
This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

DEPARTMENT OF ENERGY, MINES AND RESOURCES

OTTAWA

MINES BRANCH INVESTIGATION REPORT IR 73-3

FLOTATION OF COPPER FROM A TALCOSE ORE HARVEY HILL DEPOSIT, LEEDS TOWNSHIP, MEGANTIC COUNTY, QUEBEC

A. STEMEROWICZ AND R. W. BRUCE

by

MINERAL PROCESSING DIVISION

NOTE: THIS REPORT RELATES ESSENTIALLY TO THE SAMPLES AS RECEIVED. THE REPORT AND ANY CORRESPONDENCE CONNECTED THEREWITH SHALL NOT BE USED IN FULL OR IN PART AS PUBLICITY OR ADVERTISING MATTER.

COPY NO. 10

DECEMBER 1972

Mines Branch Investigation Report IR 73-3

FLOTATION OF COPPER FROM A TALCOSE ORE, HARVEY HILL DEPOSIT, LEEDS TOWNSHIP, MEGANTIC COUNTY, QUEBEC

Ъy

A. Stemerowicz* and R. W. Bruce**

_ - - -

SUMMARY OF RESULTS

The talcose ore investigated in the pilot-plant contained 1.44% copper in the form of chalcopyrite, bornite and chalcocite. Flotation at a grind of 51% minus 200 mesh gave a copper concentrate assaying 36.2% copper and 6.9% insolubles with a copper recovery of 96.6%. These results were achieved using Depramin 75 as talc depressant along with small amounts of amyl xanthate as collector and Dowfroth 250 as frother.

* Research Scientist and ** Head, Non-Ferrous Minerals Section, Mineral Processing Division, Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

Direction des mines Rapport d'investigation IR-73-3

-11

FLOTTATION D'UN MINERAI DE CUIVRE À HAUTE TENEUR EN TALC DU GISEMANT D' HARVEY HILL CANTON DE LEEDS, COMTE DE MÉGANTIC, QUÉBEC.

PAR

A. STEMEROWICZ* ET R. W. BRUCE**

RESUME

Les auteurs ont fait une étude en usine-pilote sur un minerai talceux contenant 1.44% de cuivre sous forme de chalcopyrite, de bornite et chalcosine. A la suite d'essais de flottation à un broyage de 51% moins 200 mailles, ils ont pu obtenir un concentré contenant 36.2% de cuivre et 6.9% de matière insoluble avec une récupération en cuivre de 96.6%. Ils ont obtenu de tels resultats en se servant du "Depramin 75" pour déprimer le talc, ainsi que de petites quantités d'amyl xanthate comme collecteur et de "Dowfroth 250" comme moussant.

* Chercheur scientifique et ** Chef de la section des mineraux non-ferreux, Division du traitement des minéraux, Direction des mines, Ministère de l'Energie, des Mines et des Ressources, Ottawa, Canada.

CONTENTS	5
----------	---

CONTENTS	Page
Summary of Results	• i
Introduction	. 1
Location of Property Shipment Nature of Investigation Requested Sampling and Analysis Mineralogical Examination	· 1 · 1 · 1
Bench-Scale Investigation	. 3
Outline of Investigation Evaluation and Discussion of Results Orzan A versus Depramin as Talc Depressant Effect of Fineness of Grind	• 4 • 5
Pilot-Plant Investigation	• 7
Outline of Investigation Evaluation and Discussion of Results Best Results Using Coarse Grind Initial Results Using Fine Grind Effect of Froth Characteristics on Concentrate	8 8 9
Grade Effect of Fineness of Grind Effect of Depramin in Cleaning Lime as Pyrite Depressant Distribution of Insolubles in Various Size	12 12
Fractions of Copper Concentrate	
Conclusions	. 17
Acknowledgements	18
Appendix A, Laboratory Flotation Test Reports	
Abbreviations Used in Flotation Test Reports Screen Analyses of Rougher Tailings from Lab	
Flotation Tests Test 1 - Preliminary test without talc depress- ant and employing a 15-min grind at	
65% solids Test 2 - To try Orzan A as talc depressant, also increased grinding time to 20 min	
increased grinding time to 20 min Test 3 - To try double the amount of Orzan A used in Test 2, also ground for 30 min at	. 3
50% solids	. 4

s

Test 4 - To try Depramin 40 as talc depressant	
Test 4 – To try Depramin 40 as talc depressant	•
along with lime to grinding	
Test 5 - Repeat of Test 4 but with finer grind, more	
lime to grind, and lower xanthate addition	•••• 6
Test 6 - Depramin 40 as talc depressant along with m	uch
lower xanthate additions than used in Tests	
4 and 5	
Test 7 - To try Depramin 75 in place of Depramin 40,	
also decreased grinding time to 12 min	
Test 8 - Repeat of Test 7 but with grinding time	
increased from 12 to 15 min and with a	•
small reduction in xanthate addition	9
Test 9 - Repeat of Test 8 at a 12 min grind, also	
cleaned rougher conc	
Test 10 - Preliminary test on No. 2 sample without	
talc depressant	
Test 11 - Fo determine the effect of the addition of	
Depramin 75 on No. 2 sample	

Page

Appendix B, Pilot-Plant Flotation Test Reports

Test	Run	No.	<u>Flowsheet Used</u>	<u>Remarks</u>
	1 2		No. 1 No. 2	Initial test run 1 2
	3	• • • • •	No. 2	Reduced ball load, put Depramin on
	4	• •	No. 2	cleaners 3 Feed rate increased /
	5	•,	No. 2	to 600 lb/hr 4 Further reduction in
•	6	· .	No. 3	ball charge5 Replaced 65-mesh screen
	7		No. 3	with 35-mesh screen 6 Reduced ball charge from
	8		No. 3 (modi-	700 to 500 lb 7
	0	1	fied)	charge to 400 lb, "on-
	0		27 4	off" xanthate control adopted8
	9		No. 4	Repeat of Run No. 8 but with roughers cut from
				3 to 2 cells

Flowsheets

			•			·
No.	1,	Figure	1	 	 	10
Nó.	2,	Figure	2	 	 	10
No.	3,	Figure	3	 	 	11

-iv-

Test Reports on Batch Cleaning of Pilot-Plant	
Rougher Concentrate Test P-1 - To try Depramin 75 in cleaning	12
Test P-2 - Comparison test for P-1, no Depramin 75 added	13

.

Page

INTRODUCTION

Location of Property

The property which is known as the "Harvey Hill" deposit is located in Leeds Township, Megantic County Quebec, about five miles from Thetford Mines. <u>Shipment</u>

Three shipments of ore were received as follows:

Date	<u>Sample</u>	Weight	Remarks
September 21, 1972 October 2, 1972	No. 1 (high talc) No. 2 (low talc)	64 1b 60 1b	for bench-scale tests
October 12, 1972	Bulk	19.5 tons	for pilot-plant in- vestigations

Nature of Investigation Requested

In a letter of August 29, 1972 from Dr. R. A. Marleau, President, Marval Mines Inc. a pilot-plant investigation was requested on ore from the Harvey Hill deposit. Bench-scale work carried out by Mr. D. A. Livingstone in 1955-56 indicated that, at a coarse grind of 50% minus 200 mesh, the ore could be concentrated by flotation to give a copper concentrate grading 42% copper with a copper recovery of 95% on a 1.5% copper head. As Dr. Marleau planned to put the property into production, he wished to confirm Mr. Livingstone's work in order to establish mill equipment requirements.

Before proceeding with a pilot-plant investigation, it was desirable to carry out some bench-scale tests in order to become familiar with the flotation characteristics of the ore. Two samples were submitted for this purpose, a high-talc sample and a low-talc sample.

Sampling and Analysis

The two small samples were air dried, crushed in stages to minus 10 mesh and riffled into 16 portions. One of the portions was chosen at random as a head sample while the remaining portions made up the charges for batch tests. The large bulk sample was crushed in two stages to about minus $1\frac{1}{2}$ inches and stored in a pile on the receiving floor. During the course of crushing, the crushed ore stream was automatically sampled to give a head sample amounting to about 2% of the weight of the ore. This sample was set aside for possible future reference. The pile of minus $1\frac{1}{2}$ -inch ore was moved once with a front-end loader to ensure thorough mixing. Daily pilot plant requirements were taken from this pile and further crushed to minus 3/8 inch, a suitable size for feeding to the ball mill.

Head sample analyses are given in Table 1 followed by a semiquantitative spectrochemical analysis of Sample No. 2 in Table 2.

TABLE 1

Head Sample Analyses

Samp1e				
	Copper (Cu)	Iron(Fe)	Sulphur (S)	Insolubles (Insol)
No. 1 (high talc)	2.05	5.55	1.42	71.37
No. 2 (low talc)	2.35	4.19	1.15	74.76
Bulk	1.44*		· · · · · · · · · · · · · · · · · · ·	

* Average of feed to 9 pilot-plant test runs which ranged from 1.37 to 1.49 % Cu.

TABLE 2

Semi-Quanitative Spectrochemical Analysis of No. 2 (low-talc) Sample

Range %	Elements
Principal constituents 1.01 to 0.1 0.1 to 0.01 Not detected	Si, Cu, Al Fe, Mg, Ca, Ti, Ba, Cr Ni, Mn, Mo, Zr, V Cd, Be, B, Co, P, Sb, Ge, As W, Pb, Sn, Ga, Nb, Ta, Bi, Li, Sr, Ag

Mineralogical Examination

As previous work had indicated that the copper sulphides were

liberated at a coarse grind, mineralogical examination of the samples was not considered essential to the investigation. In a letter from Mr. Jean Boissonnault, geological consultant for Marval Mines, it was stated that the ore minerals were bornite, chalcocite and chalcopyrite while the gangue minerals consisted of quartz, feldspar, chlorite, sericite, some pyrite, talc and carbonates.

BENCH-SCALE INVESTIGATION

Outline of Investigation

In the initial tests on Sample No. 1 (high talc), it became apparent that satisfactory flotation of the copper sulphides could not be achieved without the use of an effective depressant. Two talc depressants were tried; Orzan A, which is the Crown Zellerbach Corp. trade name for ammonium lignin sulphonate, and Depramin, an anionic polymer sold by Hollimex Products Co. Ltd., # 509, 10201-104 Street, Edmonton 14, Alberta. Two grades of Depramin were tested, viz., Depramin 40 and Depramin 75. For maximum effectiveness it was necessary to feed this reagent in two stages; (1) to a conditioning step before the addition of collector and (2) after the rougher froth had been skimmed for two minutes.

The first test on Sample No. 2 (low-talc) gave satisfactory results without the aid of a talc depressant. Therefore, it only remained to carry out a parallel test employing the talc depressant, Depramin 75, to determine what effect, if any, this reagent had on this type of ore.

In all tests, potassium amyl xanthate was employed as the copper collector along with Dowfroth 250 as the frother. Early in the investigation, the practice was adopted of adding lime to the grind to ensure pyrite depression.

- 3 -

During the course of the investigation, the grind (as measured by the screen analysis of the rougher tailing) was varied from 56 to 79% minus 200 mesh.

The high talc content in the first sample greatly increased the viscosity of the ground pulp such that it was necessary to reduce the density in the lab rod mill from a standard 65% solids to 50% solids to ensure a fluid pulp.

Full details of all tests are given in Appendix A. Evaluation and Discussion of Results

Results achieved on the high-talc sample using Depramin 75 as the depressant for talc (Test 9) are given in Table 3 while the results obtained on the low-talc sample without the aid of a talc depressant (Test 10) are shown in Table 4.

