This document was produced by scanning the original publication

numérisation par balayage de la publication originale.

mineral Sciences INDUSTRIAL CONFIDENTIA AUTHORIZED BY

DEPARTMENT OF ENERGY, MINES AND RESOURCES

CANADA

AWATTO

MINES BRANCH INVESTIGATION REPORT IR 73-52

A STUDY OF CONCENTRATING TECHNIQUES ON A COMPLEX, FINE-GRAINED Cu-Pb-Zn-Ag ORE FROM NADINA EXPLORATIONS LIMITED, OWEN LAKE AREA, BRITISH COLUMBIA.

A. STEMEROWICZ AND R.W. BRUCE MINERAL PROCESSING DIVISION

by

NOTE: THIS REPORT RELATES ESSENTIALLY TO THE SAMPLES AS RECEIVED. THE REPORT AND ANY CORRESPONDENCE CONNECTED THEREWITH SHALL NOT BE USED IN FULL OR IN PART AS PUBLICITY OF ADVERTISING MATTER.

COPY NO. 9

JULY 1973

Mines Branch Investigation Report IR 73-52

A STUDY OF CONCENTRATING TECHNIQUES ON A COMPLEX, FINE-GRAINED Cu-Pb-Zn-Ag ORE FROM NADINA EXPLORATIONS LIMITED, OWEN LAKE AREA, BRITISH COLUMBIA.

Ъy

A. Stemerowicz* and R. W. Bruce**

SUMMARY OF RESULTS

The two samples investigated assayed as follows:

Sample No.	<u>% Cu</u>	<u>% Pb</u>	<u>% Zn</u>	oz/ton Ag	oz/ton Au
No. 1	1.17	2.18	8.74	13.98	0.17
No. 2	0.72	1.90	9.75	8.37	0.10

Mineralization consisted mainly of pyrite and sphalerite with lesser amounts of galena, chalcopyrite, and silver-bearing tennantite. Other important economic minerals identified in the ore were argentiferous tetrahedrite and native gold. Most of the tennanite was intimately associated with pyrite and chalcopyrite. Other significant associations were silverbearing minerals with galena and galena with pyrite.

The best results obtained for copper and lead concentration were as follows:

Analyses

	<u>No. 1 Sa</u>	mple		<u>No. 2.</u>	Sample_
<u>Cu %</u>	<u>Pb %</u>	Ag oz/ton	<u>Cu %</u>	РЪ %	Ag oz/ton
Cu conc 23.25 Pb conc 1.05 Tailing 0.36	4.20 59.00 0.41	99.13 122.14 7.10	27.08 0.69 0.21	4.45 70.45 0.39	163.36 43.71 3.98

*Research Scientist and **Head, Non-Ferrous Minerals Section, Mineral Processing Division, Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

- <u>i</u> -

Distribution %

:	1	No. 1 Sa	ample		No. 2 Sau	mple
	<u>Cu</u>	<u>Pb</u>	Ag	Cu	Pb	Ag
Cu conc Pb conc Middlings Tailing	53.2 1.8 16.2 28.8	5.6 58.4 19.1 16.9	18.4 16.9 18.2 46.5	44.7 1.0 26.1 28.2	3.0 42.6 32.6 21.8	21.4 5.1 30.0 43.5

These results were achieved on the No. 1 Sample by selectively floating copper and lead concentrates directly from the ore and on the No. 2 Sample by separating the copper from a bulk copper-lead concentrate by means of the sulphur dioxide-starch method and floating the lead from the reground separation tailing.

The recovery of silver from the ore could be increased by as much as 14% by floating a pyrite concentrate, followed by roasting it and then cyaniding the calcines to recover the associated silver.

The flotation of zinc from the copper-lead rougher tailings gave a cleaner concentrate assaying 64 to 65% zinc with rougher recoveries of 82 to 87%.

 \mathbf{A}

CONTENTS

	Page
Summary of Results	i
Introduction	1
Location of Property	1
Shipment	1
Nature of Investigation Requested	1
Sampling and Analysis	1
Mineralogical Examination	3
Outline of Investigation	4
Copper-Lead Separation of Bulk Concentrate	4
Selective Flotation Directly from the Ore	12
Dolmage Campbell Flowsheet	12
Modified Dolmage Campbell Flowsheet	14
Zinc Flotation	16
Silver Recovery from Pyrite Concentrate	16
Flotation of Silver from the Pyrite Concentrate	16
Cyanidation	16
Test Data	17
Evaluation and Discussion of Results	17
Best Copper and Lead Results	17
Best Zinc Results	19
Nature of Metal Losses in Zinc Rougher Tailing	20
Results of Silver Flotation from Pyrite Concentrate	21
Results of Cyanidation of Pyrite Concentrate	22
Bulk Flotation	23

	Page
Effect of Aeration	23
Lime vs Soda Ash	23
Most Effective Reagent Combination	26
Effect of Grind	26
Copper-Lead Separation	26
Standard Methods	26
Modified Methods	28
Selective Flotation Directly from the Ore	30
Dolmage Campbell Flowsheet	32
Roasting and Cyanidation of Pyrite Concentrate	33
Conclusions	34
Acknowledgements	35
Appendîx	
Screen Analyses of Primary Grinds	1
Classification of Tests According to Flowsheet Employed	2
Abbreviations Used in Flotation Test Reports	3
Flotation Test Reports	
Test 1 - Copper-lead bulk flotation using lime + ZnSO ₄ + NaCN followed by zinc flotation	4
Test 2 - As in Test 1 but used Na ₂ CO ₃ + Na ₂ SO ₃ + NaCN along with aerative conditioning prior to copper-lead float	5
Test 3 - Repeat of Test 1 but with increase in lime and cyanide	7.
Test 4 - Copper-lead bulk flotation using lime + ZnSO ₄ + NaCN but with Z-200 and AF 242 as copper and lead promoters in place of CX 51	8

- iv -

•

Page

Flotation Test Reports

Test	5	-	Repeat of Test 3	9
Test	6	-	To try the combination lime + Na ₂ SO ₃ + NaCN in bulk copper-lead flotation	11
Test	7	-	To try the combination $Na_2CO_3 + Na_2SO_3 + NaCN$ in bulk copper-lead flotation with AF 242 and AF 238 as collectors	13
Test	8	-	Repeat of Test 6, but employed AF 242 and Z-200 as collectors in conjunction with CX51	14
Test	9	-	Repeat of Test 2 but without aeration	16
Test	10	***	To try copper-lead selective flotation directly from the ore using sulphur dioxide for galena depression	18
Test	11		Copper-lead selective flotation as in Test 10 but used xanthate as copper promoter in place of Z-200	19
Test	12	-	Copper-lead selective flotation as in Test 11 but employed aerative conditioning prior to copper float	21
Test	13	-	To selectively float a silver conc away from the pyrite conc after regrinding	23
Test	14	-	Repeat of Test 13 but with regrinding time for pyrite conc increased from 15 to 30 min	25
Test	15	-	Copper and lead selective flotation directly on the ore using Z-200 as copper promoter as in Test 10, but 1/3 of Z-200 was added to grinding	27
Test	16	-	Similar to Test 15 but grinding time increased from 30 to 60 min	28
Test	17	-	To try copper-lead separation using the dichromate method (copper-lead rougher flotation similar to Test 13)	29
Test	18	-	To try copper-lead separation using the sulphur dioxide- starch method (copper-lead rougher flotation as in Test 17)	31.
Test	19	-	To try copper-lead separation using the cyanide method (copper-lead rougher flotation as in Test 17)	33
Test	20	-	Copper-lead separation on new sample using SO ₂ -starch method in conjunction with regrinding prior to cleaning	35 [.]

Page

Flotation Test Reports

vi

Test	21 -	To try selective flotation of lead and copper concentrates from reground copper-lead rougher concentrate	38
Test.	22 -	To try proposed October 1970 Nadina flowsheet - preliminary test without Cu-Pb separation or lead flotation from secondary tailings (see attached flowsheet)	41
Test	23 -	As in Test 22 but with copper-lead separation and lead flotation from secondary rougher and cleaner tailings (see attached flowsheet)	43
Test	24 -	To try selective flotation of copper, lead and zinc concentrates from reground copper-lead rougher concentrate.	46
Test	25 -	To try modified version of October 1970 Nadina flowsheet as a method for selectively floating copper and lead concentrates directly from the ore	49
Test	26 -	Bulk float with separation of copper-lead rougher conc using SO ₂ -starch method followed by lead flotation from reground separation tailing	52
		Cyanidation Test Reports	
Test	1 -	Initial test on reground, raw pyrite conc	54
Test	2 -	To try a complete, high-temperature roast prior to cyanidation	56
Test	3 -	To try a short partial roast at a low temp (475°C) prior to cyanidation with lime added to roasting charge	58
Test	4 -	To try a partial roast at a low temp with lime as in Test 3 but increased roasting time from 45 min to 3 hours	60
Test	5 -	To try cyanidation of reground raw pyrite conc produced from No. 2 ore sample	61
Test	6 -	Repeat of Test 4 on composite No. 2, i.e. 3 hour roast at 475°C with lime added to charge	62
Test	7 -	To try 3 hour roast at 475°C prior to cyanidation as in Test 6 but without the addition of lime to the charge	64
Test	8 -	To try 4-hour, 475°C roast of pyrite conc prior to cyanidation with lime added to roasting charge	65

Cyanidation Test Reports Page

- ---- --

Test	9	-	4-hour,	475°	'C roa	ast pr:	ior	to	cyanid	lation	as	in	Test	8,	
			but with	iout	1ime	added	to	roa	sting	charge	2		• • • • •		66

٠

FIGURES

Figure	1	Flowsheet No. 1 - Bulk flotation followed by copper lead separation of bulk concentrate	7
Figure	2	Modified copper-lead separation, bulk concentrate reground before cleaning	8
Figure	3	Modified copper-lead separation, selective flotation of lead and copper concentrates from reground bulk concentrate	9
Figure	4	Modified copper-lead separation, selective flotation of copper, lead and zinc concentrates from reground bulk concentrate	10
Figure	5	Modified copper-lead separation, SO ₂ -starch separation on Cu-Pb bulk rougher conc followed by lead flotation from reground separation tailing	11
Figure	6	Flowsheet No. 2-Selective flotation of copper and lead concentrates directly from the ore	13
Figure	7	Dolmage Campbell flowsheet	15

.

INTRODUCTION

Location of Property

The property is located at Owen Lake, 27 miles south of Houston, B. C. Shipment:

Two ore Samples were received as follows:

Sample No.	Date received	Weight, 1b.
1	December 29, 1969	140
2	December 16, 1970	200

Nature of Investigation Requested

In a letter dated December 16, 1969, Mr. H. B. Johnston, Manager of Nadina Explorations Limited (N.P.L.) P.O. Box 489, Houston, B.C. requested a metallurgical investigation of the ore. In answer to a request for further information, it was stated that the potential of the orebody was greater than a million tons and that production at 500 tpd was being contemplated.

Sampling and Analysis

The ore samples were stage-crushed to minus 10 mesh and riffled into portions. One of these portions was chosen as the head sample, the remaining portions, after adjustment to 2000 grams, made up the charges to individual tests. In order to minimize oxidation of sulphide minerals, the crushed material was stored in a freezer.

TABLE 1

Constituent	Sample No. 1	Sample No. 2
Copper 🧳	1.17	0.72
Lead "	2.18	1.90
Zinc "	8.74	9.75
Gold oz/ton	0.17	0.103
Silver " "	13.98	8.37
Cadmium %	0.07	
Soluble iron "	12.83	12.51
Sulphur "	16.41	16.04
Insolubles "	40.18	41.00
Arsenic "	0.36	
Antimony "	0.17	

Head Sample Analyses*

*From Internal Reports 70-139, 147, 745 and 71-79, 86.

TABLE 2

Semi-Quantitative Spectrochemical Analysis of Head Sample No. 1*

Elements	
Si, Fe, Zn Pb, Ba Mn, Al, Cu, Ni, Ca Mg, Sr, Cr, In Ti, Bi, Ag, Mo, Zr V	Principal constituents 0.5 to 0.7 0.1 to 0.3 0.04 to 0.09 0.01 to 0.03 <0.01
Be, Sb, As, W, Sn, Nb Ta, Ga, Ge, Na, Co, Cd	Not detectable

*From Internal Report SL 70-12

Mineralogical Examination

A comprehensive mineralogical examination* was carried out on No. 1 Sample by the Mineral Sciences Division. This showed that the ore was composed essentially of small masses and disseminations of various sulphide minerals in a siliceous and carbonaceous matrix. The zinc content of the ore was largely accounted for by sphalerite, the lead by galena, and the copper by chalcopyrite, tennantite, and tetrahedrite. Most of the silver in the ore was present as a constituent of tennantite and tetrahedrite. Electron microprobe analyses gave a silver content of 1.5 to 4.0% in the tennantite and 8.0 to 17% in the tetrahedrite. Other silver minerals present in the sample were stephanite(?), pyrargyrite(?), matildite (AgBiS₂) and berryite $6(Pb_2(Cu, Ag)_3 Bi_5S_{11})$. Gold occurred in trace amounts as the native metal. Other minerals identified in the ore were pyrite, marcasite, alkinite (Pb Bi Cu S₃), hematite, magnetite, ilmenite, goethite, rutile, anatase, quartz, manganiferous siderite, dolomite, apatite, mica, and barite.

The sphalerite, which contains an average of 0.3% cadmium and less than 1% iron, is essentially coarse-grained and should largely be liberated by normal grinding methods. It is expected that traces of silver (as tennantite) and lead as galena will be retained by the sphalerite as very small inclusions.

Most of the galena is quite coarse-grained. However, difficulty can be expected in liberating the very small grains of galena that occur in the pyrite, and to a lesser extent, in the sphalerite and tennantite.

*Mines Branch Investigation Report IR 70-47 by D. Owens

- 3 -

The silver in the ore will be distributed chiefly between the lead and copper concentrates, in the former as inclusions of pyrargyrite, stephanite, and tetrahedrite in the galena and in the latter as a constituent of the tennantite and tetrahedrite.

Liberation of the copper minerals from other minerals in the ore should generally be effective. However, some copper will occur in the lead concentrate as inclusions of tetrahedrite in galena. Most of these are very small and will be difficult to free. In addition, it is expected that some of the tennantite in association with pyrite and, to a lesser degree with sphalerite will be difficult to liberate because many of these inclusions are very small.

OUTLINE OF INVESTIGATION

The aim of the investigation was to produce copper, lead, and zinc concentrates from the ore by flotation, with the optimum amount of gold and silver to be recovered in the copper and lead concentrates. Two techniques were developed for producing copper and lead concentrates, viz; flotation of a bulk copper-lead concentrate followed by copper-lead separation of the bulk concentrate and selective flotation of copper and lead concentrates directly from the ore. After flotation of the copper and lead minerals, a zinc concentrate was floated from the tailing using standard procedure. Copper-Lead Separation of Bulk Concentrate

The copper, lead, and silver minerals were floated together into a bulk concentrate. The bulk rougher concentrate was upgraded by cleaning and then subjected to copper-lead separation either by (1) depressing the copper minerals with cyanide and floating off the galena or (2) depressing the galena with either dichromate or sulphur dioxide and starch and floating off the copper minerals.

Before attempting copper-lead separation of the bulk concentrate, reagents and conditions for bulk flotation were investigated as follows:

- (1) Alkalinity regulator and depressants:
 - (a) Soda ash + sodium sulphite + cyanide, pH 7.6 to 8.4
 - (b) Lime + zinc sulphate + cyanide, pH 10.5 to 10.9
 - (c) Lime + sodium sulphite + cyanide, pH 10.0 to 10.2
- (2) Grind:
 - (a) 80.6% minus 200 mesh (b) 92.3% " " "
- (3) <u>Collectors</u>:
 - (a) amyl xanthate
 - (b) Aerofloat 208 + Z-200
 - (c) Aerofloat 208 + Aerofloat 242
- (4) Conditioning:
 - (a) with aeration in an aerator
 - (b) without aeration in a laboratory flotation cell.

After determining which set of reagents and conditions gave optimum results for bulk flotation, 8 copper-lead separation tests were carried out; 3 on bulk concentrate produced from No. 1 Sample and 5 on bulk concentrate produced from No. 2 Sample.

In addition to the standard separation methods, other schemes were developed in which selective flotation techniques were employed in conjunction with regrinding. The purpose of regrinding was to improve separation efficiency by liberating the copper, lead, and silver minerals that were intimately associated with pyrite.

In the initial test (20), the bulk rougher concentrate was reground before cleaning. Soda ash, sodium sulphite, and cyanide were added to the regrind mill; the former for alkalinity control and the latter two reagents to depress sphalerite and pyrite. The depressants added to the regrind mill had such a severe depressing action on the copper minerals that most of the copper-lead separation occurred during cleaning instead of in the subsequent separation step as was intended. The enhanced effect of the depressants in regrinding was used to advantage in Test 21 in which a lead concentrate was floated from the reground bulk rougher concentrate followed by the addition of copper sulphate and copper flotation. This scheme had the disadvantage that the sphalerite was reactivated with copper sulphate along with the copper Then a new approach was adopted. It consisted of regrinding the minerals. bulk rougher concentrate with sulphur dioxide and starch followed by the selective flotation of copper, lead, and zinc concentrates from the reground material (Test 24). It was hoped that the zinc concentrate produced would be high enough in grade to be included with the primary zinc concentrate floated from the ore and that the tailing would be low enough in metal values so that it could be rejected to waste. When this method gave disappointing results further modifications were made. These were to subject the bulk rougher concentrate to copper-lead separation using the sulphur dioxide-starch method followed by lead flotation from the regound separation tailing. Soda ash, sodium sulphite and cyanide were added to the regrinding step.

A flowsheet for bulk flotation with copper-lead separation of the bulk concentrate is given in Figure 1, while Figures 2 to 5 give flowsheets and other pertinent data for the more complex separation techniques described above.

- 6 -

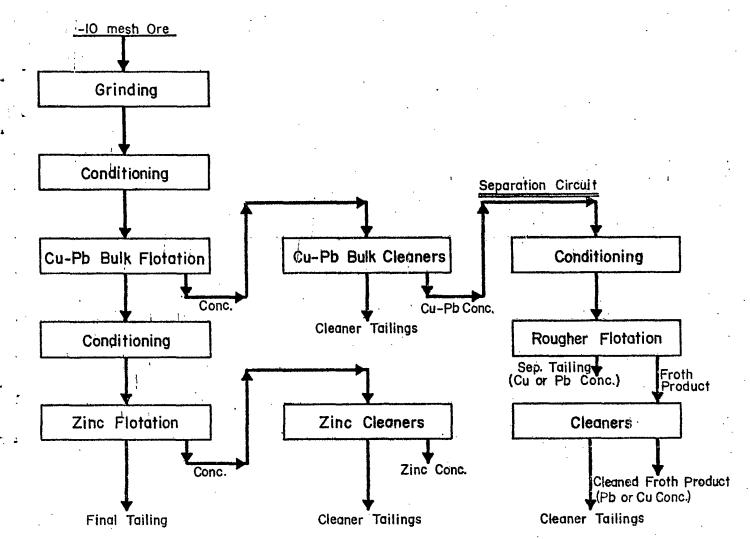
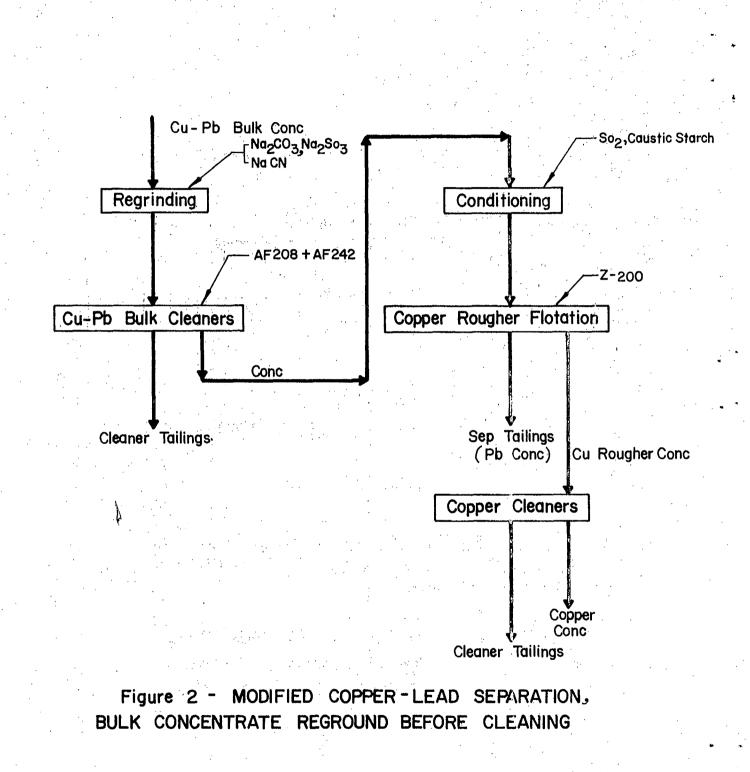
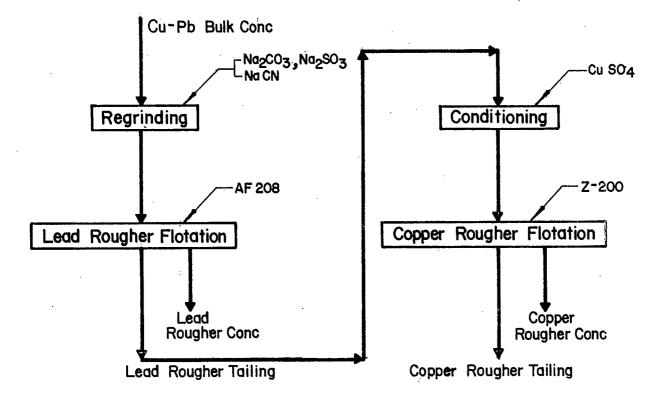




FIGURE I FLOWSHEET No.I - BULK FLOTATION FOLLOWED BY COPPER LEAD SEPARATION OF BULK CONCENTRATE

- 8 -

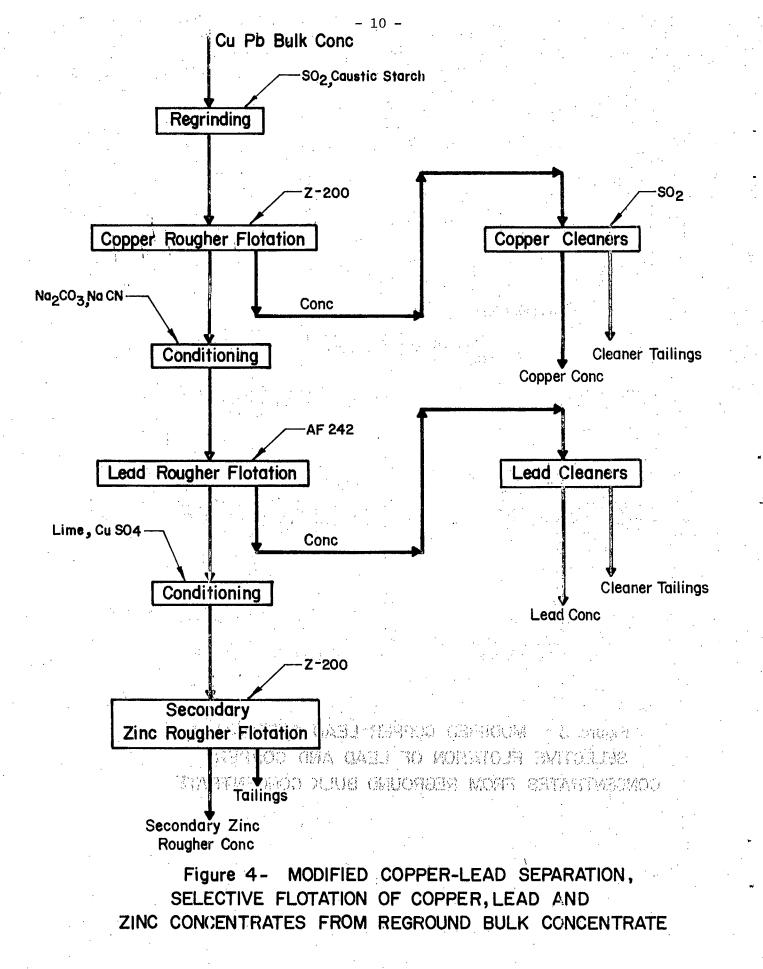


Figure 3 - MODIFIED COPPER-LEAD SEPARATION, SELECTIVE FLOTATION OF LEAD AND COPPER CONCENTRATES FROM REGROUND BULK CONCENTRATE

Sec. 1. 19

· • · .

- 9 -

•..

•

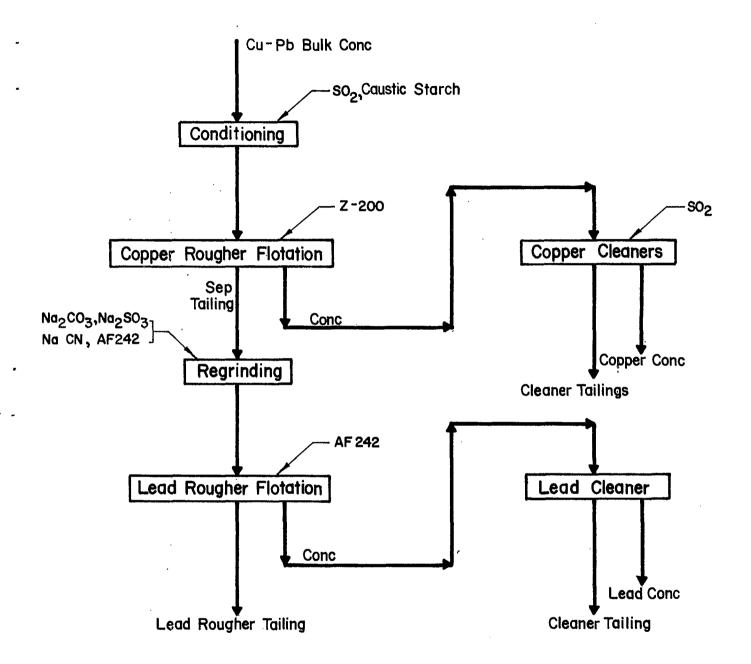


Figure 5- MODIFIED COPPER-LEAD SEPARATION, SO₂-STARCH SEPARATION ON Cu-Pb BULK ROUGHER CONC FOLLOWED BY LEAD FLOTATION FROM REGROUND SEPARATION TAILING

- 11 -

Selective Flotation Directly from the Ore

A copper concentrate was selectively floated from the ore by employing sulphur dioxide as a galena depressant. The galena was then reactivated by adding lime and cyanide, and a lead concentrate was floated off. It was anticipated that the liberated, argentiferous tetrahedrite and tennantite would be unaffected by sulphur dioxide and would therefore float with chalcopyrite while the balance of the silver minerals intimately associated with galena would be recovered in the lead concentrate.

Five selective flotation tests were done, all on the No. 1 Sample. In the first two tests potassium amyl tanthate was employed as collector for both lead and copper. In the remaining tests it was replaced by the more selective copper and lead collectors, Z-200 and Aerofloat 242. Other variables investigated were aeration of the pulp before copper flotation and very fine grinding (Test 16). Figure 6 gives the flowsheet for selective flotation. Dolmage Campbell Flowsheet

In addition to the schemes described above, a third flowsheet was tried on No. 2 Sample at the request of Mr. J. D. Gunn of Dolmage Campbell and Associates Ltd., who had been retained as consulting engineers by Nadina Explorations and were carrying out a concurrent metallurgical investigation. This flowsheet, which was developed by Mr. Gunn, employed a combination of selective flotation and copper-lead separation techniques as follows:

- (1) The ore was ground with sodium sulphite and zinc sulphate added as sphalerite and pyrite depressants.
- (2) A low-lead bulk concentrate was floated off (pH < 7) with Aerofloat 208 as collector.
- (3) The pulp was conditioned with lime and cyanide (pH c.8) and a scavenger concentrate was floated off using ethyl xanthate as collector.

- 12 -

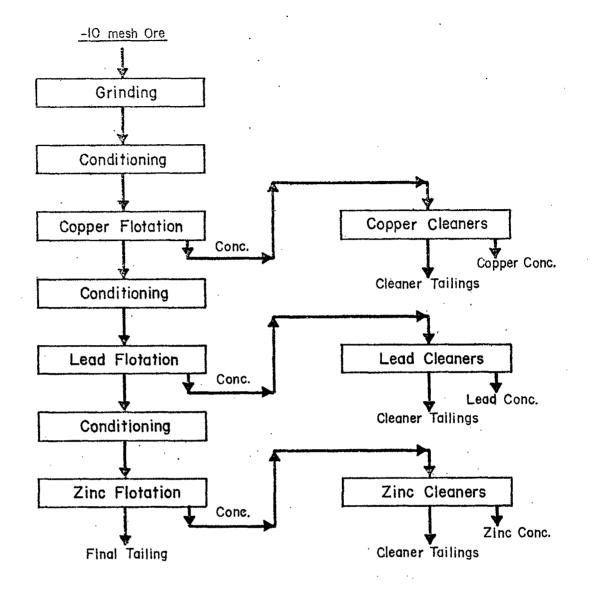


Figure 6 FLOWSHEET No. 2 - SELECTIVE FLOTATION OF COPPER AND LEAD CONCENTRATES DIRECTLY FROM THE ORE

- (4) The scavenger concentrate was reground and subjected to a series of selective flotation techniques to produce a secondary copper-lead concentrate and a secondary lead concentrate.
- (5) The secondary copper-lead concentrate was combined with the cleaned bulk concentrate from (1) and the resultant product was subjected to copper-lead separation using the sulphur dioxide-starch method.

The flowsheet was designated by Mr. Gunn, as the "Nadina Flowsheet, October 1970" but will be referred to in this report as the Dolmage Campbell flowsheet. The flowsheet, which is shown in Figure 7, without zinc flotation which was omitted, was tried in two tests on the No. 2 Sample (22 and 23). In Test 22, the object was to ascertain the make-up of the intermediate products, therefore copper-lead separation and lead flotation from the secondary copper-lead rougher and cleaner tailings was not done. In Test 23, the flowsheet was tried in its entirety.

