references and for storage arrangements for the last two shipments received for this investigation.

REFERENCES

- Camsell, C., "Geology and Mineral Deposits of Tulameen District, B. C.", Geol. Surv. Can., Mem. 26, (1913).
- (2) Findlay, D. C. "Origin of Tulameen Ultramafic-gabbro Complex, Southern British Columbia", Can. Journal of Earth Science 6, (1969).
- (3) Cabri, L. J., D. R. Owens and J. H. G. Laflamme, "Tulameenite, a New Platinum-Iron-Copper Mineral from Placers in the Tulameen River Area, British Columbia", Canadian Mineralogist, Vol. 12, 1973.
- (4) Cabri, L. J., "Mineralogical Investigation of a Placer Sand Sample from the Tulameen River Area, British Columbia", Mines Branch Investigation Report IR 1973-29.
- (5) Cabri, L. J. "Mineralogical Examination of Midds Produced by Panning a "Gold Saver" Concentrate, Mineral Sciences Division, Mines Branch Test Report M-73-58.
- (6) Cabri, L. J. "Field Trip to the Tulameen Area, British Columbia, 23rd October to 6th November, 1973", Mineral Sciences Division, Mines Branch, Visit Memorandum MSV-1973-34.

DR/RWB/cb

- 14 -

Detailed Results from Tulameen Gravel

Lot No. : I

Weight: 28,700 1b

	Weight		Assay-o	oz/ton	Cont	ent	Dist	n X
Product	1b	7.	Au	Pt	Au	Pt	Au	Pt
L-Intromags 1 Cl conc 1 Cl tail 1	22.33 2.22 4.60	0.0745 0.0095 0.0160	0.603 0.516 0.604	0.030 0.067 N.D.	0.0002235 0.0020513 0.0000640	0.0022350 0.0006366	3.0 63.8 0.9	74.6
Jig ro conc 1	23.80	0.1003	0.053	0.029	0.0053443	0.0028916	/0./	
L-Intropugs 2 Clicone 2 Clitail 2	32.50 3.75 273.50	$0.1132 \\ 0.0131 \\ 0.9531$	0.003 0.132 N.D.	Tr. 0.006 N.D.	0.0003396 0.0017292	0.0000786	4.5	2.6
Jig re cone 2	309.75	1.079;	0.602	0.0001	0.0020688	0.0000786	27.4	2.6
L-Int ro mags 3 Cl conc 3 Cl tail 3	7.23 0.69 63.00	0.0252 0.0023 0.2197	0.603 0.612 1.7.	N.D. 0.011 N.D.	0.0000756 0.0000208	0.0000266	1.0 0.4 	0.9
Sand D 15 conc	/1.00	0.2475	0.0004					
L-Int to mags 4 Cl cons: 4 Cl till 4	0.02 0.01 3.42	0.0000 0.6010 0.6119	0.003	N.D. 3.D. 3.D.	0.0000002 0.0000014 0.00003.4		7.:. 0.1 0.4	-
Slice D to cone	3.45	5.012.3	6.: 33	3.D.	0.0000373		0.5	
Co.25 To CONC	413.69	1.495.2		0.052	0.01/55/28	0.0023465	1967.54 1	200.0
Foud Doo tail Slipe D to tail	1,1,5,65 2+6,66	2.1073 0.752	Х.р. Ч.р.	46.19. 11.19.				
20 ····] · · (er.).	1,792,50	6.9619		0,000	5 0.0075545	0.0019558	51.9	160.0
(20 rest jig toil	5,659.00	. 1. 6367	с.р.	п.р.				
16 needs tractifer and benderra	20,152.00		:	r i i	/			•
Food (coled)	20,200.05	1 0f.c		0.04) ⁻ [0, - 1/5]	10,63,473 11,73) (').(·[:::

