

CANADA

DEPARTMENT OF ENERGY, MINES AND RESOURCES

OTTAWA

1R-72-48

Mines Branch

This document was produced by scanning the original publication.

INDUSTRIAL CONFIDE

DECLASSIFIED

Ce document est le produit d'une numérisation par balayage de la publication originale.

COPY NO. 0

Declassified Déclassifié

CANADA

DEPARTMENT OF ENERGY, MINES AND RESOURCES

OTTAWA

MINES BRANCH INVESTIGATION REPORT

IR 72-48

October 1972

DEVELOPMENT OF A FLOWSHEET TO PRODUCE IRON AND COPPER CONCENTRATES FROM ORE OF PAULPIC GOLD MINES LIMITED, NEAR ATIKOKAN, ONTARIO

Ъy

I. B. Klymowsky

Mineral Processing Division

NOTE: This report relates essentially to the samples as received. The report and any correspondence connected therewith shall not be used in full or in part as publicity or advertising matter.

Mines Branch Investigation Report IR 72-48

DEVELOPMENT OF A FLOWSHEET TO PRODUCE IRON AND COPPER CONCENTRATES FROM ORE OF PAULPIC GOLD MINES LIMITED, NEAR ATIKOKAN, ONTARIO

Ъy

I. B. Klymowsky*

SUMMARY OF RESULTS

The two types of ore, high-sulphide (47.7% Fe, 0.54% Cu, 17.9% S) and low-sulphide (38.4% Fe, 0.17% Cu, 2.8% S) were similar mineralogically, but differed widely in magnetite:sulphide ratio.

Marketable iron concentrates were produced by conventional treatment (magnetic separation and flotation) of each ore separately and of a 45:55 composite of the two ores, as shown by the following results:

Ome Read	Concen	Conc'n		
Ofe Feed	% Fe	<u>% Cu</u>	<u>%</u> S	Ratio
ligh-Sulphide	71.2	0.01	0.31	8:1
Low-Sulphide	66.9	0.01	0.33	2.7:1
45:55 Composite	69.3	0.01	0.17	4.5:1

Satisfactory copper flotation concentrates (18.9% Cu) were produced from the high-sulphide ore and from the composite ore with recoveries above 70%.

* Engineer, Ferrous Ores Section, Mineral Processing Division, Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada. ٣

CONTENTS

_	rage
Summary of Results	i
Introduction	1
Purpose of Investigation	1
Ore Shipment	1
Sampling and Analysis	1
Mineralogical Examination	2
Outline of Investigation	3
Details of Investigation	4
Conclusions	. 11
Acknowledgements	12
Appendix	

LIST OF TABLES

No.		Page
1.	Results of Chemical Analysis of Ore Samples	2
2.	Screen Analysis of Iron Concentrate, Test 2	10
3.	Metallurgical Results of Cobbing, Low-Sulphide Ore	10
4.	Results of Davis Tube Tests on Cobber Concentrate and Tailing	10

INTRODUCTION

Paulpic Gold Mines Limited holds 3,300 acres of mining land near the town of Atikokan, Ontario, about 140 miles northwest of Thunder Bay. Iron ore was mined on the property prior to 1912 by the Atikokan Iron Company, but the operation was short-lived because the ore had a high sulphur content and could not be treated profitably at that time. Paulpic optioned this property for exploration in 1970 and did some geophysical surveying and diamond drilling which indicated a large tonnage of low-grade iron and base metal ore on the property. Further drilling on the property was deferred until some metallurgical testing could be done on the ore.

Purpose of Investigation

The Mines Branch was asked to develop procedures for treating the Paulpic ore to produce a high-grade iron concentrate (with less than 1% sulphur) suitable for pelletizing; a marketable copper concentrate and, if practical, to recover the nickel and cobalt minerals.

Ore Shipment

On November 5, 1970, two samples of drill core were received at the Mines Branch from Mr. E. W. Bazinet, consultant at that time for Paulpic Gold Mines Limited. One sample, weighing about 225 lb,was sulphide-rich; the other, approximately 275 lb, was low in sulphides. Sampling and Analysis

The high-sulphide ore sample was crushed to minus 10 mesh and riffled into smaller (2,000-gram) portions, one of which, selected at random, was ground to minus 100 mesh and sampled for analysis.

The low-sulphide drill core was crushed to minus 1/2 inch for cobbing. The products from this operation were crushed to minus 10 mesh and riffled into smaller (2,000-gram) portions which were ground to minus 100 mesh and sampled for analysis.