Modified Dolmage Campbell Flowsheet

A study of the reagent scheme employed in the Dolmage Campbell flowsheet along with the results obtained indicated that it could be modified to serve as a method for selectively floating copper and lead concentrates directly from the ore. What was designated as the copper-lead rougher concentrate and the copper-lead scavenger concentrate would then become the copper and lead rougher concentrates respectively. A modified version, as shown in Figure 8 was tried on No. 2 Sample in Test 25. Modifications were as follows:

- Z-200, a more selective copper promoter, was substituted for Aerofloat 208 in the copper rougher float.
- (2) Sulphur dioxide was added to the copper cleaners for lead depression.
- (3) After regrinding the lead rougher concentrate was upgraded by simple cleaning.

- 14 -

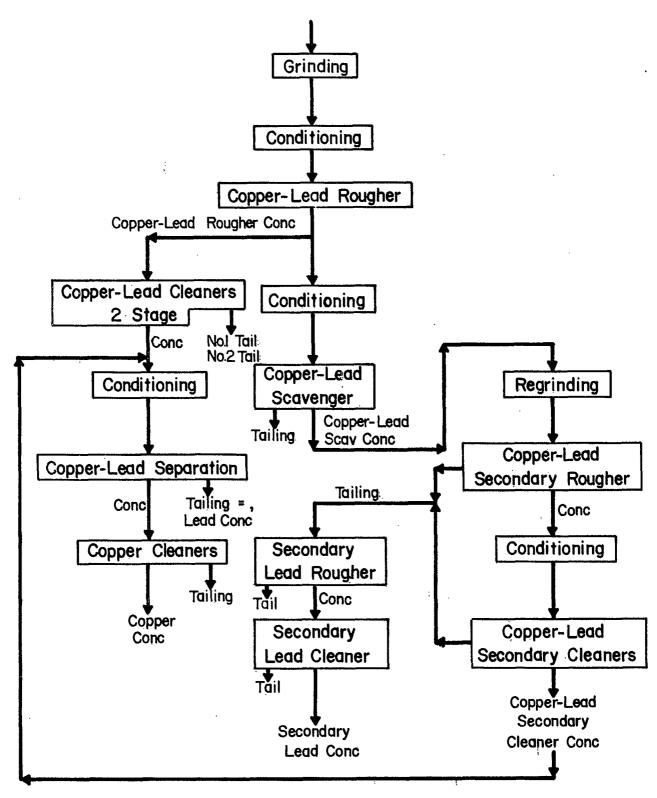


Figure 7- DOLMAGE CAMPBELL FLOWSHEET

Zinc Flotation

In most tests (16 out of 26), a zinc concentrate was floated from either the copper-lead rougher tailing or, in the case of selective flotation, from the lead rougher tailing. The sphalerite floated readily to give excellent concentrate grades accompanied by high recoveries. Sodium aerofloat was employed as the main zinc collector augmented by smaller additions of either amyl xanthate or Z-200. A high pH (11-12) was maintained in the roughers and cleaners to ensure maximum selectivity between sphalerite and pyrite.

Silver Recovery from Pyrite Concentrate

The main problem encountered in concentrating the ore was the high loss of silver in the tailing. Mineralogical examination showed that this was due mainly to the interlocking of silver minerals with pyrite. As a first step in recovering this silver, a pyrite concentrate was floated from the zinc rougher tailing.

Two silver recovery methods were tried on the pyrite concentrate as follows:

(1) <u>Flotation of Silver from the Pyrite Concentrate</u>

The pyrite concentrate was reground to liberate the interlocked silver minerals and a silver concentrate was selectively floated away from the pyrite. This was accomplished by employing lime and cyanide as pyrite depressants and Aerofloat 208 and 242 as collectors for the silver minerals.

(2) Cyanidation

Silver recovery by cyanidation was tried in nine tests on pyrite concentrate floated from both the No. 1 and No. 2 Samples. In most tests, the pyrite concentrate was roasted prior to cyanidation but cyanidation of the finely reground, raw concentrate was also tried. Roasting temperature and length of roast were varied; also the effect of adding lime to the charge was investigated.

Test Data

Screen analyses of grinds employed, detailed test procedure, and metallurgical balances for all flotation and cyanide tests are given in Appendix A.

EVALUATION AND DISCUSSION OF RESULTS

Best Copper and Lead Results

Tables 3 and 4 compare the best results obtained for copper and lead concentration by various flotation techniques.

TABLE 3

Best Copper and Lead Flotation Results Obtained on No. 1 Sample

_					•					· ·
Test No.	Product	Wt		Anal	ysis*		D:	istribu	ition 2	7.
and Method		% -	Cu	РЪ	Zn	Ag	Cu	. РЪ	Zn	Ag
16	Copper conc	2.45							1	18.4
Selective flotation	Copper cl tail Lead conc	2.54 1.82	\$			51.72 122.14	11.7 1.8			$10.0 \\ 16.9$
140 000000	Lead cl tail	7.29	0.66		8.68	14,76		9.5	6.6	8.2
	Lead ro tail	85.90	0.36	0.41	9.90	7,10	28.8	19.1	. 89.0	.46.5
	Feed (calcd)	100.00	1.Q6	1.84	9.56	13.14	100.0	100.0	100.0	100.0
18	Copper conc	2.67	23.68	12.98	3.43	130.70	56.5	17.8	1.0	26.5
Copper-lead	Copper cl tail**	1.08	7.12	19.31	3.98	108.15	6.9	10.8	0.5	8.9
Separation	Lead conc	2.45	2.66	34.08	5.49	87.88	5.8	43.0	1.5	16.3
(SO ₂ -starch	Cu-Pb cl tail**	5.43	2.13	6.21	11.50	33.67	10.4	17.4	7.0	13.9
method)	Cu-Pb ro tail	88.37	0.26	0.24	9.07	5.14	20.4	11.0	90.0	34.4
	Feed (calcd)	100.00	1.12	1.94	8.90	13.18	100.0	100.0	100.0	100.0

* Analysis in this and all subsequent tables is given in per cent except silver which is in oz per ton.

** Combined

As can be seen from Table 3 the best copper and lead concentrate grades obtained on No. 1 Sample were produced by selective flotation directly from the ore. However, copper, lead, and silver losses in the rougher tailing were higher than the losses in the tailing from bulk flotation. None of the copper-lead separation methods tried on the bulk concentrate were effective in producing a copper concentrate low enough in lead to be acceptable to a copper smelter.

TABLE 4

Best Copper and Lead Flotation Results Obtained on No. 2 Sample

		<u>.</u>		• •		•				· · · · · · · · · · · · · · · · · · ·
Test No.	Product	Wt % +		Anal	lysis		Ĩ)istrib	ution	%
and Method		6 7	Cu	РЪ	Z'n	Ag .	Cu	Pb	Zn	Ag
0.	Copper conc Copper cl tail Lead conc Sec lead tail Cu-Pb cl tail Cu-Pb ro tail Feed (calcd)	2.45 0.52 2.74 2.44 3.57 88.28 100.00	12.50 4.84 2.85 0.68 2.13 0.14	1 1	4.17 4.68 12.24 10.09 9.20	32.37 3.86	48.9 4.0 12.4 2.7 12.2 19.8 100.0		0.8 0.2 1.4 3.4 4.0 90.2 100.0	21.1 4.2 18.5 4.2 13.2 38.8 100.0
25 Modified Dolmage- Campbell Flowsheet (Figure 8)	Copper conc Copper cl tail Lead conc Lead cl tail Lead ro tail Feed (calcd)	1.02 4.85 0.70 2.58 90.85 100.00	1.25 1.90 0.23	2.74 3.68 67.70 24.79 0.43 1.71	5.70 2.50 9.10	40.74 94.92 48.28	1.3 7.2 31.0	27.7 37.4	3.2 0.2 2.7 93.5	7.5 14.0 48.1
Copper-lead Separation	Copper conc Copper cl tail Lead Lead cl tail Sec lead ro tail Cu-Pb ro tail	1.11 1.42 0.99 0.48 3.23 92.77	7.51 0.69 2.21	4.45 14.85 70.45 25.43 6.22 0.39	5.14 3.00 10.00 10.41	43.33 24.33	15.9 1.0 1.6 8.6	12.8 42.6 7.5 12.3	0.7 0.3 0.5 3.6	18.3 5.1 2.5 9.2
	Feed (calcd)	100.00	0.67	1.64	9.30	8.47	100.0	100.0	100.0	100.0

- 18 -

Of the schemes tried on No. 2 Sample the modified copper-lead separation method employed in Test 26 gave the best set of copper and lead results. This method which is outlined in Figure 5 consisted of using the SO_2 - starch separation method on the copper-lead rougher concentrate to produce a copper concentrate followed by the flotation of a lead concentrate from the reground separation tailing. The Dolmage-Campbell flowsheet (Test 23) gave low-grade concentrates attributable to a high pyrite content, whereas the modified form of this flowsheet (Test 25) gave improved cleaner concentrate grades but with excessive amounts of copper and lead rejected to the cleaner tailings.

Best Zinc Results

Table 5 gives a summary of the best zinc results obtained on the two ore samples. The feed given in this table is the feed to zinc flotation, i.e., either the copper-lead rougher tailing or the lead rougher tailing.

TABLE 5

1Comple	Thest	Declarat	Wt	Andlin	10 7	Diata 9	l Orrora 11	Flotation Method
Sample No.	No.	Product	WL	Analys	318 %		Overall 7n	
NO.	NO.		%	Zn	Fe	Zn	Zn Distn %	for Copper and Lead
			/0		<u> </u>		DISCII %	Leau
		Zinc ro conc	13.50	57.63	2.82	94.4	81.9	
1	6	Zinc ro tail	86,50	0.54		5.6	4,9	Bulk Flotation
		Feed (calcd)	100.00	8.74		100.0	86.8	· ·
		Zinc cl conc	9.43	64.24	1.22	73.5	63.8	
		Zinc ro conc	15.23	49.19	4.64	94.9	79.6	· · · · · · · · · · · · · · · · · · ·
1	12	Zinc ro tail	84.77	0.48		5.1	4.3	Selective Flotation
		Feed (calcd)	100.00	7.90		100.0	83.9	
		Zinc ro conc	16.83	52.76	3.83	96.1	87.4	
2	21	Zinc ro tail	83.17	0.43		.3.9	3.5	Bulk Flotation
		Feed (calcd)	100.00	9.23		100.0	90.9	
		Zinc cl.conc	12.92	65.44	1.39	91.5	83.2	
		Zinc ro conc	14.69	50.00	4.19	81.3	76.0	Modified
2	25	Zinc ro tail	85.31	1.99		18.7	17.5	Dolmage-Campbell
		Feed (calcd)	100.00	9.04		100.0	93.5	Flowsheet

Summary of Best Zinc Results Obtained on No. 1 and No. 2 Samples

Excellent zinc concentrate grades and recoveries were obtained for both samples when copper-lead bulk flotation was employed in the preceding step (Tests 6 and 21). When copper-lead selective flotation was employed (Tests 12 and 25), subsequent zinc flotation resulted in a significantly lower, but still satisfactory grade of rougher concentrate. Also, in Test 25 the zinc loss in the tailing was inexplicably higher.

Nature of Metal Losses in Zinc Rougher Tailing

In order to determine the nature of the metal losses in the zinc rougher tailing a sample from Test 12 was separated into sized fractions by screening through 200 and 270 mesh screens and then running the minus 270 mesh material through a Warman Cyclosizer. Each size fraction was assayed and submitted for mineralogical examination to determine the mode of occurrence of the metallic minerals and their textural relationships. Assays and metal distribution in the various size fractions of the tailing are given in Table 6.

TABLE 6

Assays and Metal Distribution in Various Size Fractions of Zinc Rougher Tailing from Test 12

Size Fr	action	Wt		As	ssays	· .		· .	. Die	tribut	ution %			
		% -	Cu .	Pb	Zn	Au	Ag	Cu .	РЪ	Zn	Au	Ag .		
+ 270	nesh " " " " " "	8.7 14.3 13.3 11.4 16.0	0.11 0.15 0.08 0.06 0.05	0.16 0.17 0.09 0.08 0.10	0.21 0.20 0.13 0.10 0.09	0.13 0.113 0.156 0.096 0.072 0.062 0.074	4.96 6.72 3.74 3.00 2.40	9.4 6.0 7.1	8.4 14.7 7.3 5.5	15.5 9,5 14.8 9.0 5.9 7.5 37.8	10.3 23.3 13.3 8.6 10.4	10.4 23.2 12.0 8.3		
Total (Total ((calcd) (assay)	100.0			0.19		4.14	100.0	100.0	100.0	100.0	100.0		

*Quartz particle size in cyclosizer fractions

As can be seen, the coarse fractions generally had a higher metal content than did the finer fractions. This was especially true for gold and silver. Mineralogical examination (see report in Appendix A) showed that in every case the metal losses were due mainly to interlocking of the various minerals with pyrite. Silver was present entirely as a constituent of tetrahedrite and tennantite. These two minerals also accounted for most of the copper loss.

Results of Silver Flotation from Pyrite Concentrate

Results of pyrite flotation from the zinc rougher tailing are given in Table 7 followed by Table 8 which gives the results of silver flotation from the reground pyrite concentrate.

TABLE 7

	Wt	An	alysis %		Distribution %			
Product	7	Ag	Au	S .	Ag	Au .	S	
Pyrite rougher conc Final tailing	25.15 74.85	9.96	0.28	39.10 1.82			87.8 .12.2	
Feed (calcd)	100.00	3.28	0.085	11.20	100.0	100.0	100.0	

Results of Pyrite Flotation from Zinc Rougher Tailing (Test 13)

TABLE 8

Results of Silver	Flotation	from H	Pyrite	Rougher	Concentrate	(Test 13)	

Product	Wt %	Analys	is %	Distribution %		
	70	Ag	Au	Ag	Au	
Silver cleaner conc	3.71	29.01	0.80	10.8	10.7	
Silver cleaner tail	8.98	13.44	0.32	12.1	10.4	
Silver rougher tail	. 87.31	8.79	0.25	77.1		
Feed (calcd)	100.00	9.96	0.28	100.0	100.0	

- 21 -

Most of the precious metals present in the zinc rougher tailing were recovered in the pyrite concentrate. However, only about 23% of the contained silver and 21% of the gold were subsequently recovered in the silver concentrate floated from the reground pyrite concentrate. During cleaning, about half of the recovered precious metals were rejected to the cleaner tailing.

Results of Cyanidation of Pyrite Concentrate

Table 9 compares the results of cyaniding a sample of pyrite concentrate in the raw state and after roasting.

TABLE 9

Results of Cyanidation of Pyrite Concentrate

Test No.	Cyanidation Feed	Product	Wt	As s ay	s,oz/ton	Distribution %		
NO.	reed	· · · · · · · · · · · · · · · · · · ·		Au	Ag	Au	Ag	
'n	Raw pyrite conc reground to	Pregnant soln Residue	_ 100.0	0.07	4.06 6.84	25.0 75.0	37.3 62.7	
	91% -500 mesh	Feed (assay)	100.0	0.28	10.90	100.0	100.0	
4	Calcines from 3-hour low-temp (475°C) roast with	Loss in roasting Loss in calcine wash Pregnant soln	14.36 18.81 -		0.80 0.04 7.45	3.5 71.1	7.4 0.4 68.6	
-	lime	Resideu	66.83	0.11	3.83	25.4	23.6	
		Feed (assay)	100.00	0.28	10.86	100.0	100.0	

Notes:

- (1) Assays for pregnant solution and roasting loss expressed as oz/ton feed and obtained by difference.
- (2) Loss in calcine wash determined as mg/liter and converted to oz/ton feed.

As can be seen from the comparison of results in Table 9, there was a very sharp increase in precious metal extraction by cyanidation when the pyrite concentrate was subjected to a low-temperature roast with lime added to the charge. Cyanidation of the raw pyrite concentrate was not too

effective even though the concentrate was very finely reground.

Bulk Flotation

A comparison of results for bulk rougher flotation obtained by employing various reagent combinations is given in Table 10, whereas Table 11 gives reagents and conditions for these tests.

Effect of Aeration

The employment of a soda ash - aeration scheme along with xanthate as collector (Test 2) resulted in the flotation of excessive amounts of pyrite. Zinc depression using this scheme, however, was very good. In a comparison test without aeration (Test 9), a similar concentrate grade was obtained and was accompanied by similar copper and silver recoveries but lead recovery was significantly lower. The essential difference between the two tests was the high flotation rate of the copper, lead, and silver minerals obtained when aeration was employed. Note that it required a skimming time of 6 minutes in Test 9 to achieve the same level of copper and silver recoveries obtained after only $1\frac{1}{2}$ minutes of skimming in Test 2.

Lime vs Soda Ash

The use of lime as an alkalinity regulator (pH 10 +) in place of soda ash (Tests 4, 5, 6, and 8) resulted in much improved pyrite depression but zinc depression was much poorer - the amount reporting in the bulk rougher concentrate increased by about 3 times. In Test 8, about half of the zinc was recovered in the bulk rougher concentrate despite the increase in cyanide addition to 0.15 lb/ton. In this test, the original intent was to use Aerofloat 242 and Z-200 as collectors. When these appeared to be ineffective, some amyl xanthate was added. A light, foamy froth was obtained which carried excessive amounts of fine sphalerite.

Unexpected were the high lead recoveries obtained in Tests 5, 6, and 8. Generally, lime has a detrimental effect on the flotation of galena.

FABLE 1	0	
---------	---	--

Comparison of Results for Bulk Rougher Flotation

Test	Product	Wt		· · · · ·	Assays	3	· · ·	D:	istrib	ution	%.
No.	:	%	Cu	РЬ	Zn	Fe	Ag	, Cu	РЪ	Zn	Ag
2	Ro conc Ro tail	9.89 90.11	8.74 0.26	12.08 0.86		29.25	64.74 7.25	78.7 21.3	60.6 39.4	3.9 96.1	49.5 50.5
4	Ro conc Ro tail	8.16 91.84	4.76 0.83			12.39	69.28 8.25		72.8 27.2	12.1 87.9	42.7 57.3
5	Ro conc Ro tail	7.17 92.83	10.49 0.39	23.94 0.31			104.22 5.57	67.5 32.5	85.7 14.3	12.8 87.2	59.1 40.9
6	Ro conc Ro tail	7.98 92.02	9.90 0.36			13.41	97.84 5.50		89.6 10.4	13.2 86.8	60.7 39.3
8	Ro conc Ro tail	15.75 84.25	5.32 0.31	10.08 0.33			54.51 5.23		85.0 15.0	49.4 50.6	66.1 33.9
9	Ro conc* Ro tail	9.64 90.36	8.87 0.21	10.77 1.07		26.93	71.75 6.67	82.1 17.9	51.7 48.3	5.3 94.7	53.5 46.5
13	Ro conc Ro tail	13.92 86.08		13.08 0.26		24.76	64.60 4.50		89.0 11.0	10.7 89.3	69.9 30.1
19	Ro conc Ro tail	11.52 88.48	7.58 0.26	14.29 0.30		18.15	74.27 5.10		86.1 13.9	11.2 88.8	65.5 34.5
20	Ro conc Ro tail	8.04 91.96	6.55 0.14	18.24 0.31	9.18 9.18	14.19	65.25 3.98		83.7 16.3	8.2 91.8	59.0 41.0

*Rougher conc after 6 minutes skimming (see Appendix A page16)

- 24 -

Reagents	and	Conditions	tor	Butk	Rougher	Flotation	

Test No.		Reagents to grind 1b/ton						Conditioning Aeration pH		Collectors	Skimming time min.
2	80.6	3.0	Na_2CO_3	1.0	Na_2SO_3	0.10	NaCN		8.1	CX51	112
4	11	3.5	lime	0.5	Zn SO ₄	11	• 11	No	10.9	AF 242+Z-200	3
5	11	11	11	11	tī	Ŧt	Tt	No	10.5	CX51	4
6	TT	3.0	lime	1.0	Na2SO3	11	11	No	10.2	tt TT	4
8	92.3	77	11	11	11	0.15	NaCN	No	10.0	CX51+AF 242 + Z-200	2 <u>1</u> 2
9	11	3.0	Na ₂ CO ₃	1.0	Na_2SO_3	0.10	NaCN	No	8.2	CX51	10*
13	11	11	tt -	11	11	TT	ŦŦ	No	7.8	AF242 + AF208	4
19	TŤ	3.5	Na ₂ CO ₃	tT .	11	11	11	No	8.3	11 11	4
20	87.6	3.0	Na ₂ CO ₃	11	11	11	11	No	7.6	11 If	3

*Floated in 5 increments.

Most Effective Reagent Combination

The combination of soda ash, sodium sulphite and cyanide with nonaerative conditioning and Aerofloat 242 and 208 as collectors proved to be effective and was adopted as the standard method for bulk flotation. Generally, it gave good copper, lead, and silver recoveries accompanied by reasonably good pyrite and zinc depression.

Effect of Grind

Generally, higher copper and silver recoveries were obtained at the finer grind (92.3% minus 200 mesh) but there was no appreciable change in lead recovery. However the higher recoveries obtained may have been caused by other changes in reagents and conditions. None of the tests were specifically designed to test the effect of varying the fineness of grind. Copper-Lead Separation

Standard Methods

Table 12 gives a comparison of the results obtained for copper-lead separation using the three standard methods on cleaned bulk concentrate produced from No. 1 Sample. Included in the comparison are the results of a sulphur dioxide-starch separation test on bulk rougher concentrate from No. 2 Sample (Test 26). The criterion used in evaluating these tests is the separation efficiency* which is a quantitative measure of the extent of separation between the copper and lead minerals. It is calculated by subtracting the per cent distribution of the unwanted metal in the concentrate from the per cent distribution of the metal concentrated.

* "Separation Efficiency" by N.F. Schultz, SME Transactions, Vol. 247, March 1970.

TABLE 12

Comparison of Results for Copper-Lead Separation Using Standard Methods

Test No	Separation Method	Product	Wt % -	Analysis			Distribution			Sepn*
			/6	Cu	Pb	Ag	Cu	РЪ	Ag	Eff %
17	Dichromate	Copper conc Copper cl tail Lead conc		10.53		175.36 158.21 61.89	19.9	32.7	29.6	30.1
		Feed (calcd)		1		135.58	1	1	L	
	·····	Copper ro conc	68.78	18.54	21.99	169.03	95.3	65.2	85.7	
18	SO ₂ -Starch	Copper conc Copper cl tail Lead conc		7.12		130.70 108.15 87.88	81.6 9.9 8.5	15.0	17.2	51.6
		Feed (calcd)	100.00	12.49	22.42	109.85	100.0	100.0	100.0	
		Copper ro conc	60.48	18.91	14.80	124.21	91.5	39.9	68.4	
19	Cyanide	Lead conc Lead c1 tail Copper conc		17.38	20.45	140.40 133.27 126.70	9.6 21.5 68.9	16.4	19.2	15.7
		Feed (calcd)	100.00	15.10	23.45	130.05	100.0	100.0	100.0	
		Lead ro conc	34.20	13.75	32.08	136.49	31.1	46.8	35.9	
26	SO ₂ -Starch	Copper conc Copper cl tail Sep tailing	15.38 19.57 65.05	7.51		163.36 108.72 30.28	62.3 22.0 15.7	16.4	32.2	64.0
		Feed (calcd)	100.00	6.68	17.71	66.10	100.0	100.0	100.0	
		Copper ro conc	34.95	16.12	10.28	132.76	84.3	20.3	70.2	

* For initial rougher flotation.

bulk concentrate (Tests 17, 18 and 19) gave satisfactory results. In each case the copper content in the lead concentrate was excessively high. comparison of the separation efficiencies indicates that the sulphur dioxide-Comparison of Results for Copusiv Load Severation Using Standard Bollody starch method was the most effective. When tried on the No. 2 Sample bulk concentrate (Test 26), it gave much more acceptable results probably because Inclusteres 10mbox§ of the more favourable ratio of copper to lead in the separation feed. 49 SŻ. Modified Methods Table 13 gives a comparison of the results obtained for copper-lead separation using the modified methods as outlined on pages 5 and 6. All of these tests were done on bulk concentrate produced from No. 2 Sample. 95.13 (Copper 20 coin) 68.78118.54(21.09)(169.03) ----From a comparison of separation efficiencies it can be seen that the [Copper conc. - 1 43.06;23.68/12.98/730.70 - 81.6] 24.9 - 91.2 method, employed in Test 269 was much superior, to all the other methods 6-16Dead code 39,521 2,66 24,08 87,88 819 30,1 21,6 1 31 this test, the bulk rougher concentrate was subjected to sulphur dioxide-starch Weed (caled) 100.00 1A.49 22.42109.85 100.0 100.0 100.0 separation followed by lead flotation from the reground separation tailing. However, when tried in conjunction with regrinding of the bulk rougher concentrate in Test 24, sulphur dioxide starch did not effectively depress sbhanvA galena 6.002 [0.001/0:001/20.001/20.001/20.01/01.21/00.001] (hotas) boot In Test 20 the cyanide added to the regrinding step had a severe depressing effect on the copper minerals (presumably chalcopyrite was affected to the greatest degree) such that about 53% of the copper present dottas 2~ . O in the reground rougher concentrate was rejected to the cleaner tailings. Because of this, a greater degree of separation between the lead and copper minerals took place during cleaning (separation efficiency, 38,2%) than in A For thirthe rougher through the the subsequent sulphur dioxide-starch separation of the copper-lead cleaner concentrate (separation efficiency 20.3%). However, when the enhanced depressing effect of cyanide in the regrind was taken advantage of in Test 21, it depressed

None of the three separation methods employed on the No. 1 Sample

only about 2/3 of the copper. This could have been due to the ineffectiveness of cyanide as a depressant for the copper-bearing minerals, tennantite, and tetrahedrite.

TABLE 13

Comparison of Results for Copper-Lead Separation Using Modified Methods

Test	Separation	Product	Wt	1	Analys	is	Dis	stribut	ion	Sep
No.	Method		× -	Cu	РЬ	Ag	Cu	РЪ	Ag	Eff %
	Flowsheet 2	Copper conc				142.26		7.1	12.3	
20	Modified	Copper cl tail	22.75	12.09	47.30	134.46	29.0	22.6	25.9	
	S02-Starch	Lead conc	67.01	7.06	50.00	109.19	50.0			
		Feed (calcd)	100.00			118.33				
		Copper ro conc				136.88			38.2	20.3
	Flowsheet 3	Lead conc	26.42	7.02	46.60	112.65	33.1	77.5	50.3	44.4
21	Selective									. 1
	flotation	Copper conc		10.00					22.4	
		Copper ro tail			2.11					
		Feed (calcd)	100.00	5.61	15.90	59.13	100.0	100.0	100.0	
	reground									
	bulk conc	Lead ro tail		5.10						
		Copper conc	11.01	21.94	21.18	178,90	52.1	16.9	39.4	
	Selective					•		•		
	flotation	Copper cl tail	9,48	7.33	28.30	89.06	15.0	19.4	16.9	
24	of copper									
	lead	Lead conc		3.79						
	and zinc	Lead cl tail	17.60	2.99	8.86	37.78	11.3	11.3	13.2	
	from				_					
	reground	Sec Zn ro conc*	5.29	2.21	5.63	26,56	2.5	2.2	2.8	
	bulk conc	Sec Cu-Pb ro								
		<u>tail</u>				13.60				4
						50.05				
		Copper ro conc				137.33				30.8
		Copper conc				163.36				
26	SO ₂ -starch	Copper cl tail	19.57			108.79				
	with lead	Lead conc	13.68	0.69	70.45	43.71	1.4	54.4	9.0	
	Flotation									
	from	Lead cl tail	6.69	2.21	25,43	43.33	2.2	9.6	4.4	
	reground	Sec Cu-Pb ro								
		tail				24.23	12.1		16.4	-
	Sep tailing		100.00							
		Copper ro conc				132.76	1			64.0
		Lead ro conc	20.37	1.19	55.68	43.59	3.6	64.0	13.4	
1						L	<u> </u>	<u> </u>	l	

*11.29% zinc with recovery of 22.9%

- 29 -

Selective Flotation Directly from the Ore

The results for selective flotation directly from the ore are compared in Table 15, while reagents and conditions for these tests are given in Table 14.

TABLE 14

•	·		•	•	· · ·	
: [Test No.	Grind %-325m -	Condition	ing	Collectors,	1b/ton
		~-323m -	Aeration	pH	Copper	Lead
	11	85.0	No	6.6	CX51, 0.03	CX51, 0.005
	Ĩ12	tT	Yes	5.7	CX51, 0.04	CX51, 0.02
	15	11	Yes	5.7	Z-200, 0.03	AF 242, 0.06
· .	16	97.3	Yes	5.8	Z-200, 0.06	AF 242, 0.05

Reagents and Conditions for Selective Flotation Directly from the Ore

From Table 15, it can be seen that the best results were achieved by aerating the pulp prior to copper flotation and by employing Z-200 and Aerofloat 242 as copper and lead promoters respectively. The very fine grind employed in Test 16 did not bring about any significant changes in results.

		· · · · · · · · · · · · · · · · · · ·	1									1
Test No		Wt % -		As	says				Distri	bution	%	Sep Eff
		,,, .	Cu	РЪ	Zn	Fe	Ag	Cu	РЪ	Zn	Ag	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11	Copper ro conc Lead ro conc Lead ro tail	3.03 3.77 93.20		25.53	5.93	6.11	105.39 85.33 7.46	21.0	50.5	2.6	23.8	48.8
	Feed (calcd)	100.00	.1.07	1.91	8.39		13.31	100.0	100.0	100.0	100.0	
12	Copper ro conc Lead ro conc Lead ro tail	6.18 5.25 88.57	_	21.66	17.59	24.03 11.16		13.5	58.5	11.1	30.0	38.8
Ī	Feed (calcd)	100.00	1.10	1.94	8.33		12.81	100.0	100.0	100.0	100.0	
15	Copper ro conc Lead ro conc Lead ro tail	4.23 5,96 89.81		23.11	9.45		1		70.8	6.5	30.7	55.0
ſ	Feed (calcd)	100.00	1.21	1.95	8.65		13.95	100.0	100.0	100.0	100.0	
	Copper cl conc Lead cl conc	2.94 2.24	25.00 2.26	5.52 55.13			101.17 149.45					
16	Copper ro conc. Lead ro conc Lead ro tail	4.99 9.11 85.90		13.70	788	19.41 10.56	75.00 36.21 7.10	64.9 6.3 28.8	67.9	7.5		51.9
-	Feed (calcd)	100.00	1.07	1.84	9.56		13.14	100.0	100.0	100.0	100.0	-
-	Copper cl conc Lead cl conc	2.45 1.82	23.25 1.05	4.20 59.00		22.73 5.90	99.13 122.14	53.2 1.8			18.4 16.9	-

. .