a Estimated

٠

Detailed Results from Tulameen Gravel

Lot No: 11

Weight: 29,741 1b

	W	eight '-	Assay	Assay-oz/ton		Content		
Product	1ь	Z	Au	. Pr	Au .	Pt	Λu	Pt
L-Int ro mags 1 Cl conc 1 Cl tail 1	49.0 3.3 19.6	05 0.164 15 0.011 10 0.065	9 0.0 3 0.5 9 0.0	03 N. I 20 0.07 03 N. I	0.000495 72 0.005876 0.000197	0 0 0.000813 7 -	6 1.8 2].8 0.7	85.6
Jig ro conc 1.	72.0	0.242	1 0.02	27 0.00	0.006568	7 0.0008130	6 24.3	85.6
L-Int ro mags 2 Cl conc 2 Cl tail 2	33.0 3.9 53.7	0 0.1110 0 0.013 2 0.190	0 N. I 1 0,05 5 N. II	0. N. D 55 0.00	6 0.000720	5 0.0000786	2.7	8.3
Jig ro conc 2	. 90.6	2 0.304	0.00	0.000	2 0.000720	5 0.000786	2.7	8.3
L-Int ro mags 3 C1 conc 3 C1 tail 3	10.65	0.0358	0.00	3 N. D. 0 0.009	0.0001074 0.0001280 0.0001280	0.0000576	0.4 0.5 <u>2.6</u>	6.1
Sand D.rc conc	83.80	0.2818	0.003	4 0.0002	0.0009545	0.0000576	3.5	6.1
L-Int ro mags 4 Cl conc 4 Cl tail 4	0.07	0.0002 0.0001 0.0151	0.004 0.130	N. D. 0.005	0.0000008	 Tr.	Tr 0.1	
Slime D. ro conc	4.58	0.0154	0.0001	TT:	0.0000138 0.0082575	Tr. 0.00050	0.1	Τr.
	-					-		
Land D. ro taffs Slike D. ro taffs	3400.00	+ 11,4320 0,3676	0.0015	н.р. <u>16.р.</u>	0.0171480 0.0014149		63.4 6:5	
120 ; esh ji; (atts	3891.00	21.8554	0.0021 N.D.	0.0007 N.D.	0.0270195	 		-
to mesh fraction and houlder::	19350-00	65.0616	NL1*	111+	-	· _	-	
Feed (cal'd)	20741.00	າເວ.ຍບວດ	0.00027	0.00001	0.0270195	0.030500 100	100.0	0.0

* Furblated

- 15 -

Detailed Results from Tulameen Gravel

. .

	1	ot No: III		Weig	ht: 26,733 1	b		
	Ve	ight	Assay-	oz/ton	Co	ntent	Di	stn 🕱
Product	1b	· z	Au .	Pt	Λu	Pt	Au	Pt
Lefit ro mags 1 Heffit mags 1 Reect conc 1 Cl tail 1.	23.00 1.02 1.79 52.79	0.0860 0.0038 0.0038 0.0067 6 0.1973	0.004 0.008 / 0.631 8 N.D.	4 N. D. 6 0.026 2 0.014 N. D.	. 0.000344 0.000030 0.004234	- 0.000099 0.000094 -	1.3 0.1 16.3	1.3 1.2
Jig to cone 1	78.50	0.2938	0.016	0.0007	0.004608	0.000193	17.7	2.5
L-Int ro wags 2 Cl cone 2 Cl tail 2 Jig 10 cone 2	20.50 4.41 43.50 68.41	0.0767 0.0165 0.1627 0.2559	0.005 0.070 N.D. 0.006	N. D. N. D. N. D. N. D.	0.000383 0.001155 		1.5 4.4 - 5.9	
L-Int ro mags 3 Cl conc 3 Cl tail 3 Sand D ro conc	10.53 1.35 81.60 93.48	0.0394 0.0050 0.3053 0.3497	0.004 0.591 N.D. 0.009	0.155 0.280 <u>N. D.</u> 0.0215	0.000157 0.002955 0.003112	0.005107 0.001400 	0.6 11.4 	79.2 18.3
L-Int ro mags 4 Cl coue 4 Cl tail 4 Cl tail 10 cone	0.31 0.03 8.21 8.55	0.0011 0.0001 0.0308 - 0.0320	0,015 0,019 	N. D. 0.007 N. D. 7r.	0.000016 0.000001 	 	0.1 Tr. 	Th:
Company Too rong	24900			_0_0283.	0.009275_		35.7	100-0.
Sand Diro tall Score Diro tall 20 Lesh Gaterial	5340,00 890,00 6479,00	19,9751 3,3092 24,2359	$\begin{array}{c} 8.0, \\ 0.695 \\ 0.601 \end{array}$	N.D. R.D. 0.0037	0.016646 D.025921	0.007700	54-3 100-0	-
120 nach jig tail	5760.00	21,5464	п. н.	п.р.	-	-	-	-
16 uesh fraction and boulders	14494.00	54.2172	$H_{1}1^{2}$	1/17*	-		-	-
Fred (calcd)	26733.00	1600.000 0	.00026	0.0001	0.025921	0.007200	00.0	100.0