Results of chemical analysis are given below.

TABLE 1

Results of Chemical Analysis of Ore Samples

	<u>Wt %</u>	Total Fe %	Mag Fe %	Sol <u>Fe %</u>	<u>Cu %</u>	<u>Ni %</u>	<u>Co %</u>	<u> </u>	<u> </u>
Low-Sulphide Ore*	55.0	41.5	26.5	38.4	0.17	0.02	0.02	2.8	0.21
High-Sulphide Ore	45.0	50.2	36.0	47.7	0.54	0.08	0.08	17.9	-
Composite Ore **	100.0	45.4	30.8	42.6	0.33	0.05	0.05	9.6	-

* calculated from results of cobbing test. ** calculated.

MINERALOGICAL EXAMINATION⁺

Sixteen representative pieces of drill core (eight from the highsulphide ore, eight from the low-sulphide ore) were sent to the Mineralogical Section of the Mineral Sciences Division for examination. Both high- and low-sulphide ores were found to have similar mineralogical characteristics except for variation in the magnetite:sulphide ratio.

Magnetite, the principal iron mineral, occurred as large clusters of grains in pyrrhotite and as remnants intimately associated with pyrrhotite. Pyrrhotite, also magnetic, occurred throughout the ore and was the host mineral for inclusions of copper, nickel, and cobalt.

Chalcopyrite, the only copper mineral detected, occurred over a wide range of sizes from large grains to fine inclusions in gangue, magnetite, pyrite, and pyrrhotite.

+ From Mineral Sciences Division Report IR 71-44, by R. G. Pinard.

Nickel and cobalt occurred in too small quantities for economic recovery.

Gangue minerals were chiefly talc, chlorite, quartz, and dolomite.

OUTLINE OF INVESTIGATION

Because of the marked difference in sulphur content between the highsulphide ore (17.9% S) and the low-sulphide ore (2.8% S), laboratory tests were done separately on the two samples in the initial stage of the investigation.

For the high-sulphide ore, ground to minus 100 mesh , two general procedures were followed.

(1) Flotation of a copper rougher concentrate followed by successive cleaning; flotation of pyrrhotite from the copper flotation tailing; and magnetic separation of an iron concentrate from the final flotation tailing.
 (2) Magnetic separation of a magnetite-pyrrhotite concentrate; flotation of pyrrhotite from the magnetic concentrate to leave an iron concentrate; and flotation of a copper rougher concentrate from the non-magnetic portion followed by successive cleaning of the copper concentrate.

The second procedure was selected as the basis for subsequent detailed investigation of the high-sulphide ore.

Magnetic cobbing was done on the low-sulphide ore at minus 1/2 inch, and procedures similar to those used on the high-sulphide ore were applied to the products of the cobbing operation.

At the beginning of the investigation, the idea of separate treatment of the high-sulphide and low-sulphide ores appeared promising, especially with regard to cobbing of low-sulphide ore; however, the practicability of mining the two types of ores separately was uncertain and this approach was not followed through. For the remainder of the investigation, composite ore was used to assess the best procedures indicated in previous tests and to integrate them into a practical flowsheet.

DETAILS OF INVESTIGATION

Full details of the procedures, reagents used, analytical results and metallurgical balances are provided by the Mines Branch Flotation Test Reports in the Appendix (Tests 1-18).

The difficulties intreating the high-sulphide ore were: (1) reducing sulphur to a satisfactory level (below 1%) in the iron concentrate, and

(2) overcoming the interference of slimes (talc and chlorite) in copper flotation.

The principal source of sulphur in the iron concentrate was pyrrhotite. To provide uniform feed for tests to determine the best conditions for flotation of pyrrhotite, a large sample of ore (ground to minus 100 mesh) was treated by magnetic separation, and the magnetic concentrate so produced was split into several portions. The effects of soda ash and sulphuric acid on pyrrhotite flotation (in the presence of copper sulphate) were compared. The effect of regrinding the magnetic iron concentrate before flotation was investigated and the effect of pyrrhotite cleaner flotation on iron recovery was also investigated.

Similarly, the large non-magnetic fraction of the sample was split into several portions for copper flotation tests. Some tests were done to determine whether the interference of the slimes could be overcome by incorporating a slime flotation stage prior to copper flotation. Other tests were done to see if the copper would float better in a sulphuric acid circuit, and

- 4 -

to compare different collectors, Minerec 27 and Z-200.