TABLE 15

Comparison of Results for Selective Flotation Directly from the Ore

.

Dolmage Campbell Flowsheet

Table 16 gives a metallurgical balance for Test 2 which, as was mentioned previously, was done to ascertain the make-up of the intermediate products initially produced using the Dolmage Campbell flowsheet.

TABLE 16

Product Wt Assays Distribution % 7 Cu ΡЪ Zn Ag Cu Pb. Zn Ag Copper-lead cleaner conc 2.79 12.85 5.39 7.63 102.28 58.6 9.7 2.1 33.0 Copper-lead cleaner tail 1.50 2.32 11.57 9.08 22.64 5.7 11.2 3.9 1.4 Sec Cu-Pb cleaner conc 1.37 3.06 59.81 64.44 4.41 6.9 52.8 0.6 10.2 Sec Cu-Pb cleaner tail 0.74 18.30 12.03 1.13 43.28 1.4 13.3 1.4 5.7 Sec Cu-Pb rougher tail 3.64 0.43 2.55 11.27 8.95 2.6 4.1 3.8 6.0 Copper-lead rougher tail 89.57 0.17 0.12 10.00 4.20 24.8 90.4 7.0 43.4 Feed (calcd) 100.00 0.61 1.55 9,91 8.65 100.0 100.0 100.0 100.0 Copper-lead rougher conc 4.29 9.17 7.55 8.14 74.43 64.3 20.9 3.5 36.9 Copper-lead scav conc 6.14 1.07 18.22 9.88 27.65 10.9 72.1 6.1 19.7

Metallurgical Balance for Test 22

The results in Table 16 indicate that the greatest proportion of the copper floats in the copper-lead rougher, whereas most of the lead is recovered in the subsequent copper-lead scavenger float. Also, the galena that floats in the copper-lead rougher tends to be depressed during the cleaning operation. The so-called secondary copper-lead cleaner concentrate which is floated from the scavenger concentrate (see Figure 7) is actually a finished lead concentrate. From this test, therefore, it can be concluded that, other than additional cleaning of the copper-lead concentrate, further treatment as outlined in Figure 7 is unnecessary and that, in effect the initial portion of the flowsheet is equivalent to selective flotation directly from the ore.

Roasting and Cyanidation of Pyrite Concentrate

Table 17 compares results obtained for cyanidation of raw and

roasted pyrite concentrates.

TABLE 17

Comparison of results for Cyanidation of Raw and Roasted Pyrite Concentrates

Test	Cyanidation	Roastir	ıg con	ditions	S con	tent in		-	Reagen		
No.	feed	1			<u>calci</u>	nes, %	Cyanida	ation,%	1b/ton	pyrite	conc
		Temp °C	Time hr	Lime added	Total	Sul- phide	Au	Ag	Lime-1	** Lime-2	NaCN
1	Raw pyrite conc						25.0	37.2		8.5	15.4
2	Calcines	450 to 700	5	No	1.13	0.09	58.4	28.5		1.0	4.8
3	Calcines	475	0.8	Yes	12.71	2.04	64.5	55.9	102	9.7	14.0
4	Calcines	475	3	Yes	1.31	0.67	71.1	68.6	104	10.6	3.8
5	Raw pyrite conc						28.1	40.8		10.2	16.4
6	Calcines	475	3 .	Yes	16.71	1.54	66.2	57.1	80	6.9	14.7
7	Calcines	475	3	No	13.48	1.52	60.4	58.7		7.1	13.4
8	Calcines	475	4	Yes	5.05	0.86	72.1	55.7	71	3.9	11.1
9	Calcines	475	4	No	4.30	0.78	70.8	61.0		3.9	11.1

* Consumed in roast

** Consumed in cyanidation.

Cyanidation of the raw pyrite concentrate (Tests 1 and 5) was not effective in extracting the precious metals. When the pyrite concentrate was subjected to a complete roast at a high temperature prior to cyanidation (Test 2), gold recovery more than doubled but there was a decrease in silver recovery.

In an investigation on gold and silver ores carried out by the U.S. Bureau of Mines (Technical Paper 423, 1928), it was found that, when sulphosalts such as tennantite or tetrahedrite were roasted at a high temperature, they were converted to base metal arsenates and antimonates. These compounds contained the silver originally present in the sulphosalts and were insoluble in cyanide solution. It was found that by subjecting these minerals to a low-temperature roast (450°C) in the presence of lime, calcium arsenate and antimonate were formed in preference to the corresponding base metal compounds. These calcium conpounds gave up their silver more readily to dissolution by cyanide.

A number of tests were tried in which the pyrite concentrate was roasted at a low-temperature for varying periods. In some of these tests, 20 grams of lime were mixed with the roasting charge. In every test, there was at least a doubling of silver extraction by cyanidation over that obtained on calcines from the high-temperature roast thus confirming the findings of the U.S. Bureau of Mines investigation. However, it was found that the addition of lime to the roasting charge was not essential (compare results of Tests 6 and 7 and 8 and 9). The best results (Test 4) could be related to the lowest sulphur content in the calcines of any of the low-temperature roasts. Cyanide consumption in this test was also very much lower.

CONCLUS IONS

Marketable grades of copper, lead, and zinc concentrates can be produced from this ore by differential flotation techniques. On No. 1 Sample, the only successful technique for copper and lead concentration was selective flotation directly from the ore (Test 16), whereas on the lower-grade No. 2 Sample the best results were achieved by floating a copper-lead bulk concentrate, subjecting it to the sulphur dioxide-starch separation method to produce a copper concentrate followed by reactivation and flotation of a lead concentrate from the reground separation tailing (Test 26).

- 34 -

In order to maintain satisfactory copper and lead concentrate grades, recoveries would have to be compromised. This is because of the intimate association of some of the lead and copper minerals with pyrite.

An appreciable portion of the silver is also intimately associated with the pyrite in the form of tiny inclusions of silver-bearing tennantitetetrahedrite. In order to recover this silver, it is necessary to float a pyrite concentrate from the zinc tailing, roast the concentrate and cyanide the calcines. A significant amount of gold is also recovered by this scheme. Precious metal extraction by cyanidation in the best test (4) expressed as oz/ton flotation feed was 1.82 oz/ton for silver and 0.05 oz/ton for gold which represent additional recoveries of 14% and 30% respectively.

In contrast to the difficulty experienced in concentrating the copper, lead and silver minerals the sphalerite in the ore floated readily to give an exceptionally high grade zinc concentrate accompanied by good zinc recovery.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the assistance of the following persons who made important contributions to this investigation:

Messrs. J.C. Banks and M. Raicevic of the Mineral Processing Division who did the cyanidation tests.

Mr. D.R. Owens of the Mineral Sciences Division who did the mineralogical studies on the ore and on the zinc rougher tailing.

Messrs. J. Cloutier, D. Cumming, C.A. Derry, R. Donahoe, J. Graham, J. Hole, B. Kobus, P. Lanthier, H. Lauder, P.E. Moloughney, E. Nadeau and Miss C. Smith all of the Mineral Sciences Division who carried out the many analytical determinations required.

A.S.,R.W.B:ec

In order to maintain satisfactory copper and lead concentrate arades, overies would have to be compromised. This is because of the infimate association of some of the lead and copper minerals with paring.

An appreciable partiton of the gilver is also intimutule assistant. In the proto in the new of tiny inclusions of silver precing team which second which is the term of tiny inclusions if to needed which and about the foresalt of the to second the stream if to needed which and about the foresalt of the to second the stream if to needed which and about the foresalt of any appreciable of also the order of the in all defines the transmitter of point of also the order of the in all defines the order of any appreciable of the terms of the in all defines the order of any appreciable of also the order of the in all defines the order of any appreciable of the terms of the in all defines the order of the order of the terms of the in the order of the order of the order of the terms of the in all defines the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the in the order of the order of the order of the order of the in the order of the order of the order of the order of the in the order of the order of the order of the order of the in the order of the in the order of the in the order of the in the order of the in the order of the order

APPENDIX A

To i whereast to the d filled a sector concerts contemport ing the company

an exceptional of argin grader time booken trate accompany of in good ster converse

A PRILING AND THE PRIME

the evine wight to entroutedet the authornee of the following

present and three prepartate to grational to this interactions

Marsia J.C. Sanks and M. Referric of the Mineral Pro-

We. D.C. Owens of the Materal Sciences Division was aid for all-

Messrs. J. Clautier, D. Cumming, G.A. Herry, R. Ronahoe, J. Graham, I. Hele, R. Kobus, P. Lanthier, H. Lauder, P.E. Moloughney, E. Nadeau and Miss C. Smith all of the Mineral Sciences Division who carried out the many analytical determinations required.

Laras Haltsharmon and the best

45-Mi	nute Rod Mil	1 Grind
Tyler Mesh	Wt %	Cumulative Wt %
+100	0.3	0.3
+150	2.5	2.8
+200	16.6	19.4
+270	14.3	33.7
+325	11.7	45.4
+400	3.5	48.9
-400	51.1	100.0
Total	100.0	
30-Mi	nute Ball Mi	11 Grind
+100	0.2	0.2
+150	1.7	1.9
+200	5.8	7.7
+270	7.2	14.9
+325	8.7	23.6
+400	3.9	27.5
-400	72.5	100.0
Total	100.0	
60-Mi	nute Ball Mi	11 Grind*
+150	0.2	0.2
+200	0.7	0.9
+270	1.8	2.7
+325	4.5	7.2
+400	1.1	8.3
+500	14.2	22.5
-500	77.5	100.0
Total	100.0	

Screen Analyses of Primary Grinds

*Screen analysis of lead rougher tailing.

Classification of Tests

According to Flowsheet Employed

Flowsheet No.	Description	Test No
1	Bulk flotation only.	1,2,3,4,5,6,7, 8,9,13,14.
1	Bulk flotation followed by copper-lead separation.	17,18,19.
2	Modified copper-lead sepn, bulk conc reground before cleaning.	20
3	Modified copper-lead sepn, selective flotation of lead and copper conc from reground bulk conc.	21
4	Modified copper-lead sepn, selective flotation of copper, lead and zinc conc from reground bulk conc.	24
5	Modified copper-lead sepn, SO ₂ -starch sepn on Cu-Pb bulk rougher conc followed by Pb flotn from reground separation tailing.	26
6	Selective flotation of copper and lead conc directly from the ore.	10,11,12,15,16
7	Dolmage Campbell flowsheet	22,23

Abbreviations Used in Flotation Test Reports

RM	Rod mill
BM	Ball mill
CX51	Potassium amyl xanthate
DF 250	Dowfroth 250
NaAF	Sodium aerofloat
PO	Pine oil
Fe/FeS	Iron present as iron sulphides
Z-200	Trade name for selective copper collector
AF 242	Aerofloat 242
AF 238	Aerofloat 238
AF 208	Aerofloat 208
Dich	Sodium dichromate
CS	Caustic starch
MIBC	Methyl isobutyl carbinol

ZnCN Na₂Zn (CN)₄

Z-3 Potassium ethyl xanthate

TEST NO. 1 SAMP	PLE:]	Nadina	Explo	rations Limit	ed						DATE	Feb.	9,19	70
OBJECT OF TEST: Cop	per-lea	ad bull	k flot	ation using 1	ime +	ZnS0,	+ NaCN	[RGE: 2		
fol	Lowed 1	by zin	c flot	ation.								ED BY	· A.S	3.
OPERATION	Time	%	рΉ	Unit			•	Rea	agents,	lb per	ton			
OPERATION	min	Solids	рп	used	Lime	ZnSO4	NaCN	CX51	DF250	CuS04	NaAF			
Grinding	45	65	6.8*	7 x 14 RM	1.0	0.5	0.05	<u> </u>				1		
Conditioning	10		8.1	1000-g cell	0.5			0.02	· ·			1		1
Copper-lead rougher											Ì			
Stage 1	1/2	1							0.02					
<u>й 2</u>	1			· · ·				0.01				1	·	1
Copper scavenger	1								1			1		1.
Conditioning	10	1	11.1		3.0			0.01	0.01	1.0	•			
Zinc rougher			·						· - ·					1
Stage 1	1							0.02			0.10			
" 2	1								0.02		0.05			
" 3	2				· · · ·						0.05		· · · ·	
·														
	W	т		ANAL	YSIS	%				DI	STRIB	UTION	1 %	
PRODUCT	9	6								<u> </u>		·		
TEST PRODUCTS	11													
······································			-											•
DISCARDED								ļ				2		
												•		
	1			5 A.										
						•				ľ	•		.	
			· .		÷ .	•				· · · ·			* . • [٠,
•		·.									ľ			• •
	ļ									}			-	
												·		
							· ·	<u> </u>	<u>.</u>					
REMARKS: Excessive a	nounts	of pv	rite a	opeared to fl	oat es	special	ly in	copper	scave	nger.				
pH too low?						_	,	-11	• .	, ,	. · ·			
* after dilu													•••	

Sheet 1 of 2

.

TEST NO. 2 SAME	PLE:	Na	dina	Explo	ratio	ns Limit	ed:		<u></u>						. 9, 1	970
OBJECT OF TEST: As in	ı Tes	st 1	but	used	Na ₂ CO	$_3 + Na_2S$	$50_3 + N_1$	aCN alc	ng wit	h			CHAF	RGE: 2	000 g	
															: A.S	•
	Tin	ne	%		1	Jnit				Rea	gents,	lb per	ton			
OPERATION	mi	n S	Solids	рп	u	ised	Na ₂ CO	Na ₂ SO	NaCN	CX51	PO	CuS04	Lime	NaAF	DF250	
Grinding	45		65	7.2*		14 RM	2.0	1.0	0.10							
Conditioning	20			8.1*	* Aera		1.0			0.02				_		
Copper-lead rougher	L				1000)-g ce11	-						ļ			
Stage 1	1						1				0.02					
	•	_								0.01				-		
Conditioning	10			11.4								1.0	4.0			<u> </u>
Zinc rougher	T OF TEST: As in Test 1 but used aerative conditioning OPERATION Time % ph ng 45 65 7.2 ioning 20 8.3 -lead rougher 1 1 ge 1 1 1 2 1/2 1 ioning 10 11.4 ge 1 1 1 2 1 1 2 1 1 3 2 1 3 2 1 3 2 1 -lead conc 7.78 10.55 -lead c1 tail No.1 0.92 2.86 1.19 1.42 0.87 onc 6.81 0.87 1 tail No.2 2.72 1.11 " Nó.1 5.48 1.11 ougher tail 75.10 0.11															ļ
Stage 1	1									0.02				0.10		
2												1	0.05	0.02		
" 3	2												0.05			
PRODUCT		wт				ANAL	_YSIS	%				DI	STRIE	BUTION	v %	
	PRODUCT II I						Fe	Insol	Au	Ag	Cı	1]	РЪ	Zn	Au	Ag
			0 10	55	13.09	2.96	29.31	2.60	0.57	73.33	74.	0 5	i.6	2.7	28.1	44.1
	1				9.60		31.48	7.52	0.53	43.26			4.5	0.4	3.1	3.1
	2				7.43		27.14	16.58	0.34	25.17			4.5	0.8	2.5	2.3
Zinc conc						63.40	1.44	0.76	0.12	16.64	- 11			50.2	5.2	8.8
Zinc cl tall No.2						56.00	2.68	3.36	0.17	17.98		1		17.7	2.9	3.8
						32.00	9.08	1.22	0.23	22.40	5.	.5 8	8.7	20.4	8.0	9.5
Zinc rougher tail						0.90~			0.11	4.90			3.9	7.8	50.2	28.4
Feed (Calcd)	1(0.00	0 1	.10	1.97	8.61			0.16	12.93	100	.0 100	0.0 1	00.0	100.0	100.0
			l													
											.					
REMARKS: Fe/FeS in (1	ead o		0.0%		er-lea	d rough		c 21.6	.				<u> </u>	
20,200 111					-			-				F1	a			
Copper-lead float - cop						igner bu at <u>15 m</u> i		ssive a	mounts	or py	rite i	Loare	a in s	econd	rougne	r;
* after dilution with r						<u>11 13 11</u>										

* after dilution with water ** at end and after dilution in cell.

· ·

*

.

• .