TABLE 3

Product	Wt	Analy	Distn %	
	%	Cu	In s ol	Cu
Copper conc	4.89	43.90	7.36	93.1
Copper recleaner tail	0.16	14.13	54.92	1.0
Copper cleaner tail	1.37	1.11	77.22	0.7
Copper rougher tail	93.58	0.13		5.2
Feed (calcd)	100.00	2.31		100.0
Copper rougher conc	6.42	34.03	23.45	94.8

Results Obtained on High-Talc Sample Using Depramin 75 as Talc Depressant (Test 9)

TABLE 4

	Wt Analysis %		Distn %	
Product	% .	Cu	Insol	Cu
Copper conc	4.36	46.49	5.04	97.4
Copper cleaner tail	1.22	1.35	69.80	0.8
Copper rougher tail	94.42	0.04		1.8
Feed (calcd)	100.00	2.08	19.20	100.0
Copper rougher conc.	5,58	36.62		98.2

Results Obtained on Low-Talc Sample without the Aid of a Talc Depressant (Test 10)

In both of the above tests, a coarse grind was employed; 56% and 59% minus 200 mesh in Tests 9 and 10 respectively. The copper lost in the tailing in Test 9 is higher than that obtained in other tests on the same sample and using similar procedure. For example, in Test 7, at the same grind, the copper content in the tailing was 0.08%. The only difference between the two tests was in the total amount of collector added; 0.0072 lb/ton in Test 9 as against 0.008 lb/ton in Test 7. It is possible that the difference was great enough to affect copper losses in the tailing.

Orzan A versus Depramin as Talc Depressant

Table 5 compares results obtained using Orzan A and Depramin as talc depressants on the high-talc sample.

TABLE 5

Orzan A versus Depramin as Talc Depressant						
		¥.				
Test	Talc Depressant	Сорр	er Rougher	Conc	Tail	
No	lb/ ton	Wt %	% Cu	% Insol	% Cu	
1	None	20.90	*	*	*	
3	Orzan A, 2.32	.10.95	17.91	52.21	0.15	
5	Depramin 40, 0.69	5.72	33.68	17.60	0.09	
8	Depramin 75, 0.69	6.40	34.45	22.68	0.12	

Comparison of Results Orzan A versus Depramin as Talc Depressant

* Products not analyzed.

From the above table it can be seen that Depramin is much superior to Orzan A as a talc depressant. In Test 1 the very high weight of copper rougher concentrate produced is a measure of the excessive amount of talc which floats when a talc depressant is not added.

Initially, Depramin 40 was used as the talc depressant. A switch was made to Depramin 75 afterit was learned that a large enough sample of this grade was on hand to satisfy pilot-plant requirements. Both grades appeared to be equally effective as talc depressants.

Although a talc depressant was not required on the low-talc sample, a relatively small but significant improvement in concentrate grade was obtained when one was employed. Referring to Tests 10 and 11, grade of copper concentrate was improved from 46.49% copper and 5.04% insolubles to 48.11% copper and 3.20% insolubles upon the addition of Depramin 75.

Effect of Fineness of Grind

No significant difference in results was noted as the fineness of grind was varied from 79% to 50% minus 200 mesh.

PILOT-PLANT INVESTIGATION

Outline of Investigation

After the initial test run on October 17, the purpose of which was to fill the grinding and flotation circuits and to observe the flotation behaviour of the sample, 9 test runs were carried out before the supply of ore was exhausted on November 1, 1972.

A feed rate of 500 lb/hr was employed in the first three test runs and this was increased to 600 lb/hr for the remaining test runs. Duration of the test runs ranged from $5\frac{1}{2}$ to $7\frac{1}{4}$ hours. Samples of various products were taken once every $\frac{1}{2}$ hour during the last $1\frac{1}{2}$ to 2 hours of the test run when it was assumed that conditions had stabilized. Sample preparation and analysis were done by Mines Branch personnel on an overtime basis following the completion of each test run.

All concentrates produced in the pilot plant were saved, filtered and stored in drums.

In the initial test run, it immediately became apparent that the bulk sample submitted was of the high-talc variety requiring the use of a talc depressant. Pilot-plant test procedure, therefore, was based on that employed in the batch tests on the high-talc sample but with two important differences:

(1) It was necessary to increase the initial addition of Depramin 75 by 50% (from 0.42 to 0.68 lb/ton) in order to completely depress the talc. (2) Rougher flotation had to be split into two stages with the froth from the second or scavenger stage recirculated to rougher feed whereas in lab batch tests, all of the rougher froth was combined and cleaned to give a finished grade of copper concentrate.

A further departure from batch test procedure was the addition of Depramin to the cleaners. This practice was adopted after cleaning tests on samples of pilot-plant rougher concentrate indicated that the use of Depramin resulted in an appreciable improvement in copper cleaner concentrate grade.

Test runs were conducted at grinds ranging from 49 to 76% minus 200 mesh. A 30-inch-diameter Sweco vibrating screen was used as the classifier. Because of the deceptive ease with which the ore was ground, many reductions in ball load were required in order to coarsen the grind to the desired 50% minus 200 mesh (ball load was reduced in 4 steps from an initial 1100 lb to 400 lb).

Detailed test procedure, metallurgical balances and pilot-plant flowsheets are given in Appendix B.

Evaluation and Discussion of Results

Best Results Using Coarse Grind

The best results obtained at a coarse grind of 51% minus 200 mesh are given below in Table 6.

- 8 -

TABLE 6

Product	Wt		alysis		Distn %	
	%	Cu	Insol	Ag	Cu	Ag
Copper Conc*	3.79	36.22	6.86	6.27	96.6	77.9
Final tailing	96.21	0.05		0.07	3.4	22.1
Feed (calc)	100.00	1.42		0,30	100.0	100.0
Copper rougher conc.		34.23	9.14			
lst stage Cu cleaner conc		35.49	6.70			

Best Results Obtained at a Coarse Grind (Test Run No.9)

* Additional analyses, Fe: 23.21%, S: 30.01%

As can be seen from the above table, excellent results can be obtained on this ore at a coarse grind and using Depramin 75 as talc depressant. In fact, selectivity between the sulphides and gangue minerals was so good in the roughers that the rougher concentrate (34.23% Cu, 9.14% Insol) could be taken as the final concentrate.

Note that the grade of copper concentrate is not as high as that obtained in batch tests although the insolubles content is in the same range. This would indicate that the proportion of bornite and chalcocite in the pilot-plant bulk sample is lower than in the smaller samples submitted for batch tests.

Initial Results Using Fine Grind

Excellent results were immediately obtained at a fine grind (71^{-to} 75% minus 200 mesh) in the early part of the investigation in Test Runs 2 and 3. Copper concentrates produced in these two test runs assayed 39.0% and 35.6% copper with copper recoveries of 98.1% and 96.7% respectively. Therefore, it appeared that it only remained to coarsen the grind to 50% minus 200 mesh, conduct a few test runs at this grind, and then the investigation could be brought to a successful conclusion. This, however, was not the case. Not only did it require many reductions in ball load to achieve the desired coarse grind but, starting with Test Run No. 4, copper concentrate grade began to deteriorate and it was not until the final test run (No. 9) that copper concentrate grade was on a par with that obtained in Test Runs 2 and 3.

Effect of Froth Characteristics on Concentrate Grade

The deterioration in concentrate grade was related to froth characteristics in the rougher cells. It was found that a "loose" freeflowing, voluminous froth resulted in a high content of insolubles in the copper rougher concentrate. This was because there was much more bubble surface area available than was required for sulphide attachment with the result that the extra space was taken up by talc particles and mica flakes. The "loose" froth condition was caused primarily by the addition to the first rougher of an insufficient amount of xanthate. By increasing the xanthate addition, the froth characteristics could be modified to give a "tight" well-mineralized froth. With this type of froth there was a considerable reduction in froth volume which resulted in all the available space on the bubble surfaces being occupied by copper sulphides which "crowded" out the less floatable gangue particles. If, however, a slight excess of xanthate was added the froth bed would be transformed into a thin layer of heavily-mineralized scum which could not be separated from the pulp.

It was possible by careful adjustment of xanthate feed rate to

- 10 -

obtain a well-mineralized but free-flowing froth in the roughers but this condition could not be maintained during the duration of the sampling period. Usually after about half an hour or so of steady operation, the froth would either become too loose or too scummy. In an attempt to overcome this problem an "on-off" method of controlling xanthate feed rate was adopted. This practice, which was successfully employed in Test Run No. 9, consisted of keeping a careful watch on froth conditions in the roughers. At the first sign that the froth was becoming scummy, the xanthate feeder was shut off for 1 or 2 minutes in order to "loosen" the froth. If, on the other hand, the froth showed signs of becoming too loose and free-flowing, an extra addition of xanthate (5 to 10 cc) was made manually in order to "tighten" the froth.

It is believed that the difficulty in maintaining the desired froth characteristics in the pilot plant was related to the scale of operation. For instance, the rate at which the rougher froth was being formed in the rougher cells was sufficient to give an intermittent froth overflow only (cells overflowing about half the time). Any disturbance, such as sampling of the recirculated scavenger concentrate, which involved cutting off all of the flow for one minute would be enough at times to "tighten" the froth, preventing overflow and resulting in a transformation to a "scummy" condition.

The fineness of the grind also had an effect on maintenance of the desired froth characteristics. When a fine grind was employed, the more finely-ground sulphides would have a greatly increased surface area requiring a much greater bubble area for attachment thus making the achievement of a well-mineralized froth a lot less difficult. This is, perhaps, one of the reasons the problem of froth characteristics did not manifest

- 11 -

itself in the early part of the investigation when a fine grind was being employed.

Generally, the character of the froth is an important factor in all types of sulphide flotation but is especially critical for this ore because of the ready floatability of talc and mica.

Effect of Fineness of Grind

Loss of copper in the tailing was constant at 0.05% to 0.06% throughout the investigation indicating that the coarsest grind employed (49% minus 200 mesh) was adequate for essentially complete liberation of the sulphides from the gangue. Other than its effect on froth characteristics noted above, the fineness of grind in the range employed did not have any significant effect on concentrate grade.

As a screen was used for classification the sulphides in the ground ore were coarser than would be the case for classification with a mechanical classifier or cyclone. This is because the latter two devices classify by gravity and not by particle size as does the screen. Gravity classification results in the concentration of the larger sulphide particles in the underflow fraction and subsequent overgrinding.