The best procedures were then incorporated in a final test on a sample of high-sulphide ore to confirm a tentative flowsheet for production of a magnetic iron concentrate and a copper concentrate.

When the results of the Davis Tube tests on the products of the lowsulphide ore cobbing operation indicated good recovery of iron in the cobber concentrate, it was decided to treat the cobber concentrate and cobber tailing separately. High-grade iron concentrates were made from the cobber concentrate by magnetic separation, and the small amount of sulphur in the iron concentrate was removed by flotation. Several attempts were made at recovering the small amount of copper in the cobber tailing, but none were successful.

A composite of 45% high-sulphide ore and 55% low-sulphide ore, ground to minus 48 mesh, was treated along the lines of procedure (2), namely:

- (a) wet magnetic separation;
- (b) regrinding of the magnetic fraction to minus 100 mesh and flotation of pyrrhotite;
- (c) regrinding of the non-magnetic fraction to minus 100
 mesh and flotation of a copper concentrate.

To reduce the loss of copper in the magnetic fraction separated at minus 48 mesh, the composite ore was ground to minus 100 mesh and treated by the same procedure, but without regrinding of the rougher concentrates.

Finally, to check the encouraging results of the preliminary cobbing, a composite ore made up of 60% high-sulphide ore and 40% cobber concentrate was treated by procedure (2) as outlined above.

In the initial test on the high-sulphide ore using procedure (1), a copper concentrate was made assaying 23.16% Cu with a copper recovery of 56.0%, and an iron concentrate was made assaying 67.3% Fe, 5.1% S, and 0.03% Cu

- 5 -

with an iron recovery of 24.1%.

In Test 2, by the alternative procedure, namely magnetic separation, pyrrhotite flotation from the magnetic fraction and copper flotation from the non-magnetic tailing, a copper concentrate was made assaying 21.75% Cu with a recovery of 59.6% and an iron concentrate assaying 67.0% Fe, 7.1% S, and 0.02% Cu with an iron recovery of 28.4%.

The minimal loss of copper in the magnetic fraction and slightly greater recovery of magnetite by the second procedure prompted its selection as the basis for subsequent investigation, particularly since the prior removal of the magnetic fraction (61.8% of the feed) sharply reduced the amount of material for copper flotation.

In Test 3, the flotation of pyrrhotite from the magnetic fraction at minus 100 mesh, using soda ash and an increased amount of copper sulphate (0.5 lb per ton of ore) at pH 8.5, produced a 66.3% iron concentrate with 5.8% S. The results of screen analysis of the iron concentrate (Table 2) suggest that regrinding to minus 400 mesh might result in a lower sulphur content. In Test 4, regrinding of the feed to flotation resulted in a higher grade of iron concentrate (69.4% Fe), but not in any significant reduction in the sulphur content (5.0% S). However, in Test 5, without regrinding, and using a combination of sulphuric acid and copper sulphate, flotation at pH 6.0 facilitated the separation of pyrrhotite and produced an iron concentrate containing only 0.6% S with 68.0% Fe. By hydroseparation, that iron concentrate was upgraded to 68.9% Fe (21.2% recovery).

In an attempt to increase the recovery of iron, the pyrrhotite was floated in three stages and the third stage cleaned to leave a magnetite-rich tailing (Test 6). Although the latter contributed an additional 3.5% recovery of iron for a total of 25.8%, the sulphur content of the iron concentrate increased sharply from 0.7% to 1.5%.

- 6 -

In Tests 1 and 2, copper flotation was done at a pH of 10.0 using Z-200 as collector and satisfactory copper concentrates were produced, but difficulties were encountered in obtaining a clean separation of the copper from the slimes inspite of the fact that a slime depressant (causticized starch) was used.

In Test 7, slime flotation was tried prior to copper flotation, using pine oil to float the slimes. A loss of 46% of the copper was incurred in the slimes. In Test 8, slime flotation was tried again, but this time using sodium cyanide to control copper losses in the slimes. The losses were reduced to 8.4% while 84.7% was recovered in the rougher concentrate, assaying 6.3% Cu.

In Test 9, flotation was done using Minerec 27 as collector and sulphuric acid to adjust the pH to 6.0. A high-grade rougher concentrate was made assaying 11.9% Cu with a recovery of 81.9% of the copper. Scavenger flotation, using Z-6 as collector, separated another 12.2% of the copper at only 0.8% copper grade due to inclusions of copper in pyrite. In a similar test (Test 10), using sulphuric acid to adjust the pH to 6.0 and Z-200 as collector, 87.1% of the copper was recovered in the rougher concentrate, but the grade was only 7.22%. The slimes appeared to float more readily with Z-200 and a grade of only 9.5% was obtained after one cleaning.