រ ហ រ

Sheet 2 Of 2

TEST NO. 2 SAMP	LE:	Nadina	a Expl	oratio	ons Limi	Lted				•		1		b. 9, 1	970
OBJECT OF TEST:					· ·							CHA	RGE:		
L						· · · · · ·						J	TED B	Y: _	
OPERATION	Time	%	рН	ι	Jnit				Rea	gents,	lb per	ton			
UPERATION	min	Solids	hu.		ised							Lime	3.	DF250	
Copper-lead cleaners						1									
No. 1	11/2				g cell				·					0.005	
No. 2	1			. 11	11										
Zinc cleaners					•					·					
No. 1	2		11.7	500-	g cell		·				·	1.0	•		· · · · ·
No. 2	11/2		11.7	11	· 11		· ·					0.2	<u>;</u>		
		ļ	 								ļ				ļ
		ļ			····	_	_			·					<u> </u>
·				<u> </u>	· · · · ·	· · ·		`							
		·		<u> · ·</u>				· · · · · · · · · · · · · · · · · · ·							
```			<u> </u>	<u> </u>	<u></u>		<u>  </u>		· ·		·		_ <u>_</u>		
		<u> </u>		<u> </u>							<u> </u>		_ <u>_</u>		<u></u>
PRODUCT	W	1	······			LYSIS							BUTIO		
		6 (	Cu	РЪ	Zn	Fe	Insol	Au	Ag		1 P	Ь	Zn	Au	Ag
Calculated assays	<b>.</b>		1												
					. [									• •	
lst Stage copper-lead Cleaner conc	Q	.70 9.	7/	10 70	3.08	20 54	5.65	0 56	70:15	77.	2 5	6.1	3.1	31.2	47.2
Copper-lead rougher con		.89 .8		12.08		29.04		0.54	64.74		1	0.6	3.9	33.7	49.5
Copper-lead rougher tai		.11 0.		0.86				0.12	7.25			9.4	96.1	66.3	50.5
lst stage zinc cl conc		.53 0.	.94	1.40	61.29	1.79	1.50	0.13	17.02		.2	6.8	67.9	8.1	12.6
Zinc rougher conc	15.	.01   1.	.00	2.04	50.59	4.45	1.40	0.17	18.99	13.	.7   1	5.5	88.3	16.1	22.1
	.														
										e 🛛 🖓 🖓 🖓					
						. •									
<b>-</b> . '			÷ [ ·												
								•							
										1					•
REMARKS:				`							· ·				
					<u> </u>				· · · · · ·			·····	<u></u>		
4 ¹ 4														*	

e.

• •

і <u>і</u>

.

•

. .

.

TEST NO. 3 SAME	LE:														
OBJECT OF TEST: Repe	eat of	Test	1 but t	with incre	ase	in li	me and	cvani	.de			CHAR	GE:	2000 g	5
f												TEST	ED BY	A.S.	
ODERATION	Time	%		Unit		[				agents,					
OPERATION	min	Solids	рН	used		Lime	ZnS04	NaCN	CX51	DF250	CuS04	NaAF		.	
Grinding	45	65	9.8*	7 x 14 R	1	3.0	0.5	0.10							1
Conditioning	10		ca 10*:	1000-g	cell	0.5			0.02						
Copper-lead rougher	1		10.6			.0,5			0.01	0.02					
" " scavenger	1		10.7						0.02						
Conditioning	10		11.3	·····		1.0					1.0				
Zinc rougher												· · ·			
Stage 1	1								0.02			0,10			
" 2	1									0.02		0.05			
" 3	2											0,05			
														L	
														<u> </u>	
PRODUCT	W	т		AI	VAL	YSIS	%				DI	STRIB	JTION	%	
FRODUCT	9	6													
Copper-lead ro conc	4	4													
" " scav conc		0													
Zinc rougher conc	14														1
Zinc rougher tail	76				-										
Feed	100	.0		ľ		~									1
_	1														
TEST PRODUCTS															
NOT ASSAYED	1														
BECAUSE OF UNSTABLE PH								-							
										1					
													•		
REMARKS: Light, leady	7 frotl	$\frac{1}{1 \text{ in } c}$	opper-	lead roug	ier.	pyrit	e came	up qu	ickly	in sca	venger	•			
*after dilu	ition :	in cel.	L.								0				
**unstable p	H, st	tarted	at abo	out 10.5 a	and	then b	egan to	o drop	•						

.

.

.

					ns Limi									. 17,	
OBJECT OF TEST: Copp	er-lead	d bulk	flot	ation	using 1	ime + Z	ns0 ₄ +	NaCN	but wi	th Z-2	00				
and AF 242 as	coppe	r and	lead	promot	ers in	place c	of CX 5	1.				TES	TED B	Y: A.S	•
	Time	%	1	1. 1	Jnit				Rea	igents,	lb p.e.	r.ton		· · · · · · · · · · · · · · · · · · ·	
OPERATION	1		pH			Lime	ZnS0/	NaCN	AF242	Z-200	CuSO	DF2	50 NaAl	<u>r</u>	
Grinding	45	65	10.0	* 7 x	14 RM	3.0	0.5	0.10							
	10		10.9	1000	-g cell	0.5			0.02	0.02		1		-	
	1	· .	10.7				1		0.02			1			
	1		<u> </u>		• .				0 02						
" 3	1	<del> </del>		<u></u>		-						+			
Conditioning			111.6		·····	1.5	1				1.0				
	1.		+											•	
	1				·····					••		0.0	2		
			1									10.0		5	
			+												
												- <u> </u>			
			<u></u>				0/	L	<u>.</u>	<u>li.</u> ]j		ISTR		N %	<u> </u>
PRODUCT	11	· ⊪—			····			<u> </u>							1
·			Cu	<u>РЬ</u>	Zn	Ľе	Au	Ag				<u>Pb</u>	Zn	Au	Ag
Conner-lead ro conc	l g	16 4	.76	16 20	12 26	12 30	0 65	69.28	1	33	7 -	2.8	12 1	30 6	42 7
	14							•		11					
Feed (calcd)						, i				11					1 .
Copper-lead ro tail			TESTED BY: A.         Reagents. lb per.ton         Munit         Reagents. lb per.ton         65       10.0*       7 x 14 RM       3.0       0.5       0.10       Image: state of the s				1								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
											·				
		.		· . ·											
					1	•									[
													·		
	11					×			) ·		`·	•	· · ·		
									<u> </u>						

after dilution in cell.

## Sheet 1 of 2

.

1

## MINES BRANCH FLOTATION TEST REPORT

۴

١

TEST NO. 5 SAMPL	E: Na	dina	Exp	lorati	ons Li	nîted			· · · · · · · · · · · · · · · · · · ·					ь. 18,	1970
OBJECT OF TEST: Repe	at of	Test	3			• • • • • • • • •						СНА	RGE:	2000 g	
												TES	TED B	Y: A.S.	
	ime	%	pН	ι	Init					gents,					
OPERATION	min So	olids	рп	Ú U	sed	Lime	ZnS04	NaCN	CX51	DF250	CuSO4	NaA	F		
Grinding	45	65		7 x	14 RM	3.5	0.5	0.10							· · ·
Conditioning	10 -	1	.0.5*		·				0.02						·
Copper-lead rougher															
Stage 1	1								0,01	0.02					
<u>.</u> 2	1/2									0.01					<u> </u>
A CAR STORE STORE	1/2			<u> </u>			-		0.004						·
Copper-lead scavenger	2	1	.0.0*	*					0.004						
Conditioning	10	1	1.6			1.5					1.0				<u> </u>
Zinc rougher	·						ļ				••••	0.10			
	1								0.02	· .		0.10	·		.
	1											0.05			
	2			<u> </u>								0,05		<u> </u>	
PRODUCT	WT				ANA	LYSIS	%	,				, -	BUTIO	N %	
	%	Cu	L	РЪ	Zn	Fe	Insol	Au	Ag	Cu	P	Ъ	Zn	Au	<u>Ag</u>
		10	(0)	0.00	1.20	10.00	1 76	1,18	127 0	5 24	0 5	2,7	1.3	19.4	28.2
Copper-lead conc		10.	68 4	0.00	4.36	12,90	1,70	1,10	1.57,0	24	.9 ]	2.7	1.7	17.4	20.2
Copper-lead cl tail No.2	2.76	9	63 2	2.42	22,63	14.55	12.72	0,38	96.6	7 23	.9 3	0.9	7.1	6.6	21.1
Copper-lead scav conc	1.81	11		2.33	21,43	18.68			68.5			2.1	4.4	4.1	9.8.
Zinc conc	7.50	- 11		0.33	64.15	1.24	1.02		9.6		· ·	1.2	54.4	4.7	5.7
Zinc cleaner tail No. 2	2.73	3   1.		0.64	55.65	3.40	5.46		15.6			0.8	17.2	2.6	3.4
H " No. 1	2.60	. 11		1.15	36,88	8,05	19.38		21.3	11	· •	1.5	10.8	2,8	4.4
Zinc rougher tail	80.00			0.27	0,54			0.12	4.3		1	.0.8 0.0	4,8	59.8	27.4
Feed (calcd)	100.00	)	.11	2.00	8.85			0.10	12.0	4 100				100.0	
the state of the second state of the															
											Ì				
-															
REMARKS Clean, leady	ll frot	<u> </u>		r-102	d rough	or		<u></u>	<u> </u>						
REMARKS: Clean, leady * at start	y LEOEI	1 111 C	oppe	r-rea	a rough	C									
** at end															

। ७

Sheet 2 of 2

TEST NO. 5 SAMP	LE:	Nadin	a Exp	lorati	lons Lin	nited				· · · · · · · · · · · · · · · · · · ·		ATE: Feb	). 18, ⁻	1970
OBJECT OF TEST:			· · ,			· .					<b>.</b>	HARGE:		
												ESTED E	3Y:	
OPERATION	Time	%	pН	L	Jnit .				Rea	gents, It	per to	n .		
	min	Solids		<u>  .</u> ι	used	Lime			•	<u>DF 250</u>				
Copper-lead cleaners														1
No. 1	11/2		· .	500-8	g cell					0.02				
No. 2				250-8	g_cell						<u>.                                    </u>		· / · ·	
Zinc cleaners						· ·			••• • • •	-				
No.sclin	11/2		12.1	500-5	g cell	1.0	<u> </u>			0.02				
ColNo.2-2009 9082 Cold	$1\frac{1}{2}$		12.1	11 1	1	0.5	letter and the		. ·					
<u> </u>		ļ.	· ·	<u> </u>		·	ļ		·					
Geeper-Jand 21 sail ha	<u> S</u> .		ļ		· · · · · · · · · · · · · · · · · · ·		ļ					· · · · · · · · · · · · · · · · · · ·		
Conner-Lesd conc			· · · ·							·	· · · ·	· · · · · · · · · · · · · · · · · · ·		
romantan ing binang si s							ļ. <u></u>	ļ			·			
5 157.67.022		· .								·				
		<u> </u>	<u> </u>		•		<u>.</u>		. ·		L			
PRODUCT	W				ANA	LYSIS	%		· · · · · · · · · · · · · · · · · · ·		DIST	RIBÚTIC	N %	
	9	6 C	u	РЬ	Zn	Έe	Insol	Au	Ag	Cu	₽Ъ	Zn	Au	Ag
Calculated assays														1
And the second product in the second s				· .					· ·		· · ·		· · · · · ,	1
Cu-Pb rougher conc				31.24		13,75	7.40			48.8			. 26.6	49.3
" " rougher tail		11		23.94	15.70		8.71	0.67				1	A 1 .	59.1
1st stage Zn cleaner con	92.	11	.39	0.31 0.41	8,32	1,82	2.21	0.12	5.5		14.3	(. ·	1 1 10	40.9
Zn rougher conc			.08	0.56	56.82		5.69			12.4			10.1	3.5
Zerszerel szál rotziket – – j	1			0.50		5100	3.05	0.113				0211		
Condistanda Condistanda						-		· -	-					
son an														· · · · ·
			·. ·											***
							• •				·			
					· ·									
Servol de level dé												.  · · · .		
	at liter to	11							1		· · .	1	N. 201	
CERCOLOLIER 🦓	11.						••			11	1	1		1

10

Sheet 1 of 2 '

.

.

## MINES BRANCH FLOTATION TEST REPORT

÷ ,

4

TEST NO. 6	SAMPI	E: Na	ndina	Expl	oratio	ons Lim:	ited								uary 18	, 1970
OBJECT OF TEST	: To tr	v the	e combi	inatio	n lime	$e + Na_2$	$50_3 + N$	aCN in	n bulk	copper	-lead				2000 g	
		ition		<u>.</u>		2							\$	ED B	Y: A.S.	
OPERATION		Ťime	%	рН	U	nit				Reag	gents,	lb per	ton			
OPERATION		min	Solids	· pm	u	sed	Lime	Na2S03	NaCN	CX51	DF250	CuSO2	NaAF			
Grinding		45			7 x	14 RM	3.0	1.0	0.10							
Conditioning		10		10.23	* 1000	-g cell				0.02						
Copper-lead roug	her	11											<u> </u>			ļ
Stage 1		1									0.02		ļ			
11 2		12								0.01	0.01		<u> </u>			
Copper-lead scav	enger	1 ¹						<u> </u>					ļ			.l
Stage 1		1		L				ļ		0.002						<b>.</b>
Same March 2011 St.		1			<u> </u>		· · · · · · · · · · · · · · · · · · ·			0.002	<u>,</u>					
<u>ichteleinen en e</u> Ny tonisten szerie	i.V.	1)					<u>.</u>									ļ.
TOTCHTHERE FOR SPECT		<u> </u>														
		ţ,			· · ·										·	
		···· ··						-			•			<u> </u>		<u>l'</u>
PRODUCT		W.				ANA	LYSIS	%				D	STRIE	BUTIO	N %	
	د رابد الدر الاسار را رام	%	ő C	u	Pb	Zn	Fe	Insol	Au	Ag	Cu	E	2Ъ	Zn	Au	Ag
	;															
Copper-lead cond				5.08		6.85		3.74	1.02		- 11		+.2	2.7	22.6	
Copper-lead cl t		11 1		4.92		20.53	11.91	4	0.34	1	51	ć	0.0	6.4	5.9	14.9
Copper-lead scav		13		7.54		19.63		15.34	0.34				5.4	4.1	.4.0	7.4 7.4
Zinc conc				0.33		64.24		1.42	0.08	1	11		5	63.8	4.8	
Zinc el-tail No.	2			0.87		52.60		8.24	0.15				.8	11.5	1.9	2.4
11 11 11 No.				1.89		31.50	9.27	27.18	0.18				8.6	6.6 4.9	2.1 58.7	
Zinc rougher tai	.1			0.32		0.54			0.12		7 22	.0 100	7.3	100.0	100.0	
Feed (calcd)	<u></u>	100	.00	1.12	1.9/	8.74			0.10	12.0		<u>.0 μ00</u>		100.0	100.0	100.0
	*.										i i			·		
ನ ಜನ್ಮದ. ಆಗಡ್ ೧೯									1							
الطورية التي المحافظ ويروعون																
in the second																
												·				l
REMARKS:	· · · · ·			<u></u>		d 0	0 1 W				-hor -		2 1.91			
· - · · · · · · · · · · · · · · · · · ·	it start					d conc, 4.7%.	ر %0.1	in cop	per-le	ao roug	gner C	onc, s	•4%,	ru cot	oper-iea	an [']
		rou	Buer -	scav	conc,	- <b>t</b> • / /o •										

. **-**11

<u>н</u> !.

Sheet 2 of 2

## MINES BRANCH FLOTATION TEST REPORT

۰.

Zn rougher       Image: Stage 1       Image: St		:														
OPERATION         Time min Solids         % pH         Unit used         Term Line         Reagents: (x 5 tbp: 250 (cs50, NaAT)         Term NaAT         Term Stage 1         NaAT         NaAT         Term Stage 1         NaAT         Term Stage 1         NaAT	OPERATION	11					• •									
OPERATION         min         Solids         PH         used         Lime         GX 5hpr 22d GuS04 NaAF         AAF           Conditioning         10         11.8         1000-g cell         2.0         1.0         1.0         1.0           An rougher         1         1         0.002         0.10         1.0         1.0         1.0         1.0           Stage 1         1         0.002         0.10         0.05         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         <	OPERATION		1	<u></u>		· · ·	·····	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		<u> </u>			ED B	Y:	- <u></u>
Conditioning       10       11.8       1000-g cell       2.0       0.0 July 200 0000 Hate       1.0       1.0         Stage 1       1       1       1       1       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       0.005       1.0       1.0       0.005       1.0       1.0       0.005       1.0       1.0       0.005       1.0       1.0       0.005       1.0       1.0       0.005       1.0       1.0       0.005       1.0       1.0       1.0       0.005       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0		,' • •	· · ·	PH.		• •	<u> </u>	1	<b></b>	·····	<u> </u>		r	- <u></u>		
Zn rougher       Image: Stage 1       Image: St		min	Solid	5	_	<u> </u>	Lime	ļ		<u>CX 51</u>	<u>DF 250</u>	CuS04	NaAF			
Stage 1       1       0.02       0.10       0.02         1       0.001       0.05       0.05         Copper-lead cleaner       1 ½       250-g cell       0.01       0.05       0.01         X0.1       1 ½       250-g cell       0.01       0.02       0.01       0.05         X0.1       1 ½       ~12       00-5       0.01       0.02       0.01       0.05         X0.1       1 ½       ~12       00-5       0.01       0.02       0.01       0.05         N0.1       1 ½       ~12       0       0.5       0.02       0.01       0.02         N0.2       1 ½       ~12       "       0.5       0.5       0.01       0.02       0.01         PRODUCT       %T       ~12       "       0.5       0.5       0.5       0.5       0.5         Calculated assays       6.15       10.60       26.62       12.87       12.71       6.46       0.72       111.52       58.0       83.2       9.1       28.5       53.         Copper-lead-rotsation       92.02       0.36       0.22       8.24       0.11       5.50       29.7       10.4       86.8       67.5       39.9			· · · ·	11.8	100	0-g cell	2.0				· .	1.0				·
1       1       0.01       0.05       0.05         Copper-lead cleaner       1 ½       250-g cel1       0.006       1       1         No.1       1 ½       250-g cel1       0.006       1       1       1         No.1       1 ½       250-g cel1       0.00       0.02       1       1         No.2       1 ½       ~12       500-g cel1       1.0       0.02       1       1         No.2       1 ½       ~12       70       10.5       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		· · · · · · · · · · · · · · · · · · ·	· · ·	· · · ·			·.									
1       2						<u> </u>	<u> </u>	<u> </u>		0.02			0.10			
Copper-lead cleaner         1 *         250-rg cell         0.01         0.02         1           No.1         1 *         ~12         500-g cell         0.02         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1						`							0.05	1 1 1	• .	
Copper-lead cleaner         1 ½         250-ag celT         0.006         1         1         1           N0c.1         1 ½         ~12         500-g cel1         1.0         0.02         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	21.n row31 er taff	2				·					0.01		0.05	•		
Zinc cleamers       ~12       ~12       ~12       ~12       ~12       ~12       0.02            No. 1       12       ~12       ~12        0.5		1 1	. ·		250	-e cell								1		1
No.1       1 ½       ~12       500-g cell       1.0       0.02       0.02       0.02         No.2       1 ½       ~12       " " 0.5       0.5       0.02       0.02       0.02       0.02         No.2       1 ½       ~12       " " 0.5       0.5       0.02       0.02       0.02       0.02         Properties       0.00       0.02       0.00       0.02       0.00       0.02       0.00         Properties       0.00       0.00       0.00       0.00       0.00       0.00       0.00         Properties       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00         Properties       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00         Calculated assays       0.11       0.60       26.62       12.87       12.71       6.46       0.72       111.52       58.0       83.2       9.1       28.5       53.         Copperties       0.00       20.036       0.22       8.24       0.11       5.50       29.7       10.4       86.8       67.5       39.9         Ist stage zinc conc       12.42       <	Zinc cleaners					· · ·				· ·					· .	1
No. 2         1.1/2         ~12         1         1         0.5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <	No. 1	1 1/2		~12	500	-g cell	1.0	1		:	0.02			1	1	1 .
PRODUCT         WT         ANALYSIS %         DISTRIBUTION %           Calculated assays         6.15         10.60         26.62         12.87         12.71         6.46         0.72         111.52         58.0         83.2         9.1         28.5         53.           Copper-lead ro conc         6.15         10.60         26.62         12.87         12.71         6.46         0.72         111.52         58.0         83.2         9.1         28.5         53.           Copper-lead ro scav conc         7.86         9.90         22.10         14.43         13.41         8.49         0.63         97.84         70.3         89.6         13.2         32.5         60.           Copper-lead ro tail         92.02         0.36         0.22         8.24         0.11         5.50         29.7         10.4         86.8         67.5         39.           Ist stage zinc cl conc         12.42         0.64         0.48         57.63         2.82         6.26         0.11         12.76         7.1         3.1         81.9         8.8         12.           Zinc rougher conc         12.42         0.64         0.48         57.63         2.82         6.26         0.11         12.76         7.1							0.5	1				· · · · ·	· · · · · · · · · · · · · · · · · · ·	1.	1	1:
PRODUCT         WT         ANALYSIS %         DISTRIBUTION %           Calculated assays Copper-lead ro conc Copper-lead ro conc Copper-lead ro rotscav conc Copper-lead rotscav conc Conc Copper-lead rotscav conc Copper-lead rotscav conc Coper-lead rotscav conc Coper-lea	مراجع المراجع المراجع المراجع مي من المراجع المراجع من من المراجع من				1.	·		  .					· · · ·	1		
PRODUCT         WT         ANALYSIS %         DISTRIBUTION %           Calculated assays Copper-lead ro conc         6.15         10.60         26.62         12.87         12.71         6.46         0.72         111.52         58.0         83.2         9.1         28.5         53.           Copper-lead ro conc         6.15         10.60         26.62         8.24         0.11         5.50         29.7         10.4         86.8         67.5         39.           Ist stage rinc cl conc         10.55         0.43         0.42         62.14         1.71         2.65         0.10         11.93         4.0         2.3         75.3         6.7         9.           Zinc rougher conc         12.42         0.64         0.48         57.63         2.82         6.26         0.11         12.76         7.1         3.1         81.9         8.8         12.	· · · · · · · · · · · · · · · · · · ·		B	1		· .				· · · · ·						+
PRODUCT         9%         Cu         Pb         Zn         Fe         Insol         Au         Ag         Cu         Pb         Zn         Au         Ag           Calculated assays         Copper-lead ro conc         6.15         10.60         26.62         12.87         12.71         6.46         0.72         111.52         58.0         83.2         9.1         28.5         53.           Copper-lead rot-scav conc         7.98         9.90         22.10         14.43         13.41         8.49         0.63         97.84         70.3         89.6         13.2         32.5         60.           List stage zinc. cl conc         10.55         0.43         0.42         62.14         1.71         2.65         0.10         11.93         4.0         2.3         75.3         6.7         9.           Zinc rougher cone         12.42         0.64					,		1			· · · ·		· · ·	······································			+
Cu         Pb         Zn         Fe         Insol         Au         Ag         Cu         Pb         Zn         Au         Ag           Calculated assays         Copper-lead ro conc         6.15         10.60         26.62         12.87         12.71         6.46         0.72         111.52         58.0         83.2         9.1         28.5         53.           Copper-lead ro conc         7.98         9.90         22.10         14.43         13.41         8.49         0.63         97.84         70.3         89.6         13.2         32.5         60.           Copper-lead ro tail         92.02         0.36         0.22         8.24         0.11         5.50         29.7         10.4         86.8         67.5         39.           Ist stage zinc cl conc         10.59         0.43         0.42         62.14         1.71         2.65         0.10         11.93         4.0         2.3         75.3         6.7         9.           Zinc rougher conc         12.42         0.64         0.48         57.63         2.82         6.26         0.11         12.76         7.1         3.1         81.9         8.8         12.4		II: W	T			ΔΝΔΙ	VSIS	<u> </u>								<u> </u>
Calculated assays         Cold         FD         Zn         Fe         Insol         Ad         Fe         Cold         FD         Zn         Ad         A	PRODUCT	10	. Ih		D1	·			· · · ·	1 10	_			- ومحدث المحافظ	<u>,</u>	
Copper-lead ro conc       6.15       10.60       26.62       12.87       12.71       6.46       0.72       111.52       58.0       83.2       9.1       28.5       53.         Copper-lead ro+scav conc       7.98       9.90       22.10       14.43       13.41       8.49       0.63       97.84       70.3       89.6       13.2       32.5       60.         Copper-lead ro tail       92.02       0.36       0.22       8.24       0.11       5.50       29.7       10.4       86.8       67.5       39.         Ist stage zinc cl conc       10.59       0.43       0.42       62.14       1.71       2.65       0.10       11.93       4.0       2.3       75.3       6.7       9.         Zinc rougher conc       12.42       0.64       0.48       57.63       2.82       6.26       0.11       12.76       7.1       3.1       81.9       8.8       12.         Zinc rougher conc       12.42       0.64       0.48       57.63       2.82       6.26       0.11       12.76       7.1       3.1       81.9       8.8       12.         Zinc rougher conc       12.42       0.64       14.43       14.44       14.44       14.44       14.44<				<u>u</u>	PD	2n	<u>re</u>	Insol	Au	- Ag		P	D	Zn	Au	Ag
Copper-lead ro conc       6.15       10.60       26.62       12.87       12.71       6.46       0.72       111.52       58.0       83.2       9.1       28.5       53.         Copper-lead ro+scav conc       7.98       9.90       22.10       14.43       13.41       8.49       0.63       97.84       70.3       89.6       13.2       32.5       60.         Copper-lead ro tail       92.02       0.36       0.22       8.24       0.11       5.50       29.7       10.4       86.8       67.5       39.         Ist stage zinc cl conc       10.59       0.43       0.42       62.14       1.71       2.65       0.10       11.93       4.0       2.3       75.3       6.7       9.         Zinc rougher conc       12.42       0.64       0.48       57.63       2.82       6.26       0.11       12.76       7.1       3.1       81.9       8.8       12.         Zetae       0.64       0.48       57.63       2.82       6.26       0.11       12.76       7.1       3.1       81.9       8.8       12.         Zetae       0.64       0.48       57.63       2.82       6.26       0.11       12.4       13.4       14.4							•			- A.	-				. • .	i di se se
Copper-lead-rot-scav conc       7.98       9.90       22.10       14.43       13.41       8.49       0.63       97.84       70.3       89.6       13.2       32.5       60.         Copper-lead ro tail       92.02       0.36       0.22       8.24       0.11       5.50       29.7       10.4       86.8       67.5       39.         1st stage zinc cl conc       10.59       0.43       0.42       62.14       1.71       2.65       0.10       11.93       4.0       2.3       75.3       6.7       9.         Zinc rougher conc       12.42       0.64       0.48       57.63       2.82       6.26       0.11       12.76       7.1       3.1       81.9       8.8       12.         2000       0.64       0.48       57.63       2.82       6.26       0.11       12.76       7.1       3.1       81.9       8.8       12.         2000       0.64       0.48       57.63       2.82       6.26       0.11       12.76       7.1       3.1       81.9       8.8       12.         2000       2000       2000       2000       2000       2000       2000       2000       2000       2000       2000       2000 <t< td=""><td></td><td>6</td><td></td><td>in an</td><td>26.62</td><td>12.87</td><td>12 71</td><td>6 16</td><td>0 72</td><td>111 5</td><td>2 58</td><td>0 83</td><td>2.</td><td>0 1</td><td>-28 5</td><td>53 3</td></t<>		6		in an	26.62	12.87	12 71	6 16	0 72	111 5	2 58	0 83	2.	0 1	-28 5	53 3
Copper-lead ro tail       92.02       0.36       0.22       8.24       0.11       5.50       29.7       10.4       86.8       67.5       39.         1st stage zinc cl conc       10.55       0.43       0.42       62.14       1.71       2.65       0.10       11.93       4.0       2.3       75.3       6.7       9.         Zinc rougher conc       12.42       0.64       0.48       57.63       2.82       6.26       0.11       12.76       7.1       3.1       81.9       8.8       12.						1 1						· •		,		
Ist stage zinc_cl conc       10.55       0.43       0.42       62.14       1.71       2.65       0.10       11.93       4.0       2.3       75.3       6.7       9.         Zinc rougher conc       12.42       0.64       0.48       57.63       2.82       6.26       0.11       12.76       7.1       3.1       81.9       8.8       12.         View       0.64       0.48       57.63       2.82       6.26       0.11       12.76       7.1       3.1       81.9       8.8       12.							10.41			4	· II		4	1.	. 1	39.3
Zinc rougher conc 12.42 0.64 0.48 57.63 2.82 6.26 0.11 12.76 7.1 3.1 81.9 8.8 12.		14	. 0 .				1.71	2.65			· ++-	1			•	9.8
CUEDEAL SAFT LOUISING CUEDEAL SAFT LOUISING									4 .					1		12.3
REMARKS		-						·								· ·
REMARKS										1						
REMARKS	Cooper-lead coesies (		_ ` {{ ``	• • • •	• • •											l
REMARKS	n far se	·	2. 1						· .							
REMARKS																
REMARKS	ענים שריבשרי עוביסה שלא שלאלי לעורדי בר ופריסריקרי. קר						· .	• .							····	1 7
REMARKS										· .					· · ·	·  .
REMARKS	د . الحمار الإجراد بين المالية المالية المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع				• • • • •			1. E				- ¹ •		·		
			<b>.</b>	1				•	1							
	EMARKS		<u> </u>		-	<u></u>					<u></u>	<u>_</u>				
			•			· .				•			:			
					, :	•	• • •			·	· .					
		·		· · · · ·	<u> </u>	<u></u>	<u>`</u>	· .								

.

.

, 1 •

•

.

TEST NO. 7 SAMP	LE: 1	Vadina	Explo	rations	Limit	ed						DATE		ril 7,	
OBJECT OF TEST: To t	ry the	e combi	natio	n Na_CO,	, + Na		- NaCN	in bul	k copp	er-lea	đ	CHAF	GE:	2000 g	
OBJECT OF TEST: To t flotation with AF242 an	d AF 2	238 as	colle	ctors.	5	2 3						TEST	ED B	<u> </u>	
	Time	%	pН	Uni		1			Rea	gents.	lb per	ton			]
OPERATION	min	Solids	рп	use	d	Na ₂ CO ₃	Na2SO3	NaCN	AF242	AF238	DF250				
Grinding	30	65	8,2	12 in,	BM	3.0	1,0	0.10	0,04						1
Conditioning	20			Aerator		1.0				0.02					
Copper-lead rougher				1000-g				<u> </u>							
Stage 1	1		8.0						0.02	0.02					
" 2	1/2						<u> </u>				0.02				_
" 3	1								0.02						
				Į	·····	ļ	ļ	L	Į				. <u> </u>		
							<u></u>				-		<u> </u>		
					محمد الروم ومورد ريوها المار		ļ	<u> </u>	ļ				<u> </u>		
							<u> </u>							}	
							ļ								-+
				[			<u> </u>	[		L		L	<u> </u>		<u> </u>
PRODUCT	W				ANAL	YSIS	%	<b></b>			DI	STRIB		N %	
	9	6													
Copper-lead ro conc	15	.18													
" " ro tail		.82													
Feed		.00	· [												
TEST PRODUCTS NOT ASSAYED	li -	Ì													
NOI ASSAILD															
REMARKS: Dirty, no:		et ive	flost		ive a	mounta	of pr	rito f	loatod						
Dirty, no.	n-sere	CLIVE	LUAL	ercess	TAG G	mounes	от ЪМ	LILE I.	ruated	•					
															ł

- 13 -

٤

*

MINES BRANCH FLOTATION TEST REPORT Sheet 1 of 2

					ns Limit				··· <u>·</u> ····					ril 7,	1970
OBJECT OF TEST: Repe	eat of	Test	6,Ъı	it empl	oyed AF:	242 and	1 Z-200	as co	llecto	rs				2000 g	
<u>în c</u>	onjunc	tion	with	CX51*.									TED B	Y: A.S.	
OPERATION	Time	%	- pH		Unit					igents,					
OFERATION	min	Solid	s	<u>.</u>	used	Lime	Na2S03	NaCN	AF242	Z-200	CX51	DF25(	) $CuSO_4$	NaAF	
Grinding	_30	65		12 1	n. B.M.	3.0	1.0	0.15	0.04		Ĺ				
Conditioning	10		10.	0 1000	-g cell	· ·				0.02	0.01				
Copper-lead rougher	i ·		1		•						:				
Stage 1	1/2		1	<u> </u>				· ·				0.02	2		
" 2	1			1		1.					0,01				
" 3	1	·									0,01				
Conditioning	10		11,	6		2.0					······		1.0	: ]	
Zinc rougher	[		-			-			1		• • •				
Stage 1	1/2	· · · ·									0.02				
<u> </u>	1	<u> </u> -							· · ·			0.02	2	0.10	
" 3	1								<u> </u>	· · · · · · · · · · · · · · · · ·				0.05	
¹¹ 4	1/2		-				·		· · · · · · · · · · · · · · · · · · ·					0.05	
	l w	<del>,</del> 1			ΔΝΔ	LYSIS	%		· · · · · · · · · · · · · · · · · · ·	1.	D	STRI	BUTIO	N %	
PRODUCT	%		Cu	РЪ	Zn	Fe	S	Au	Ag	C		Pb	Zn	Au	Ag
								<u></u>							
Copper-lead ro conc	11		.32	10.08	26.40	9.77	1	0.40	54.5	0		35.0	49.4	38.9	66.1
Zinc ro conc			.,47	1.00	40.40	7.42		0.15	14.9			5.4	48.3	9.3	11.6
Pyrite ro conc			.36	0.42	0.54		39.58	0.29	10.4		.1		1.6	42.4	19.0
Final tailing			.04	0.16	0.13		1.83	0.30	0.8	· H	.9	4.3	0.7	9.4	3.3
Feed (calcd)	11		.10	1.87	8.43	14.50		0.16	12.9	- II ·	.0   10	0.0	100.0	100.0	100.0
Copper-lead ro tail			.31	0.33	5.07			0.12	5.2	11		• •			
Linc ro tail	∦ 74.	.18 C	.15	0.24	0.27			0.11	3.9	1.		[			
	//		·		· .										
													(		
			•	<b>.</b> .				•							•
· · · · ·														·. ·	
· ·									1.1						· .
	ll.					<i>.</i> .									
												•			
	11	11		1	I 'l		1		1	· II · ·			1	1	

- 14 -

						2017							Sheet		
TEST NO 8 SAM	PLE: N	Jadina	a Exp	lorat	ions ]	Limite	d					DAT	E: Apr	<u>il 7,</u>	1970
OBJECT OF TEST:	3.											CHA	RGE:		
													TED BY	:	
OPERATION	Time	%	pН	l	Jnit_				Reag	gents,	lb per	ton		<del></del>	7-00
OFERATION	min	Solids		- ī	ised						CX51				H2SO4
Conditioning	10	1	8.7	- 1		1.					0.10				2.9
Pyrite rougher	÷;													<u> </u>	
Stage 1	1/2												_	ļ	
" 2	1			ł.							0.05			<b>_</b>	
<u> </u>	1									· .	0.05			ļ	
and the start of the start of the	1 1/2	4									0.05			<b>_</b>	
۵	-	·	ļ	_ <u>_</u>			<u></u>	<b>├</b> ;						<b></b>	+
54 · · · · · · · · · · · · · · · · · · ·	ļ	ļ	· ·					ļ				·		<b></b>	╂┩
E is a						1	. <u> </u>	<b> </b>			·····	<b> </b>		<u> </u>	
		<b>_</b>												╂	4
		L												÷	╉┿┯╼╼┿┙┥
		<u> </u>	<u> </u>				<u> </u>			11					<u> </u>
PRODUCT	. W	11			ANA	LYSIS	%					SIRI	BUTION		
	9	6									<u> </u>				
~ · ·								1		1		ŀ			l I
		×	1												
· · · · · · · · · · · · · · · · · · ·									· ·						1
			ļ												1
	•						1						•		í I
															F
n an the state of the second sec			- e												
traffe ?										┡			ļ		
the second s The second se The second s The second seco															
									1						
	ľ											.  -			
n Shara an									1						
							<u> </u>	<u> </u>				<u> </u>			l
REMARKS:															
•,															

- 15

Sheet 1 to 2

TEST NO 9 SAMP					ons Limi						•			pril 8,	1973
OBJECT OF TEST: Repe	at of	Test 2	but w	vitho	ut aerat:	Lon	•						ARGE:		
				. : .		<u> </u>							STED E	<u>BY:</u>	·
OPERATION	Time	%	- pH		Unit					igents,		r ton		*	
OFERATION	min	Solids	- pri		used	Na2CO	Na2S03	NaCN	CX 51	DF 250			•		
Grinding	:30	65		12	in. BM	3.0	1.0	0.10	0.01						
Conditioning	10	· · ·	8.2	100	0-g_cel1	1			0.01	0.02		T	*		<u></u>
Copper-lead rougher						<u> </u>									$\mathbf{F}$
Stage 1	с. 7.			1		· .			0.005			1		•	
" 2	. ij			Ì	· ·				0.005	0.008				ŀ	
" 3	ł.				· · · ·	ĺ			0.0025	0.004		·	;		
<del></del>	5	·		İ		1			0.0025						
" 5	3	3.4		1		1			0.0025	0.004		1			
	<u> </u>			1		1				İ			-		1
				Τ	· .	· ·					`		: .	1	
		-				1			·						:
		1 			• .					·					
	W.	Т			ANAL	YSIS	%				D	ISTR	IBUTIO	N %	:
PRODUCT	%		u	Pb	Zn		Fe/FeS	Au	Ag	Cu		РЪ	Zn	Au	Ag
Copper-lead ro conc-No.	1 1.	68 14	.51 1	1.94	6.32	16.72	3.97	1.20	128.4	0.23.4	4 1	0.0	1.3	12.0	16.7
<u>11 11 11</u> No.	2 3	65 11		0.73	1 1	27.24	17.43	0.65	81.7	. 11		9.5	2.0	14.1	23.1
11 11 11 11 NO.	3 4.	31 4		.0.35			26.49	0.40	41.1	11		2.2	2.0	10.2	13.7
11 11 11 11 No.	4 2.	71 2		8.00		33.85	31.89	0.35	28.3	61		0.8	1.4	5.6	5.9
11 11 11 17 No.	5 2.	50 0	.96	6.24			28.57	0.34	27.0			7.8	1.9	5.0	5.2
	85.		· · · · · · · · · · · · · · · · · · ·	0.70		L0.08		0.11	5.3			9.7	91.4	53.1	35.4
Feed (calcd)	100.	00 1	.04	2.01	8.24	12.83		0.17	12.9	4 100.0	) 10	0.0	100.0	100.0	100.0
							· · · · · ·							·	
	119_ ;					- , A	2								
			· ·	·										· .	
						· · · .		· · ·							
							· ·		· · .			• •	· · · ·	· · ·	• •
						· · · ·	· · · ·					: ·			· ·
<u> 18730 log lagu (                                   </u>			·	•								· .		<u>.</u>	<u> </u>
REMARKS:														<u></u>	
a contra de la contra de contra de la contra contra la contra de la contra de la contra de la contra de la cont	يري يا ميدي الله ا		• •							۰.		۰.			

ŧ

Sheet 2 of 2

- 17 -

TEST NO.	9	SAM	PLE:	Nadin	a Exp	loratio	ons Lim	ited						DA	TE: A	pril 8,	1970
OBJECT OF	TEST	:												CH.	ARGE:		
														TE	STED E	۶Y:	
			Time	%			Unit				Rea	gents,	lb pe	r ton			
OPERA	ATION			Solid	s p⊦		used		·								
					+									+			
					1												
		·												1			
												·					
					<u> </u>												
						<u> </u>		<u> </u>									
PRO	толст		W		_			LYSIS							ΙΒυτιο		
			%		Cu	РЪ	Zn	Fe	Fe/FeS	Au	Ag	C	u	РЪ	Zn	Au	Ag
Calculated a of combined copper-lead No. 1 + 2 No. 1 + 2 + No. 1 + 2 + No. 1 + 2 +	<u>ro con</u> 3 3 + 4	nc	5. 9.0 12. 14.3	35 🛛 🖯	2.22 3.87 7.42 5.33	11.10 10.77 10.16 9.50	5.05 4.51 4.43 4.77	23.92 26.93 28.45 28.61		0.63 0.57	96.48 71.75 62.23 56.31	62. 82. 87. 90.	1 5 9 6	9.5 1.7 2.5 0.3	3.3 5.3 6.7 8.6	26.1 36.3 41.9 46.9	53.5
REMARKS:		,															

TEST NO. 10	SAMP	LE:	Nadina	Exp1o	rations I	imit	ed	¢			<u></u>				ri1 8, 1	
OBJECT OF TEST								irect1	v from	the or	e.		СНА	ARGE:	2000 g	
, · · ·	usin	g sul	phur di	ioxide	for gale	en <u>a</u> d	lepress	ion.	,				TES	STED B	Y: A.S	
		Time	%	· · · · · · · · · · · · · · · · · · ·	Unit		1			Reag	ients, I	b per	torr			
OPERATION		min	Solids	рН	used		SO2	Z-200		. •						
Grinding		30	65		12 in. ]	3M								•		
Conditioning		5		6.7			.3.0				· · .	· · ·	ļ			┦───┥
11		<u> </u>						0.04						<u> </u>		- <u> </u>
					<u>.</u>		·						<b> </b>			
					ļ			·	_ · _							
		·					·	· · ·								<del> </del>
							<u> </u>						┼──			╂╂
<u></u>					<u>}</u>	·						·	1			+
· · · · · · · · · · · · · · · · · · ·					<u></u>								1			
· · ·		<u></u>														
· · · · · · · · · · · · · · · · · · ·		· · ·					·						1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 19		• •	· ·
PRODUCT		W			A	NAL	YSIS	%				D	ISTR	BUTIO	N %	
		%														
<u> </u>	· · ·															
•					ł											
•					1							•	-			
					ŀ									•		
TEST PRODUCTS									•				[			