Effect of Depramin in Cleaning

Table 7 compares results of batch cleaning tests, with and without the addition of Depramin 75, on pilot-plant rougher concentrates produced in Test Run No. 1. Included in the comparison are the cleaning circuit results for Test Run No. 1

- 12 -

TABLE 7

Test No.	Remarks	Product	Wt	Analy	ysis %	Distn	72	Sep**
			%	Cu	Inso1	Cu	Insol	Eff.%
Pilot Plant Test Run No.1	No reagents added	Cleaner conc	69.45	20.00	46.69	99.4	.58.9	40.5
		Cleaner tail	30.55	0.26	74.19	0.6	41.1	
		Feed (calcd)	100.00	13.97	55.09	100.0	100.0	
Batch Test No. P-1	11 11 11	Cleaner conc	66.46	20.54	45.72	96.5	56.0	40.5
		Cleaner tail	33.54	1.47	71.06	3.5	44.0	
		Feed (calcd)	100.00	14.14	54.22	100.0	100.0	
Batch Test No. P-2	0.93 1b/ton* Depramin 75	Cleaner conc	48.01	30.00	29.62	97.2	25.7	71.5
	added.	Cleaner tail	51.99	0.79	79.00	2.8	74.3	
		Feed (calcd)	100.00	14.81	55.29	100.0	100.0	

Comparison of Results for Batch Cleaning Tests on Pilot-Plant Copper Rougher Concentrate

* Per ton of cleaner feed

** Separation efficiency, % copper recovered minus % insolubles recovered in cleaner concentrate.

As can be seen from the above comparison the addition of Depramin 75 to the copper cleaner in Batch Test P-2 resulted in a substantial increase in concentrate grade. For this reason, the practice was adopted of feeding Depramin to the copper cleaner starting with Test Run No. 3, but at only about half the feed rate (0.40 to 0.55 lb per ton of cleaner feed). Whether or not Depramin was beneficial in the pilot plant at this level is open to question but, judging from the difficulty experienced in upgrading the rougher concentrate, it would appear that this

Lime as Pyrite Depressant

It was not possible by iron analysis to determine the effectiveness of lime as a pyrite depressant but when the final tailing was run over a Wilfley table a pyrite streak was visible indicating that it was being depressed. Whether or not it was possible to obtain satisfactory results without the addition of lime was not determined.

Distribution of Insolubles in Various Size Fractions of Copper Concentrate

Tables 8 and 9 give the distribution of copper and insolubles in various size fractions of low-grade copper concentrate from Test Run No. 7 and high-grade copper concentrate from Test Run No. 9 respectively.

TABLE 8

		· · · · · · · · · · · · · · · · · · ·			
Tyler Mesh Size	Wt	Anal	ysis %	Dist	rib ut ion %
· · · ·	. %	Cu	Insol	Cu	Insol
+65	4.5	28.92	19.64	4.4	4.0
+100	9.4	32.50	14.34	10.2	6.1
+150	14.6	34.82	13.48	17.1	8.9
+ 200	16.6	30.78	18.18	17.1	13.7
+ 325	16.7	29.76	21.44	16.7	16.3
- 325	38,2	26.93	29.38	34.5	51.0
Total	100.0	29.81	22.02	100.0	100.0

Distribution of Insolubles in Various Size Fractions of Low-Grade Copper Concentrate from Test Run No.7

TABLE	9
-------	---

Tyler Mesh Size	Wt	Analys	sis %	Distr	lbution %
	%	Cu	Insol	Cu	Insol
+65	11.5	32.71	11.14	10.4	17.0
+100	15.1	35.63	7.88	14.8	15.8
+150	15.4	36.80	6.00	15.6	12.3
+ 200	14.8	38.67	4.30	15.7	8.5
+325	13.7	38.67	4. 20	14.6	7.6
_325	29.5	35.63	9.90	28.9	38.8
Total	100.0	36.22	7.53	100.0	100.0

Distribution of Insolubles in Various Size Fractions of High-Grade Copper Concentrate from Test Run No. 9

From the above tables, it can be seen that the intermediate size fractions have the lowest insolubles content, whereas the coarsest fractions and the minus 325 mesh fraction contain the highest amount of insolubles. The size fractions were not submitted for mineralogical examination but, by visual examination, it can be seen that the coarse fractions are contaminated by mica flakes. Presumably, the insoluble content in the minus 325-mesh fraction is due to talc.

The grinding characteristics of this high-talc ore are unusual in that the gangue minerals are preferentially ground finer than the sulphides. Generally, for other types of sulphide ores the opposite is true. Table 10 gives a comparison of screen analyses of the ground ore (screen undersize) and copper concentrate for Test Runs 7 and 9.

TABLE 10

Test		Tyler Mesh Size										
Run No.	Product	+65	+100	+150	+200	+325	-325	-200				
7	Screen u'size(feed)	10.0	.9.2	10.9	13.1	14.5	42.3	56.8				
	Copper conc	4. 5.	9.4	14.6	16.6	16.7	38.2	54.9				
9	Screen u'size(feed)	.15.1	11.2	10.8	12.0	12.4	38.5	50.9				
	Copper conc	11.5	15.1	15.4	14.8	13.7	29.5	43.2				

Comparison of Screen Analyses of Screen Undersize and Concentrate

Flotation Capacity

The flotation capacity employed in Test Run No. 9 (Flowsheet No. 4) is given in Table 11.

TABLE 11

Flotation Capacity Employed in Test Run No. 9 (Flowsheet No. 4)

Operation	Units		Contact time	Density % Sol
		per ton	min*	% 301 :
Conditioning	1- No. 7 Denver cells @ 0.87 cu ft	0.12	21/2	35
Rougher Flotation	2- " " " " " " "	0.24	5	35
Scavenger Flotation	5- " " " " " " " "	0.60	12	35
lst Stage Cleaner	4-No. 5 Denver cells @ 0.23 cu ft	0.13	19	12
2nd Stage Cleaner	3 " " " " " " " "	0.10	12	10

*Calculations based on assumed S.G. of 2.8 for feed to rougher and scavenger flotation and S.G. of 4.0 for cleaner feed.

The pulp contact time of 17 minutes in the rougher and scavengers corresponds to a skimming time of 5 minutes in lab batch tests and appears to be a reasonable figure for a full-scale plant. An increase of about 25% in flotation capacity to about 1 cu ft/ton treated might be warranted to take care of a higher copper head.

Note that in Test Run No. 9 the third scavenger cell tailing assayed 0.08%. It thus required 2 additional cells or a 40% increase in flotation capacity to reduce the tailing to its final value of 0.05% copper. This is equivalent to the recovery of an additional 0.6 lb of copper per ton treated and on this basis it would appear that the additional flotation capacity required to achieve the lower tailing is economically justified.

The first-stage cleaner cell capacity employed in the pilot plant, viz., 0.13 cu ft/ton treated, is in the range used in full-scale flotation plants. As is evident from the results obtained in Test Run No. 9, a second stage of cleaning is not required.

CONCLUSIONS

Despite the high talc content, a high-grade copper concentrate with excellent recovery can be produced from this ore at a coarse grind of 50% minus 200 mesh. This confirms the results obtained by Mr. Livingstone in work carried out in 1955-56.

The key to success in treating the high-talc ore was the effectiveness of Depramin 75 as a talc depressant along with the maintenance of a heavily mineralized but free-flowing rougher froth. Because froth characteristics are so important it is recommended that an air-injected type of flotation cell be employed in the full-scale plant. This will allow for much closer control over froth characteristics.

As was mentioned previously, the high-talc ore was found extremely easy to grind and therefore grinding costs should be very low.

- 17 -

No attempt was made to measure power consumption for grinding because, from previous experience, it had been found that there was no significant difference between the power consumed by the pilot-plant ball mill when it was running empty and with the feed on. The talc in the ore affects the viscosity of the pulp such that, for pulp densities beyond about 60% solids, the pulp ceases to become fluid. Because of this limitation, ball mill capacity would be reduced, but this should be more than offset by the ease with which the ore can be ground.

The grade of the copper concentrate that can be produced from this ore will vary, depending on the chalcocite-bornite to chalcopyrite ratio in the mill feed. As this ratio increases so will the grade of the final copper concentrate.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the assistance of members of the staff of the Metallic Minerals Mill, Mineral Processing Division, who, under the direction of Mr. A. J. Boisonnault, set up the pilot-plant equipment and assisted in its operation.

They also wish to thank the following members of the Analytical Chemistry Subdivision of the Mineral Sciences Division: Messrs J. Cloutier, D. Cumming, B. Kobus, P. Lanthier and A. Letendre who, under the direction of Mr. J. C. Hole, carried out the chemical analyses; Mr. J. Graham who did the fire assaying for gold and silver; and Mr. D. P. Polombo who did the semi-quantitative spectrochemical analysis.

-18-

APPENDIX A

LABORATORY FLOTATION TEST REPORTS

Abbreviations Used in Flotation Test Reports

1 -

RM	Rod mill								
BM	Ball mill								
Xan	Potassium ethyl xanthate								
DF, DF 250	Dowfroth 250 - Dow Chemical Co. frother								
Orz A	Orzan A, Crown Zellerbach, trade name for ammonium lignin sulphonate								
Dep	Depramin, trade name for talc depressant sold by Hollimex Products Co. Ltd.,, Edmonton, Alberta								
ro	rougher								
scav	scavenger								
c1	cleaner								
conc	concentrate								
flot	flotation								

Screen Analyses of Rougher Tailings from Lab Flotation Tests

Test No.	Grinding	% Solids	Tyler Mesh Size, Wt %							
	Time, min		+65	+100	+150	+200	+325	-325	-200	
4 (No.1 Sple)	20	50	0.3	2.5	8.7	19.5	24.6	44.4	69.0	
5 " " "	30	<u>50</u>	0.2	1.1	4.8	15.1	24.4	54.4	78.8	
7 " " "	12	50	1.2	7.9	16.5	18.6	18.8	37.0	55.8	
8 " " "	15	50	0.7	4.6	13.1	20.0	19.7	41.9	61.6	
11 (No.2 Sple)	12	50	1.0	7.6	15.4	16.7	17.6	41.7	59.3	

APPENDIX B

PILOT-PLANT FLOTATION TEST REPORTS

		PILOT	-PLA		NES B	-1- IRANCH ION TI		REPO	DRT			
Test Run No:	1		Flows	heet N	o; 1		Fe	ed Rat	e: 500 (lb/hc	our	
Date: Octobe	r 18,	1972		Tir	ne Oper	ated: 🤉	9:00	a.m.	- 3 : 30 j	p•m•		
Ore: Marval	Mines	Inc.		Sa	mpling	Period:	1:30) - 3:	30 p.m.			
OBJECT OF	TEST	RUN:	Initia	al tes	trun	based o	on pr	ocedu	re deve	lopec	l in	
lab batch t	ests.											
Ball charge	: 110	0 1Ъ										· · · · · · · · · · · · · · · · · · ·
			 			<u></u>						
											· · · · · · · · · · · · · · · · · · ·	
	/	AVERAG	E CON	DITION	IS DUR	ING SA	MPLI	NG PE	RIOD			•
Point		Reag	ents -	lb/fon	Ore Tr	reated			- •		%	
Of Addition	Lime	Dep	Xan	DF					Product		Sol	рН
Ball mill	2.0	_рер	<u>, nan</u>					B.M	• disch		55	
Condit-1	2.0	0.68							t feed		35	10.3
No.1 rocel	·	0.00	0031	0.061					aner fe			19.6
No.2 " "	·:	·		0.022		<u> </u>	<u>}</u>		aner ta:		5	1.9.0
Condit-2		0.18	•00J1	0.022					aner La.	L. L.	<u> </u>	
No.3ro cell		0.10	•0039	0 030					········	••••••••••••••••••••••••••••••••••••••		· · ·
No.5 " "	ž		•0032	0.030					<u> </u>			
110.5			•00.52			·			<u></u>	••••		
						·				· ·		-
	Screen	Analys	sis		+65m	/ +100m	+150	m +20	0m +325	im-32	5m -	200m
Screen unde					0.5		/		8 16			C
Dercen ande	10126		M	ETALL		L BAL			<u>• 0 - 1 L U</u>	<u>1</u>		and the second
		Wt	•	A	nalysis	%	1		Distribu	tion .	%	<u></u>
Produc)†	%	Cu	Ins				Cu				
Cu conc		6.9						96.8	<u> </u>		-j-	
Final tail		93.0						3.2	· · · · · · · · · · · · · · · · · · ·			· <u>·····</u> ·
Feed (calcd)	100.0			· · · · ·			.00.0				
Cu ro conc		<u> </u>		7 55.	09						╡	
Cu cl tail		1	0.2							<u>.</u>		<u> </u>
			-									
			·		<u> </u>							
		<u> </u>					·					
		1		-								
Remarks: _S	tarted	with	, 0.41 1	.b/ton	Depran	nin to	No.	1 Cond	lit (amo	ount	used	in
lab tests)												
increase De												