In the final test on the high-sulphide ore ground to minus 100 mesh (Test 11), a magnetic iron concentrate assaying 71.2% Fe and only 0.3% S, at a concentration ratio of 8:1, was obtained using sulphuric acid copper sulphate as modifiers in pyrrhotite flotation. Increasing the xanthate (Z-6) conditioning time to 5 minutes favored rapid flotation of the pyrrhotite. By flotation from the non-magnetic fraction, which contained 89.6% of the copper in the original ore, 71.7% recovery was achieved at 18.9% copper grade after two clean-

- 7 -

ings, using sulphuric acid and Minerec 27. Again, scavenging proved ineffective as a means of recovering more copper. The scavenger concentrate consisted mainly of pyrite, comprised 7.9% of the weight, contained 0.64% Cu, and represented 9.5% of the original copper. Another 10.2% of the copper was irrecoverably tied up in the pyrrhotite. The procedure used in Test 11, but without the final scavenger step, was adopted as the standard test procedure.

Because of the much higher magnetite:gangue ratio in the low-sulphide ore, dry magnetic cobbing at the 1/2-inch size was used to separate magnetic iron from copper minerals. Results of cobbing and Davis Tube tests (Tables 3 and 4) show that 93% of the magnetic iron was retained in the cobber concentrate. After crushing it to minus 10 mesh, separating magnetically, and grinding to minus 100 mesh for another stage of magnetic separation a 67.6% iron concentrate was produced, containing only 0.02% Cu, but with 1.6% sulphur (Test 12). However, in Test 13, magnetic separation at minus 100 mesh, followed by flotation of the pyrrhotite from the magnetic iron concentrate, reduced the sulphur content to 0.33% and the copper to 0.01% in a 66.9% iron concentrate.

Copper flotation from the cobber tailing was less successful. Using the best procedure developed for the high-sulphide ore, only 36.9% of the copper was recovered in Test 14, using Minerec 27 and Z-6 as collectors; while in Test 15, with Z-6 alone, copper recovery was 52.8%. Cleaner concentrate grades were only 7.9% Cu and 8.7% Cu respectively. Despite the ease with which a marketable iron concentrate could be produced from the low-sulphide ore by coarse cobbing and magnetic separation after regrinding, this approach was not followed through because of the uncertainty of mining the two types of ores separately.

In Test 16, on the composite ore (45% high-sulphide, 55% low-sulphide), the initial magnetic separation was done at minus 48 mesh. However, some 22.7% of the copper was retained in the magnetic fraction and was thus almost irrecoverably lost. As a result, after regrinding the non-magnetic tailing, flotation gave a copper recovery of only 57.9% in the cleaner concentrate. After regrinding

- 8 -

the magnetic fraction, pyrrhotite was floated off without the addition of copper sulphate, and an iron concentrate assaying 64.8% Fe was produced containing only 0.3% S. Subsequent magnetic separation yielded a high-grade iron concentrate assaying 69.7% Fe and 0.33% S.

In Test 17, the "standard" treatment was applied to another portion • of composite ore (45:55) ground initially to minus 100 mesh. Only 9% of the copper was lost in the magnetic fraction. From the non-magnetic tailing, a copper concentrate was produced assaying 18.9% Cu with a recovery of 74.0% of the copper in the original feed. By floating pyrrhotite from the magnetic fraction a 69.3% iron concentrate containing only 0.17% S was produced.

Finally, in Test 18, to check the encouraging results of preliminary cobbing, the successful "standard" procedure was applied to a composite ore made up of 60% high-sulphide ore and 40% cobber magnetic concentrate, i.e., after removal of about 25% of the original low-sulphide feed as a non-magnetic tailing containing little recoverable iron. Consequently, recovery of iron was about the same as in Test 17, although the grade of the concentrate dropped to 67.3% Fe and the sulphur content increased to 0.88% S. Grade of the copper concentrate was well maintained at 18.8% Cu, but overall recovery fell to 64.6% because of the copper discarded in the non-magnetic cobber tailing.