* Lart abel

Detailed Results from Tulameen Gravel

Lot No.: IV

Weight: 27,525 lb

	Wei	ght	Assay-	oz/ton	Content		Dist	n %
Product	16	z	Au	Pt	Au	Pt	Λu	Pt
L-Int ro mags 1 Cl conc 1 Cl tail 1	3,90 0,88 9,46	0.0142 0.0032 0.0344	0.032 0.490 0.006	0.002 0.006 N.D.	0.0004544 0.0015680 0.0002064	0.0000284 0.0000192	0.9 3.1 0.4	31.4 21.1
Jig ro conc 1	14.24	0.0518	0.043	0.001	0.0022288	0.0000476	4.4	52.5
L-Int romags 2 Cl conc 2 Cl tail 2	8.63 2.28 123.93	0.0314 0.0083 0.4501	0.035 0.129 0.003	N.D. N.D. N.D.	0.0010990 0.0010707 0.0013503		2.2 2.1 2.7	
Jig ro conc 2	134.84	0.4898	0.007	N.D.	0.0035200	-	7.0	-
L-Int ro mags 3 Cl conc 3 Cl tail 3	7.20 1.46 91.51	0.0262 0.0053 0.3325	0.008 0.110 0.005	N.D. 0.007 N.D.	0.0002096 0.0005830 0.0016625	0.0000371	0.4 1.2 3.3	41.0
Sand D ro conc	100.17	0,3640	0.007	0.0001	0.0024551	0.0000371	4.9	41.0
L-Int ro mags 4 Cl conc 4 Cl tail 4	0.02 0.07 3.66	0.0001 0.0003 0.0133	0.070 0.021 N.D.	0.005 0.003 1.11.	0.0000070 0.0000063	0.0000050	Tr. Tr.	5.5 1.0 -
Slime D ro coac	3. 75	0.0137	0.001	0.0005	0.0000133	0.0000065	Tr.	6.5
Comb ro conc	253,00	0.9193	0.009	0.0201	0.0082172	0.0000912	16.3	100.0
Sand D ro tail Slime D ro tail	2031.00 139.00	7.3787 0.6866	0.005	N.D. N.D.	0.0368935 0.0054928		72.8	
-28 wesh material	2475.09	8,9846	0.006	Tr.	0.0506035	0.000091?	100.0	
+28 mesh jig tail	5730.00	20.8174	N.D.	:1.D.	-	-	-	
H8 mesh fraction and boulders	19322.00	70.1980	Ni]*	Nil*	-			
Feed (calcd)	27525.00	100.0000	0.0003	0.090001	<u>0.0506035</u> 100	$\left \begin{array}{c} 0.060 \\ 100 \end{array} \right $	100.0	100.0