		-2-		
	MINES	BRAN	ICH	
PILOT-PLANT	FLOT/	ATION	TEST	REPORT

		PILOT	- PLA	NT FI		ION TI	EST	REPO	\mathbb{R}^{1}			
Test Run No:	2		Flows	heet No	b: 2		Fe	ed Rat	e: 5	00 lb/	hour	
Date: Oct	ober 1	.9, 197	2	Tin	ne Oper	ated: 9	: 15 e	m	3:	30 p.m	•	
Ore:Marval	Mines	Inc.		Sar	npling	Period:	1:30) - 3:	30	p.m.		
OBJECT OF	TEST	RUN:	Made f	ollow:	ing ch	anges	to in	nprove	ro	ugher	conc g	rade:
(1) Convert	ed las	t 4 ro	ugher	cells	to sc	avenge	rs wi	th sc	av	conc r	eturne	d to
No. 1 rough	er cel	.1 (2)	Switcl	ned Dep	oramin	from 1	No. 3	to N	.	2 roug	her ce	11
and allowed	l froth	from	this c	cell to	o over	flow.	Also	swit	che	d copp	er cle	aner
tail from w	vaste t	o No.	1 roug	ther co	ell.							
AVERAGE CONDITIONS DURING SAMPLING PERIOD												
Point		Reag	ents -	lb/fon	Ore Tr	reated				_	%	
Of Addition	Lime	Dep	Xan	DF					Product So			рН
Ball Mill	1.22							B.M	• d	isch	50	
Conditioner		0.68						Flo	t f	eed	32	9.5
No.lro cell			.0012	0.057			ļ	Cle	ane	r feed	6	8.8
No.2" "		0.16					<u> </u>					
No.3" "			.0019	0.021								
No.l scav c	11		.0035	0.030	<u>.</u>							
No.3 " "			•0034									_
<u>Cleaner</u> .				ļ		ļ	<u> </u>				<u>·</u>	
feed				0.011								_
							ļ					
	Screen	Analys	sis		+65m	+100m	-			+325m		
<u>Screen unde</u>	rsize				0.5	4.3	7.8		2	15.3	59.9	75.2
		1	N/ 1		<u></u>	L BAL	ANCE		<u></u>		- 0/	
Produc	â	Wt %	Cu		alysis	70		Gu		stributio	70	
Cu conc		3.7	-					98.1				
Final tail		96.2						1.9				
Feed (calcd		100.0						100.0				
Cu ro conc			36.4		59							
Cu scav con	C			.0 56.0			Ξŕ		Ì			
Cu cleaner	tail	1	22.0						Ē			
		1					<u> </u>					
	î.u.a	1										
		1	1						<u>}</u>			<i>*// · · · · · · · · · · · · · · · · · · </i>
Remarks: _{Fo}	und it	diffi	cult t	0 reoi	late :	xantha	te fa	ed ra	Lee	to re	uohere	in
order to ob												
this was ac				······			fu					
Contraction of the later of the							1					

-3-MINES BRANCH PILOT-PLANT FLOTATION TEST REPORT

a	•	PILOT	- PLA	NT FI	LOTAT	ION T	EST	REP	ORT			وي المراجع ا
Test Run No:	3		Flows	heet No	o; 3		Fe	eed Ra	te: 500	1 b/h	our	
Date: Octob	er 23,	1972		Tin	ne Oper	ated:	9 :1 5	a.m.	- 3:30	p.m.		
Ore: Marval	. Mines	s Inc.	<u>;</u> ,	Sar	mpling	Period:	1:	30 -	3:30 p.n	1.	· ·	
OBJECT OF	TEST	RUN: 1	o try	a coa	rser g	rind b	y.re	ducin	g ball c	harg	e by	200
1b - other	condit	ions a	us in p	revio	us tes	t run	exce	pt th	at Depra	min	75 wa	1ș
fed to clea	iner (1	lab tes	sts had	l indi	cated	that i	ts a	dditi	on was h	penef	icial	L).
· · · · ·					4 <u>.</u>					:		
									• • •			
		AVERAG	BE CON	DITION	S DUR	ING SA	MPLI	NG P	ERIOD			
Point		Réag	ents -	lb/ton	Ore Tr	eated				•	%	
Of Addition	Lime	Дер	Xan	DF	·				Product		Sol	pH
Ball Mill	1.11							. ₿.1	M. discl	1.	56	
Conditioner		0.68	, .				<u> </u>	F1	ot feed	· . · .	-34	9.3
No.1 ro cel	1		.0031	0.057				C1	eaner fe	ed	14	8.6
No+2 " "		0.13						C1	eaner ta	111	4	
No.3 " "			.0021	0.021			·					
No.lscav ce	11		•0035	0.030			, , ,			· ·	·	
No•3 " ,"	<u> </u>		•0032.	<u> </u>		ļ	· .				ļ	
Cleaner fee	1	0.017		0.017		<u> </u>		··		ļ		
,				1					<u> </u>			<u></u>
			1 1				Ļ					
	Screen	Analys	sis		+65m	+100m	+150)m +2	00m +32	5m-32	25m -	-200m
Screen unde	rsize				0.5	5.5	9.8		<u>2</u> <u>1</u> 4.6	56	.4 7	1.0
	, .		M			L BAL	ANCE					<u>.</u>
Produc	: t	Wt %			alysis	%			Distrib	ution	% 	
		<u> </u>	<u> </u>	Ins				Cu		. 	<u> </u>	
Cu conc		4.00	÷		4		<u> </u>	96.7			<u>.</u>	· · · · · ·
Final tail		96.00			_	. <u>ven</u>		3.3				
Feed (calcd)	100.00						100.0	- <i></i>			
Cu ro conc	······	<u> </u>		3 12.54	4							
<u>Cu ro tail</u>		<u> </u>	0.17							·		
Cu scav con	•			<u>68.66</u>	5					<u> </u>	<u>. </u>	
Cu cleaner	tail	 	16.03	· ·								
		 ·			[·]				· [
		<u> </u>		,:	<u> </u>							
Remarks:				• •	<u>.</u>				~* ·	· · ·		
			·				•	<u> </u>			· · ·	· · · · · ·
			· · ·									

MINES BRANCH PILOT-PLANT FLOTATION TEST REPORT

		PILOT	-PLA	NT FI	_OTAT	ION TI		REPOR			الالمتين ومدار
Test Run No:	4		Flows	heet No	b: 2		Fee	d Rate:	600 lb	/hour	
Date: Octo	ber 24	, 1972		Tin	ne Oper	ated: 8			4:00 p.		
Ore: Marval	Mines	Inc.		Sar	npling	Period:	2:30	- 4:0) p.m.		
OBJECT OF			To try	a fee	ed rate	e of 60	0 lb/	hour a	s a mea	ns of	
coarsening	grind	(the r	educti	on in	ball d	harge	in Te	st Run	No. 3	did no	t give
the desired	resul	t).									
		AVERAG	BE CON	DITION	S DUR	ING SA	MPLIN	G PERI	DD		
Point		Reag	ents -	lb/fon	Ore Tr	eated				%	
Of Addition								- P	roduct	Sol	pН
Lime		Dep	Xan	DF		 					
Ball Mill	1.32							B.M.	· · · · · · · · · · · · · · · · · · ·	51	
<u>Conditioner</u>		0.57				<u> </u>		Flot		33	
<u>No.l rocel</u>			<u>.0022</u>	0.046	\				er feed		
<u>No.2 ""</u>		0.15						Clean	er tail	·	<u>;</u>
No.3 ""			•0026	0.020							
No.l scav			0010	0.010		<u> </u>					
cell			.0018	0.013			[<u> </u>	
No.3 "											_
Cleaner			0001	0.000		<u> </u>					
feed			.0031	0.009					11705	705	
		Analys	515		+65m				n +325m		-200m
<u>Screen unde</u>	rsize	•	NG	FTALL		5.9 L BALA	7.1	13.2	19.4	03.9	13.5
	1997 - F.	1 14/1	1		alysis		1100		stributi	on %	
Produc	2î	Wt %		Inso		70		1			
0			Cu	5 1 5.2				Cu 96.6		••••••	
Cu conc Final tail		4. 53 95.47			<u> </u>			3.4			
Final Call Feed (calcd		100.00						100.0			
Cu ro conc		100.00	28.72					100.0			
Cu ro tail			0.11					<u></u>			
Cu scav con			2.06		3						
Cu cleaner			2.60		<u></u>						
			2.00	<u></u>	_				`		
Remarks: Bu		J			<u> </u>					broks	detar
								ففسيستوج عريب برايي وراية ويتنا	screen		
at 1:30 p.m					μρ σ u t		JLACI	on reed	tor af		> 11111.
Held off sa	mpling	ς τιll	2:30	∪• m •							

MINES BRANCH PILOT-PLANT FLOTATION TEST REPORT

		PILOI				ION T		_				
Test Run No:	5		Flows	heet No					600 11		ïr	•
Date: Octobe	r 25,	1972		Tin	ne Oper	ated:	9 : 15 a	a.m	3:30 p	• m •		
Ore: Marval	Mines	Inc.		Sar	npling	Period:	2:00) - 3:	<u>30 p.m.</u>			
OBJECT OF	TEST	RUN:	To try	7 an ac	lditio	nal ree	ductio	on in	ball ch	arge	of.	
200 lb in a	nother	attem	pt to	coarse	en gri	nd (in	crease	e in f	eed rate	e fr	5m 5	00
to 600 lb/h	r did	not ha	ve any	7 effe	ct on	grind)	•					
; ;	:			· ·			· · · · · · · · · · · · · · · · · · ·		, 			
		AVERAG	BE CON	DITION	S DUR	ING SA	MPLIN	IG PEF				
Point		Reag	ents -	lb/fon	Ore Tr	eated	· .		-		%	1
Of Addition	Lime	Dep	Xan,	DF			-		Product S			pH
Ball mill	0.88					· · ·		в.М.	disch		51	
Conditioner		0.57		·	· .		• .	Flot	feed	<u>.</u>	33	9.9
No.1 ro cell	-		•0034	0.037		ļ	<u> </u>	Clea	ner fee	d	12	8.9
No.2 " "		0.15				<u> </u>		Clea	ner tai	<u>i</u>	· 3	
No.3 " "			•0 01 8	0.020								
No.1 scav						·					··.	
cell	•		.0018	0.013		ļ				·		<u> </u>
No.3 "	<u></u>		.0031								•	ļ
Cleaner							ļ.			·		
feed		0.022		0.013	<u> </u>		ļ	<u> </u>			·.	<u> </u>
	Screen	n Analys	sis 🗌	ala ta ta ta ta ta ta ta	+65m	+100m	+150r	n +200	0m +325n	1-325	<u>5m -</u>	200m
Screen unde	rsize				1.7	6.4	9.6	12.0	19.8	50	5 7	0.3
			M			L BAL					-	
Produc	t .	Wt %	ļ		alysis	%	·		Distribut	ion %	6 	
			Cu	Insc	>1			Cu				
Cu conc			5 33.25		72 .	<u>· </u>		96.1	· · · ·	,		
Final tail		95.75	_					3.9	·			· .
Feed (calcd)	100.00						100.0			-	
Cu ro conc		i	28.75		+0				·			
<u>Cu ro tail</u>			0.16		·		<u> </u>					
Cu scav con		<u> </u>	.2.60	· · · ·	50	<u>·</u>			· · · · · ·	· ·		
Cu cleaner	tail	· · ·	4.56	<u>'-</u>								
												<u></u>
Domertic'		<u> </u>	<u></u>		<u> </u>		<u> </u>				<u>;</u>	
Remarks: _{Ba}												
<u>- 11:30 a.m</u> ting load o) p.m.	<u>A 1</u> 6	arge i	ncrease	in (irc	ula-
CTUE LUAU O	n scre		eu at	enu 01	. run.			_				