For comparison, the results of the final three tests are summarized below:

(1) t	Feed Iron Concentrate								Copper Concentrate			
Test		1	Mesh	Analysis		Conc	% Distn	Analysis	Recovery			
NO.	Hi-S	Lo-S	Size	% Fe	% Cu	% S	Ratio	Fe	% Cu	%		
16	45%	55%	- 48	69.7	0.01	0.33	4.3	38.3	19.9	57 .9		
17	45%	55%	-100	69.3	0.01	0.17	4.5	36.3	18.9	75.2.		
.18	45%	30%*	-100	67.3	0.01	0.88	3.6 ^e	37.3	18.8	64.6 ^x		

* cobber magnetic concentrate

e excluding cobber non-magnetic tailing

x original ore basis.

- 9 -

TABLE	2

Mach Cino	1.14 7	Analysis, %				
Mesh Size	WL /0 -	Fe	S			
-100+200	5.4	50.99	17.19			
-200+270	11.5	60.91	18.72			
-270+325	17.1	12.78				
-325+400	3.5	67.06	8.77			
-400+500	25.7	69.84	2.66			
-500	36.8	70.63	1.16			
Total (Calcd)	100.0	67.2	6.7			

Screen Analysis of Iron Concentrate, Test 2

TABLE 3

Metallurgical Results of Cobbing, Low-Sulphide Ore

Product	LI+ 9	Ana	alysis, %		Distribution, %				
FIOUUCL	WL %	Sol Fe	Mag Fe	Cu	Sol Fe	Mag Fe	Cu		
Cobber conc Cobber tail	55.0 45.0	53.27 20.28	44.91 4.12	0.12	76.2 23.8	93.0 7.0	40.0 60.0		
Feed (calcd)	100.0	38.43	26.55	0.17	100.0	100.0	100.0		

TABLE 4

Results of Davis fube fests on Cobber Concentrate and

Draduat	L1+ 9/	Analysis	Dist'n		
rioduce	WL /a	% Sol Fe	% Sol Fe		
Cobber Conc - D.T. Mags	67.6	66.43	85.2		
D.T. Non-mags	32.4	24.16	14.8		
Feed (calcd)	100.0	52.73	100.0		
Cobber Tail - D.T. Mags	7.8	52.87	20.7		
D.T. Non-mags	92.2	17.08	79.3		
Feed (calcd)	100.0	19.87	100.0		

CONCLUSIONS

A procedure for treating the Paulpic ore has been developed as follows:

- (1) grinding to minus 100 mesh (70-75% minus 325 mesh);
- (2) conventional low-intensity magnetic separation;
- (3) flotation of pyrrhotite from the magnetic fraction without regrinding, using Z-6 as collector, Dow Froth 250 frother, and sulphuric acid to adjust the pH to 6.0;
- (4) flotation of a copper concentrate from the non-magnetic portion, without regrinding, using Minerec 27 as collector, and sulphuric acid to adjust the pH to 6.0; successive cleaning of the rougher concentrate.

Marketable iron concentrates can be made from either the highsulphide ore or the low-sulphide ore or a composite of the two ores.

A satisfactory copper concentrate (18% Cu) can be made from the high-sulphide ore with a recovery above 70%, and the high-sulphide ore can be blended with the relatively copper-poor (0.17% Cu) low-sulphide ore for treatment without significantly affecting the overall recovery and grade.

If the two types of ore can be mined separately, then coarse cobbing (at minus 1/2 inch) should be considered in the treatment of the low-sulphide ore, as 45% of the weight of this type of ore can be rejected with little loss of recoverable iron.

Separate treatment of the low-sulphide cobber tailing for copper does not appear to be practical because of the small quantity of copper involved and the intimate association of the copper with pyrite. Recovery of cobalt and nickel does not appear to be practical because the cobalt and nickel minerals occur in too small quantities and are not concentrated in any of the products.

The pyrrhotite concentrate (60% Fe and 22% S) can be used as a source of iron or sulphur, or can be stockpiled for possible use in the future.

ACKNOWLEDGEMENTS

All chemical analyses in connection with this investigation were done by the Analytical Chemistry Sub-Division of the Mineral Sciences Division.

The author wishes to express his appreciation to Mr. R. P. Bailey of the Mineral Processing Division for his assistance in the preparation of this report.