DISCARDED									. •					•		
-										1			ł	• •		· ·
															· .	1
	· .				· · ·								•	•	х.	·
			·					· · ·	· · .							·
·																
			i i				ł		,							
		<u></u>													<u> </u>	
			•	o prom	ote chalo	copyr	ite ef	fectiv	ely, ob	otained	a dep	resse	ed, s	Limy, a	and	
tine-	-graine	d fro	tn.		•											
· · · · · · · · · · · · · · · · · · ·							·									i

Sheet 1 of 2

TEST NO. 11 SAM	PLE: 1	Nadina	Expl	oratio	ns Limi	ted					D	ATE: Ap	ril 11,	1970
					flotati						Ċ	HARGE:	2000 g	
but	used X	Kantha	te as	coppe	r promo	ter in	place	of Z-20	0		T	ESTED E	8Y: A.S	•
OPERATION	Time	%		1	Jnit -				Rea	gents, I	b per to	n		
UPERATION	min	Solid	pH		used	50 ₂	CX51	DF250	Lime	NaCN				
Grinding	30	65	7.2	12-i	n. B.M.	-	1							
Conditioning No. 1	5		6.6		-g cell									
" No. 2	5						0.02	0.02						
Copper rougher						-								
Stage 1	1						0.005					-		
" 2	1						0.005							
" 3	2							0.01						
Conditioning	5		9.2						4.0	0.10				
Lead roughers														
No. 1	1						0.005							
No. 2	4							0.02						
PRODUCT	W	т			ANA	LYSIS	%				DIST	RIBUTIC	N %	
PRODUCT	9	6	Cu	РЪ	Zn	Fe	Fe/FeS	Au	Ag	Cu	РЪ	Zn	Au	Ag
Copper rougher conc	3	.03 1	9.00	3.00	6.60	16.30	-	0.67	105.3	9 53.6	5 4.8	2.4	12.1	24.0
Lead rougher conc No. 1				52.50	4.25	6.11	1	1.19		1		1	11.5	10.4
" " No. 2	11		9.56	5.20	7.20	14.68		0.44	1	7 19.1		1	5.6	13.4
Zinc rougher conc	11		1.08	2.30	47.60	4.76	3.81	0.14	1	9 16.0		1	13.2	21.8
Zinc rougher tail	77.	.35	0.13	0.63	0.55			0.13	5.2	4 9.4	25.6		57.6	30.4
Feed (calcd)	100.	.00	1.07	1.91	8.39			0.17	13.3	1 100.0	) 100.0	100.0	100.0	100.0
Calculated assays														
Lead rougher conc $1 + 2$	3.	. 77	6.00	25.53	5.93	11.00	5.73	0.76	83.9	8 21.0	50.5	2.6	17.1	23.8
Lead ro tail			0.29	0.91				0.13	1	6 25.4	1		70.8	52.2
		li												
		l.												
		1				}								· ·
REMARKS: Copper rough	1er - 1	light	froth	, mixe	d leadv	+ CODE	ery co	lour	÷					
Lead rougher							<i>.</i>							
	ľ	io. 2,	brig	ht copy	pery co									
Zinc rougher	<u> </u>	ght vo	lumin	ous fr	oth, sh	ort of	CuSO4?							

- 19 -

# MINES BRANCH FLOTATION TEST REPORT Sheet 2 of 2

TEST NO. 11 SAMP	PLE: N	ladina	Explor	ation	ıs Limi	ted								:il 11,	1970
OBJECT OF TEST:							•					CHAR			
												TEST	ED B	Y:	
	Time	%		U	Init	1 .			Rea	gents, l				· · ·	
OPERATION		Solids	рН	u	sed		CX51	·	Lime	0	CuSO4	NaAF			
Conditioning	10		11.3						3.0		1.0				
Zinc rougher						1									
Stage 1	1/2						0.02					0.10	· ,	•	
" 2	1	· · · ·					0.01	÷							
" 3	2		. *	•			0.01		·			0.05			
·															·
									· · · ·	·					
									· · ·	· · · · · · · · · · · · · · · · · · ·			•		
<u>`````````````````````````````````````</u>	-														
				·											<u> </u>
PRODUCT	W	r			ANA	LYSIS	%		•		DI	STRIB	UTIOI	N %	
FRODUCT	%	5			·						}				
				· · · ]		•			1	1		ŀ			
			·			• • •						·			-
									· .					}	•
· · · · ·		<b> </b>		•						* <b>[</b> ]					
· · · · · · · · · · · · · · · · · · ·													·		•
· · · ·			• ] •						· ·		·		· ·		• •
					ĺ										•
		ll l	1	•			. N				•	· · ·	· · ·		•
												·   ·			
		1 ·												• •	•
													:		
								• .		• •					
							L		<u> </u>			<u> </u>			
REMARKS:			<u> </u>							•					
	•														
									<u>.                                    </u>						

### MINES BRANCH FLOTATION TEST REPORT Sheet 1 of 2

TEST NO. 12 SAMPLE: Nadina Explorations Limited DATE: April 10, 1970 CHARGE: 2000 g OBJECT OF TEST: Copper-lead selective flotation as in Test 11 but employed aerative conditioning prior to copper float, TESTED BY: A.S. Reagents, lb per ton Time % Unit OPERATION pН CX51 DF250 Lime NaCN AF242 used min Solids SOn Grinding 30 65 12 in. BM Conditioning 30 5.7 4.0 0.02 Aerator Copper rougher No. 1 1/2 0.005 0.02 Stage 1 11 2 1 0.005 Copper rougher No. 2 Stage 1 1 0.005 11 2 1 0.005 5 Conditioning 5.0 0.10 11.0 Lead rougher No. 1 Stage 1 1 0.01 " 2 1 0.005 0.01 ŴТ ANALYSIS % DISTRIBUTION % PRODUCT % Fe/FeS Cu РЪ Fe Zn Au Ag Cu FЪ Zn Ag Au Copper ro conc No. 1 7,74 6,59 16.57 23.43 8.87 0.51 78.99 43.7 11.5 2.3 9.0 17.9 10.51 6.79 24.56 17.39 8.16 0.45 59.49 24.3 17.7 2.7 9.0 15.2 Lead ro conc No. 1 9.50 1.02 98.46 1.29 38,71 7.01 10.63 3.21 54.6 2.3 17.0 21.1 " " No. 2 3.04 29.13 11.74 4.51 0.26 7.78 45.23 10.3 3.9 8.8 4.0 8.9 Zinc rougher conc 0.54 49.19 0.78 4.64 3.96 0.13 13.99 9.6 3.7 79.6 10.7 14.7 Zinć rougher tail 0.13 0.22 0.49 14.04 0.11 3.80 8.9 8.6 4.3 50.3 22.2 Feed (calcd) 1.94 8.33 13.24 1.10 100.0 100.0 100.0 100.0 0.16 12.81 100.0 REMARKS:

- 21

Sheet 2 of 2

TEST NO. 12 SAMI	LE:	Madin	а БХ	hroi	acı	ons Lim	100			·		;				DATE: April 10, 1970					
BJECIKOF TEST:								· · · · · · · · · · · · · · · · · · ·								CHA					
									Ţ,	1	1		1			TES	TED	BY		1	
OPERATION	Time	%		н		Unit	ŀ		l	1	F	Reag	jents,	lb p	er t	on					
	min	Solid	s			used	-	· · ·	CX41	DF250	LİM	e		AF2	42 C	uS02	Na	1F			
Lead rougher No. 2														1						1	
Stage 1 " 2	11						1		0.01	1				1		1	1.				
" 2	1						Y.		0.005					0.	01					1	
Conditioning	10		11	.5			1			1.	2.0	0				2.0			• •		~
Zinc rougher																į					
Fe <b>Stage</b> alcd)	1		1.1	0	1.92	1 8.33	11	3.24	0.02	0.1	IT:	5° 81	.    T(	0.0	irdo	0	100:	10	190°0	ĴŨ	00
Zinc rougher tail	1		p.1		0.23				0.01	00.02	The Local and and	3,80	Lord and a second second	8.9		.6	Ū.	.05	56.3	3	33
Sinc mougher conc	3	ŀ	b.7	8	0.54	49.19		4.64	3.96	0.1	113	6516		9.6	3	.7	20	.05	10.7		17
" " " No. 2	1		4.5	1	3.04	1 29-13	1	1.74	7.78		1 1	2 33		03	Э	6	8	8	<del>, 0</del>		\$
Lead to conc No. 1		l li	1 .2		8.7.			0.63	9.50	10		3 45		3 5		1 2	3	3	<u>-12.0</u>		53
14 11 11 MO. 2			83	215	0.5	6.79			17.35	0.4		<u>)                                    </u>		7-3			1 .	- 1	0 <del>-5-</del> ∩`£	1 7	<u>3 −</u> 7 \
Copper to cone No. 1		1	202	<u> -    </u>	<u></u>	1 6-79	Ľ	3.43	<u>j 8 82</u>			<u> - 6</u> 5		<del>12 à</del>		<u> </u>		-i			<u>, , ,</u>
	W				Śr			cić	% \1-0			<u>-98</u> -		<u></u>	hie	TRIE			- 0/	- <u></u>	
Product	11 11		Cu		<u>и</u> р				re/FeS-		1.		Ci			816					A
~			<u>u</u>		<u></u>	2n		<u>e</u>	0.005 0.005			Ag					<u></u>		AU		Ag
Calculated, assays					<u> </u>						-		╢	╶┼┨	· • • •						
	<u> </u>				ļ						-				<u>,01</u>						
Conbined Custon Cont			<u>2.11</u>			6.70		a marchan barren pa	13.39				68		_29,	7	-5-(	-	8.0	3.	
Conditio Bango couc				129.		17.59		.16	8.67 0.003	0.66			0 <u>13</u>		<u>58</u> ,		11.		1.0	_30.	
Lead rougher tail	88.	<u> -   </u>	0.23	0.	<u> </u>				0.005	0.11		.35	18	-7	12.	<u>-</u>		0	1.0	<u>    36  </u>	. 9
Copper rougher No. 2 Stage 1				·	<b>_</b>		÷		0 002		-		<u>   ·</u>			<u>├</u>	-	╤┼╤╤	+	_	
						·			0.003				╢			┟┈╍					
<u>11 2</u>													<b></b>			$\left  - \right  -$					
Stage 1									0.001	0.0	511		<u>  </u>		<u> </u>						<del>.</del>
Copper rougher No. 1												·	¥		·.	<u></u> }	<u> </u>				
Conditioning	30	┉┼╢──		<u>3.7</u>	40.	cator		4.0	0,02		-[-				<u>```</u>	<b>├</b> ─-├					
Grinding	30	65			12	in. BM		<u> </u>	_	_	_		1								
	mir	3 11	ds	5.1		pesu		502	CX51	. DF25	)  r:		NaCi								
OPERATION	Lim	s   %		러	· ·	Unit .		·			·	300	gant	<u>s, iþ</u>	ber	ion					
SSI SSI	SITAS	coldi	CTOÙ	118	brī	<u>5 07 70</u>	obb	6 <u>1</u> 1	.080.			······································				LES	21EL	C 8.	<b>∀:</b> ∀.	5.	
										ouc s	ubrol	yea	······	·					000 g		
EWARKS: OF TEST: Cop	ner-le	29 00	100*	1 770	£10.	tons Iti			· · · · · · · · · · · · · · · · · · ·	T					•		v 00	<u>e</u> . v	11 10		

WINES BRANCH FLOTATION

SED051

27

÷υ

1521

Sheet 1 of 2

TEST NO. 13 SAMP	LE:	Nadi	na Ex	plorati	ons Lir	nited						DAT	E: Ju	ne 15,	1970
OBJECT OF TEST: To se	electi	velv	float	a silv	ver con	c away	from tl	<u>ле</u>		· · · ·		СНА	RGE:	2000	g
				grindin								TES	TED E	Υ: A.	S
OPERATION	Time	%	1		Jnit	1			lb per	r ton					
OFERATION	min	Solic	ls p⊢		used 1		3 NaCN Na2SO3		AF208	AF242	DF250	Lime	e CuSO	4 CX51	NaAF
Grinding	30	65		12 <b>-</b> i	in. B.M.	. 3.0	0.1	1.0	0.02	0.035					
Conditioning	5	7.	8						0.02	0.02	0.02				
Copper-lead rougher	.:			1000	)-g ce1	1									
Stage 1	: 1							-							
And the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set	1					<u> </u>			0.02	0.02					
	2		·		· · · · · · · · · · · · · · · · · · ·				0.02	0.02					· ·
Conditioning	10	10.	.8									4.0	1.0		
Zinc rougher	· · ·											· .			
Stage 1	1/2						ļ							0.02	
<u>nerriets 2087 45 18403</u>	1										0.02	<u> </u>		-	0.05
	1				•						0.02				0.05
<u>" 5:45000.</u>	$1^{1}_{2}$														
PRODUCT	-   W	τΪ	<i>.</i>		ANA	LYSIS	%						BUTIO	N %	
T KODOCT	9/	6	Cu	РЪ	Zn	Fe	S	Au	Ag	Cu		РЪ	Zn	Au	Ag
Copper-lead ro conc	1.10	. 92	6.98	13.08	6.59	24.76		0.53	64.60	0	.5 8	9.0	10.7	50.8	69.9
Zinc rougher conc			0.35		55.45	3.30	*	0.075	11.34	. 11		2.6	84.6	6.7	11.4
Silver cleaner conc		.68	1.15		18.54	22.91		0.80	29.01			1.0	1.5	3.7	1.5
collect of tail		.65	0.42	0.84	1	32.30		0.32	13.44	11		0.7	0.5	3.6	1.7
Silver rougher tail		.03	0.20	0.32		35.60	39.10	1	8.79	11	,	2.5	1.8	27.6	11.0
Final tailing		.65	0.04	0.16		5.37	1.82		1.03	2	.0	4.2	0.9	7.6	4.5
-Feed (calcd)	100	.00	1.09	2.05	8.56	13.21		0.15	12.87	100	.0 10	0.0	100.0	100.0	100.0
Calculated Assays										1					
Copper-lead ro tail	86	.08	0.13	0.26				0.083	4.50	10	.5 1	1.0		49.2	30.1
Zinc rougher tail	73	.01	0.10	.0.24	0.55			0.085	3.28	6	.3	8.4	4.7	42.5	18.7
OLEBATUR -	-   .							1.	1	1					
Denso: Quitter.		ļ													
REMARKS: Copper-lead	rough	er -	- lig	ht, lea	dy fro	th		<u></u>	<u> </u>			·			
Zinc rougher					h, "weep		t end o	of floa	t						
Pyrite rough					tive py:				-						
272200 20461			0												

ι

FEST NO 13 CODING SAMP	۲ĽÊ: ۲	Nadina	Exp]	oratio	ons Limi	Lted		· · · · · · · · · · · · · · · · · · ·	•					ne 15, i	1970
DBJECT OF TEST:				· :.			ж. ж. ст	• •			. –	CHAF		· · · · · · · · · · · · · · · · · · ·	
		`	,				·						EDB	Y:	
OPERATION	Time	% Solids	. pH	1	Jnit used		NaCN		Rea AF208	gents, lb AF 242			H2 SU	+   CX51	1
Conditioning care	5		7.8	<u></u> -			1						1.5	5	
vrite-rougher								1 - N.		· · ·		; ·			
STStage of Veesla	1.1				•							· · ·	1 .	0.05	1.
<u>2</u>	1				2		· .						2	0.05	
Trear cyr3958	1		.:					-	· · · · ·			· · · · · · · · ·	1 .	0.05	
yrite conceregrinding	15			8-ir	. B.M.	×	0.1					1.0			
Conditioning a structure	5		11.2	2 500-	g cell				0.02	0.02		· · ·			
tlver rougher conc					· · ·			· · · ·							
STEST age There contained	1					2		ľ							
Jobomini est an norm	11 ¹¹								0.02	0.02		· .			
ilver cleaner	1			250-	g cell					11 H A	: :		1 - 1 - 1 N		
, SECONCL					· · · .		· · ·					- <u>-</u>		· · · · · ·	
PRODUCT	W	т	•		ANA	LYSIS	%				DIS	TRIB	UTIO	N %	• • •
FRODUCT	9	6 C	u	Pb	Zn	Fe	Au	Ag		Cu	Pl	<b>)</b>	Zn	Au	Ag
letallurgical Balance															3
or Pyrite Rougher		1										· · ·	· .	••••	· .
Pyrite rougher conc*		11	.26	0.46	1.76		0.28	9.96	1	68.6	49		30.9	82.4	76.
inal tailing			.04	0.16	0.14		0.02	1.03		31.4	50		L9.1	17.6	23.
eed (zinc-rougher tail	)* 100	.00 0	.10	0.24	0.55	· · ·	0.085	3.28		100.0	100	.0 10	0.00	100.0	T00.(
Metallurgical Balance		· ·    -		<del>.</del> .					1.4.1						
or Silver Flotation															
Silver cleaner conc	- 13		.15	2.95		22.91	0.80	29.07	1	16.7	23		39.0	10.7	10.8
Silver rougher tail		11 .	.42	0.84		32.30	0.32	13.44		14.8	16. 60.		L3.4	10.4 78.9	12.] 77.]
Reed (pyrite ro conc)			.20	0.32		35.60 34.83	0.25	8.79		100.0	100		$\frac{1}{20.0}$	100.0	
een (pyrre to cond)	· [[.±00		• 20	0.40	1.10	J	0.20		-		1.00			200.0	
COBERATION .			· ·					÷ .							
				• •		3 A									· ·
OBVECT OF TRAT. The s						· ·			1 · · ·			• :			÷
아내라도한 비 양성 소통성 소문 영향 것	11 1	11	·		1 1 1		l	1	1	a a la construction de la construction de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la constr	1	5 Y Y	1. T. T. T.	er e mara y	• • • • •

t

Sheet 1 of 2

TEST NO. 14 SAMP	· · · ·				ns Limi		<u></u>		×			TE: Ju: ARGE:		1970
OBJECT OF TEST: Repea	t of ased	Test from	13 bu 15 to	t with 30 min	regrind	ling tin	ne for	pyrite	conc			STED B		•
	Time	1			Jnit	1		· · · · · · · · · · · · · · · · · · ·	Reag	jents, Ib				
OPERATION	min	Soli	ds		used	·								
Procedure identical								·						
to Test 13 except	,			·										
as noted above		<u> </u>					ļ						_	───
RUL PARA LOSS FOR		<u> </u>					<u> </u>							
provide and the second of														
A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CAR		ļ					ļ	-						
Construction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	· · ·	ļ												- <u> </u>
sance sonthing of th		<u> </u>					<u> </u>			<u> </u>				
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second					•		ļ							<u>.</u>
		ļ												
	<u></u>	· · ·					<b>_</b>					· · · ·		
<u> </u>	;: 	34	<u>l</u>	<u> </u>		<u> </u>	1							
PRODUCT	W			•		LYSIS		-						
	9	6	Cu	Pb	Zn	Fe	S	Au	Ag	Cu	Pb	Zn	Au	Ag
Copper-lead ro conc	12	76	7.20	12.54	6 23	22,88		0,53	64.59	87.3	89.5	10.5	47.6	69.5
Zinc rougher conc	· H	. 66	0.61		50.64	4.36		0.11	12.16	11 .		84.3	9.8	13.0
Silver cleaner conc		.63	1.18		16.46	23.46		0.96	32,93		4	1.3	3.9	1.6
<u>"</u> tail	1	.72	0.36		3.20	33.52	36.55	0.34	12.54	0.5		0.7	3.8	1.7
Silver rougher tail	· •	.05	0.19		1.13		1.64	0.25	8.50	41		2.2	26.2	10.7
Final_tailing			0.03	0.14		5,24		0.03	0.85	11	3.9	1.0	8.7	3.
Feed (calcd)	100	00.00	1.13	1.93	8.20	13.10		0.15	12.80	100.0	100.0	100.0	100.0	100.0
Calculated assays														
Copper-lead ro tail	11		0.17	-	8,52			0.093				89.5	52.4	30.5
Zinc_rougher_tail	. 72	.58	0.08	0.20	0.59			0.09	3.10	5.4	7.5	5.2	42.6	17.
		.												
CLERNE CLA		.							l					1
									1		ł .	· ·		
1000001 01 1121													<u> </u>	
REMARKS:														

Sheet 2 of 2

26

TEST NO. 14	SAMPL	. <b>E:</b> ]	Nadina	Exp.	loratio	ons Lim	ited					DA	TE: Ju	ne 15,	1970
OBJECT OF TEST						···.				<del>`</del>		СН	ARGE:		
÷							· .					TE	STED B	IY:	
OPERATION		Fime	%			Unit	T			Reag	gents, Il	per ton			
UPERATION		min	Solids	рН		used						× .			
		· ·	· · ·				·								
Zist trugher isil	· · · ·	25													
COPREY-LORD TO THE	1		e N		. •		·								
Calculated as-and				· ·			·								
જુલ્લ્ય (cc) કર્યું) 👘 🖓			: ¹	;									*		
Final ceiling	,		•	1		· · · ·					• • •				
「「「「「「「」」」、「「」」、「」」、「」」、「」」、「」」、「」」、「」」					·										
44	1:		·			· · · ·			<u> </u>						
ATTE REALTA CON			· · ·	3		·		ļ							•
							· ·			···· · ·	· · · · / ·				
		<u> </u>		:	<u>.t.</u>							· .			
PRODUCT	· · · · · · · · · · · · · · · · · · ·	W1				ANA	LYSIS	%	_`	· ·	12.0	DISTR	RIBUTIO	N %	i stati
FRODUCE		%	C	u	РЬ	Zn	Fe	;	Au	Ag	Cu	Pb.	Zn	Au.	Ag
Metallurgical Bala	ance "				· · ·									1.5	
for Pyrite Rougher				.											
		-25.		.24	0.37	1.85	35.43		0.28	9.72	73.1	47.3	79.7	79.2	79.5
-Final-tailing		74.			0.14	0.16	5.24		0.025	0.85	26.9		20.3	20.8	
Feed (zinc rougher		100.		.08	0.20	0.59	12.90		0.09	3.10	100.0		100.0	100.0	
Metallurgical Bala		· · · ·			·		<u> </u>			+	╺╢╼╼╌──				
-for Silver Flotati			. In the			· .							· · · · · ·	·	
					~			-	0.00			00.0		11.7	11.7
Silver cleaner cor	nC	3.		.18	2.44 0.65	16.46	23.46		0.96	32.93	16.9		30.6	11.3	
co "eac to" sootai "rougher tai	LL 11	9. 87.		.19	0.05	1.13	36.11		0.25	8.50	69.1		53.2	77.0	1 . 1
Feed (pyrite ro co	onc)	100.		.24	0.37	1.85	35.43		0.28	9.73	100.0	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	100.0	100.0	
										<u></u>				⁻	
ا منه من مراجع بها مین استان از ایند میر میروند. ۳. میروا استان میرود میرواند این میرواند این میرواند.													1		
namen kan pengan pengan pengan kan pengan r>Pengan pengan	and a second second second second second second second second second second second second second second second Second second				•								· ·		
		<u>µ</u>	<u> </u>	<u> </u>		<u> </u>			1	<u> </u>	<u>łl</u>		1	<u> </u>	
REMARKS:	 		·			12 	. ·						•	•	

.

з г

.

TEST NO. 15 SAMP	LE: Na	dina Exp	loratic	ons Limi	.ted						DA	TE:	June 17	, 1970
OBJECT OF TEST: Copp						ctly c	on the	ore usi	ing Z-	200	СН	ARGE:		
as copper promoter a									-		TE	STED E	BY: A.S	•
	Time	%		Unit			······································	Rea	gents,	lb per	ton	·····		
OPERATION	min S	olids pł		used	Z-200	S02	<b>D</b> F 250	Lime	NaCN	AF242	2			
Grinding		65	12-i	n. B.M.										
Conditioning	20	5.	· •		0.01	4.0								
Copper rougher, stage 1	1		1000	)-g cell	-		0.02				1			
11 11 11 2	1				0.01									
Conditioning	10	9.	7					4.5	0.1		+			
11										0.02	1			
Lead rougher, stage 1	1										1			
" " 2	1									0.02	1			
<u>" " 3</u>	1									0.02				
Copper cleaner	1			g cell							T			
Lead cleaner No. 1	1			11 <u>11</u>										
" " 2	1		11	H 11						<u></u>	1			
	WT			ANA	LYSIS	 %			1	DI	STR	BUTIO	N %	
PRODUCT	%	Cu	Pb	Zn	Fe		Au	Ag	Cu	I	?Ъ	Zn	Au	Ag
Copper conc	2.9	4 25.00	5.52	4.82	21.75		0.64	101.17	7 61	.0 8	3.3	1.6	12.3	21.3
Copper cleaner tail	1.2		7.11	10.00	1 1		0.40	60.56			4.7	1.5	3.4	5.6
Lead conc	2.2		55.13		6.57		1.18	149.45			3.5	1.7	17.3	24.0
Lead cleaner tail No. 2	0.7	7 2.04	7.90	13.58	11.53		0.28	43.74	4 1	.3 3	3.1	1.2	1.4	2.4
" '' No. 1	2.9		2.76	10.53	11.20		0.185	20.16			4.2	3.6	_ 3.6	4.3
Lead rougher tail		1 0.32	0.35	8.70			0.105				5.2	90.4	62.0	42.4
Feed (calcd)	100.0	0 1.21	1.95	8.65			0.15	13.59	100	.0 100	).0	100.0	100.0	100.0
Calculated Assays														
Copper rougher conc		3 19.37	6.00		20,22		0.57	88.78		.0 13		3.1	15.7	26.0
Lead rougher conc	5.9	6 1.65	23.11	9.45	9.50		0.57	71.80	8    0	.2 70	).8	6.5	22.3	30.7
								1						
			<u> </u>	l			L	<u> </u>				<u> </u>		<u> </u>
REMARKS:														
Clean and b	right f	roth in	both co	opper ar	nd Lead	roughe	ers.							

- 27

•

					ons Lim							_		ne 17,	
OBJECT OF TEST: Si	milar t	o Test	t 15 t	out gri	inding '	time inc	reased	l from 3	30 to	60 min	•	· [	ARGE:	2000	
	·		•• •••••			·	· ·	· ·	<u> </u>	•		- ·	STED E	3Y: A.S	•
OPERATION	Time	%	рH		Unit		• • • • •	·	r ton	ton					
	min	Solid	s		used	Z-200	) SO ₂	DF250	Lime	NaCN	AF242	_			
Grinding	60	65		12 3	n. BM	0.02						1			
Conditioning	20		5.8	Aera	ator	0.02	4.0								
Copper rougher	2			1000	)-g cel:	1 0.02		0.02							
Conditioning 1	5		9.6	5					4.5	0.1					
" 2	5									0.1*	0.05				
Lead rougher	2		-		•			·					· ·		
Copper cleaner	1_				<u>g cell</u>		ļ							•	
Lead cleaner	1			500-	g cell										<u>}</u>
						·	<u> </u>	ļ				ļ	·		
	•		<u> </u>	·					·			<u> </u>			
······				· <del>-</del>	· · · · · · · · · · · · · · · · · · ·		ļ	ļ				·			
·				<u> </u>				<u> </u>				<u> </u>		<u> </u>	
PRODUCT	11								ISTR	IBUTIO	N %				
	%	5	Cu	РЪ	Zn	Fe		Au	Ag	Cu	. ]	РЪ	Zn	Au	Ag
		1 - 0 - 0			1 00	0.0 70		0 77	00.1					11.0	.18.4
Copper conc Copper cleaner tail	r I	.45 23 .54 2	4.94	4.20 5.39	4.29 9.12	22.73 16.21		0.77	99.1			5.6	1.1	11.8 6.3	10.0
Lead conc	11		1:05	59.00	4.67	5.90		1,04	122.1			58.4	0.9	11.9	16.
Lead cleaner tail			.66	2.39	8.68	11.72		0.13	14.7		.5	9.5		5.9	8.
Lead rougher tail			).36	0.41			-	0.12	7.1			19.1	89.0	64.1	46.
Feed (calcd)	100	.00 1	L.07	1.84	9.56			0.16	13.1	4 100	.0 10	00:00	100.0	100.0	100.
Calculated assays			· · ·	<u> </u>					1						
Copper rougher conc	4	.99 13	3.93	4,81	6.75	19.41		0.58	75.0	0 64	.9	13.0	3.5	18.1	28.
Lead rougher conc	9	.11 0	).74	13.70	7.88	10.56		0.31	36.2	1 6	,3 6	67.9	7.5	17.8	25.
				·							·	· .			
				· . · ·										•	
							•						· ·		
				•				· .	·						
						· · ·		N							
			<u> </u>	· · · ·	l			<u></u>	1		<u></u>		1	l	l
REMARKS: Copper fl												-			
Lead floa	t – 1i	ight,	foamy	froth	Ļ							• •			

*Additional NaCN added to depress pyrite which appeared in froth.

ł 28

### MINES BRANCH FLOTATION TEST REPORT Sheet 1 of 2

4

s 1

.

					s Limi							DA	TE: A	ug. 25,	, 1970
						ing the			ethod			CH	ARGE:	2 x 200	
(coī	pper-1	ead ro	oughe:	r flota	ation s	imilar t	to Test	: 13).						Y: A.S.	
OPERATION	Time	%		1	Jnit						, lb per				
OPERATION	min	Solid	s pH		used	Na ₂ CO	NaCN	Na ₂ SO ₃	AF208	AF242	DF250	Lin	ne CuS	04 CX51	NaAF
Grinding	30	65			BM	3.5	0.1	1.0	0.02	0.02	5	<u> </u>			
Conditioning	5		8.4	4 1000-	g cell		1		0.02	0.02	0.02	1			
Copper-lead rougher															
Stage 1	1	1													
2	1						[		0.02	0.02					
" 3	2				,,				0.02	0.02	1	1			-
Conditioning	10	T	11.4	4								4.5	5 1.0		
Zinc roughers		<u> </u>		-	,										
Stage 1	1/2		11.4	4							0.02	1.0	)	0.02	2
" 2	1	<b>_</b>													0.05
" 3	2 ¹ 2	1													0.05
											1				
PRODUCT	W W	т			ANA	LYSIS	%	· · · ·		1	DI	STR	IBUTIO	N %	
PRODUCT	%	6 (	Cu	Pb	Zn	Fe	Au	Ag		C	1 1	?Ъ	Zn	Au	Ag
Copper conc	2	.22 2	3.22	17.36	4.49	16.50	1.28	175.36		5	0.8	19.1	1.1	16.8	28.0
Lead conc	1	.60 2	2.00	25.84	3.00	26.64	0.54	61.89			3.1 2	20.5	0.5	5.1	7.1
Copper cleaner tail No.2	2    0	.60 1	2.94	29.16	4.49	15.90		231.46			7.6	8.7	0.3	4.3	10.0
" " " No.]	L    O		8.50	30.55	4.26	19.08	0.54	95.42	1		1	10.6	0.3	2.2	4.8
Copper-lead cl tail No.3	· II		3.27	19.40		20.87	0.50	59.51	1			10.8	1.3	3.3	4.8
" " " No.2			2.86		12.59	19.48	0.44	48.25			3.0	5.1	1.5	2.7	3.6
NO.J	51	11	1.22		10.00	17.89	0.29	25.40	1	11	5.8 : 5.7	12.0	5.4	8.2	8.8
Zinc rougher conc No. 1 """No. 2		11	0.70 0.70		41.53 33.88	7.16	0.14 0.20	11.72			6.3	2.6	38.8 34.8	6.8 10.5	7.0 6.8
Pyrite rougher conc.No.J	- <del></del>		0.30	0.55	2.90	36.58	0.20	11.50	1		2.9	2.7	3.2	17.7	8.0
" " No.2		11	0.37		11.52	27.43	0.28	11.44	4	11	3.3	2.7	11.9	15.2	7.6
Final tailing No.1		£1	0.04	0.12	0.16	27113	0.027	1	1	11	1.0	1.6	0.5	4.2	1.8
" No.2			0.04	0.12	0.15		0.02	0.92			1.0	1.5	0.4	3.0	1.7
Feed (calcd)	100	.00	1.01	2.01	8.87		0.17	13.90		100	0.0 10	0.00	100.0	100.0	100.0
REMARKS: Two 2000-gra	II bat	ches d	round	1 and f	loated	separat	elv -	CODDer	-lead	rough	er cond	centr	ates c	ombined	tor
cleaning and copper-lead			-												
Pyrite appeared in zinc				tion of	CX 51	. theref	ore ad	lded ex	tra li	me -e	ffect d	of ox	xidatio [.]	n?	
Tyrree appeared in 21nc		<u></u>				,						•••			

Sheet 2 of 2

TEST NO. 17 SAMP	LE: N	Vadina	Exp	loratio	ons Limi	ted						· · · · · · · · · · · · · · · · · · ·	ug. 25,	1970
OBJECT OF TEST:						· -					CH	HARGE:		
· · · · · · · · · · · · · · · · · · ·					• •							STED E	3Y:	
	Time	%	T		Jnit	1			Reag	ents, It	per to	<u>ר</u>		
OPERATION		Solid	.  pH	1 1	used	Dich*	ł			D	F250	•	CX51	H2S04
Conditioning	5		8.	7	•	· ·								1.5
Pyrite ro, Stage 1	1												0.0	
" " 2	1		1										0.0	5
<u>"" " 3 .</u>	i												0.0	5
n n n 4	1	······	1										0.0	5
Copper-lead c1 No. 1	3			1000	-g cell					0	.02			
No. 2	11/2			1	<u>e cell</u>									
" " No. 3	11/2			11	й п				·					
Copper-lead separation	· .							·				·		
Conditioning	_5	-	L	250-	<u>g cell</u>	4.0								· .
Copper rougher	$1\frac{1}{2}$									•				
Copper cleaner #1 &2	1			250-	g cell						<u>  </u>			
PRODUCT	W				ANA	LYSIS	%			1	DIST	RIBUTIC	N %	
	%		Cu	РЪ	Zn	Fe	Au	Ag		Cu	РЪ	Zn	Au	Ag
Metallurgical Balance fo	r												. *	
Copper-Lead Separation														
Copper conc	11	11		17.36	4.49	16.50		175.36		75.4	32.5	48.8	59.2	56.1
Copper cleaner tail No.2	11			29.16	4.49	15.90		231.46		11.3	1	<u>د</u>	15.0	20.0
" " " No.1	11			30.55	1 1	19.08				8.6		*	7.8	9.6
ead conc	<u> </u>			25.84	3.00	28.64				4.7			18.0	14.3
Feed (calcd)**	100.	00 1	3.38	23.19	3.99	19.95	0.94	135.58		100.0	_		100.0	100.0
Calculated Assays											•••			
lst Stage copper cl conc				19.87	4.49	16.37		· · ·		86.7	1		74.2	76.1
Copper rougher conc	68.	78 1	8.54	21.99	4.44	16.91	1.12	169.03		95.3	65.2	76.5	82.0	85.7
							• •	· ·			· ·		· ·	• •
• •	<b>  </b> .					1								
									•		·			
	<u>  </u> · ·				.					]]	-			· .
							1							
REMARKS:									· · · · · ·					
KEMARKS: * Sodium die	chroma	te												

** Copper-lead cleaner concentreate

### MINES BRANCH FLOTATION TEST REPORT Sheet 1 of 2

1

ı

TEST NO. 18 SAMPI	E: Nad	ina Expl	oration	s Limit	.ed							ug. 26,	
OBJECT OF TEST: To tr	y coppe	r-lead s	eparati	on usin	g the s	ulphur	dioxid	le-starc	h metho	d CH	ARGE:	2 x 20	00 g
(copper-lead rough	er flot	ation as	in Tes	t 17)						TE	STED E	Y: A.S	•
	Time	%	ι ι	Jnit				Reage	ents, Ib	per ton			
OPERATION	min S	olids pH	ι ι	ised									
<u>Grinding</u> ) as Copper lead ro > in													
Zinc rougher Test													
Pyrite rougher ) 17*													
- iyiile iougnei j i/								···					
						<b> </b>							
	·					ļ							
					_	ļ	·						
· · · · · · · · · · · · · · · · · · ·							ļļ-						
					· ·								
	WT			ANA	LYSIS	%		·		DISTR	BUTIO	N %	
PRODUCT	%	Cu	РЪ	Zn	Fe	Au	Ag	S	Cu	РЪ	Zn	Au	Ag
Copper conc	2.6	11	12.98		19.58		130.70		56.5	17.8	1.0	15.6	26.5
Copper cleaner tail No.2	0.3		21.58		24.05		130.67		2.7	3.8	0.2	1.9	3.4
" " " No.1	0.7		18.26		27.83	0.74	97.80		4.2	7.0	0.3	3.3	5.5
Lead conc	2.4		34.08		20.48	0.56	87.88		5.8	43.0	1.5	8.2	16.3
Copper-lead cl tail No.3	1.0			12.79	24.05	0.57	50.08		3.6	6.2	1.5	3.6	4.0
NO.Z	1.1			13.90	21.47	0.53	45.02		2.3	4.5	1.7	3.5	3.8
NO.1	3.2			10.26	17.20	0.28	24.49		4.5	6.7	3.8	5.4	6.1
Zinc rougher conc No. 1	9.4			46.18	15.75	0.15	12.16		7.7	2.6	49.0	8.5	8.7
NO• Z	9.7			33.89	11.88	0.15	11.56	20.00	6.4	2.7	37.0	8.7	8.5
Pyrite rougher conc No.1	8.3	11	0.58		34.89	0.34	11.10	38.02	2.2	2.5	- 1.3	16.9	7.0
NO.2	9.0		0.48		33.80	0.31	10.14	36.52	1.9	2.2	2.0	16.7	6.9
Final tailing No. 1	26.6		0.05			0.02	0.90		1.2	0.7	0.4	3.2	1.8
<u>INO • Z</u>	25.2		0.02			0.03	0.75	<u> </u>	1.0	0.3	0.3	4.5	1.5
Feed (calcd)	100.0	0 1.12	1.94	8.90		0.1/	13.18		100.0	100.0	1100.0	100.0	100.0
								<u> </u>			<u> </u>	L	
REMARKS: *Except that added in Tes	Z-200 v st 17.	was adde	to th	e first	stage	of the	zinc r	ougher	in plac	e of th	ne CX51		<u></u>

- 31 -

 $\mathcal{A}_{i}$ 

Sheet 2 of 2

TEST NO. 18 SAME OBJECT OF TEST:	PLE:	Nadin	a Exp	loratio	ons Lim	ited			<u> </u>	<u></u>		ATE: <u>Au</u> IARGE:	g. 26,	<u>1970</u>
						-			· · •		TE	STED E	3¥:	
	Time	%	T.		Unit				Reag	gents, Ib	per ton	· · · · · · · · · · · · · · · · · · ·	· ·	
OPERATION	min	Solid	s pŀ-	1 1	used	AF242	DF250	S0 ₂	CS*					
Copper-lead cleaners						·								
No. 1	3	1	1.	1000-	-g cell	0.01	0.02							j.
No. 2	11/2			500-8	g cell									
No. 3	$1^{\frac{1}{2}}$			11 1	1 11		0.004			,				
Copper-lead separation								0.25	0.05					-
Conditioning	_5		5.	3 250-	g cell						`		1	
Copper rougher	2	1				•	0.004							
Copper cleaner No. 1	$1^{\frac{1}{2}}$		1	250-8	g cell		0.004							
No. 2	1 .	· ·	1	111	1 11		0.004							
· · · · · · · · · · · · · · · · · · ·		1								-				
· · · · · · · · · · · · · · · · · · ·		1	1		•		1							
			1											
	l w	TI	<u>.</u>		ANA	LYSIS	%	·	ł.	1	DISTE	RIBUTIO	N %	
PRODUCT	11	. !!	Cu .	РЬ	Zn	Fe	Au	Ag	·····	Cu	РЪ	Zn	Au	Ag
·····														
Metallurgical Balance	.		•	• ·			•		1					
for Copper-Lead Separat	ion							· ·						
Copper conc	43	06 2	3 68	12 08	3 /3	19.58	0.08	130.70		81.6	24.9	34.0	53.9	51.2
Copper cleaner tail No.		.50		21.58		24.05		130.67		3.9	5.3	5.3	6.6	6.5
- " " No.	1 1 11	. 90				27.83		97.80		6.0	9.7	10.7	11.3	10.6
Lead conc		.52		34.08		20.48	0.56	87.88		8.5	60.1	50.0	28.2	31.6
Feed (calcd)		.00 1		22.42	4.34	21.16	0.78	109.85		100.0	100.0	100.0	100.0	
											·			· · .
<u>Calculated Assays</u> 1st stage Copper cl con		56 2	,	13 0 =	2 57	10 00	0.97	130.70	1	85.5	30.2	39.3	60.5	57.7
				-14.80		21.61		124.21		91.5	39.9	50.0	71.8	
	P 60		)• 7 L ' I	~14.0V	5.55	21.01	0.95	124.21		91.5	59.9	30.0	/1.0	00
Copper rougher conc	60	• - 11	_		2			1		IC ·	1	1 .	, .	
	60			÷			•			1 · .	•			
	60			÷			•				· · ·			
	60			-			•							

32

. 1

Sheet 1 of 2

- 33 -

TEST NO. 19 SAMP	LE:	Nadi	na Ex	plorat	ions Lim	ited						DA	TE: No	v, 10,	1970
OBJECT OF TEST: To t	ry cop	per-1	ead s	separat	ion usin	g the	cyanid	e metho	bd			СНА	ARGE:	2 x 20	00 g
(cop	per-le	ad ro	ughei	flota	tion as	in Tes	t 17).			<u></u>			TED B	Y: A.	5.
OPERATION	Time	~~%	рH		Unit				Rea	igents,	lb per	ton			
OFERATION	min	Solid	s		used	Lime	CuSO ₄	DF250	MIBC	Z-200	NaAF	CX	51		
Grinding ) as						1					,				
Conditioning in						1									
Copper-lead ro ) Test 17															
Conditioning	10	<i></i>	11.	2 100	0- <u>g_cell</u>	6,0	2.0								
Zinc rougher															
Stage 1	1							0.02		0.02		<u> </u>			
. "2	1					ļ	ļ				0,05	<b> </b>	<u>.</u>		
<u> </u>	· 2 ^{· ·}		ļ				ļ		0.02			<u> </u>			
<u> </u>	3		<u> </u>								0.05	<b> </b>			
						ļ						<b> </b>	<u> </u>		
· · · · · · · · · · · · · · · · · · ·			. <u> </u>									──		_	
	-	l				<u> </u>									
PRODUCT	W- %	. 11			1	YSIS	%	r			`		BUTIO	N %	·
	×	<u>,                                     </u>	Cu	РЪ	Zn	Au	Ag			Cı	1	РЪ	Zn .	Au	Ag
Metallurgical Balance							-								
for Copper-Lead Sepn															
Copper conc				18.96	4.78		126.70	ł	· ·	68.	9 5	3.2	62.3	69.6	64.1
Lead conc				46.20	6.70		140.40					0.4	20.5	15.0	16.7
Lead cleaner tail No. 2				19.92	5.37		131.56					6.3	7.8	6.3	7.4
"" No. 1 Feed (calcd)				20.80	4.15		134.38 130.05	·····		13.		$\begin{array}{c} 0.1 \\ 0.0 \end{array}$	<u>9.4</u> 100.0	9.1	11.8 100.0
Lead ro conc (calcd)				32.08	5.56		136.49			31.		6.8	37.7	30.4	35.9
				-2.00							-   .7				
									1						
									ļ						
									-						
REMARKS:															

Sheet 2 of 2

34 -

TEST NO. 19 SAMPI	LE:	Nadir	ia Ex	plorati	ons Li	mited								. 10,	1970
OBJECT OF TEST:				·			````					CHA	RGE:		
· · · · · · · · · · · · · · · · · · ·		•					·	· · ·				TES	ED B	<b>/</b> :	
	Time	· %	1.		Jnit	1.			Rea	gents,	lb per	ton			
OPERATION		Solids	рH		used					)F250		H2SO4	ZnCl	AF242	NaCN
Conditioning	5		8.	7								3.0			
Pyrite rougher, Stage 1	1					1				0.02	0.05				
<u>11 11 11 2</u>	1										0.05	· .			·
" " 3	1										0.05				
11 11 11 4	1	•									0.05				
Cu-Pb cleaners (as in Te	st 17	<u>) '</u> .					· ·						·		
Copper-lead separation							L			·					
Conditioning	5		11.	6 250-	g cell					·			0.87	, }	· ·
Lead rougher	11/2							•						0.01	
Lead cleaner		. <u>.</u> .										· .	· · ·		
No. 1	$1\frac{1}{2}$			250-	g cell							:		0.005	0.10
No. 2	1			11	11 11			·				<u> </u>	1	0.01	· · ·
PRODUCT	W				ANA	LYSIS	%				- <u>D</u> I	STRIE	UTIO	N %	
I KODOCI	%		Cu	Pb	Zn	Fe	S	Au	Ag	Cu	L 9	?Ъ	Zn	Au	Ag
											-				
Copper conc		.18 15		18.96	4.78	19.57		0.86	126.70			L.5	1.8	17.0	30.8
Lead conc			.34	46.20	6.70	7.35		0.79	140.40			3.1	0.6	3.7	8.1
Lead cleaner tail No. 2 """ No. 1		.36 17 .55 17		19.92 20.80	5.37 4.15	17.43 18.82		0,69 0,65	131.56		1	8.8 5.0	0.2	1.6	3.6 5.7
Copper-lead cl tail No.3	14		.88	17.44		19.49		0.49	56.19			9.6	1.6	3.2	4.5
" " " No.2			.31		12.37	18.69		0.42	48.45		1	5.4	1.5	2.7	3.9
" " " No.1			.46	4.88	9.44	18.48		0.31	25.43			Ĺ.7	5.2	8.8	8.9
Zinc rougher conc			.44		50.35	5.04	• .	0.11	10.42		1		80.9	9.1	10.6
Pyrite rougher conc			.60	0.59	2,46	33.71	38.47	0.29	11.41			7.2	6.9	41.9	20.3
Final tailing			.06	0.16	0.16	4.94		0.03	0.91		8 4	4.4	1.0	9.8	3.6
Feed (calcd)	100	.00 1	.10	1,91	8.30	13.16		0.16	13.07	100.	0. 100	0.0 1	00.0	100.0	100.0
	1				· · · ·				1.5	1				· ·	
· •						•		•			ŀ	_	• • •		
			•					• •	1 × 1					. ]	
											·				
REMARKS: Zinc roughe	r hici		0 h				- offer	t of L	ich C.			•			
Zine roughe	r urgi	r grad	ebu	L GYLTG	шету 8	5 cumiy	errec			4					
									······						

•

.

•

,

.

·

Sheet 1 of 3

,

TEST NO. 20 SAMP					ons Lim							-		b. 4, 1	971
OBJECT OF TEST: Coppe	r-lea	d sepa	ratio	n on 1	new sam	ple usi	ng S0 ₂ -	starch	n metho	d in			RGE:	2 x 20	00 g
	nctio	<u>n with</u>	regr	inding	<u>g prior</u>	to cle	aning [~]						TED E	Y: A.S	5.
OPERATION	Time	%	рН	-	Unit	17 00	hz	17 017		igents,	-		-1		
		Solids	×	_	used		$3^{Na}2^{SO}3$	NaCN	AF208	AF242	DF250		e CuSO	4 Z-20	O NaA
Grinding	45	65		7 x	14 RM	3.0	1.0	0.1	0.015	0.015					
Conditioning	5		7.6	1000	)- <u>g cel</u>	1	· ·		0.01	0.01	0.02				
Copper-lead rougher			· ·	_											
Stage 1	1/2		ļ												
" 2	1/2								0.01	0.01					
" 3	1								0.01	0.01					
" 4	1	- •								0.02					
Conditioning 1	10		9.1									3.0	0.5	0.02	2
" 2	5		10.2									1.0			
Zinc rougher - Stage 1	1														
" " 2	1		1				· +								0.0
11 11 11 3	2											1			0.1
	W	r II			ANA	LYSIS	%				DI	STRI	BUTIO	N %	
PRODUCT	%		Cu	РЪ	Zn	Fe	Insol	Au	Ag	Cu		РЪ	Zn	Au	Ag
Copper conc	0.	7 19	.48 -	33.03	2.70	13.17		3.02	142.2	6 8.	0	5.1	0.1	7.6	4.3
Copper cleaner tail	0.0	14		47.30	3.86	8.93		0.99	134.4			5.2	0.3	5.6	9.1
Lead conc	1.	76    7		50.00	5.00	8,63		0.47	109.1			0.2	1.0	7.7	21.6
Copper-lead cl tail No.2			.69		12.70	13.02		0.30	80.4	7 14.	5 5	5.5	1.4	2.7	8.9
· · · · · · No.1			.12		11.19	17.44		0.16	30.3	11		5.7	5.4	6.6	15.1
Zinc conc	10.1	11	.56		40.92	15.54	2.44	0.13	10.0	11	1	3.5	45.4	12.5	11.5
Zinc cleaner tail	4.4	31	.35		18.58	20.41		-0.17	9.2			2.4	9.1	7.2	4.6
Pyrite conc Pyrite cleaner tail	17.		.19		18.64	28.94 15.02	7.78 48.14	0.22 0.15	9.4		1	4.6	35.2	35.2	18.4
Final tailing	56.	11	.03	0.15	1.35 0.30	6.14	40.14	0.15	5.7			1.0	0.4 1.7	4.2 10.7	2.0 4.5
Feed (calcd)	100.0		.65	1.75	9.18	12.61		0.11		$\frac{5}{1100}$ .			L00.0	100.0	
				2.15	<b>J</b> . ±0	12:01		0.11						100.0	100.0
	1											1			
REMARKS: Two 2000-g	batche	es gro	und a	nd flo	bated se	eparate	ly - ro	ugher	concen	" trates	comb:	ined 1	or cl	eaning	
%S, pyrite	conc:	41.58	. fin	al tai	ling:	1.38	•	-						5	

) 35 -

Sheet 2 of-3

TEST NO. 20 SAMP	LE: N	adina	Explo	ration	s Limit	ed No.	2	· · · · · · · ·						o. 4, 19	971
OBJECT OF TEST:												СНА	RGE:		
		. •										TES	TEDB	Y:	
	Time	%	<u> </u>	1	Jnit	1.			Reag	jents,	lb per	ton			
OPERATION		Solids	∮рН		ised	Na ₂ CO	Na2SO3	NaCN	<u> </u>		DF250	Lim	e	H ₂ SO ₄	CX51
Conditioning - 1	5		8.6	-										0.35	
" - 2	2			1											0.05
Pyrite rougher												•			
Stage 1	1								<u> </u>			·			· ·
" 2	_1														0.05
" 3.	1											· .		· · ·	0.05
Zinc cleaner	2		10.6		)- <u>g_cell</u>						0.01	0.5			<b>  </b>
Pyrite cleaner	2			- 1	1 11 11	<u> </u>					0.01	ļ			ļļ
	<del></del>						0.5				<u> </u>	<u> </u>			<u> </u>
Cu-Pb conc regrinding		*			**	1.0	0.5	0.05					_		
	· · ·		·												
	`````		<u> </u>	<u></u>		<u> </u>			<u> </u>			<u> </u>			<u></u>
PRODUCT	ŵ		· · · · · · · · · · · · · · · · · · ·		ANAL	_YSIŞ	%			<u> </u>			BUTIO	r	
	%		Cu	РЪ	Zn	Fe	Au	Ag		Cu	1	РЪ	Zn	Au	Ag
Metallurgical Balance for Copper-Lead Sepn						•									
Copper conc	10.	2/ 10	.48	33.03	2.70	13.17	3.02	142.26		21.	0 `	7.1	6.1	36.4	12.3
Copper cleaner tail	22.			47.30		8.93		134.46		29.		2.6	19.5	26.5	25.9
Lead conc	67.			50.00		8.63	0.47	109.19		50.		0.3	74.4	37.1	61.8
Feed (calcd)	100.			47.65	4.51	9.16		118.33		100.			100.0	100.0	100.0
Copper ro conc (calcd)	32.	99 14	.38	42.87	3.50	10.25	1.62	136.88		50.	0 2	9.7	25.6	62.9	38.2
												× .			
												· [
· .					· .			• . •				[1		
											•			,	
												1			
		<u> </u>	<u> </u>			<u> </u>			·					L	
REMARKS: * Wet filte	er cak	e + 35	0 cc	water			•				• •.				
** In Abbé j	porcel	ain mi	.11 wi	th ful	ll charg	e of s	teel ba	ills.		·					
									<u>.</u>						