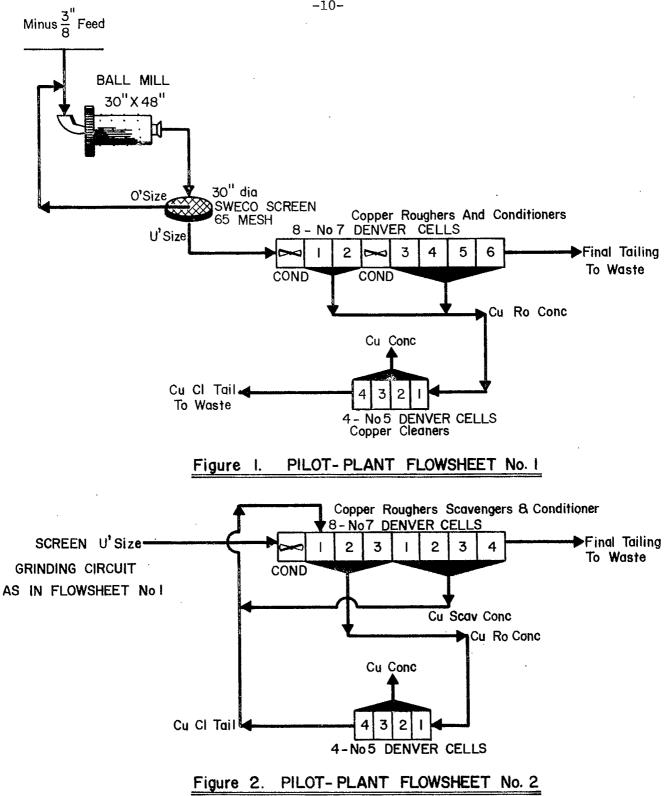
-6-MINES BRANCH PILOT-PLANT FLOTATION TEST REPORT

Test Run No: 6	Flowsheet No: 3	Feed Rate: 600 1b/hour							
Date: October 26, 1972	Time Operated:	Time Operated: 9:45 a.m 3:30 p.m.							
Ore: Marval Mines Inc. Sampling Period: 2:00 - 3:30 p.m.									
OBJECT OF TEST RUN: To try 30 mesh screen cloth on Sweco screen in place									
of 65 mesh cloth in a fu	urther attempt to coar	csen grind (the 65 mesh cloth							
had been installed in er	ror for 50 mesh cloth	n). Also added second stage of							
cleaners to improve concentrate grade.									

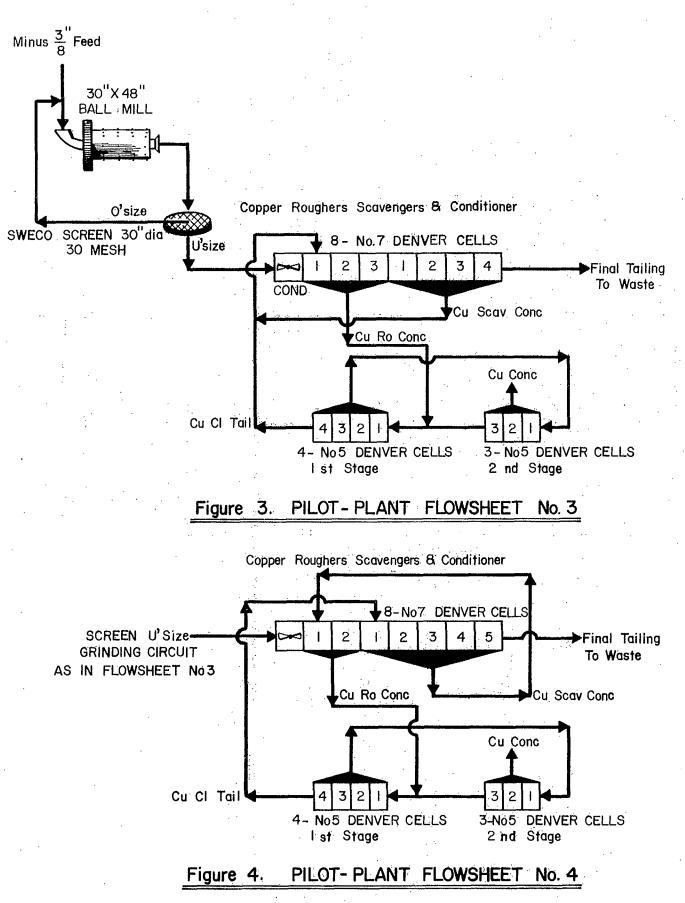
		AVERAGE	E CON		S DUR	ING SA	MPLIN	G PEF	RIOD			
Point		Reage	ints -	lb/ťon	Ore Tr	eated				1		1
Of Addition	Lime	Dep	Xan	DF					Produc	T	So	.3 65.6
Ball Mil l	0.79							B.M.	discl	<u>1</u>	50)
Conditioner		0.57						Flot	feed		32	9.8
No.lro cell			0030	0.037				No.1	cl fe	eed	12	9.2
No.2""		0.15						'n	" tá	ail	2	2.
No.3""		•	0018	0.020				No.2	cl fe	eed	11	
No.lscav												
cell			0021	0.011				No.2	cl ta	ail	1	
No.3 "			0031					<u> </u>				
Cleaner												
feed		0.022		0.016			ļ					
Screen Analysis +65m +100m +150m +200m +325m-								-325m	-200m			
<u>Screen unde</u>	rsize				7.1	7.0		10.	3 15	3	50.3	65.6
			M	ETALL	JRGICA	L BALA	ANCE					
Produc	•	Wt		Ar	nalysis %				Distrib	outio	n %	
		%	Cu	Insc	1			Cu				
Cu conc		4.22	33.5	0 12.0	0			96.1				
Final tail		95.78	0.0	6				3.9				
Feed (calcd)	100.00	1.4	7			1	00.0				
Cu ro conc]	25.9	0 29.1	.5							
Cu ro tail			0.1	6								
lst stage C	u cl											
conc			29.3	6 22.0	3							
<u>и и с</u>	<u>l tail</u>		5.0	0								
2nd stage C	<u>u cl</u>											
tai1			17.5	0								
Remarks: _{Du}	ring s	ampling			per ro	ugher	froth	was	not ai	iite	as v	ve11-
mineralized												
								فللمد ومعاديتها والم				

•	,	PILOT	-PLAN		NES B			REP	ORT	•	•		
Test Run No:	7		Flowsh	eet No	5. ·3		F	eed Ra	le:	600	1b/1	our	
Date: Octo	ber 27	, 1972		Tin	ne Oper	ated: 9	:30	a.m.	- 3	:30 p	•m•		, i
Ore: Marval	Mines	Inc.		Sar	mpling	Period:	2:0	0 - 3	:30	p.m.			· .
OBJECT OF	TEST	RUN: T	o try a	furt	her re	ductio	on in	ı ball	ch	arge	of 2	00 1	b
(total char	ge dow	n to 5	00 1bs)	in a	. conti	nuing	atte	empt t	o c	oarse	n gr	ind.	
Also increa	sed De	pramin	75 on	condi	tioner	from	0.57	' to 0	.68	1b/t	on.		
												•	
<u> </u>	· · ·	AVERAG	E CONE		S DUR	ING SA	MPLI	NG PE	RIO	D			
Point		Reag	ents – It	o/fon	Ore Tr	eated	•	[· · · · ·		%	1
Of Addition	Lime	Dep	Xan	DF					Pro	oduct	·	Sol	рH
Ball Mill	0.75			, 				B•M	• d	isch		50	
Conditioner		0.68						F1o	t f	eed	•	35	10.0
No.1ro cell			.0035 0	.037				No.	1 c	1 fee	d	11	9.3
No•2 '' ''	1	0.15				50 <u>10 - 5</u> - 5 5 - 2		11	11	tai	1	2	1. ¹ . 1 . 1
No•3 " "			.0018 0	.012				No.	No.2 cl feed			.10	
No.lscavcel	1		.0021 0	.011				, 11	" " tail			2	
No.3""			.0031	· · ·									
Cleaner					,				·				
feed	· .	0.022	o	.016									-
:				;		,	<u> </u>						
	Screen	Andlys	is		+65m	+100m	+150)m +2()0m	+325	n <mark>-32</mark>	5m -	200m
Screen unde	rsize				10.0) 13.	1	14.5	42.	3 5	6.8
			ME		JRGICAL		ANCE						
Produc	:†	Wt		An	alysis '	%			Dis	tribu	tion	%	
		%	Cu	Insc	1			Cu	Ļ			<u> </u>	
Cu conc		4.3	1 30.43	21.1	.6		<u> </u>	95.8	<u> .</u>				1.
Final tail		95.6	9 0.06					4.2				_	:
Feed (calcd)	100.0	0 1.37					100.0	<u> </u>				
<u>Cu ro conc</u>		<u> </u>	24.10	32.9	0	·	· · ·		<u> </u>				
<u>Cu ro tail</u>			0.11				· 		<u> </u>				
<u>1st stage C</u>	<u>u cl</u>	ļ							 				·
conc		ļ	30.43	18.2	8				 	<u> </u>			
11 11 11	<u>tail</u>		2.62				<u>.</u>		<u> </u>		·		· ·
2nd stage C	<u>u cl</u>	<u> </u>	· · ·	·			·		<u> </u>	<u> </u>			
tail		<u> </u>	8.76										
Remarks: Fo	und it	diffi	cult to	obta	in des	ired f	roth	1 - al	teri	nated	bet	ween	
"gummed up"	ànd 1	ight "	cunaway ^ı	" fro	th con	dition	L •						
	·. ·												