APPENDIX

Mines Branch Flotation Test Reports

Abbreviations Used in Test Reports

CS	Caustic starch - aqueous solution of caustic soda and starch in the ratio 1:2
Z-2 00	Carbamate, made by Dow Chemical Co.
DF 250	Dow Froth 250
H ₂ SO ₄	Sulphuric Acid
CuSO4	Copper Sulphate Pentahydrate
Z6	Potassium Amyl Xanthate, made by Dow Chemical Co.
Ca0	Lime, 85% pure
Na_2CO_3	Soda Ash, Laboratory grade
РО	Pine Oil
Min 27	Minerec 27, made by Minerec Corporation.

IBK/am

TEST NO. 1 SAMP	MPLE: High-Sulphide Ore DATE:														
OBJECT OF TEST: To in	vestig	ate ti	ne flo	tation	of cop	per fr	om the	ore p	rior to	2		СНА	RGE: 20	00 gra	ms
magnetic separation									TES	TED BY	<u>':</u>				
	Time	%		υ	nit				Rea	gents,	lb per	ton c	f High-	Sulphi	de Ore
OPERATION	min	Solids	рн	u	sed	CS	Z-200	DF250	H2S04	CuSO4	Z-6	CaO		<u> </u>	
Grinding to -100 mesh	30	57.1		Ball	. Mill										
Conditioning	5	33.3	10.0	1000)-g cell	0.6								ļ	
Cu Rougher Flotation	5			11			0.04	0.008							ļ
Conditioning	5		7.0	11					2.4	0.20					
Pyrrhotite Flotation	10			1				0.008			0.10				
Magnetic Separation				Sala		ļ									
															<u> </u>
Regrinding															
Cu Rougher Conc	1 5	57.1	11.0	Ball	. <u>Mill</u>							0.33	8		
Cu Cleaner No. 1				250-	g cell										ļ
" No. 2				<u> </u>	11										ļ
" No. 3					31	<u> </u>								<u> </u>	
	W	т	ANALYSIS %							DISTRIBUTION %					
PRODUCI	9	6	7e	C11.	s					F	e(Cu			
				00.16	22 21						0	56 0	23		
Cu Cleaner Conc				1 22	17 21					5	.6 1	19.5	8.2		
Gu Cleaner Tails			1 31	4.10	19.19			-				75.5	10.5		
Burrhotite Conc	5	3.9 5	5,31	0.20	27.87					62	.1	20.0	83.4	l	
Flotation Conc*	6	2.8 5	2.40	0.82	26.94					68	.6 9	95.5	93.9		
														ļ	
Magnetic Iron Conc	1 1	7.2 6	7.32	0.03	5.11					24	•1	1.0	4.9		
Magnetic Sep'n Tail	1	9.0 1	8.41	0.10	1.11					7	<u>·</u> 3	3.5	$\frac{1.2}{1.2}$		
Final Flot'n Tail*	3	6.2 4	1.66	0.07	3.01					31	•4	4.5	6.1		
				0 /						100			100.0		
Feed*	10	0.0 4	7.99	0.54	18.01					100	•0 I	0.0	100.0	Ì	
												ļ			
* Calculated					1								1	Ì	

REMARKS:

TEST NO. 2	T NO. 2 SAMPLE: High Sulphide Ore DATE:															
OBJECT OF TEST	To ii	nvesti	gate	the a	ternat	ive proc	edure	- magn	etic s	eparat	ion fo	llowed	CHA	RGE:	4000 gr	ams
by flot'n of pyrr. the non-magnetic	notite tailing	rom	cne m	agneti	.c irac	tion of	the or	re, and	ITOL.	n or c	opper	ITOM	TES	TED B	Y:	
		Time	%	1		Jnit	[, Rea	igents,	lb per	tono	f High	Sulphi	de Ore
OPERATION		min	Solid	s pH	t	used	Na2CO3	CuSO4	Z-6	CS	Z-200	DF250	CaO			
Grinding to -100	mesh	30	57.1		Bal	.1 Mill	· · ·						1			
Magnetic Separat	ion		1		Sa1	a										
Magnetics-Condit	ioning	5	33.3	8.	5 100	0-g cel1	0.5									
17		5				11		0.20								
Pyrrhotite Flota	tion	15				זז			0.10			0.02				
Non-Mags-Conditi	oning	5	25.0	10.0)	11				0.6						
Cu Rougher Flota	tion	5				11	l				0.04	0.008	· · ·			
Regrinding																
Cu Rougher Conc		15	57.1	11.() Bal	<u>1 Mill</u>						<u> </u>	0.3	3		
<u>Cu Cleaner Conc</u>	No. 1				250	<u>-g_cell</u>										
tt -	No. 2	×				11 .						•				
11	No. 3					ţı.										
PRODUCT		W.	т	•		ANAL	YSIS	%				DI	STRI	BUTIO	N %	
FRODUCT		%	ó	Fe	Cu	S ·					Fe		Cu	S		
Iron Conc		2	0.4	66.96	0.02	7.06	ł			1	28	3.4	0.8	8.0		
Pyrrhotite Float		4	1.4	59.92	0.12	29.30	· ·				51	•6	9.7	67.3		
Total Magnetics	×	6	1.8	52.25	0.09	21.96	· ·]				80	1.0	0.5	15.3		
Cu Cleaner Conc		.	1.4	27.28	21.75	26.54					1 0	0.8	59.6	2.1		
Gu Cleaner Tails			5.2	24.81	1.31	11.15						.7 1	3.3	3.2	•.	
Cu Rougher Conc*	•		6.6	25.32	5.66	14.45	·					3.5 7	12.9	5.3		
Cu Rougher Tail		3	1.6	25.08	0.27	11.09	·				16	5.5 1	16.6	19.4		
Total Non-Magnet	ics*	3	8.2	25.12	1.20	11.67					20	0.0	39.5	24.7		
• ·		·														
							Ì						-	{		
Feed*		10	0.0	48.07	0.51	18.03					100	0.0 10	0.00	100.0		
•																
* Coloristo																
										1				l		
KEMARKS:										• .						