36 -

Sheet 3 of 3

- 37 -

. .

TEST NO. 20 SAM	PLE: N	adina	Explor	ations Limi	ted No.	2					DATE		. 4, 1	1971
OBJECT OF TEST:											CHAF			
												ED BY	:	<u> </u>
	Time	%	·	Unit	1			Rea	gents,	lb per	ton			
OPERATION		Solids	рН	used			AF	208	AF242	DF250		Z-200	CS	S02
Copper-lead cleaner No.1	<u> </u>			500-g cel1										
Stage 1	1								.0025					
" 2	1								.0025				l	
" 3	1						.0	025	.0025					
<u> </u>	2						· · · · · · · · · · · · · · · · · · ·		0.005					
Copper-lead cleaner No.2	2					-		·		0.002				
Copper-lead separation														
Conditioning*	5		5.5										0.05	0.75
Copper rougher				250-g cell	L									
Stage 1	1					T I						0.008		
	1											0.005		
Copper cleaner	1			250-g cel1										
	W	т		ANA	ALYSIS	%		,		DI	STRIB	UTION	%	
PRODUCT	%	6									· .			
	11		[1		1	1	[
	1	l												
	l.													
				1										
													1	
· ·														
													[
									ļ					
													l l	
							· .							
REMARKS: * All sul	ohides	depres	sed un	oon addition	n of cau	stic st	arch - o	could	1 not	get co	pper t	o floa	t	
•														
	VCLY EV		ugn er	cess amoun	ts of Z-	·200 wer	e added.	•			-			

Sheet 1 of 3

TEST NO. 21SAMPLE: Nadina Explorations Limited No. 2DATE: Feb. 5, 1971OBJECT OF TEST:To try selective flotation of lead and copper concentratesCHARGE: 2 x 2000 g															
	rv sel	lectiv	é flo	tation	of lea	d and o	copper	concen	trates			J			
from	regro	ound c	opper	-lead	rougher	concer	<u>ntrate</u>						TED B	Y: A.S.	
	Time	%	1	t	Jnit		-				lb per				
OPERATION		Solids	pH		used	$Na_2CO.$	Na2SO3	NaCN	AF208	F242	DF250	Lim	e CuSO4	Z-200) NaAF
Grinding	45	65		7 x	14 RM	4.0	1.0	0.10	0.015						
Conditioning	. 5		8.0		,				0.01	0.02	0.02				ļ
Copper-lead rougher				1000	-g cell						· · · ·				
Stage 1	1/2														· ·
" 2	1/3			•				İ).01					<u> </u>
" 3	1		· · · ·		· · ·					0.01					. <u> </u>
11 4	1									0.02					ļ
Conditioning 1	10		10.8	3 .			-					7.0	1.0		
" 2	2		1								0.02			0.01	0.10
Zinc rougher	·····										·				
Stage 1	3							<u>.</u>							
2	- 3				· · · · · · · · · · · · · · · · · · ·						· · ·		<u> </u>		
	Ŵ	т	·		ANA	LYSIS	%		<u></u>		D	ISTRI	Βυτιο	N %	
PRODUCT	%		Cu	Pb	Zn	Fe	Inso	Au	Ag	C	1	РБ	Zn	Au	Ag
Lead rougher conc	2.	44 7	7.02	46.60	4.50	9.69		0.95		5 2		5.4	1.2	22.0	30.9
Copper rougher conc	1.		0.00	13.72		8.81		0.29	75.6	5 24		2.8	4.3	4.5	13.8
Copper rougher tail			3.57	2.11		20.72	1	0.18			·	6.3	3.6	8.8	16.7
Zinc conc	11.	73 0	.36		65.44	1.39	1.64	0.06	7.6	11	1	1.6	83.2	6.6	10.1
Zinc cleaner tail	41).64			11.89		0.11		11	· .	2.0	4.2	3.7	3.0
Pyrite conc	18.).26	0.56		38.18		0.25			· 1	6.0	2.1	44.2	20.9 1.4
Pyrite cleaner tail			.20	0.59		10.73	57.70					1.2	0.2	2.7 7.5	1.4 3.2
Final tailing	53.		0.04	0.15		5.68	<u> </u>	0.15 0.11		3 <u>3</u> 9 100		4.7	100.0	100.0	100.0
Feed (calcd)	100.	00 L).66	1.74	9.23	12.57		U.I.I	0.0	9 100		.0.0.	100.0	100.0	100.0
									· · ·	· ·	* • • • •				
					· .										
				•											·
			1			•									
REMARKS: Two 2000-g	hotch		Jund .	and fl	ated se	marate	$\frac{1}{v} - r$	nicher	concen	trate	s comb	ined	for cl	eaning.	
		-					y I	- agrici	00110011					8-	
%S, pyrite	conc:	43.42	2, IlI	nai ta:	Ling: (1.90				•	•				

. • .

38 -

MINES BRANCH FLOTATION TEST REPORT Sheet 2 of 3

а а - н н

- +

TEST NO. 21	SAMPL	E: N	adina	Exp1	oratio	ons Limit	ed No.	2					DA	TE: Fe	ėb.5,2	L971
OBJECT OF TEST:													СНА	ARGE:		
													TES	STED B	Y:	
	-	Time	%	TT.		Unit	T			Reag	jents,	lb per	ton]
OPERATION			Solids	pH		used		1		•		DF250	Lin	ie	H ₂ SO ₄	CX51
Conditioning		5		8.	6								1		1.2	
Pyrite rougher						· · · · · · · · · · · · · · · · · · ·										
Stage 1		1														0.10
		1														0.05
" 3		1							· · · · · · · · · · · · · · · · · · ·							0.05
11 4		1														0.05
Zinc cleaner		3		10.		00-g cell						0.02	0.5	5		
Pyrite cleaner		3				u <u>1</u> 11						0.01				
						•										
														·		
PRODUCT		W	т			ANA	LYSIS	%				D	ISTR	IBUTIO	N %	
FRODUCT	-	%	5 .	Cu	РЪ	Zn	Fe	Au	Ag		Cı	1	РЪ	Zn	Au	Ag
Metallurgical Balan																
for Selective Flota from Cu-Pb Conc	tion															
Lead rougher conc		26.	42 7	7.02	46.60	4.50	9.69	0.95	112.65		33,	.1 7	7.5	13.0	62.3	50.3
Copper rougher conc		17.			13.72				75.65		31		5.1	47.3	12.6	22.4
Copper rougher tail		56.			2.11		20.72	0.18			35.		7.4	39.7	25.1	27.3
Feed (calcd)		100.	00 5	5.61	15.90	9.17	15.72	0.40	59.13		100	.0 10	0.0	100.0	100.0	100.0
· · · · · · · · · · · · · · · · · · ·									·							
									ļ							1
																1
			1									. [
REMARKS:		-11				l		<u>1</u>	<u></u>		<u></u>	<u>_</u>			<u></u> 1	
NEWARRO:																

Sheet 3 of 3

TEST NO. 21 SAMP	LE:	Nadina	Exp1c	rations Limi	ted No	. 2		· · · · ·			DATE		b. 5, 3	1971
OBJECT OF TEST:			÷					• .•			CHAF			
			·	·		<u> </u>		•			TEST	ED BY	<u> </u>	
OPERATION	Time	.%	рH	Unit	[· .		Reag	gents,	lb per				
OFERATION	min	Solids	рп	used	Na ₂ CO,	Na,SO	NaCN	AF208		DF250	}	CuS04	Z-200	
Cu-Pb conc regrinding	30	*		**	1.0	0.5	0.05							
Lead rougher														
Stage 1	1		9.9	500-g cell				0.005				-	· •	
¹¹ 2	2						•	0.005						
Conditioning	5		9.6					al a				0.1	· .	
Copper rougher	2			·						0.01			0.003	
												L	-	
					<u> </u>							L	ļ	
· · · · · · · · · · · · · · · · · · ·					ļ				<u> </u>			ļ		· · ·
				· · ·	<u> </u>	ļ						 	<u> </u>	
	<u>.</u>	<u> </u>			<u> </u>					·			<u> </u>	· · ·
					<u> </u>		<u> </u>	LL			<u> </u>	<u> </u>	<u> </u>	
PRODUCT	W			ANAL	YSIS	%	··· ·	·	-∥		STRIB	UTION		
	%	<u> </u>	·			•								·
						•••							•	
· · · · · ·						. ·		· · ·.		1 ×		. 7		
	 										. · · ·	· .]		ļ
													••••	. ·
the second second second second second second second second second second second second second second second s	[]		·		3	; • •			1 ·			i.		5 - 5 - 5 5
								· · ·						. ·
		-						· .	<u>∦</u> .					
•	ll ⁿ			a an an an an an an an an an an an an an				· · .						
	<u> .</u> .	∦						· · ·						
· · · · · · · · · · · · · · · · · · ·												4 ·		
						•					·			
	1													
			<u> </u>	<u> </u>		<u> </u>		1				· · · · ·		
REMARKS: * Wet filt	er cak	e + 40	0 cc w	vater				······						
				h full charg	e of s	teel ba	11s				•	• .		
						<u></u>		<u></u>						· ·

Sheet 1 of 2

TEST NO. 22 SAM	PLE:	Nadi	na Expl	Loratic	ons Ltd.	No. 2			<u></u>			DAT	E: F	eb. 11/	71
OBJECT OF TEST: To t	rv pro	nnse	d Octol	per 197	'O Nadir	na flows	sheet*	- prel	iminar	v test	with-	CHA	RGE:	2000 g	
out Cu-Pb separation or	lead	flot	ation :	from se	condary	v tailir	ngs (se	e atta	ched f	lowshe	et).	TES	TED B	Y: A.S	
	Time	%		·····	Jnit	1				gents,		ton			
OPERATION	min	Soli	I PH	1	used	Na SO	ZnSO.	AF208	DF250	Lime	NaCN	Z-3			1
		1					1			DTINE	Naon				
Grinding	45	65			<u>14 RM</u>	0.5	0.1	0.015	1			·			
Conditioning	5		6.	8 1000	-g cell	L		0.015	0.02						
Copper-lead rougher	3		8.						<u> </u>	2.0	0.15		<u>••</u>		
Conditioning Copper-lead scavenger	5			<u></u>						2.0	0.15				
· · · · · · · · · · · · · · · · · · ·	<u> </u>							1				0.03			
Stage 1	1/2	[]								<u></u>		1 · · · · · ·			
<u> </u>	1							<u> </u>	1			0.02			<u> </u>
							1					0.02	· · · · · · · · · · · · · · · · · · ·		
" 4	11	í										0.02	· · · ·		
Copper-lead cleaner	1	ļ		250-	g cell			<u> </u>				<u> </u>	<u> </u>		
		<u> </u>					ļ	ļ							
		<u> </u>									•				
PRODUCT	W	Т			ANA	LYSIS	%				DI	STRIE	3UTIO	N %	
FRODUCT	9	6	Cu	РЪ	Zn	Fe		Au	Ag	Cu	1	РЪ	Zn	Au	Ag
Copper-lead conc	2	79	12.85	5.39	7.63	28.27		0.75	102.2	8 58.	6 9	9.7	2.1	19.1	33.0
" " cleaner ta			2.32	11.57		20.63		0.20	22.6			1.2	1.4	2.7	3.9
Secondary Cu-Pb conc		.37	3.06	59.81		5.56		0.41	64.4	4 6.	9 5	2.8	0.6	5.3	10.2
" " cl tai		.13	0.74	18.30	12.03	11.61		0.32	43.2			3.3	1.4	3.3	5.7
" " " ro tai	L 3	.64	0.43	2.55	11.27	13.19		0.12	8.9			6.0	4.1	4.0	3.8
Copper-lead scav tail		.57	0.17	0.12				0.08		0 24.		7.0	90.4	65.6	43.4
Feed (calcd)		.00		1.55				0.11		5 100.			00.0	100.0	100.0
Cu-Pb ro conc (calcd)	11	.29	9.17	7.55		25.60		.0.56	74.4	11		0.9	3.5	21.8	36.9
Cu-Pb scav conc (calcd)) 6	5.14	1.07	18.22	9.88	11.20		0.22	27.6	5 10.	9 7	2.1	6.1	12.6	19.7
								-							
				-	ł										
															:
REMARKS: *Developed	by Mr.	J.	D. Gun	n of Do	olmage	Campbel	1 & As	sociate	es Ltd.	. Vano	ouver	. B.C			
										,		, 2.0	-		

Ľ.