* Estimated

- 17 -

Detailed Results from Tulameen Gravel

Lot No.: V

Weight: 27,717 1b

	Weight		Assay-	Assay-pr/ton		tent	Dist	n Z
. Froduct	16	Z	Λυ	Pt.	Αι:	Pt	Λu	Pt
L-Int ro mags 1 C1 conc 1 C1 tail 1	3.09 0.61 8.57	0.0112 0.0022 0.0309	0.005 0.255 0.007	0.003 0.047 N.D.	0.0000560 0.0005698 0.0002163	0.0000336 0.0001034	3.3 33.6 12.8	16.3 50.1
Jig ro conc 1	12.27	0.0443	0.019	0.0031	0.0005421	0.0001370	49.7	66.4
L-Int rowags 2 Cl cone 2 Cl tail 2	4.88 2.80 54.52	0.0176 0.0101 0.1967	N.D. 0.027 11.1.	N.D. N.D. N.D.	0.0002727		16.1	-
Jig ro conc 2	62.20	0.2244	0.0012	-	0.0002727	-	16.1	-
L-Int romage 3 Cl conc 3 Cl tail 3	5.53 0.74 48.74	0.0200 0.0027 0.1758	0.004 0.157 N.D.	21.D. 0.007 21.D.	0.0006200	0.0000189	4.7 25.0 -	- 9.2 -
Sand b re cone	55.01	0.1935	0.0025	0.0001	0.0005059	0.0000189	29.7	9.2
L-Int to mage 4 CL cooc 4 Cl tail 4	0.14 0.12 7.13	0.0005 0.0504 0.0258	0.005 0.187 N.D.	0.041 0.075 S.D.	0.0000025 0.0000749 -	0.0000205 0.0000300 -	0.1 4.4	9.9 14.5 -
Sline Dito conc	7.39	0.0267	0.003	0.002	0.0000773	0.0000505	4.5	24.4
Comb 10 conc	136,87	0,4939	0.003;	0.0-11	0.0016960	0.0002064	160.0	100.0
Sand Doo tafi Slice Dre tail	2340.00 285.13	8.4425 1.0287	н.р. в.р.	8.18. 5.19.				
-20 r sh material	2762.00	9,9651	0.00017	0,69002	0.0016959	0.0002064	100.0	100.0
320 with j(p) (ail)	8546,00	30,8331	8.D.	a.p.			-	- /
16 mesh fraction and boulders.	16409.00	59.2618	8114	ni19		-		-
Feed (coled)	27717.00	100.000	0,00002	0,000002	<u>(4,00110.5</u> 160	0.0062064		

* Esilmated

Detailed Results from Tulameen Gravel

.

Lot No.: VI

•

Weight: 29535 1b

•

•

	Weight		Assay-	oz/ton	Content		Distn Z	
Product	16	7	Λu	ŀt	Λυ	Pt	Λu	1'1
L-Jut ro mags 1 Cl conc 1 Cl tail 1	11.69 2.48 26.25	0.0441 0.0093 0.0989	0.011 0.145 K. D.	N. D. 0.003 1. D.	0.000485 0.001348	0.000027	15.2 42.1 -	100.0
Jig ro conc 1	40.42	0.1523	0.012	0.0002	0.001833	0.000027	57.3	100.0
L-Int romage 2 Cl conc 2 Cl tail 2	9.88 1.70 31.20	0.0372 0.0064 .0.1176	0.007 6.037 R. D.	н. р. п. р. к. н.	0.000260 0.000236	-	8.1 7.4	-
Jig ru conc 2	42.78	0.1612	0.003	n. d.	0.000496	-	15.5	-
L-Int romage 3 Cl cone 3 Cl tail 3	14.15 2.25 98.10	0.0533 0.0085 0.3697	0.009 0.046 N. D.	R. D. R. D. R. D.	0.000479		15.0	
Sand h ro conc	114.50	0.4515	0.002	к. D.				
L-Int ro mags 4 Cl conc 4 Cl rail 4	0.11 0.26 5.93	0.0005 0.0010 0.0223	N. D. R. D. R. D.	N. D. H. D. H. D.		-		-
Sline D'ro conc		0.0235	-	и, п.			-	
Cosh ro conc	204.00	0.7688	0.004	'Ir.	0.003199	0,000027	100.0	100.0
Sand Doo (ai) Slipp Doo tail	3975.00 255.00	14.9802 0.9619	я.р. п.р.	н.р. К.р.	-		-	
-20 Losh Laterial	4434.00	16.7100	0.0052	Tr.	0.003109	0.000027	100.0	100.0
120 mesh jig tail	5412.00	20,3957	N.D.	и.р.			-	
16 mesh fraction and boulders	16689.00	62.8943	Nil*	Ni]*		-	٣	• •
ieed (caled)	26535.00	100.0000	0.00003	Tı.	0.0032	Tr.	100.0	100.0