MINES BRANCH PILOT-PLANT FLOTATION TEST REPOR


	-0		
	MINES B	DANML	
	MINCO DI	ANON	
PILOT-PLANT	FL OTATI	ON TEST	REPORT
		on icoi	ner on i

Test Run No:	8			heet No	Distant Dist						600 11	b/hou	c I
Date: Octo	ber 31	, 1972		Tim	ne Oper	ated	: 9	:00 E	m	3:	30 p.r	n.	
Ore; Marva	1 Mines	s Inc.		Sar	npling	Peri	bd:	2:00	- 3:3	0 p	•m•		
OBJECT OF	TEST I	RUN: T	o try	for a	grind	of	app	rox 5	50% mi	nus	200 r	nesh 1	by
reducing ba	11 char	rge fr	om 500) 1b tc	400	1b.	A1	SO SW	vitche	d f	irst :	stage	
cleaner tai	ling f	rom he	ad of	roughe	ers to	hea	id o	f sca	venge	ers	to al	low fo	or
better frot	h cont	rol in	rough	ners.	*Exce	pt f	or	dispo	sitic	on o	f clea	aner	
tailing as	noted a	above.											
	4	VERAG	E CON	DITION	S DUF	NG	SAI	MPLIN	IG PEI	RIOD) 		
Point		Reag	ents -	lb/fon	Ore T	reate	ed			Dree	4	%	1
Of Addition	Lime	Dep	Xan	DF							duct	So	j pH
Ball Mill	0.75								в.м.	di	sch	51	
Conditioner		0.68		ļ					Flot	: fe	ed	32	10.2
No.lro cell			•0028	0.037	 				No.1	<u>c1</u>	feed	10	9.2
No.2 " "		0.15		<u> </u>					11	11	tail	2	_
No•3 " "			.0018	0.010					No.2	2 cl	feed	14	
No.lscav cel	.1		.0021	0.011		<u> </u>				11	tail	- 1	
No.3" "			.0031	<u> </u>									
<u>Cleaner</u>												· .	
feed		0.022		0.016									
		A			1.05					0-1	1705-	705-	 -200m
		Analys	515		15.1		*****						49.3
<u>Screen unde</u>	rsize		M	ETALL					2 12	<u>4 l</u>	11.5	57.0	<u>H9.J</u>
		Wt	1		nalysis			1		Dist	tributi	on %	
Produc	> †	%	Cu						Cu				
Cu conc		4.0	-	79 14.2	1		}		195.9	<u> </u>			
Final tail		95.9	4 0.0	06					4.1		1		
Feed (calcd)	100.0	0 1.3	39					100.0				
Cu ro conc			26.5	50 27.	58			·					
Cu ro tail			0.1	16									
No.2scav ce	11 tai	<u> </u>	0.0	08									
lst stage C	u clco	nc	30.5	51 17.	18			<u> </u>					
" " "tail 2.39							ļ						
2nd stage Cu cl													
tail			6.9	94									
Remarks: _{Ma}	naged	to kee	ep a we	e 11-mi	nerali	.zed	fro	oth o	n firs	st t	wo ro	ugher	s by
"on-off" xa													
third rough	er low	ered r	ougher	r conce	entrat	e g	rade	•					


-8--

· .		. 0		
	· · ·	MINES BRAN	ICH	
	PILOT-PLANT	FLOTATION	TEST	REPORT
_				

Test Run No:	9		Flows	heet No	5 . 4			F	eed	Rat	e: 6	00 11	o/hc	ur	
Date: Novem	ber 1,	1972		Tin	ne Ope	rate	d: 9:					and the second se			
Ore: Marval	Mines	Inc.	:	Sar	npling	Per	iod :	1:	00	- 3	:00	p.m.			
OBJECT OF			Repea	tof					***				ugl	ers	
decreased f	rom 3	to 2 c										•		· · ·	
												· ;		·	
			, , , , , , , , , , , , , , , , , , ,												
				•											
		AVERAG	E CON	DITION	S DUF	RINĢ	SA	MPL	ING	PE	RIOD				
Point		Reag	ents -	lb/ton	Ore T	reat	ed							%	
Of Addition	Lime	Dep .	Xan	DF			:			Product			Sol	рН	
Ball Mill	0.84			· 						B.M.	di	sch		53	
Conditioner		0.68	·			ľ				Flot	t fe	ed		35	10.4
No.1ro cell		•	.0018	0.039	10		,			1st	c1	feed			9.6
No.2""	•	0.15						.			· ·	- ,			
No.1scav ce	11	l Ç	.0019	0.011					•				• •		
No.2""			.0019	,			•	•		•		• •	·.	• .	
<u>No.4 '' ''</u>			.0029	0.012		Ĺ	· .								
<u>lst cl feed</u>		0.022		0.015											
											· · ·				
	· · · ·		;												
	Screen	Analys	is		+65m	+10	00m	+150)m	+2.0	Om -	-325m	-32	5m -	200m
Screen unde	rsize				15.1	11	•2	10	.8	12.	0	12.4	38	•5	<u>50:9</u>
	-		M	ETALLI	JRGICA	LE	BALA	NCE					-		
Produc	ŧ	Wt		An	alysis	%		•	;		Dist	ributi	oné	%	
	•	%	Cu	Insc	1 Ag			<u> </u>	Cu		Ag				
Cu conc		3.79	36.2	2 6.8	6 6.	27			9	6.6	77	9	. :		
Final tail		96.29	0.0	5	0.	07				3.4	22	.1	. <u>.</u>		
Feed (calcd)	100.00	0 1.4	2	0.	30	,		10	0.0	100.	0			
Cu ro conc			34.2	3 9.1	4										
Cu ro tail			0.5	4											
Cu scav con	c <u>.</u>		6.7	2 62.6	0										
No.3 scav ce	ell ta	i1	0.0	В				· ·					, a rester (-
lst stage Cu	ıcl c	onc ·	35.49	9 6.7	0								• • •		`.
''''' Ci	1 " t	ail	3.7	5							. 7/2		-dit (-		
2nd stage Cu	ıcl t	ail	11.20										- ,,,,, ,,		
	·····	d "on-o		· · · · · · · · · · · · · · · · · · ·	on xa	antl	nate	fed	l t	o fi	rst	roug	her	ce1	_ ,,
as in Test H															

MI	NES	BRA	NCH	, 071	tawa
D	rawn	J.D.	Macl	_eod	
D	ate :	17/11/7	72.	,	

-11-

TEST NO. P-1 S	AMPL	E: M	arval	Pilo	t-Plant	t copper	roughe	er cond	2			DA	TE Oct	ober 18	, 1972
OBJECT OF TEST:												CH.	ARGE:	539 g	
					clean:	ing			<u></u>			TES	STED B	Y: A.S.	
OPERATION	T	ime	%	pH	ι ι	Jnit				Reag	ents. Io	per ton			
OFERATION		min	Solid	s pri		used	Dep 75	,							
Conditioning	1	-	12		1000	D-g cell	0.93								
Cleaning	2	2													
				ļ			<u> </u>								
							ļ								
						·····									
								· · · · ·							
				+											
				1		·									
	<u>-</u>	w-	r II	1		ANAL	YSIS	<u>~</u> %			1	DISTR	IBUTIO	N %	
PRODUCT		%		Cu	Insol						Cu	Insol			
						i			· ·			25.7			
Copper cleaner conc	:	48.	01 3	0.00	29.62						97.2				
" " tail	-	51.	99	0.79	79.00						2.8	74.3	L		
Feed (calcd)		100.	00 1	4.81	55.29						100.0	100.0			
	:]		
											<u> </u>	<u> </u>	<u> </u>	l	
REMARKS:															

- 12 -

TEST NO. P-2 SAMP	LE: Mai	rval P	ilot-	Plant	copper	roughe	r conc						ber 18,	1972
	in cut											ARGE:		
Comp	<u>arison</u>	test	<u>fòr P</u>	<u>-1, nc</u>	Depran	<u>nin 75</u>	<u>added</u>					STED B	Y: A.S.	
OPERÀTION	Time	%	pН		nit	· .			Reag	gents. Ib	per ton			
	min 🖇	Solids			sed									
Cleaning	2	12		1000-	g cell									
					<u></u>									_
·						}			<u> </u>					
							 	·	· · · ·	<u> </u>				
						· · · · · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·				· <u> </u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>							
· · · · · · · · · · · · · · · · · · ·		<u>.</u>												
		<u></u>			·····	<u> </u>								
					<u></u>	1	· .	· ·		· · · · ·				
				-	<u>-</u>						[·	· .		
	l wi	÷			ANAI	YSIS	%				DISTR	BUTIO	N %	
PRODUCT	%	C	u	Insol					• •	Cu	Insol			
Copper cleaner conc	66.4	46 20	54	45.76			• .			96.5	56.0		:	
" " tail	33.	. 11	· · · ·	71.06		· · ·				3.5	44.0			
Feed (calcd)	•	00 14		54.22			· · · · · · · · · · · · · · · · · · ·		-	100.0	100.0		·`	
Feed (Calcu)			• 1 4	54.22				<u></u>			100.0			
							· ·							
							-							· * ·
										1 · ·				
											· ·			
												l		
							_	_						
REMARKS:												\ \		

-13 -

TEST NO. 1	SAMP	LE:	Marva	l Mine	s No. 1							DATE	: Sep	t. 25,	1972
OBJECT OF TEST:	Prel	iminaı	ry test	t with	out talc depr	essant	and er	nploying	; a			CHAR	GE:	1729 g	
			ind at			· · · · · · · · · · · · · · · · · · ·						TEST	ED B	Y: A.S	•
OPERATION		Time	%	рН	Unit				Reag	ents, It	or t	ton			
		min	Solids	P1.	used	Xan	DF250								
Grinding		15	65		7 x 14 RM										
Conditioning		5	32	8.4	1000-g cell	0.023									
Copper rougher															
Stage 1		1 2					0.023								
2					····-	0.023									_
" 3		2				0.023	0.023								
															_
				· • • • •											
				· · · · · · · · ·											
						<u> </u>									
	L		- II							l				1	
PRODUCT		%	12			YSIS (% 					TRIB		N %	
											_				
Copper rougher cond	с	20.	09												
Copper rougher tail Feed	ling	79.													
Feed		100.	00												
			.												
• •												ŗ			
							-								
									<u> </u>						
REMARKS: At 65%	% solid	ls rod	mill	ע מוות	ery viscous -	- would	- I not f	low from							
Excess	sive an	nounts	of ta	lc flo	ated, therefo	ore tes	st prod	ucts not	=⊥y. Lassa	yed.					
					-		-		-			-			

		Marval									DATE	Sep	t. 25,	1972
OBJECT OF TEST: To t	ry Or	zan A a	is tal	c depressant.,	also	increa	sed				CHAR	GE:	1729 g	
grin	ding t	time to	> 20 m	in		·			<u> </u>		TEST	ED B	Y: A.S.	
OPERATION	Time	%	pН	Unit				Rea	gents,	lb per	ton			
		Solids		used	Orz A	Xan	DF2 ⁵⁰							
Grinding	20	65		7 x 14 RM										
Conditioning - 1			8.4	1000-g ce11_	1.16								·	
Copper rougher	1				ļ	0.023	0.023							ļ
Stage 1	1 ₂											ļ		· · ·
						0.023						ļ		ļ
" 3	1	·	· · · · · · · · · · · · · · · · · · ·											
	<u></u>			·		.0.023	0.023							· · · ·
	······	· · · · ·	- · · _ · _ ·			· · · ·								·
		· ·										·		
														+
													· · · · ·	÷
PRODUCT	W			ANAL	YSIS	%			1	DIS	TRIB	JTION	, J %	1
	%	6								1	-	:		·····
Copper rougher conc	14	73			· · · · ·									
Copper rougher tailing	85.									•				
Feed	100.		· [
	•	<u> </u>		А. С. С.										
												1	1	
· .														
				· · ·										
													•	
				· · · .										
													· · .	Į
			•••••									-		
					<u> </u>						<u> </u>		<u> </u>	
REMARKS: Tal _c depress Test product	ed in	stages	s 1 an	d 2 but came	up pro	fuselv	upon a	additid	on of 1	reagent	ts in	stage	2	
Test product	s not	assaye	eđ.	•		'	1			ugenti		JLage	J.,	
								× .						