÷ .

TEST NO. 3 SAME	EST NO. 3 SAMPLE: High-Sulphide Ore, Magnetic Iron Concentrate DATE: DEVECT OF TEXT DATE: CHARGE: 1262 errors														
OBJECT OF TEST: To it	nvesti	gate t	he ef	fect o	f soda a	ash and	l coppe	r sulp	hate of	n		СН	ARGE:	1262 gi	ams
pyrrl	hotite	flota	tion									TE	STED	BY:	
	Time	%		ι ι	Jnit	1			Rea	gents,	Ip t	per ton	of Hi	gh-Sulpl	nate Ore
OPERATION	min	Solids	рп	1	used	Na2CO2	CuSO4	Z-6	DF 250						
Conditioning	5	33.3	8.5	500	-g cell	0.5									
T!	10	1	· ·		!!	1	0.5								
11	1				11			0.05							
Pyrrhotite Flotation	5				**				0.024						
11	3							0.05	0.016						
					·. ··· - · · · · · · · · · · · · · · · ·										
	ļ														
							ļ								
	ļ						· 								
			<u> </u>								<u> </u>	l			
PRODUCT	w.	т			ANAL	YSIS	%					DISTR	BUTI	DN %	
	%	6	Fe	S						Fe		S		<u> </u>	
Final Iron Conc	26	.6 66	•27	5.80	3.11					28	.4	6.9			
Total Pyrrhotite Float	73	<u>4</u> 60	•69	28.10						$\frac{71}{100}$	•6	93.1			
Feed*	100	•0 62	•18	22.17						I TOC	•••	100.0			
* Calculated											{				
					•						•				
· ·															
REMARKS	[]	U	i		· · · · · · · · · · · · · · · · · · ·						. <u></u> 1.				

. •

TEST NO. 4 SAME	PLE: H	High-Sulphide Ore, Magnetic Tron Concentrate													
OBJECT OF TEST: To i	nvesti	gate t	he ef	fect	of regri	nding	the mag	gnetic	concen	trate		CHAI	RGE:1	262 gra	ms
befo	re flo	tation										TEST	ED B	Y:	
OPERATION	Time	%	54	1 1	Jnit				Rea	gents,	lb pe	^{r ton} of	High	Sulphi	de Ore
	min	Solids			used	Na2Co.	3CuS04	Z-6	DF 250						
Regrinding	15	57.1		Bal	Mi11	•						1			
		1													
Conditioning	5	33.3	8.5	500.	g cell	0.5									
*1	10				17		0.5			-					
11	1			_	11	<u> </u>		0.05							
· ·					<u></u>										1
Pyrrhotite Flotation	5			· .	11		ļ		0.024						
	7	7													
		·							<u> </u>			-			
Hydroseperation		Wade										·			
	1	I T		1		<u> </u>	<u></u>	L	<u> </u>	<u></u>			1	1	
PRODUCT		. ∥			ANAL		%				<u> </u>			<u> </u>	
		<u> </u>	re	<u> </u>	S102			 	_	F.e	<u> </u>	<u>S</u>			
Final Iron Conc	22	.5 69	•42	4.96	1.12					25	5.1	5.0			
Hydroseperator Overflo	w 1	.3 35	.97	3.00						c	.8	0.2			1
Total Pyrrhotite Float	76	<u>.2</u> 60	•50	27.60						74	<u>+.1</u>	94.8			
Feed*	100	.0 62	.19	22.19		•				100	0.0 1	00.0	•		
•													1		
•															
					·							× .			
* Calculated															
									· ·					1	
														1	
					[-									
											<u> </u>				
REMARKS.															