* Estimated

Results from	Combined	Concentrates	and	Tailings
Lot N	o. I	Weight	28.	700 15.

Product	Weight %	Assay-	oz/ton	Distn %		
		Au	Pt	Au	Pt.	
Lt-Int ro mags 1 """"2 """"3 """4	0.07450 0.11320 0.02520 0.00007	0.003 0.003 0.003 0.003	0.030 Tr. N.D. N.D.	3.0 4.5 1.0 Tr.	74.6 - -	
Comb L-Int ro mags	0.21307	0.003	0.010	8.5	74.6	
Cl conc 1 ""2 ""3 ""4	0.00980 0.01310 0.00240 0.00003	0.516 0.132 0.012 0.048	0.067 0.006 0.011 N.D.	66.8 22.9 0.4 0.1	21.9 2.6 0.9	
Comb cl conc	0.02533	0.269	0.030	90.2	25.4	
Cl tail 1 ""2 ""3 ""4	0.01600 0.95310 0.21970 0.01190	0.004 N.D. N.D. 0.003	N.D. N.D. N.D. N.D.	0.9 - 0.4		
Comb cl tails	1.20070	Ţŗ.	N.D.	1.3	-	
Comb ro conc	1.4390	0.005	0.002	100.0	100.0	
Sand D ro tail Slime D ro tail	4.0732 0.7526	N.D. N.D.	N.D. N.D.			
-20 mesh material	6.2648	0.0013	0.0005	100.0	100.0	
+20 mesh jig tail	21.0801	N.D.	N.D.	-	-	
+6 mesh fraction and boulders	72.6551	Nil*	Nil*	-	-	
Feed (calcd)	100.0000	0.00008	0.00003	10^.0	100.0	

* Estimated

Results from Combined Concentrates and Tailings

Lot No.: II

Weight: 29,741 lb.

	Weight	Assay	-oz/ton	Distn	p.
Product	۶.	Au	Pt	Au	Pt
Lt-Int ro mags 1 """"2 """"3 """4	0.1649 0.1110 0.0358 0.0002	0.003 N.D. 0.003 0.004	N.D. N.D. N.D. N.D.	1.8 - 0.4 Tr.	
Comb L-Int ro mags	0.3119	0.002	N.D.	2.2	-
Cl conc 1 1 2 1 1 3 1 1 4	0.0113 0.0131 0.0064 0.0001	0.520 0.055 0.020 0.130	0.072 0.006 0.009 0.005	21.8 2.7 0.5 0.1	85.6 8.3 6.1 Tr.
Comb cl conc	0.0309	0.206	0.031	25.1	100.0
Cl tail 1 " " 2 " " 3 " " 4	0.0659 0.1806 0.2396 0.0151	0.003 N.D. 0.003 N.D.	N.D. N.D. N.D. N.D.	0.7 - 2.6 -	- - - -
Comb cl tails Comb ro conc	0.5012 0.8440	0.002 0.010	N.D. 0.0011	3.3 30.6	- 100.0
Sand D ro tail Slime D ro tail	11.4320 0.8070	0.0015 0.002	N.D. N.D.	63.4 6.0	
-20 mesh material	13.0830	0.0021	0.0007	100.0	100.0
+20 mesh jig tail	21.8554	N.D.	N.D.	Nil	Nil
+6 mesh fraction and boulders	65.0616	Nil*	Nil*	Nil	Nil
Feed (calcd)	100.0000	0.00027	0.00001	100.0	100.0

* Estimated.