MINES BRANCH FLOTATION TEST REPORT Sheet 2 of 2

TEST NO. 22	SAMP	LE:	Nadin	a Expl	orations Ltd	No.	2	· · ·	· · · · · · · · · · · · · · · · · · ·					11., 1	.971
OBJECT OF TEST								_				CHAF	GE:		
•			• •		• •		. • •					TEST	ED B	<i>(</i> :	
		Time	%		Unit	<u> </u>			Rea	gents,	lb pe	r ton			
OPERATION			Solids	pН	used	Na ₂ SO	ZnSO,	AF208	DF250	Lime		Z-3	SO ₂	1	
Flotation from															
<u>Cu-Pb scav conc</u> Regrinding	· · · ·	20	50 **		*	0.15	0 10	0.01		0.5			+	·	
Secondary Cu-F	b ro	20	- 00		500-g cell	0.13	0.10	0.01		0.5			· · · · ·		
	0 10	1		,	JOU g CEII			0.005				0.005			
Stage 1 " 2					· · · · ·	<u> </u>		0.005	· · · · · · · · · · · · · · · · · · ·			0.005	1	- <u> </u>	
<u>L</u>		1/2 .^2			· · · · · · · · · · · · · · · · · · ·	ļ					·····	0.005			
<u>"3</u>					·		· · ·		0.004			0.005			
4		1/2				<u> </u>						0.005		· · · · ·	
Secondary Cu-F Condition	D CT	5		6.6	250 0 0011	· · · · ·	· · · · ·						0.7		· · · · · · · · · · · · · · · · · · ·
				0.0	250-g cell		· · ·	0.005	0.002				0.7		
Float		1/2						0.005	0.002					· · · · ·	
•			<u> </u>		I		<u> </u>	<u> </u>				<u> </u>	<u>.</u>	<u> </u>	
PRODUCT		W			ANAL	YSIS	%				D	ISTRIB	UTION	J %.	
		. 9	ó .								.	· .	·		
· ·															
											l				
		.											•		
						.						ľ			
							×		·						
									· ·						
			. []				• •								
		1 .													·
						·		·							
													[•
• • •				ŀ				1 · · ·	1. N. 14						•
						ļ				ľ					
							•								
							-	. •							
						ľ		ţ					·		
REMARKS: * 8-;			<u></u>	<u></u>		•	~	<u> </u>							
× 8-i	ndia	Abbe	porcela	ain mi	ll with half	charge	e of st	teel ba	alis.						

42 ı.

J.

...

•

÷

¢

Sheet 1 of 3

.

			a Explo									1		b. 12,	
OBJECT OF TEST: As in	n Test	22 b	ut with	ı copp	er-lead	l separ	ation	and le	ad flot	ation	from			2 x 200	
secondary rougher and c	leaner	tail	ings (s	see at	tached	flowsh	eet)				<u> </u>		TED B	Y: A.S	5.
	Time	%		L	Jnit					-	, lb pe				
OPERATION		Solid	s pH	u	ised	Na ₂ SO	ZnSO4	AF208	DF250	Lime	NaCN	I Z-3			
Grinding	45.	65		7 x 1	4 RM	0.5	0.1	0.03							
Conditioning	5			1000-	g cell			0.01	0.02						
Copper-lead rougher	3	ļ	.6.3			_									
Conditioning	5 .		7.9							1.5	0.15				_
Copper-lead scavenger															
Stage 1	1/2											0.0			
2	1											0.0	2		
" 3	1								0.004			0.0			
" 4	1								0.004			0.0		<u> </u>	
" 5	11/2											0.0	2		
Copper-lead cleaner #1	1^{1}_{2}				g cell										
#2	1			250-g	g cell										
PRODUCT	W	τ			ANA	LYSIS	%		··· ·		D	ISTRI	BUTIO	N %	
	. 9	6	Cu	РЪ	Zn	Fe	Au	Ag		(u 1	?Ъ	Zn	Au	Ag
Copper conc	2	. 45 1	2.50	2.12	3.10	31.65	0.74	75.5	7	48	3.9	3.0	0.8	16.5	21.1
Copper cleaner tail	13).52		17.90	4.17	26.32		70.6		11	.0	5.4	0.2	2.6	4.2
Lead conc	11	.04		25.50		23.33		67.2	9	10	.9	30.1	1.0	7.4	15.6
No. 2 copper-lead cl ta	11).74	2.36	7.70		22.63	0.35	42.6	2	2	.8	3.3	0.8	2.4	3.6
No. 1 " " "		2.83	2.07	7.01	10.19	18.08		29.6	1	11	1	11.5	3.2	5.9	9.6
Secondary lead conc	C).7d	1.37	51.60	5.10	5.57	0.20	36.6	1	1	.5	20.9	0.4	1.3	2.9
" " cl tail	C).29	1		14.00	10.55		25.6		- 11	0.6	3.8	0.5	0.5	0.8
" " ro tail	11	2.15	0.60		12.00	13.38	1	13.9	1		2.1	9.2	2.9	3.1	3.4
Copper-lead scav tail		3.28	0.14	0.25			0.075	3.8				12.8	90.2		38.8
Feed (calcd)		0.00	0.63	1.73	9.01		0.11	8.7						100.0	100.0
Combined lead conc	2	2.74	2.85	32.17	4.68	18.79	0.35	59.4	./	1 12	2.4	51.0	1.4	0.7	10.5
· ·															
												ŀ			
REMARKS: Two 2000-g	lots g	ground	d and f	loated	l separ	ately -	- coppe	er-lead	rough	er and	l scav	enger	concer	ntrates	com-
bined for further treat	ment.	Арре	eared t	o floa	at more	weight	: in Cu	-Pb ro	ugher	than '	Cest 2	2 - is	this	due to	extra
0.01 1b/ton AF208?		* *				-									

Sheet 2 of 3

TEST NO. 23 SAMP	LE:	Nadina	Explo	ratio	ns Limi	ited No.	2		antina da.	-	· · · · · ·	DATE	.		
OBJECT OF TEST:						:	:					CHAR	GE:		:
		· · ·			· · · .		· ·	· · · ·	:	- ·	· 1	TEST	ED BY	<i>/</i> :	
	Time	%	<u> </u>	Ι ι	Jnit	5			Rea	gents,	lb per	ton			
OPERATION	min	Solids	pH		ised	Na ₂ SO	ZnS04	AF208	DF250	Lime	NaCh	Z-3	S02	1 .	
Flotation from	a di seri y			12. J. m.			· · · · · ·	1 20 1							
Cu-Pb scav conc			•		<u> </u>				2 1 :						
Regrinding	20	50		· · · · ·	*	0.15	0.1	0.01		0.5	· · · · · · · · · · · · · · · · · · ·	· ·			300
Secondary Cu-Pb ro				500-	g cell	1 5.70 7.7	a sa ang					2 4 4 5			
Stage 1	1	1.3.5	9.9	12 1.0	3 3 70	1 2.2		0.005	. · ·			0.005			
"2 · · · · · ·	1	- 851 - 1	1000	1.501			7. 7. 1.	1 7 1 v	0.004		tig a tit	0.005	· · · · · ;	0.2	
II -33	12			12 .2		115163	na na	1. 2019			2	0.005	ang i	514	
Secondary Cu-Pb cl			38° .	12.00	1143	1 62132	1110	1 C. 1 C			ê : 3		100		
Condition	5	3	6.4	250-	g cell	1 17 A.X			. · (4 L .		0.35	1	115
Float	11/2	NA				- 14 - C.C.	- 2N	0.005		с III С	14 H	0.002		11 H	1947 A.
			11	<u> </u>						·····			11. J. D. D. D. D. D. D. D. D. D. D. D. D. D.	a da na sera ana ana ana ana ana ana ana ana ana a	
				1	بسید ، بیمیر محمد در زور افته	1, 1, 1, 2	3,7						·····	· · · · · · · ·	
PRODUCT	W	. 11			ANA	LYSIS	%			· · · ·	DI	STRIB	UTION	1 %	
	%	Č	u	Pb.	Zn	Fe	Au	Ag	-	Cu		?Ъ 2	Zn -	Au ····	Ag
Metallurgical Balance				1		- 347				1					
for Copper-Lead Separati	.on			in normalised and the second sec		· • · · · • · · · · · · · · · · · · · ·	· · ···· · ····		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	:	
Copper conc	48.	81 12	.50	2.12	3.10	31.65	0.74	75.57	7 7505	76.	5	.8	39.9	62.2	51.5
Copper cleaner tail	10.		· ·	7.90	4.17	26.32	0.56	70.60		6.				10.0	10.2
Lead conc	40.			5.50		23.33	0.40	67.29		17.				27.8	38.3
Feed (calcd)**	100.			3.30		27.70	0.58	71.67		100.			0.01	00.0 72.2	100.0
Copper rougher conc(calc	a) 59.	18 11	.16	4.89	3:29	30.72	0.71	74.70	J. 	- 82.	8 2.	L•8	DT-2	12.2	61.7
r Colo se pásy so dápra i li		1			 measure the pay by 		· · · · · · · · · · · · · · · · · · ·			·	an a ann an		· · · · · · · · · · · · · · · · · · ·		
가 있었는 말한 말한 것이다. 이번 가지 않는 것이다. 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이다. 것이 같은 것이 같은 것이다.	. <u>1</u> 2	1				,						1	· · · · · · · · · · · · · · · · · · ·		
· 상황가 위험생활	122 .				N. 84	0.5	277	Q1 03						1	
	- The second	생활자													a an dan 🖓
, se a la marte en la traverse en la seconda de la seconda de la seconda de la seconda de la seconda de la seco No	1.1				44 E						ు సినిగ సినికర	n di Ang Ng	····		-
in the second second second second second second second second second second second second second second second	-	· · · · · · · · · · · · · · · · · · ·	n da Polisia. National de la composición de la composición de la composición de la composición de la composición de la compos	nan s	اس بر مراجع معنده این ایر مراجع می این ایر ایر ایر برای	المنت المنتقد . الرقي الارج ال		· · · · · · · · · ·		· · ·	·				· · · · · · ·
	1. P. 1		* * 1 i i												
		<u></u>		and the second s	······	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>		<u> II</u>			<u></u>		
REMARKS: * 8-india A															ppeared
to be high grade lead co ** Copper-lead	nc - c	some o	r the	galen	a was c _load c	iepresse	ed in s	subsequ	HENT CL	eaning	WITH	2°at	-∵hu ∘o	±.0.4.	
copper-read	. Lea	uer co:	$\mathbf{u} \subset \mathbf{T} \subset \mathbf{C}$	-opper	L'au s										

- 44 -

Sheet 3 of 3

TEST NO. 23 SAMP	PLE:	Nadina	Explo	rations Ltd	. No. 2						DATE		. 12,				
BJECT OF TEST:											CHAR						
												ED BY					
OPERATION	Time	%	pН	Unit		. .	_ <u></u>		gents,	lb per							
	min	Solids	P1 (used			AF208	DF250		NaCN	Z-3	S02	CS				
Flotation from																	
Secondary tailings																	
Secondary lead ro		<u></u>		500-g cell		<u> </u>											
Stage 1	1/2		8.5					0.01		0.10	0.01						
" 2	1							0.01			0.01						
" 3	1										0.01						
Secondary lead cl				250-g cell						0.05							
Copper-lead separation				11 11 11													
Conditioning	5	1	3.3									0.75					
11	5		5.4										0.05				
Copper rougher	14						0.01				<u> </u>						
Copper cleaner	3/4		3.1	250-g cell								0.50					
	W	т		ANA	LYSIS	%				DI	STRIB	TRIBUTION %					
PRODUCT	9	6			1		1										
· · · ·																	
										1							
					<u> </u>	L		1				l					
REMARKS: Copper-lead	senar	ration	Brid	t, conner	/ froth	after	additi	on of	SO h	ut sub	sequen	t addi:	tion o:	f			
Oopper read				a came up ag							- 1						
staren depi	.essed	copper	. willCl	i came up as	jaring IIC	WEVEL	, apon	auaitiu									

	ĪVi	INES	BRA	NCH	FLOT	ΔΤΙΟ	N TE	ST R	EPO	RT	She	et l c	f 3	
TEST NO. 24 SAMPL	E: Nad	ina Expl	oratio	ns Ltd.	No. 2			<u> </u>	·····		DA	TE: Fe	ь. 25,	1971
OBJECT OF TEST: To try	y selec	tive flo	tation	of cop	per, le	ad and	zinc d	concent	rates		CHA	ARGE:	2 x 20)0 g
from reground copper-lead	l rough	er conce	ntrate	•							TES	STED E	Y: A.	5.
	lime	%		Unit					igents,			·	· · ·	
OPERATION		olids pH		used	Na CO	Na ₂ SO	NaCN	AF208	AF242	DF250	Lin	ne CuSC	4 Z-20) NaAF
Grinding	45	65	7 x	14 RM	4.0	1.0	0.1							
Conditioning	10	7.	9 2000	-g cell				0.02	0.02	0.02				
Copper-lead rougher			11	11 11										
Stage 1	1							0.01	0.01					
" 2	1							0.01	0.01					
" 3	1								0.02		1	·		
" 4	1			· ,			•		0.02					
Conditioning	10	10.	9					•			7.0	0.7	5	•
Zinc rougher, Stage 1	1									0.02			0.0	-
" " Stage 2	1		•							0.02				
" " Stage 3	2						•							0.05
" " Stage 4	1		-				•		•					0.05
PRODUCT	WT	· ·		ANA	LYSIS	%	. `			D	ISTRI	BUTIO	N %	
	%	Cu	РЪ	Zn	Fe	S	Au	Ag	Cu	1	РЪ	Zn	Au	Ag
Copper conc	1.20	21.94	21.18	3.82	14.00		1.25	178.9	0 41.	3 1	4.3	0.5	14.6	24.5
No. 2 Copper cleaner tail	0.3		32.11		14.96		0.76	120.8		1	6.3	0.2	2.6	4.8
No. 1 " "	0.69		26.37		18.41		0.46	72.9			0.2	0.4	3.1	5.7
Lead conc	1.1	3.79	51.82	6.74	7.45		0.40	72.0	0 6.	8 3	3.4	0.9	4.5	9.5
No. 2 Lead cleaner tail	0.29			10.50			0.33	54.6	7 2.	0	2.3	0.3	1.0	1.8
No.1 " " "	1.6			4	29.46	-	0.25	34.7	11		7.2	1.8	4.0	6.4
Secondary zinc ro conc	0.58			11.29			0.21	26.5		•	1.8	0.7	9.0	7.8
" Cu-Pb ro tail	5.02		3.15		29.46		0.19	13.6	11		8.9	3.0	1.2	1.8
Zinc rougher conc	15.90	11 1		47.02	5.60	,	0.075	8.0	11	1	4.4	82.3	11.6	14.5
Pyrite conc Pyrite cleaner tail	14.56				37.47	44.58		10.0		÷	4.7	8.5	35.4	16.7
Final tailing	56.95	11 · I			1.	1.29	0.12	5.5	14		0.7	0.2 1.2	1.9	1.1
Feed (calcd)	100.00		1.78				0.02 0.10		$\frac{2}{0}$ 100.			100.0	11.1	100.0
Cu-Pb ro tail (calcd)	89.10						0.07		0 20.		5.6	100.0	60.0	37.7
														5
REMARKS: Two 2000 gram further treatment. Coarse pyrite floated at e					separa	tely -	roughe	r conc	 entrat	es co	mbine	d for		

- 46

Sheet 2 of 3

TEST NO. 24 SAM	PLE:	Nadir	a Exp	loratio	ons Ltd.	No. 2								ь. 25,	19/1
OBJECT OF TEST:		-											RGE:		
									·····			<u> </u>	TED B	Y:	
	Time	%	На	ι	Jnit				Reag	ents,	lb per	ton			. <u></u> .
OPERATION		Solid	spri	ι	ised	Na ₂ CO ₃	NaCN	AF242D	F 250 H	2 SO4	<u>Z-6</u>	Z-20	00 <u>50</u> 2	CS	
Conditioning	5		8.5	1000	-g cell					1.4					_
Pyrite ro, Stage 1	1			· ·						·	0.10	ļ			
" " 2	1										0.05				
" " 3	1										0.05				
	1		_								0.05				
Pyrite cleaner	2 ¹ 2			1000	-g cell			1	0.02						
Selective flotation													-		
from Cu-Pb rougher conc															
Regrinding	30	50			*		L						0.75	5 0.03	
Conditioning	2		5.7	500-	<u>g_cell</u>								0.5		
Copper ro, Stage 1	1								0.003			10.0	03		
" " Stage 2	1								0.003			0.00	03		
	W	·Τ			ANA	LYSIS	%			1	D	ISTRI	BUTIO	N %	
PRODUCT	9	6	Cu	РЪ	Zn	Fe		Au	Ag	Cu	I	?Ъ	Zn	Au	Ag
Metallurgical Balance f	or														
Selective Flotation fro		-													
Copper-Lead Rougher Con	11														
Copper conc	11	.01	21.94	21.18	3.82	14.00			178.90	52		16.9	6.5	36.7	39.
No. 2 Copper cleaner ta	il 3	.19	9.48	32.11	4.41	14.96	•		120.84	11	.5	7.4	2.2	6.4	7.
		.29	6.24	26.37	5.30	18.41		0.46	72.94		1	12.0	5.2	7.7	9.
Lead conc		. 54		51.82	6.74	7.45		0.40	72.00			39.6	11.0	11.2	15.
No. 2 Lead cleaner tail	2	.69	4.36	14.36	10.50			0.33	54.67	11	.5	2.8	4.4	2.4	2.
No. 1 " " "	14	.91	2.74	7.87	9.87	21.10		0.25	34.73	11	.8	8.5	22.9	9.9	10.
Secondary Zn ro conc	5	.29	2.21	5.63	11.29	21.31		0.21	26.56	11	.5	2.2	9.3	3.0	2.
" Cu-Pb ro tail	46	.08		3.15	5.37	29.46		0.19	13.60	10		10.6	38.5	22.7	12.
Feed (calcd)		.00		13.79	6.43	22.27		0.38	50.05	100			100.0	100.0	100.
Copper ro conc (calcd)	20	.49		24.47	4.37	15.50			137.33	67		36.3	13.9	50.8	56.
Lead ro conc (calcd)	28	3.14	3.29	24.95	8.76	15.62		0.31	50.60	19	.9	50.9	38.3	23.5	28.
								1		1					
		1													1

REMARKS: * 8-in.-dia Abbé ceramic ball mill with full charge of ceramic balls.

- 47 -

Sheet 3 of 3

TEST NO. 24 SAMP	PLE:	Nadina	Explo	ratio	ns Ltd.	No. 2						DATE	•		
OBJECT OF TEST:		· · .						•				CHAR	GE:	. ·	
	· .					÷						TEST	ED BY	.	_
OPERATION	Time	%		υ	nit	[· · · · ·	· · · · · · · · · · · · · · · · · · ·		Rea	igents,	lb per	ton			
OPERATION	min	Solids	рН	u	sed	Na ₂ CO		NaCN		AF242	DF250	Lime	CuS04	Z-200	S02
Conditioning	5		8.7	500-9	g cell	0.5		0.05				:		-	
Lead rougher				-									·	1	
Stage 1 	1				•			•		0.005				1	
." 2	2									0.005				· .	
Conditioning	10		11.5			· .						0.75	0.2		
Secondary zinc ro	$1^{\frac{1}{2}}$													0.005	
Copper cleaners															
No. 1	$1\frac{1}{2}$		35	250-8	g_cell						0.004		•		0.5
No. 2	14		3.2	<u>, 11 - 1</u>	1 11						0.002			· .	0.5
Lead cleaners															
No. 1	11/2				g cell						0.004			•	•
No. 2	1½		-	250-8	g cell				· ·	0.003			L		
PRODUCT	W		•		ANAL	YSIS	%			1	DI	STRIBU	JTION	%	
	%														
				•								•			
•								·							
	[].														
				1											
			•												
				1				· · ·	· .	li i			•		
												•			
												•			
													•		· ·
									,						
			į.												l
		Ц	1			<u>· . </u>					1	I	l		
REMARKS:															
					·_····										

48 -

.

.

Sheet 1 of 3

.

OBJECT OF TEST: To tr for selectively floatin				oratio				. 25, 1							
C 1. (* .1. £1. +	y mod:	ified	versi	on of	October	1970 N	ladina :	flowshe	et as	a met	hod	CH.	ARGE: 2	2 x 200) g
for selectively floating	ig cop	per an	d lea	d conc	entrate	s direc	tly fr	om the	ore					Y: A.S	
	T:	1 %	1		Jnit	1			Rea	gents,	lb pe	r ton			
OPERATION	Time	Solid	Hq		used	No CO	ZnS04	7 200	Lime		Z-3		50		1
	min		5						L TITE	INA OIN					.
Grinding	45	65			14 RM	0.5	0.1	0.02							
Conditioning	10		6.6	1000	-g cell							_			
Copper rougher	3							0.01				0.0	02		
Conditioning	5		9.5	5					2.0	0.15					
Lead rougher															
Stage 1	1						1				0.03				
11 2	1				<u>.</u>						0.02	2			
······································	1										0.02	2			
11 4	11/2								-		0.02				
	- 2														
·····															
			<u> </u>				<u> </u>	·			L		<u> </u>		
	W	'T			ANA	LYSIS	%				C	ISTR	IBUTIO	N %	
PRODUCT	9	%	Cu	РЪ	Zn	Fe	S	Au	Ag	0	Cu	РЪ	Zn	Au	Ag
Copper conc	1.	06 17	.86	2.74	3.06	28.94	•	0.28	70.9		.8	1.6	0.4	2.8	8.1
No. 2 copper cleaner ta:			.49	2.62	4.03	33.93		0.41	51.3		+.2	2.0	0.6	5.2	7.5
No. 1 " " "	3.	56 3	.74	4.21	6.30	27.34		0.43	36.9	1 19	.5	8.8	2.6	14.9	14.8
Lead conc	0.	70 1	.25	67.70	2.50	2.59		0.50	94.9	2 1	3	27.7	0.2	3.4	7.5
No. 2 lead cleaner tail	0.	63 1	.90	48.88	6.30	6.09		0.31	69.4	9 1	8	18.0	0.5	1.9	4.9
No. 1 " " "	1.	95 1	.90	17.01	10.00	11.48		0.26	41.4	2 5	5.4	19.4	2.2	5.0	9.1
Zinc rougher conc	13.	3.5 0	.63	0.47	50.00	4.19		0.09	11.5	2 12	.3	3.7	76.0	11.7	17.3
Pyrite conc	16.	42 (.63	0.53	8.00	36.49	44.68	0.23	12.6	6 15	5.2	5.1	14.9	36.8	23.4
Pyrite cleaner tail	2.	60 0	.24	0.59	4.42	19.77	17.04	0.16	6.8	7 C	.9	0.9	1.3	4.1	2.0
Final tailing	58.	48 0	.03	0.38	0.19		2.23	0.025	0.8	2 2	1,6	128	1.3	14.2	5.4
Feed (calcd)	100.		.68	1.71	8.77			1		- 100	0.0 1	.00.0	100.0	100.0	100.0
Copper rougher conc (cal			.02	3.60	5.24	29.07		0.40	45.9	9 60).5	12.4	3.6	32.9	30.4
Lead rougher conc (calco	1) 3.	28 1	.77	33.95	7.69	8.55		0.32	58.2	3 8	3.5	65.1	2.9	10.3	21.5
Lead rougher tail(calcd)) 90.	85 0	.23	0.43				0.075	4.7	0 31	.0	22.5		66.8	48.1
C				:											
-			-											1	
		<u> </u>			<u> </u>	<u> </u>	J	<u> </u>	1	11			1	1	i
REMARKS: Two 2000-gr	am bat	ches g	ground	d and f	loated	separat	:ely -	roughe	r conc	entrat	es co	ombine	ed for	cleanin	g.

- 49 -

MINES BRANCH FLOTATION TEST REPORT Sheet 2 of 3

	PLE: N	adina I	Explora	ations Ltd.	No. 2	<u>.</u>				········	DAT	E:Marc	n 25, 1	.971
OBJECT OF TEST:						,						RGE:		
		• <u>-</u> - · · · ·	<u> </u>			• •						TED BY	<u>/:</u>	
OPERATION	Time	%	рН	Unit				Rea	gents,	lb pe	r ton		•	
	min	Solids		used			Z-200	Lime			CuS04	NaAF	H ₂ SO4	Z-6
Conditioning	10		11.2				· · ·	3.0			1.0)	1	
Zinc rougher														
Stage 1	1			. <u>.</u>			0.01							
" 2	1				· ·		0.01							-
11 3 11 4	1			······			· .				. 	0.05	ł	
	2											0.05		
Conditioning	5		8.2						·		· ·	· .	1.5	
Pyrite rougher						ļ						<u>. .</u>		
Stage 1 11 2	<u> </u>													0.01
11 3					· · ·	<u> </u>	· · ·			· · · · ·		<u> </u>	<u> </u>	0.05
11 4				•••										···· · · · · · · · · · · · · · · · · ·
						L	L		11					0.05
PRODUCT	W 9	12	i		LYSIS	%	1	- <u>T</u>		D		BUTION	1 %	
· · ·														
											· .			. *•
										· ·				
					1	÷	2.3				•			
						· .				· ·				
									· ··					
·	1					•				••		•		
				· ·										
· · ·								· ·		ł				
		I					L	<u> </u>						
REMARKS:														
·····														

н 50

.

Sheet 3 of 3

.