÷

BJECT OF TEST: To				s No.		·						1		-	, 1972
							in Te	st 2,				CHA	RGE:	1729	g
als	o grour	nd tor	: 30 m	in at	50% soli	ds						··	ED B	Y: A.S	•
OPERATION	Time	%	рН		Jnit			·	Reag	jents, I	o per	ton			
	min	Solid	s	<u>ا</u>	Ised	Orz A	Xan	DF250							
Grinding	30	50		7 x	14 RM								- · · ·		
Conditioning - 1	2	32	8.4	1000	-g cell	2.32						1	-		1
- 2	1	<u> </u>					0.023	0.023							
Copper rougher															
Stage 1	1														
"2	14						0.023						1		
" 3	1/2						0.023								
Copper scavenger	1							0.023							
		<u> </u>													
	W.	τ			ANAL	YSIS	%			1	DI	STRIE		N %	
PRODUCT	9/	6	Cu	Insol					}	Cu	1				
Copper rougher conc		••32 3		29.20						70.4	.				
copper scavenger conc		.63		67.20						23.3					
opper scavenger tail		1.05		· · · · · · · · · · · · · · · · · · ·						6.3					
eed (calcd)	1 100	.00	2.09					ļ		100.0					
opper rougher + scav conc	10	.95 1	7 01	52.21											
cone			/.91	52.2I						93.7					
· .															
	<u>H</u>	<u> </u>			1	<u> </u>		l:		<u> </u>		<u> </u>			
EMARKS: Good tale d	lepress	ion i	n copp	er rou	igher bu	t talc	came u	up in so	cavenge	r upon	add	ition	of fro	other.	

TEST NO. 4 SAMP	LE:	Marva	al Mir	nes No	. 1		·					1	E: Sep	t. 26,	1972
OBJECT OF TEST: To t	ry Dep	ramin	40 as	s talc	depress	ant al	ong wi	th					RGE:	1729	
	to gr			· · · · · ·	• 	·					·	TES	TED B	Y: A.S	•
	Time	%	рН	Ι. ι	Init				Rea	gents,	lb per	· ton			
OPERATION	min	Solids	рп	์ น	sed	Lime	Dep40	Xan	DF250					·	
Grinding	20	50				1.16									·
Conditioning-1	2	32	9.9	1000	-g_cell		0.46	0.029	0.046						
" -2	1														
Copper rougher															· .
Stage 1	1								1				•		
" 2	1				-				0.046	· .		<u> </u>			
Conditioning	1				· · · · · · · · · · · · · · · · · · ·		0.23	`							
Copper rougher												· . ·			
Stage 3	2					ļ	· · ·	<u> </u>				-			
					· ·	· · ·					· · ·	<u>_</u>			
· · · · · · · · · · · · · · · · · · ·												ļ		·	
	•		<u>.</u>		·			L		· · · · ·		Ŀ			
	TW	- -			ANAL	YSIS	%				D	ISTRI	BUTIO	N %	
PRODUCT	%		Cu	Insol	•				· .	Cı	1 IT	usol			
												· ·			
Copper rougher conc				42.34						98.		5.5		•	
Copper rougher tailing	91.			72.18				· · · ·		1		94.5			<u> </u>
Feed (calcd)	100.	00 2	2.85	69.50		1	. •			100.	0 10	0.0			
					·				· ·					· .	
					•									•	
						· ·		· · ·							
	1								1.						
										· · ·		. 1			
												54 A.		•	
	.						•								
								<u> </u>			<u></u>			· · · · · · · · · · · · · · · · · · ·	
REMARKS: Much improve														rt,	1
effervescent			nd. I	alc ca	ame up	quickl	y at e	nd of	2nd ro ı	igher,	there	efore	adde d		1
additional D	eprami	n 40.													

ុរ 'ហ

- •

.

٠

.

TEST NO. 5 SAME	PLE:	Marval	Mines	No. 1							DAT	TE: Se	pt. 26,	1972
OBJECT OF TEST: Rep	eat of	Test	4 but	with finer gr	rind, n	nore li	me to	the gr	ind		CHA	RGE:	1729 g	
and	lower	xanth	ate ad	ldition.							TES	TED B	Y: A.S	•
OPERATION	Time	%		Unit	<u> </u>			Rea	gents,	lb per	ton			
OPERATION	min	Solids	рН	used	Lime	Dep 40	Xan	DF 250					1	
Grinding	30	50		7 x 14 RM	1.74			1						
Conditioning - 1	2	32	10.7	1000-g cell		0.46					1			
- 2	1						0.014	0.023						
Copper rougher														
1	1/2													
2	1/2							0.023						
3	1/2					1		0.023						
Conditioning	1					0.23								
Copper rougher						ļ								
Stage 4	2													
										· · · · · · ·		_		
				<u> </u>										
PRODUCT	W	11		ANAL	YSIS	%				DI	STRI	BUTIO	N %	
FROBUET	9	6 C	u I	nsol					Cu	Ir	nsol			
Copper rougher conc	5	.72 3	3.68	17.60			1	1	95	8	1.5			
Copper rougher tailing				71.20							98.5			
Feed (calcd)				68.13					100		0.00			
					1									
			1											
			<u> </u>				<u> </u>	1	- 11					l
REMARKS: Reduction	in xan	thate	did no	t alleviate g	gummy f	Eroth c	onditi	lon.						

- 6 -

•

...

an a

So 30 7 × 14 Ki 1.10	TEST NO. 6 SAMP	LE: Ma	irval	Mines	s No.	1							DAT	TE: Se	pt. 26,	1972
OPERATION Time min % Solids pH Unit used Reagents, ib per ton Jrinding 30 50 7 x 14 RM 1.16 D250 Image: constraint of the period Conditioning - 1 2 32 10.0 1000-g cell 0.46 Image: constraint of the period Image: constraint of the period " -2 1 Image: constraint of the period 0.006 0.023 Image: constraint of the period									lower				CHA	RGE:	1729 g	
DFERATION min Solids PT used Lime Dep40 Xan DF250 Image: Constraint of the state of the s	xanth	ate add	lition	is tha	in use	ed in Te	sts 4 a	and 5.					TES	TED E	Y: A.S	• .
min Solids used Line Dep40 Xan DF250 Image: Constraint of the second		Time	%		1 · · · ·	Jnit	•			Rea	gents,	lb per	ton			
Jonditioning - 1 2 32 10.0 1000-g cell 0.46 "-2 1 0.006 0.023 1 Copper rougher 1 0.006 0.023 1 "2 1 0.003 1 1 "2 1 0.023 1 1 "2 1 0.003 1 1 Conditioning 1 0.23 0.023 1 Conditioning 1 0.23 0.023 1 Copper rougher 1 1 1 1 Stage 3 2 1 1 1 Copper scavenger 1 1 1 1 PRODUCT WT ANALYSIS % DISTRIBUTION % Copper scavenger conc 6.86 33.68 26.40 Copper scavenger conc 0.85 1.46 84.24 Copper scavenger conc 0.85 1.46 Opper rougher conc 0.85 1.46 84.24 Copper scavenger conc 0.85 1.46 Opper rougher conc 0.85 1.46 Copper scavenger conc 0.85 1.46 Opper rougher conc 0.92 0.04 Copper rougher conc 0.	OPERATION	min S	olids	рп		used	Lime	Dep40	Xan	DF250						
Conditioning - 1 2 32 10.0 1000-g cell 0.46	Grinding	30	50		7 x	14 RM	1.16									
" - 2 1 0.006 0.023 0.023 Stage 1 1 0.003 0.003 0.003 " 2 1 0.003 0.023 0.023 Copper rougher 0.003 0.023 0.023 0.023 Copper rougher 0.23 0.023 0.023 0.023 Stage 3 2 0.023 0.023 0.023 Stage 3 2 0.023 0.023 0.023 Stage 3 2 0.023 0.023 0.023 Copper scavenger 1 0.23 0.023 0.023 PRODUCT WT X X X V X X X X PRODUCT WT X X X V X X X X Copper scavenger conc 6.86 33.68 26.40 0.5 0.5 Copper scavenger conc 0.85 1.46 84.24 0.5 1.0 2.6 Copper scavenger conc 0.85 1.46 84.24 0.5 1.0 <t< td=""><td>Conditioning - 1</td><td>2</td><td>32</td><td>10.0</td><td></td><td></td><td></td><td>0.46</td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Conditioning - 1	2	32	10.0				0.46								
Stage 1 1 1 0.003 0.003 " 2 1 0.003 0.023 0.023 Conditioning 1 0.23 0.023 0.023 Copper rougher 0.23 0.023 0.023 0.023 Stage 3 2 0.023 0.023 0.023 Copper scavenger 1 0.23 0.023 0.023 PRODUCT WT ANALYSIS % DISTRIBUTION % Cu Insol Cu Insol 0.5 1.0 Copper scavenger conc 6.86 33.68 26.40 97.9 2.6 0.5 Copper scavenger conc 0.85 1.46 84.24 0.5 1.0 0.5 Copper scavenger tail 92.29 0.04 73.26 1.6 96.4 96.4 Ced (calcd) 100.00 2.36 70.14 100.0 100.0 100.0 Copper ro + scav conc 7.71 30.13 32.77 98.4 3.6 97.9	" - 2	1		· · · · · · · · · · · · · · · · · · ·			1		0.006	0.023						
" 2 1 0.003 1 Conditioning 1 0.23 0.023 1 Copper rougher 0.23 0.023 1 1 Stage 3 2 1 1 1 1 Copper scavenger 1 1 1 1 1 1 PRODUCT WT ANALYSIS % DISTRIBUTION % Copper rougher conc 6.86 33.68 26.40 97.9 2.6 Copper scavenger conc 0.85 1.46 84.24 0.5 1.0 Copper scavenger tail 92.29 0.04 73.26 1.6 96.4 Ced (calcd) 100.00 2.36 70.14 100.0 100.0 100.0	Copper rougher											•				
Z I 0.003 0.003 Conditioning 1 0.23 0.023 0.023 Copper rougher 0.23 0.023 0.023 0.023 Stage 3 2 0 0 0 Copper scavenger 1 0 0 0 PRODUCT WT ANALYSIS % DISTRIBUTION % Cu Insol 0 0 Copper scavenger conc 6.86 33.68 26.40 97.9 2.6 Copper scavenger conc 0.85 1.46 84.24 0.5 1.0 Copper scavenger tail 92.29 0.04 73.26 1.6 96.4 Copper ro + scav conc 7.71 30.13 32.77 98.4 3.6	Stage 1	1			1											+
Conditioning 1 0.23 0.023 1 1 Copper rougher 5tage 3 2 0	<u>"2</u>	1							0.003		· ·					+
Stage 3 2 2 3 2 3 </td <td>Conditioning</td> <td>1</td> <td></td>	Conditioning	1														
Copper scavenger 1 ANALYSIS % DISTRIBUTION % PRODUCT WT ANALYSIS % DISTRIBUTION % Cu Insol Cu Insol Cu Copper rougher conc 6.86 33.68 26.40 97.9 2.6 Copper scavenger conc 0.85 1.46 84.24 0.5 1.0 Copper scavenger tail 92.29 0.04 73.26 1.6 96.4 Geed (calcd) 100.00 2.36 70.14 100.0 100.0 100.0						• •	·									
WT ANALYSIS % DISTRIBUTION % PRODUCT WT ANALYSIS % DISTRIBUTION % Copper rougher conc 6.86 33.68 26.40 97.9 2.6 Copper scavenger conc 0.85 1.46 84.24 0.5 1.0 Copper scavenger tail 92.29 0.04 73.26 1.6 96.4 Copper ro + scav conc 7.71 30.13 32.77 98.4 3.6													. •			
% Cu Insol In	Copper scavenger	1			· .		·									
% Cu Insol In	· · · · · · · · · · · · · · · · · · ·				<u> </u>											
% Cu Insol In			[<u> </u>	·								
% Cu Insol Cu Insol Cu Insol	PRODUCT	.[1				ANAL	.YSIS	%			1	DI	STRI	BUTIO	N. %	
Copper scavenger conc 0.85 1.46 84.24 0.5 1.0 Copper scavenger tail 92.29 0.04 73.26 1.6 96.4 Seed (calcd) 100.00 2.36 70.14 100.0 100.0 Copper ro + scav conc 7.71 30.13 32.77 98.4 3.6		%		u I	nsol						Cu	In	sol			
Copper scavenger conc 0.85 1.46 84.24 0.5 1.0 Copper scavenger tail 92.29 0.04 73.26 1.6 96.4 Seed (calcd) 100.00 2.36 70.14 100.0 100.0 Copper ro + scav conc 7.71 30.13 32.77 98.4 3.6	Copper rougher conc	6.8	6 33.	68 2	6.40			• .			97	0	26			
Copper scavenger tail 92.29 0.04 73.26 1.6 96.4 Feed (calcd) 100.00 2.36 70.14 100.0 100.0 Copper ro + scav conc 7.71 30.13 32.77 98.4 3.6	Copper scavenger conc						4	· .							•. •	
Copper ro + scav conc 7.71 30.13 32.77 98.4 3.6	Copper scavenger tail	92.2	9 0.	04 7	3.26											
Lopper rougher tailing 93.14 0.05		11			2.77						11			-		
	Copper rougher tailing	93.1	4 0.	05							2.	.1 9	7.4			
	•						· .	•				· .			• • •	
					•											
								•								
	- · · ·											·				
													ľ			· .
																· .
	· · · · · · · · · · · · · · · · · · ·															
REMARKS. The year low wanthate additions reculted in a lighter more valuations from the	REMARKS The very lar	won the	+0 04			avited -	in n 14	ahtar								
REMARKS: The very low xanthate additions resulted in a lighter, more voluminous froth in contrast to the gummy froth obtained in Tests 4 and 5.	contrast to	the orm	nv fr	oth o	us ce htain	ed in Ta	u a ll sete A	and 5	more	VOLUMI	aous II	otn 1	п			
Concrase to the Bunny rioth obtained in rests 4 and 5,	Concrast to	che gui	y 1	UCII U	o cain	TH TC		and J.			· .					