_ 21 _

Results from Combined Concentrates and Tailings

Lot No.: IIT

Weight: 26,733 lbs.

	Weight	Assay-	oz/ton	Distn %	Ś
Product	%	Au	Pt	Au	Pt
Lt-Int romags 1 	0.0860 0.0767 0.0394 0.0011	0.004 0.005 0.004 0.015	N.D. N.D. 0.155 N.D.	1.3 1.5 0.6 0.1	- 79.2 -
Comb L-Int ro mags	0.2032	0.0045	0.030	3.5	79.2
Cl cenc l " " 2 " " 3 " " 4	0.0105 0.0165 0.0050 0.0001	0.602 0.070 0.591 0.019	0.019 N.D. 0.280 0.007	16.4 4.4 11.4 Tr.	2.5 18.3 Tr.
Comb cl conc	0.0321	0,261	0.050	32.2	20.8
Cl tail 1 " " 2 " " 3 " " 4	0.1973 0.1627 0.3053 0.0308	N.D. N.D. N.D. N.D.	N.D. N.D. N.D. N.D.		-
Comb cl tails	0.6961	N.D.	N.D.	-	
Comb ro conc	0.9314	0.010	0.0083	35.7	100.0
Sand D ro tail Slime D ro tail	19.9753 3.3292	N.D. 0.005	N.D. N.D.	64.3	-
-20 mesh material	24.2359	0.0011	0.0032	100.0	100.0
+20 mesh jig tail	21.5464	N.D.	N.D.	-	-
+6 mesh fraction and boulders	54.2177	Ņil*	Nil*	-	-
Feed (calcd)	100.0000	0.00026	0.0001	100.0	100.0

* Estimated.

Results from Combined Concentrates and Tailings

Lot No.: IV

Weight: 27,525 1bs.

	Weight	Assay	-oz/ton	Distn S	ζ.
Product	%	Au	Pt	Λu	Pt
Lt-Int ro mags 1 1 1 1 1 2 1 1 1 1 3 1 1 1 4 4	0.0142 0.0314 0.0262 0.0001	0.032 0.035 0.008 0.070	0.002 N.D. N.D. 0.005	0.9 2.2 0.4 Tr	31.4 - 5.5
Comb L-Int ro mags	0.0719	0.025	- 0.0005	3.5	36.9
Cl conc l ""2"2 ""3"3	0.0032 0.0083 0.0053 0.0003	0.490 0.129 0.110 0.021	0.006 N.D. 0.007 0.003	3.1 2.1 1.2 Tr.	21.1 - 41.0 1.0
Comb cl conc	0.0171	0.189	0.0034	6.4	63.1
Cl tail 1 " " 2 " " 3 " " 4	0.0344 0.4502 0.3325 0.0133	0.006 0.003 0.005 N.D.	N.D. N.D. N.D. N.D.	0.4 2.7 3.3	
Comb cl tails	0.8304	0.004	N.D.	6.4	-
Comb ro conc	0.9193	0.009	0.0001	16.3	100.0
Sand D ro tail Slime D ro tail	7.3787 0.6866	0,005 0,008	N.D. N.D.	72.8 10.9	- -
-28 mesh material	8,9846	0.006	Tr.	100.0	100.0
+28 mesh jig tail	20.8174	N.D.	N.D.	-	-
+8 mesh fraction and boulders	70.1980	N11*	N11*		-
Feed (calcd)	100.0000	0.00008	0.00003	100.0	100.0

* Estimated

ì

ł

Results from Combined Concentrates and Tailings

Lot No.: V

Weight: 27,717 1bs.