ç

TEST NO. 25 SA	MPLE: Na	dina Ex	xplora	ations	Ltd.,	No. 2							E:March		
OBJECT OF TEST:													RGE: 2		
•									······			J	TED BY	: A.S.	
	Time	%		U	nit	T			Rea	gents,	lb pei	ton			
OPERATION	1	Solids	pН	us	sed	Na 2SO3	ZnSO4		Lime	Z-3			DF250	S02	
Copper cleaners															
No. 1	2		5.1	500 - g							<u></u>			0.5	
No. 2	1		4.0	250 - g										0.15	
No. 3	1		4.7	11	11			·						0.1	
Lead rougher conc															ļ
regrinding	20			*		0.15	0.1		0.5	0.005					ļ
Lead cleaners			**											ļ	
No. 1	2			500 - g	cell		0.1*	k		0.04				0.25*	*
No. 2	11/2			250 - g	cell						•		0.002	·	ļ
Pyrite cleaner	3			1000-	g cell							<u> </u>	0.03	L	ļ
						1									1
				1											
		τ			ANA	YSIS	<u></u> %		••••••••••••••••••••••••••••••••••••••	<u> </u>	D	ISTRI	BUTION	%	
PRODUCT	9	11.									<u> </u>				
						· · · ·									
												}			
					1										
- ·			1											ł	
	-													1	
														1	
												<u> </u>		· .	
REMARKS: * 8 in	dia Abl	he porc	elain	mi11 -	with ¹	charoe	of st	eel h	a11e						
	d to lowe		~14 II	*****	WILL 2										
	before a		n of	ZnSO4	and SO	2									

- 51 -

MINES BRANCH FLOTATION TEST REPORT Sheet 1 of 2

oat w lotat Time min \$ 45 10	ion fi %	rom ro	egroun	of coppe nd separ Jnit used	er-lead	roughe tailing	r conc			<u> </u>	TES		2 x 200 Y: A.S	
Time min \$ 45	% Solids	nH.		Jnit -	ation		•				L	TED B	Y: A.S	•
min S 45	Solids	рН	I							14				التقابين والتراجي والمتحد
45		рп.		used				Rea	gents,	ID per	ton			
	65				Na ₂ CO	3Na 2SO3	NaCN	AF 208	AF 242	DF250	SO 2	CS		
10			7 x	14 RM	4.0	1.0	0.1	0.01	0.02					·
		7.9						0.01	0.01	0.02				
				,										
			1											
·				· · · · · · · · · · · ·	<u> </u>			0.01	0.02					
	····							0.01	0.02					
			-					· · · ·			· · ·			-
10		5.1	500-	a cell						·	2.5	0.0	5	
	··· · ·		1000	g corr										
	<u>-</u>	2 7	250	a aa11				·			0.25			
				-g cerr								· · · j · · · · · · · · · · · · · · · ·		
±		4.0			· · · · · · · · · · · · · · · · · · ·	· · ·					0.1			
1		[.								L	<u> </u>		
11.	·	·····	···	ANA	LYSIS	%						BUTIO	N %	
%		Cu	Pb	Zn	Fe	Au	Ag.		Cu	. <u> </u>	?Ъ	Zn	Au	Ag
	1 27	.08	4.45	5.15	17.47	0.94	163.36		44.	7 3	3.0	0.6	9.8	21.4
						1.09	1	1	10.	0 5	5.6	0.3	6.9	11.2
11	11					£	1		41	-	1	0.4	3.2	7.1
	81	1		1 1		1	•		11	5	1	-		5.1
	11										-	1		2.5
	- 11				17.56	1	1						6.7	9.2
														43.5
							the barrow of the second	ŀ						100.0
4.70	0 1.	•61 3	21.71	8.81	14.08	0.24	30.28		11.	2 62	2.4	4.4	10.5	16.8
														i
1														ł
1					• •						•			
														I
								· ·						-
					1									í.
	1						1	· ·						1
+					· · · ·	· · · · · · · · · · · · · · · · · · ·	:							
LCHES	grour	ia and	i Iloa	tea sep	aratel	y - ro	ugher d	concent	trates	combi	ned f	or fui	ther	
	% 1.1 0.6 0.7 0.9 0.4 3.2 92.7 100.0 4.7	1½ 1 1 1 % 1.11 % 1.11 0.67 0.75 0.99 0.48 3.23 92.77 100.00 4.70	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

- 52

MINES BRANCH FLOTATION TEST REPORT Sheet 2 of 2

	LE: Na	ldina	.Expl	oration	s Ltd.	No. 2						-		. 30, 1	971
OBJECT OF TEST:								*					ARGE:		
								<u></u>		·····		TES	STED B	Y:	
OPERATION	Time	%	p⊢	, L	Jnit				Rea	gents,	lb pe	r ton			
	min	Solid	s	۱ ــــــــــــــــــــــــــــــــــــ	used	Na 2CO3	Na ₂ SO ₃	NaCN	¥	F242	DF250				
Lead flotation from					iiiiiiii										
separation tailing			1				1								
Regrinding	30				*	0.4	0.1	0.025		0.005		1			1
Lead rougher				500-	g cell	1									
Stage 1	12				×	1					0.003	1			1
<u>n</u> 2	12						· · · · · · · · · · · · · · · · · · ·		0	.003					
" 3	1		-						0	.003	0.003				
	1										0.003				
Lead cleaner	12		+	250-	g cell							+			
												+			
												+		<u> </u>	
	l w	г. г. ((1			LYSIS	04		l				I IBUTIO	N 94	
PRODUCT		;	Cu	РЪ	Zn	Fe	 Au	1	<u> </u>	Cu		Pb	Zn	Au	1.0
				PD		re	Au	Ag						Au	Ag
Metallurgical Balance for	r														
Copper-Lead Separation		11													
Copper conc	15	38 27	.08	4.45	5.15	17.47		163.36		62	.3	3.9	16.3	-32.3	38.0
No. 2 copper cleaner tai				13.79	4.79			141.34			.8	7.2	13.3		19.
No. 1 " " "		.36 5		15.80	5.45			79.22			.2	9.2	15.0		12.5
Lead rougher conc		05 1		21.71	8.81			30.28				79.7	55.4		29.8
Feed (calcd)**	100	.00 6	5.68	17.71	7.53	16.53	0.45	66.10	<u> </u>	100	.0 1	0.00	100.0	100.0	100.0
											ļ				
									ļ						
	·														
······															
REMARKS: * 8 india	. Abb	e por	celai	n mill	with 1/2	charge	of ste	el ball	s.						
** Copper-le	ad ro	ıgher	conc	entrate	•	-									

 ,						51					
					INES		AN		— — — — — — — — — — — — — — — — — — —		<u>^</u>
				and address of the local division of the loc				and the local division of the local division	RT She	et 1 of 1	2
est No:	1	Sampl						- F -	ite conc		
Test By:		<u> </u>							omposite]		
OBJECT	OF TES	T: Ini	tial tes	st c	on re	groun	ıd,	raw p	yrite con	c*	· · · · · · · · · · · · · · · · · · ·
	-		<u></u>							<u></u>	
	;=}					T DA					
	Time	Na CN, Solu	ition			lb/to: ution	n	Charg		· · · ·	
Date	hr	Added	Titen		Idad	T:4.			Solids, o		581 1000
<u></u>	Added Inin Added Inin Water, cc										
Sept.2/70	0	2.0		 	0.6		<u> </u>	Dilu	tion (Water	: Solids)	1.7:1
11 11	1.25	1.7	0.3	{	0.5	tra		<u></u>			
11 11	3.25	2.6	0.4		1.5		1		al Solution		
Sept.3/7		2.0	0.3		1.5	''		<u> </u>	b/ton_Solu	tion:	2.0
	23.25	1.4	1.4	<u>} </u>	0.7	}	, 3 [.]		NaCN		2.0
11 11	26.25	0.5	2.0	╎	0.2						0.5
	7044.25 0.5 1.5 0.2 0.3 Reagent Cons										
11 11	48.50		1.76 0.24 <u>Ib/ton Solids Cyanided:</u>						15.4		
Total		10.7	·		5.2	<u> </u>		<u>`</u>	Na CN	······································	8.5
•	<u> </u>			┨		ļ		<u> </u>	Lime	·	0.5
	<u> </u>		<u> </u>	<u> </u>		<u> </u>			cing power	**	1984
			M	ET/		GICAL	- B	ALAN			
	Pro	oduct			W	t		Assays	, oz/ton	Distribu	ition, %
					%			Au	Ag	Au	Ag
Pregnant	solut	ion***	· · · ·		+	-	0	.07	4.06	25.0	37.2
Cyanidat	ion rea	sidue			100	.0	.0	.21	6.84	75.0	62,8
Feed (as	say)	- <u></u> -		•••	100	.0	0	.28	10.90	100.0	100.0
								· .		. · · ·	
									· · · · · ·		
						·	- <u>Lau</u>		<u> </u>		<u> </u>
						<u> </u>					<u> </u>
Remarks			eed ana	lys			_				
Cu	Рb	Zn	Fe		S		so1		As Sb		
0.32	0.48	·	32.00		.68		.28		.38 0.14		
									11 with st	teel balls	3
		~~~~~~	een ana						· · ·		
	·		and the second states and the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states are set of the second states a					oxid	ize all re	educing ag	gents
prese	ent in	1000 cc	of preg	man	it so	lutio	n.				

*** Assays expressed as oz/ton feed and obtained by difference

v wirreitence.

#### Cyanidation Test Report

#### Test No. 1

#### Screen Analysis of Pyrite Concentrate

Tyler Mesh Size	Before Regrinding % Wt	After Regrinding % Wt
+200	14.0	-
+325	21.1	1.2
+400	5.2	0.7
+500	19.3	6.8
-500	40.4	91.3
Total	100.0	100.0

			CYANI	MINES		RAN		RT	Sheet 1	of 2		
Test No:	2	Samp	le: Nadi	na Expl	orati	lons	- ca	lcines fr	om roasti	ng .		
Test By:	M.R.		of p	yrite c	onc o	omp	osite	No. 1				
OBJECT	OF TES	ST: To t	ry a co	mplete,	higi	1-te	mpera	ture roas	t prior t	0		
		cyar	nidation	•					· ·			
				TES	T DA	TA						
	Time	No CN,	lb/ton		Ib/to	on	Charg	je:				
Date		5010	ition	Sol	ution I			Solids,	g	386		
	hr	Added	Titrn	Added	Tit	rn		Water, c	c	1000		
Sept 2/70	0	2.0		0.6	<u> </u>		Dilu	tion (Water	: Solids)	2.6:1		
11 .11	1.25	0.4	0.	1.								
11 11	3.25	1.0	1.4	0.2	ö.	5	Nomir	al Solution	Strength,			
Sept 3/70	20.25		2.0		0.	7		b/ton Solu	ition :			
" " 23.25 2.0 0.7 Na CN 2.0												
" " 26.25 1.9 0.7 Lime (												
Sept 4/70	44.25		1.8		0.	7	Reagent Consumption,					
ft <b>11</b>	48.5		2.04 0.68 <u>b/ton Solids Cyanided:</u>							<u> </u>		
[otal		4.5	4.5 1.2 Na CN						6.4			
· •								Lime	• ; •	1.3		
		÷					Reduc	ing power		44		
· ·		;	M	ETALLUF	RGICA	LB	ALAN	CE		· · · · · · · · · · · · · · · · · · ·		
				<u> </u>		į	Assays	, oz/ton	Distribu	ition, %		
	Pro	oduct		W %			Au	Ag	Au	Ag		
Løss in 1	roastir	ng*		24.4		, t	-	0.04		0.4		
Pregnant		<u> </u>	•.			0.	,16	3.11	58.4	28.5		
Cyanidat:				75.5	6		16	10.64	41.6	71.1		
Feed (as				100.0	00	0	.28	10.90	100.0	100.0		
Calcines						0	.39	14.36				
;			······							· ·		
									<u> </u>	·		
					· ·							
Remarks	: Addit	cional a	nalyses	%		_						
	( Cu	Pb	Zn 1	e Tot	-91 0	Ç.	ilphic	le S Insc	ol As	Sb		
Feed	0.32				3.68	<u> </u>	<u>,</u>	18.2		0.14		
Calcines	0.33	0.65	5.77 42	2.41 1	L.13		0.09	22.5	55 0.36	0.08		
*Assays	for roa	asting 1	oss and	pregnar	nt so	lut:	ion ez	xpressed a	as oz/ton	feed		
and obt	ained 1	oy diffe	rence.	Losses	in c	alc	ine g	rinding ar	nd wash so	lution		
not det	ermined	l but as	sumed to	be neg	gligi	Ъle	beca	use of the	e complete	e nature		
of the	roast.				•							

#### Test No. 2

#### Roasting Procedure

	Elapsed     Temp       time     C       hr     min		Remarks
s	start room		Charge in, controller set at 450°
1	5	410	Charge ignited, fan on, door open 2 inches
1	15	450	
2	15	450	Controller set at 600 ⁰
2	30	600	Door ½ open
3	30	600	Controller.set.at.700 ⁰
4	5	700	
5	5	700	Shut power off, calcine cooled in furnace

#### Calcine Treatment Before Cyanidation

- After removing 50 grams for analysis, calcines ground with pebbles for 30 min in an 8-in. dia. porcelain mill with 500 cc water.
- (2) Ground calcines filtered, and the filter cake washed 3 times to remove last traces of soluble salts.
- (3) Washed cake repulped in agitation bottle to make up a volume of 1000 cc water.

÷.,	: 1		CYAN	MINES		RAN ST	CH REP(	DRT	She	et 1 of		
Test No:	3	Samp	le: Nad	ina Exp	lorat	:ions	3 – ć	alciņes fi	com roasti	ng		
Test By:	J.C.1	в.	of	pyrite (	conc	from	n Tes	t 19;				
OBJECT (	OF TES	ST: _{To}	try a s	hort pa:	rtial	L roa	ast a	t a low te	emp (475 ⁰ (	3)		
prior to	cyani	lation w	vith lim	e added	to 1	coast	ting_	charge				
	<u></u>			TES	T DA	ATA			<del>.</del>			
	<b>T</b>	Na CN,	lb/ton	Lime		on	Char	ge :		253		
Date	Time	Solu	ution	Sol	ution			Solids,	g	1000		
:	hr	Added	Titrn	Added	Tit	rn		Water, co	;	4.0:1		
Nov 24/70	· 0	2.0	· .	0.5			Dilu	ition (Water	: Solids)			
11 11	1,	2.0	0.05	1.0	-							
"         2         1.2         0.8         1.0         0.05         Nominal Solution Strength,           "         "         4         0.6         1.5         0.4         0.3         white												
ii ii	7	0.6	1.8	0.4	0.4	4 ·		NaCN		2.0		
Nov 25/70 23.5 0.6 1.7 0.4 0.3 Lime 0.5												
" " 26.5 0.2 1.95 0.2 0.4 Reagent Consumption,												
" " 31.0 0.2 2.05 0.2 0.4 <u>lb/ton Solids Cyanided:</u>												
lov 26/70	48.0	1.88 0.28 Na CN										
lotal		7.4		4.1				Lime		15.1		
· · ·	· ·			÷			Redi	icing powe	r	1000		
			M	ETALLUR	GICA	L B/	ALAN	CE				
<u>.</u>	Pro	duct		w	,	A	ssays	, oz/ton	Distribu	ition, %		
			. <u> </u>	%		/	4u	Ag	Au	Ag		
Loss in 1	oastin	g*	· · · · · · · · · · · · · · · · · · ·	10.	41	-	·	0.70	<del>, ~</del>	6.4		
Loss in c	alcine	wash s	oln	14.	29			0.092**	-	0.9		
Pregnant	soluti	on*				• 0.	18	6.07	64.5	55.9		
Cyanidati	on res	idue		75.	30	0.	13	5.31	35.5	36.8		
Feed (ass	ay)***			100.	00	0.	28	10.86	100.0	100.0		
Calcines	(after	washin	g			0.	37	13.37				
				·					<u> </u>			
Remarks:	Addi	tional	analyses	s %	,	•			-			
			<u>Cu</u> J	<u>Pb Zn</u>		Fe	To	tal S Sul	phide S			
Feed Cyanidat	ion re		0.60 0. 0.26 0.	<u>59 2.4</u> 71 1.7		<u>3.71</u> 		8.47 2.71	2.04			
* Assav	ys for	roastin	g loss a	and preg	nant	so1	utio	n expresse	d as oz/t	on feed		
			fference									
					valu	.e: (	),15	mg/litre i	n first w	rash		
A, \												

*** Adjusted for dilution effect of the addition of 20 g lime to charge, actual values: Au 0.29 oz/ton, Ag 11.41 oz/ton. Cyanidation Test Report

Test No. 3

#### Preparation of Roasting Charge

- (1) Ground pyrite conc for 60 min in 8 in.-dia porcelain mill with full charge of steel balls.
- (2) Ground conc filtered and dried.
- (3) Dried cake bucked through 100 mesh screen to break up lumps.
- (4) Added 20 grams of lime and mixed thoroughly in tumbler mixer.

### Roasting Procedure

ti		Temp °C	Remarks								
hr	min										
			Furnace heated to 475°C								
st	start 4		Put charge in furnace								
	5	475	Charge ignited, fan on, door open 2 inche								
50 475		4 <b>7</b> 5	Hot calcines removed from furnace and cooled in fume hood								

#### Calcine Treatment Before Cyanidation

- (1) Repulped cooled calcines with cold water, conditioned in a 2000-g lab cell for 5 min and filtered.
- (2) Step (1) repeated on filter cake.
- (3) Both filterates from above saved and analysed for precious metals content.
- (4) Filter cake dried and 50 grams cut out for assay.
- (5) Balance of sample ground for 10 min in an 8 in.-dia ceramic mill with 1/2 charge of steel balls (this was done to break up hard lumps).
- (6) Wet cake transferred to agitation bottle and additional water added to bring volume to 1000 cc.

MINES	00	ICH
CYANIDATION	TEST	REPORT

			CIAN	Un		1	01	NEFU				
Test No:	4								cines from	n roastin	g of	
Test By:	J.C.1	3.	pyrit	e c	conc ;	from	Tes	t 19				
OBJECT (	OF TES	ST: To t	t <b>ry a</b> pa	rti	ial r	oast	at	a low	temp wit	h lime as	in	
Test 3 b	ut inc	reased a	roasting	; ti	ime f	rom	45 n	nin to	3 hours*	•		
		····							· ·			
					TES	ΤĎΑ	ATA					
	Time	Na CN,	lb/ton		Lime		on	Charg	e :			
Date	Time	Solu	ition		Soli	ution		·	Solids,	9	220	
	hr	Added	Titrn	A	dded	Tit	rn		Water, co	3	1000	
Nov.24/70	0.	2.0			0.5			Dilut	tion (Water	: Solids)	4.5;1	
11 11	1.	0.2	0.85		1.0	_	,					
н. н. С	2	0.8	1.2	i—	0.5	0.	1	Nomin	al Solution	Strength.		
11 11 1	4	0.2	1.9	(	0.5	0,	15	· [	b/ton Solu	tion:		
11 11	7	·	1.9	1	0.4	·	25 [.]		NaCN		2.0	
Nov 25/70	23.5	0.1	1.95	<u> </u>	0.5	·	15	<u>.</u>	Lime	• •	0.5	
" " 26.5 - 2.0 0.4 0.25 Redgent Consumption,												
11 11	31.0	0.1	2.0		0.6	Ó,	25	lb/				
Nov.26/70	48.0		1.95		0.3		34		Na CN		6.6	
Total		3.4		1	4.4			Lime		18.5		
		· ·		1.		<u> </u>		Reduc	ing power		75	
			M	ET/	ALLUF	GICA	L B		CE		· · ·	
					· · · · · · · · · · · · · · · · · · ·			Assavs.	oz/ton	Distrib	ution, %	
	Pro	duct			₩ `%		———	Au	Ag	Au	Ag	
Loss in 1	oastir	ייייייייייייייייייייייייייייייייייייי			14.		0.0		0.80	3.5	7.4	
Loss in d			oln	-	18.			<u>.</u>	0.04**		0.4	
Pregnant		· · · · · · · · · · · · · · · · · · ·					0.	20	7.44	71.1	68.6	
Cyanidat		·····			66.	_	┟	105 ₂	3.83	25.4	23.6	
Feed (as	· · · · · · · · · · · · · · · · · · ·		· .		100		0.	······	10.86	100,0	100.0	
Calcines		washin	g)				0.		14.97			
	<u></u>				- -						<u> </u>	
									i	<u> </u>		
Remarks	Add	Itional	analvse	s %			I	· · · ·	L	<b>.</b>	<u></u>	
Remarks: Additional analyses % Cu Pb Zn Total S Sulphide S												
Cyanidation residue 0.14 0.80 1.94 1.31 0.67												
*Procedure identical to Test 3 except that pyrite conc was not reground prior												
to roasting.												
**Expressed as oz/ton feed, actual value: none in first wash solution,												
0.066 mg/litre in second washsolution.												
								<u>,</u>				

# MINES BRANCH CYANIDATION TEST REPORT

Test No:	5	Samp		DATION			ite conc	from				
Test By:				<u>-</u> -	· · · ·		omposite					
OBJECT		<u> </u>					raw pyri					
			duced f									
<u>.                                    </u>												
				TES	T DATA							
	1	Na CN,	lb/ton		lb/ton	Charg						
Dula	Time		ition		ution		Solids,	0	509			
Date	hr	Added	Titrn	Added	Titrn		···		1000			
							Water, c		2.0;1			
	1	2.0	0.2	1.0		<u> </u>		<u></u>				
"     4 $2.0$ $0.2$ $1.0$ $-$ Nominal Solution Strength,       "     " $6.5$ $1.2$ $0.9$ $1.0$ $ 1b/ton$ Solution :												
Mar         9/71         23         1.4         0.6         0.6         trace         NoCN         2.0           ''         ''         26         0.8         1.3         0.6         0.1         1         1         0.5												
"         30.5         0.2         1.9         0.6         0.1         Reagent Consumption,												
Mar 10/71 48 1.24 0.12 <u>lb/ton Solids Cyanided:</u>												
Total		9.6		5.3			Na Cl		16.4			
•			·	<b> </b>			Lime		10.2			
	<u> </u>		<u> </u>	<u> </u>			ing power		1276			
			M	ETALLUF		BALAN	CE					
	Pr	oduct		w	, L	Assa <b>y</b> s	, oz/ton	Distribu	ition, %			
						Au Ag		Au	Ag			
Pregnant	soluti	lon		0,6	2** (	0.066	3.91	28,1	40.8			
Cyanidat	ion res	sidue		99.3	8	0.17	5.72	71.9	59,2			
Feed (as	say)			100,0	0	0.24	9.60	100.0	100.0			
									L			
Remarks	: Add:	itional	feed ana	lysis (	%):			*				
` Cu	Pb	Zn	Fe	Insc	1 To	tal S						
0.21	0.53	L 8,50	35.13	3 10.1	.0 4	3.35			:			
* Same	grindi	ng proce	dure as	in Test	1.				1			
						ely de	termined	in this an	đ			
1								hat cyanid	1			
		vanidati							•			

- 62	-
------	---

MINES BRANCH

			CYANI	MINES		₹AN ST		RT	Sheet 1 of	Ē 2		
Test No:	6.	Sampl	e: Nadi	na Expl	orat	ionș	a, cal	cines fro	m low tem	p roast		
Test By:	M.R.		of p	yrite d	onc	com	posite	No. 2	· ·			
OBJECT (	OF TES	T: Rej	peat of	Test 4	on c	ompo	osite (	No. 2, i.	e., 3 hou	r		
		ro	ast at 4	75 ⁰ C w:	th 1	ime	added	to charg	e			
							ĺ	1				
				TES	T DA	ATA		· · · ·				
		Na CN,			lb/te	on	Charg	e ;				
Date	Time	Solu	ition	Sol	ution T			Solids,	a	338		
	hr	Added	Titrn	Added	Tit	rn		Water, co	<b>;</b>	1000		
Mar. 8/71	0	2.0		0.5		÷.	Dilui	ion (Water	: Solids)	5.9:1		
11 11	1 ·	2.0	0.3	1,0								
TT 11	4	.1.0	0.6	0.4	0.	1	Nomin	al Solution	Strength			
"         6.5         1.2         1.1         1.0         0.1         Ib/ton Solution:												
Mar 9/71	. 23	1.2	0.8	0.4	0.	2 ·		Na CN		2.0		
" " 26 0.6 1.4 0.2 0.4 Lime 0.5												
" " 30.5 0.4 1.6 0.2 0.4 Reagent Consumption,												
Mar 10/71	. 48		1.04		0,24		<u>16/</u>	Ib/ton Solids Cyanided:				
Total		8.4		3.7				Na CN	·	21.8		
· · ·	,							Lime		10.2		
		×				•	Reduc	ing power	r .	996		
			M	ETALLU	RGICA	LE	BALANC	E		•		
	Dr	oduct		W	+	·	Assays,	oz/ton	Distribu	ition, %		
	FIL			9			Au	Ag	Au	Ag		
Loss in	roasti	ng .		15.	74		·		-			
Loss in	calcin	e wash s	soln	10.	89	ļ 	<del>, -</del>		_	<u> </u>		
Pregnant	solut	îon*		0.	51		.15	5.27	66.2	57.1		
Cyanidat	ion re	sidue		72.	86	0	.105	5.43	33.8	42.9		
Feed (as	say)**			100.	00	<u> </u>	.23	9.23	100.0	100.0		
Calcines	(befo	re washi	ing)			<u> </u>	.29	12.11				
						<u> </u>						
				·			<u></u>		•			
Remarks	Addi	tional a	analyses	, %:						· · · ·		
			Cu	РЪ	Zı	n	Fe	Total S	Sulphide	S		
Calcines	(befo	re washi	lng) 0.2	6 0.60	9.	90	41.85	16.71	1.54			
Cyanidat	ion re	sidue	0.1	0 0.65	8,	76	45.39	12.34	1.59			
* Accer	g pynr	essed or	a ozltón	feed	nd ci	htai	nod he	y differe				
1									nce ne to cha:	rge,		
			1.oz/top							·		

Cyanidation Test Report

Test No. 6

#### Preparation of Roasting Charge

(1) Added 20 grams of lime to charge.

(2) Mixed thoroughly in a tumbler mixer.

#### Roasting Procedure

Identical to that outlined for Test 3, Sheet 2.

#### Calcine Treatment Before Cyanidation

- (1) Cold calcines weighed and a 50 gram sample cut out for analysis.
- (2) Balance of sample ground for 20 min in an 8 in.-dia porcelain mill with a full charge of steel balls and 1000 cc water.
- (3) Reground calcines transferred to 2000-g lab cell, conditioned for 5 min and filtered.
- (4) Filter cake repulped with fresh water and again conditioned in a 2000-g cell for 5 min.
- (5) Both filterates from above saved and analyzed for precious metals content.
- (6) Filter cake dried and weighed before being transferred to agitation bottle.

Test No:	7	Samp			TEST loration			om low ter	np ·
Test By:	M.R.		·····	st of p	yrite co	nc coi	mposite N	o, 2	· · · · · · · · · · · · · · · · · · ·
OBJECT (		ST: То	try 3 h	our roa	st at 47	5 ⁰ С р:	rior to c	yanidatio	1 :
		as	in Test	6 but w	without	the a	ddition o	f lime to	the
		cha	arge.				,		
				TES	T DATA				·
	Time	Na CN, lb/ton Solution			lb/ton	Charge :			,
Date	Time hr			501	ution		Solids, g		
		Added	Titrn	Added	Titrn		Water, cc		
1ar. 8/71	0	2.0		0.5		Dilution (Water : Solids)			2.9:1
n ù	. <b>1</b> ·	2.0	0.3	1.0	-				
<u>н (</u>	4	1.0	0.7	0.4	0.1	Nominal Solution Strength.			
f1 11	6.5	1.2	0.9	1.0	0.1	<u>lb/ton Solution:</u>			
Mar. 9/71	23	1.0	0.9	0.4	0.2	Na CN			2.0
11 11	26	0.4	1.7	0.2	0.3	Lime			0.5
11 11	30.5	0.2	1.8	0.2	0.3	Reagent Consumption,			
Mar 10/71	48	·	1.08		0.16	Ib/ton Solids Cyanided:			
fotal		7.8		3.7			Na CN		21.8
•			· ·			ļ	Lime	) ~ · · ·	10.2
	l					Reduc	ing power	ci	1388
	· · · · · ·		M	ETALLUF	GICAL B	ALAN	CE		
	Pro	duct		w	Wt		oz/ton	Distribution, %	
			·····	%		Au	Ag	Au	[;] Ag
Loss in 1	roastir	ıg		17.1	.0 .	-	a - 1 <del>4</del> 22		
Loss in (	calcine	e wash s	oln	5.0	5.02				
Pregnant	soluti	on		0.2	24 0	.14	5.63	60.4	58.7
Cyanidat:	ion res	sidue		77.6	64 0	.12	5.11	39.6	41.4
Feed <b>(as</b>	say)			100.0	100.00 0		9.60	100.0	100.0
Calcines	(þefor	e washi	ng)		0	.28	11.44		
					·				
Remarks	Addi	ional a	malyses					. 1 0 0	1
	/1 7		Cı					******	1.52
Calcines					······			3.48 6.56	2.43
Cyanidát	10n res	sique	0.1	11 0.0	53 9.3	4 4.	3 <b>.9</b> 7 1	0.00	. 2.43
••••••••••••••••••••••••••••••••••••								· · · ·	

#### - 65 -MINES BRANCH CYANIDATION TEST REPORT

İ

Test No:	0	Samp		DATION					om low ten	n roast
Test By:										
OBJECT (									Composite nc prior f	
								roasting		
				TES	T DA	TA	<u></u>			
		Na CN, lb/ton			Lime lb/ton		Charge :			
Date	Time	Solu	Ition	Sol	Solution			Solids,	g	348
	hr	Added	Titrn	Added	Tit	rn	Water, cc			1000
Apr 13/71	0	6.0		2.0		Dilt		tion (Water	2.9:1	
11 11	2	1.0	1.4	0.6	0.	7				
11 11	7	0.4	1.9	-	0.	8	Nominal Solution Strength,			
Apr 14/71	24		1.8	-	0.	5	<u> </u>	Ib/ton Solution:		
11 11	26	0.2	1.85	. =	0.	5·		Na CN		2.0
11 11	31	<u> </u>	1.8	<u> </u>				Lime		0.5
Apr 15/71	48		1.36		0.	0.4 Reagent Consump				
Total		7.6		2.6		·_	<u>lb/</u>	ton Solids Cyanided:		
							<u> </u>	Na CN		17,9
·								Lime		6.3 400
								cing powe	r	400
				TALLUR	GICAL					
Product					VVT			oz/toń	Distribu	
					21.84		Au	Ag	Au	Ag
Loss in roasting							• 		-	
Loss in calcine wash soln					.0.27 -		-	-		
Pregnant solution					0.46 67.43		166	6.07 7.16	72.1	55.7 44.3
Cyanidation residue						0.095		10.90	100.0	100.0
Feed (assay)* Calcines (before washing)					100.00		30	14.75	100.0	
Garcifics										
			<u></u>	- <u>}</u>			<u></u>			
Remarks:	Addit	ional a	nalyses:	<u>_</u>		Tot	al S	ະ %່ Su	lphide S	%
		ed			<u></u>		4.53	······	~	·····
		lcines	(before	washing	;)		5,05		0.86	
*Had inte	nded a	6-hour	roast b	ut beca	use (	of t	he us	se of a la	rger roas	ting
dish whi	ch gav	ve an in	crease i	n expos	ed s	urfe	ice ai	ea of sul	phides, r	oasting
rate was	faste	er than	anticipa	ted. R	oast	ing	time	was there	efore cut	back to
4 hours.	Othe	er detai	ls of te	est proc	edur	e id	lentic	al to Tea	st 6.	
<u>* Adjuste</u>	d for	dilutio	n effect	of 20	g li	<u>ne t</u>	to cha	rge.		

Test No:	9	Samp	CYANI							om low ten	p roast
Test By:		Sump	·····						te No. 3		, <del>i</del>
OBJECT (		<u> </u>							yanidatic	n as in	
			our, 47. out lime								<del></del>
Tes	<u>t 8, D</u>	ut with		aut							<u></u>
				<u>.</u>	TES	T DA			- <u></u>		<u>.</u>
		Nor CN	Na CN, lb/ton		*****	lb/to		Charge :			, , , , , , , , , , , , , , , , , , ,
Data	Time		Solution		Solution				Solids, g		344
Date	hr	Added	Titrn	Add	deá	Tit	rn	Water, cc		1000	
pr 13/71	0	6.0		2.	2.0			Dilution (Water : Solids)			2.9:1
11 11	2	1.4	1.1	; 0,	0.6		• 7				2.7.1
11, 11	7	0.4	1.9	-			.8	Nomin	al Solution Strength.		· · · · ·
11 11	24	0.2	1.8			0	.5		b/ton Solution:		· ·
11 11	26	-	1.9	-		0	•5.		NaCN		2.0
11 11	31		1.9	-		0	.5		Lime		0.5
pr 15/71	48		1.72				•4 Re		eagent Consumption,		
otal	•	8.0		2.6				Ib/ton Solids Cyanided:		· · · · · · ·	
									Na Cl	N	18.2
•			·			· .	Lime			6.4	
		•	Reduci		ing powe	r	408				
			M	ETAI	LLUR	GICA	LB	ALAN	CE		
and the second second second second second second second second second second second second second second second						Wt		Assays, oz/ton		Distribution, %	
Product					%			Au	Ag	Au -	Ag
Loss in roasting					24.23		0.	005	· _	· -	
Loss in calcine wash soln					7.09		-	-	-	-	••••••••••••••••••••••••••••••••••••••
Pregnant solution						0.41		.17	6.89	70.8	61.0
Cyanidation residue						68.27		.095	6.45	27.1	39.0
Feed (assay)						100.00		.24	11.29	100.0	100.0
Calcines (before washing)								. 31	1.5.45		· ;
	:										
Remarks	Add	itional	analyses	s :			Tota	al S,	% Su	lphide S,	%.
· · · · · · · · · · · · · · · · · · ·	Cal	cines (b	efore w	ashi	ng)			4.30		0.78	
											·.
				•							

.

7