TEST NO. 7 SAMP	LE: 1	farval	Mines	No. 1										. 2, 19	72
					e of De		40, a	lso				CHAF	RGE:	1729 g	
dec	reased	d grind	ling t	ime to	12 min							TEST	ED B	Y: A.S	
	Time	%			nit				Rea	gents,	lb per	- ton			
OPERATION		Solids	рH		ed	Lime	Dep75	Xan	DF250						
Grinding	12	50				1.16									
Conditioning - 1	2	32	10.2				0.46						1		
" - 2	1						1	0.006	0.023						
Copper rougher															
Stage 1	1								0.012						
··· 2	1								0.012						
Conditioning	1						0.23						ļ		
Copper rougher												<u> </u>			
Stage 3	1								0.006						
4	1					L		0.0014							
	1														
		<u> </u>	<u> </u>		<u> </u>			l					<u> </u>		
PRODUCT	W				ANAL	YSIS	%			1	D	ISTRIE	UTIO	N %	
FROBUCT	9	6	Cu	Inso1			- <u></u>	· .		Cu	<u> </u>				
											_				
Copper rougher conc				28.38					1	96.			ļ		
Copper rougher tail			2.28							100.					
Feed (calcd)		.00	2.20					1		1 100.					
								-							
REMARKS: Gummy, we	<u> </u>	oralia	od fr	oth oht	ained d	legnite	<u> </u>	anthat	e addi	tion.					
Guilly, we	TT-01711	ELALLZ	cu il		arnea c	COPIC	- TO ** 2								
•															

TEST NO. 8 SAMP	LE:	Marval	Mine	s No.	1		•				DAT	E: Oct	. 2, 1	972
OBJECT OF TEST: Repea	at of	Test 7	, but	with	grindin	g time	increa	ased fr	rom		СНА	RGE: 1	729 g	
12 te	5 15 m	in and	with	a sma	all redu	ction :	in xant	hate a	addition	1	TES	TED BY	: A.S.	
	Time	%		ί ι	Jnit				Reag	gents, Ib	per ton	· .		
OPERATION	min	Solids	рН	1 .	sed	Lime	Dep75	Xan	DF 250				1	Ţ
Grinding	15	50	10.2			1.16								1
Conditioning - 1	2	32		1000-	g cell		0.46							
" - 2	1							0.003	0.023					·
Copper rougher														
Stage 1	1	· .				ļ							<u></u>	
" 2	<u> </u>	••		· · ·		ļ			0.006	· · · · · · · · · · · · · · · · · · ·				
Conditioning	1					1	0.23							!
Stage 3	<u>l</u>					ļ		0.001			<u>_</u>		<u> </u>	
	<u> 1 </u>			·		<u> </u>			4 0.006					_ _ !
5	1		·	· ·		· · · · · · · · · · · · · · · · · · ·	ļ	0.001	4	·				+
			. <u>.</u>	·			ļ							
		1											<u> </u>	
PRODUCT	W	l				YSIS	%					BUTION	<u>%</u>	
	.%	• <u> </u>	u	Insol						Cu	Insol			
Copper rougher conc	6	.40 34	. 45	22.68				•.		95.2				
Copper rougher tail		.60 0		22.00					• •	4.8				
Feed (calcd)			. 32							100.0				
								18.L.						.
					· · · .								·	
													•	
	1					1	•	· · · .						
		- 11 [*]							- ·					
•														
]				
REMARKS: Louis vonth		di + i	2000	1+0-1-			noth t		i •	- 1 - 7				,
REMARKS: Lower xantha	ice ad	ατιτομ	resu	rrea 1	n a rigi	ater I	LOTH TH	ian was	s obtair	ned in Te	est /.			

TEST NO. 9 SAMPI	_E: 1	Marval	Mines	No. 1							DAT	E: 0	ct. 2, 1	1972
OBJECT OF TEST: Repeat	t of ?	Test 8	at a	12 min grind,	also	cleaned	d roughe	er conc	2		СНА	RGE:	2x1729	g
-							Ũ						Y: A.S	
	Time	%		Unit		<u>.</u>		Reag	ents,	lb per	ton	<u> </u>		
OPERATION		Solids	pН	used	Lime	DF250					1		1	
Grinding	12	50			1.16									
Copper rougher - as in Te											+			
Copper cleaners										· · · · · ·		1		
No. 1	2 ¹ 2		9.2	500-g cell		0.009*								
No. 2	$1^{\frac{1}{2}}$		8.6	250-g cell		0.006*								
												_		
					l						<u> </u>	<u> </u>		
PRODUCT	w	· · · · · · · · · · · · · · · · · · ·		ANAL	YSIS	%	······		1	D	STRI	BUTIO	N %	
	%		Cu	Insol					Cu					
Copper conc	4.	89 4:	3.90	7.36		-			93	.1				
Copper cleaner tail No. 2	2 0.	16 14							11	.0				
i'' '' No. I		11	L.11 7	7.22					11	.7				
Copper rougher tailing		21).13							•2				
Feed (calcd)	100.		2.31						100					
1st stage copper cl conc		05 42 42 34	4.03 2						94 94					
Copper rougher conc	0.	42 34	+.03 2	5.45					94	• •				
							1							
		11		<u> </u>		ah a c	1		11 mh = -					
REMARKS: Two batches	grou	ia and	TLOAT	ed separately	- rou	igner co	mcentra	ales CC	MID IN	20 IO	CT65	ming.		İ
														1

TEST NO. 10 SAMP	PLE:	Marval	Mines	s No. 2						DATE: 0				
OBJECT OF TEST: Preliminary test on No. 2 sample without talc depressant										CHARGE: 2 x 1729 g				
										TESTED BY: A.S.				
OPERATION	Time	%	рН	Unit	Reagents, Ib per ton									
- OF ERATION	min	Solids		used	Lime	Xan	DF 250							
Grinding	12	50		7 x 14 RM	1.16									
Conditioning	1	32	10.0	1000-g cell		0.003	0.023							
Copper rougher														
Stage 1	1/2			8										
" 2	1	-				0.003								
" 3	1/2						0.012							
¹¹ 4	1					0.003		·						
" -5	1					0.003								
" 6	1				· · · ·	0.003		. ·						
Copper cleaner	2			500-g cell		1	0.003							
			1	<u> </u>										
PRODUCT	W	11	ANAL		YSIS %		4		ISTRIBUTION %					
	%	ά	Cu I	inso1			1		Cu	· ·		· · ·		
Copper conc	4	.36 46		5.04						······				
Copper cleaner tail		.22 1		9.80					97.4					
Copper rougher tail		.42 0							1.8					
Feed (calcd)	91	.00 2	,						100.0					
Copper rougher conc		.58 36		9.20		·			98.2					
										1				
ŗ.														
		-												
			•											
						•								
REMARKS: Det 1							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
Bright, cle	ean fr	oth ob	tained	l - no talc in	evide	ence.								
Two batches	s grou	na and	IIOat	ed separately	-rou	igner d	concenti	rațes	combined fo	or cleaning	•			
								·····						

MINES BRANCH FLOTATION TEST REPORT

TEST NO. 11 SAMPLE: Marval Mines No. 2									DAT	DATE: Oct. 4, 1972			
OBJECT OF TEST: To determine the effect of the addition of Depramin 75									CHAI	CHARGE: 2 x 1729 g			
On	No. 2 san	mple							TESTED BY: A.S.				
OPERATION		% p'H	Unit	Reagents. Ib per ton									
	min So	olids	used		Dep 75	Xan	DF 250						
Grinding	12	50	7 x 14 RM	1.16								1	
Conditioning - 1	2	32 10.	0 1000-g cell		0.46								
Conditioning - 2	1			ļ		0.003	0.023						
Copper rougher										_			
Stage 1	1												
<u> </u>	1						0.012						
Conditioning	1				0.23								
Copper rougher	<u> </u>												
Stage 3	$\left \begin{array}{c} 1 \\ 1 \end{array} \right $					0.003							
4	1						0.006						
	$\frac{1}{2^{\frac{1}{2}}}$		500-g cell			0.003	0.003						
Copper cleaner	1 - 1		1	<u> </u>			0.003			<u> </u>			
PRODUCT	WT	 		YSIS %			DISTRIBUTION %						
	%	Cu	Insol					Cu					
Copper conc	4.14	48.11	3.20					97.2					
Copper cleaner tail		0.90	73.60					0.7					
Copper rougher tail		0.045						2.1					
Feed (calcd)		2.05						100.0					
Copper rougher conc	5.04	4 39.80	15.77					97.9					
									ļ				
									:				
		· ·											
							Ī						
REMARKS: No percent							1	1		l			
REMARKS: No perceptible difference in appearance of froth over that obtained in Test 10. Two batches ground and floated separately - rougher concentrates combined for cleaning.													
ground and	tloated	separate	Ly - rougher c	oncent	rates	combin	ea ror	cieaning.					
	****											}	

- 12 -