<u>an an a</u>	Weight	ht Assay-oz/ton		Distn 2	κ.
Produc.	2	Au	Pt	Au	Pt
Lt-Int ro magne 1 n	0.0112 0.0176 0.0200 0.0005	0.005 N.D. 0.004 0.005	0.003 N.D. N.D. 0.041	3.3 4.7 0.1	16.3 - 9.9
Comb L-Int ro mags	0.0493	0.0028	0.0011	8.1	26.2
Cl conc l ""2 ""3 ""4	0.0022 0.0101 0.0027 0.0004	0.259 0.027 0.157 0.187	0.047 N.D. 0.007 0.075	33.6 16.1 25.0 4.4	50.1 9.2 14.5
Comb cl conc	0.0154	0,087	0,010	79.1	73.8
Cl tail 1 " " 2 " " 3 " " 4	0.0309 0.1967 0.1758 0.0258	0.007 N.D. N.D. N.D.	N.D. N.D. N.D. N.D.	12.8	I I I.I
Comb cl tails	0.4292	0.0005	N.D.	12.8	
Comb ro conc	0.4939	0,0034	0.0004	100.0	100.0
Sand D ro tail Slime D ro tail	8.4425 1.0287	N.D. N.D.	N.D. N.D.		- -
-20 mesh material	9.9651	0.00017	0.00002	100.0	100.0
+20 mesh jig tail	30.8331	N.D.	N.D.		1
+6 mesh fraction and boulders	59.2018	N11*	Nil*	.	_
Feed (calcd)	100.0000	0.00002	0.000002	100.0	100.0

* Estimated.

Results from Combined Concentrates and Tailings

Lot No.: V1

Weight: 26,535 lbs.

	Weight	Assay-oz/ton		Distn	
Product	%	Au	Pt	Au	l't
Lt-Int ro mags 1 	0.0441 0.0372 0.0533 0.0005	0.011 0.007 0.009 N.D.	N.D. N.D. N.D. N.D.	15.2 8.1 15.0	
Comb L-Int ro mags	0,1351	0.009	N.D.	38.3	_
Cl conc l "" 2 "" 3 "" 4	0.0093 0.0064 0.0085 0.0010	0.145 0.037 0.046 N.D.	0.03 N.D. N.D. N.D.	42.1 7.4 12.2 -	100.0
Comb cl conc	0.0252	0,078	0.001	61.7	100.0
C1 tail 1 " " 2 " " 3 " " 4	0.0989 0.1176 0.3697 0.0223	N.D. N.D. N.D. N.D.	N.D. N.D. N.D. N.D.		-
Comb cl tails	0.6085	N.D.	N.D.	-	-
Comb ro conc	0.7688	0.004	Tr.	Tr.	-
Sand D ro tail Slime D ro tail	14.9802 0.9610	N.D. N.D.	N.D. N.D.	· _	
-20 mesh material	16.7100	0.0002	Tr.	100.0	100.0
+20 mesh jig tail	20.3957	N.D.	N.D.	-	-
+6 mesh fraction and boulders	62.8943	Nil*	Nil*	_	-
Feed (calcd)	100.0000	0.00003	Tr.	100.0	100.0

* Estimated.

- 26 -

TABLE 16

Gold and Platinum Distribution in Combined

Tulameen Gravel Samples, Lot I - VI

Lot	Weigh	t	Assay-Oz/ton Content Distn %		Assay-Oz/ton Con		Content		in %
No.	1b	%	Au	Pt	Au	Pt	Au	Pt	
I	28,700	17.2	0.0000755	0.0000300	0.001707	0.000516	6.7	24.5	
II	29,741	17.8	0.0002702	0.0000095	0.004810	0.000169	24.8	8.0	
III	26,733	16.0	0.0002592	0.0000770	0.004147	0.001232	21.3	58.5	
IV	27,525	16.5	0.0005060	0.0000091	0.008350	0.000150	43.1	7.1	
v	27,717	16.6	0.0000170	0.0000021	0.000282	0.000035	1.5	1.7	
VI	26,535	15.9	0.0000320	0.000003	0.000509	0.000005	2.6	0.2	
I-VI					0.019405	0.002107			
(Comb Feed)	166,951	100.0	0.000194	0.000021	100	100	100.0	100.0	

			·		1 1	%		
Product	he.	icht	Assav-	oz/ton	In	Lot	InCom	b Feed*
	11.	1 %	Au	Pt	Au	Pt	Au	Pt
Comb la Int ro mags lot I	61.13	0.2131	0.003	0.010	8.5	74.6	0.6	18.3
	92.77	0.3119	0.0019	K.D.	2.2	-	0.6	-
" III	54.3-	0.2032	0.0045	0.030	3.5	79.2	0.7	46.2
" IV	19.75	0.0719	0.025	0.0005	3.5	36.9	1.5	2.6
" v	13.64	0.0493	0.0028	0.0011	8.1	26.2	0.1	0.5
" VI	35.83	0.1351	0.009	N.D.	38.3	-	1.0	
Comb L-Int ro mags, Lot I-VI	277.46	0.1662	0.0052	0.0059	n.a.	n.a.	4.5	67.6
Comb cl gold conc.Lot I	7.27	0.0253	0.269	0.030	90.2	25.4	6.0	6.2
" II	9.18	0.0309	0.206	0.031	25.1	100.0	6.2	8.0
" III	8.61	0.0321	0.261	0.050	32.2	20.8	6.9	12.2
IV	4.69	0.0171	0.189	0.0033	6.4	63.1	2.8	4.5
ν	2.27	0.0154	0.087	0.010	79.1	73.8	1.2	1.3
VI	4.69	0.0252	0.078	0.001	61.7	100.0	1.0	0.2
Comb cl gold conc,Lot I-VI	36.71	0.0220	0.213	0.031	n.a.	n.a.	24.1	32.4
Comb cl tailing. Lot I	344.60	1.2007	0.0001	N.D.	1.3	- 1	0.1	_
" II	149.04	0.5012	0.002	N.D.	3.3	-	0.8	-
111	186.06	0.6961	N.D.	N.D.	-	-	-	-
· 1V	238.56	0.8304	0.004	N.D.	6.4	-	2.8	-
ν	118,96	0.4292	0.0005	N.D.	12.8	-	0.2	-
VI	161.48	0.6085	N.D.	N.D.				
Comb cl tailings, Lot I-VI	1,198.50	0.7180	0.0011	N.D.	n.a.	n.a.	3.9	-
Comb ro conc Lot, I-VI	1,512.67	0.9062	0.0069	0.0023	n.a.	n.a.	32.5	100.0
Comb sand-slime ro tails, Lot I-VI	20,330,33	12.1772	0.0011	N.D.	n.a.	n.a.	67.5	_
-70 mesh material,Lot I-VI	21,843.00	13.0834	0.0015	0.00016	n.a.	n.a	100.0	100.0
+20 mesh material,Lot,I-VI	145,108.00	86.9166	<u>N.D.</u>	N.D.				-
Comb Feed (calcd),Lot I-VI	166,951.00	100.0000	0.00019	0.000021	n.a	n.a.	100.0	100.0

Summary Of Results From Tulomeen Gravel

TABLE 17

* Based on Table 16

."

•

1

.

n.a.=not applicable

Overall Concentration Results from Combined

Tulameen Gravel Samples, Lot I - VI

Product	Weight		Assay	-oz/t	Distn %	
	1b	%	Au	Pt	Au	Pt
Comb L-Int mag conc, Lot I-VI Comb cl gold conc, Lot I-VI Comb mag and gold conc, Lot I-VI	277.46 36.71 314.17	0.1662 0.0220 0.1882	0.0052 0.213	0.0059 0.031	4.5 24.1 28.6	67.6 <u>32.</u> 4 100.0
Comb cl & ro tailings, Lot I-VI	21,527.83	1.2,8805	0.0011	N.D.	71.4	-
Comb +20 mesh material,Lot I-VI	145,108.00	86.9313	N11	Nil		-
Comb Feed (calcd), Lot I-VI	166,951.00	100.0000	0.00019	0.000021	100.0	100.0

_ 28 _