Flotation was considerably slower.

12

TEST NO. 5	SAMP	-E:	High-S	Sulphi	de Ore,	Magne	etic Ir	on Con	centra	te			DA	TE:			
OBJECT OF TEST	: To i	nvest	igate	the e	ffect o	f sulp	huric	acid a	nd cop	per sul	phate	on	CH	ARGE	: 1288	grams	
	pyrı	hotit	e flot	ation	l•								TE	STED	BY:		
		Time	%		Un	it	1			Rea	gents,	lb pe	r ton	of Hi	gh-Sul	hide	Öre
OPERATION		min	Solids	рп	use	ed	H2S04	CuS04	Z-6	DF 250			1				
Conditioning		10	33 3	6.0	500-0	ce11	1.8	0.5		1					1		
31		.1			<u> 200-g</u>		1.0	0.5	0.10								
Pyrrhotite Flota	ation	5			11			1		0.024							
11		3			11		1		0.05	0.016							
																-	
Hydroseperation					Wad	e											
								1	l								
								ļ	ļ								
							<u> </u>										
			<u> </u>		<u> </u>		L	L									
PRODUCT		W.	т [ANAL	YSIS	%				D	ISTR	IBUT	ION %		
		%	Fe	e	S						Fe		S				
		1				Í				-							
Final Iron Conc		19.	3 68	3.88	0.58						21	2	0.5				
Hydroseperator C)verilow		2 34	+.93	- 00		ĺ					.3 5 0	-				
Food *	Float	100		2.78	2.49						100		$\frac{1}{1000}$				
1660											200						
			ł			· ·											
* Calculated																	
			· ·		·	1						•					
						1			1				:				
		<u> </u>		<u> </u>	I				I	1							_
REMARKS:																	1

DATE: TEST NO. 6 SAMPLE: High-Sülphide Ore, Magnetic Iron Concentrate CHARGE: 1272 grams OBJECT OF TEST: To study the effect of pyrrhotite cleaner flotation on iron recovery TESTED BY: Reagents, 1b per ton of High-Sulphide Ore % Time Unit pН . OPERATION used min Solids H2S04 GuS04 Z-6 DF 250 500-g cell_ 10 33.3 6.0 11.8 0.5 Conditioning 11 0.05 ** 1 Pyrrhotite Flot'n: No. 1 stage 0.024 2 11 0.016 11 3 No. 2 stage 0.05 0.016 No. 3 stage 5 11 Cleaning No. 3 500-g cell Pyrrhotite Float. 5 Wade Hydroseperation WT DISTRIBUTION % ANALYSIS % PRODUCT % Fe S Fe S 68.57 0.73 22.3 0.7 Final Iron Conc 20.3 0.4 Hydroseperator Overflow 0.8 32.68 -60.43 30.71 22.8 32.8 No. 1 Stage Float 23.6 11.0 15.8 No. 2 Stage Float 11.3 60.93 30.95 49.7 No. 3 Stage Cleaner Float 40.6 61.38 27.05 40.0 3.5 1.0 65.11 6.17 No. 3 Stage Cleaner Tail 3.4 100.0 100.0 62.46 22.09 Feed * 100.0 Final Iron Conc + No. 3 25.8 1.7 68.06 1.52 Stage Cleaner Tail* 23.7 * Calculated REMARKS:

TEST NO. 7 SAME	EST NO. 7 SAMPLE: High-Sulphide Ore, Non-Magnetic Fraction DATE:													
OBJECT OF TEST: To	leterm	ine th	e effe	ct of slime f	lotat	ion, wi	thout	cyanide	e to		CHAR	RGE: 7	38 gran	nS
Con	trol c	opper	losses	prior to cop	per f	lotatio	n				TEST	ED BY	/:	
	Time	%		Unit				Reag	jents,	lb per	tonof	High-	Sulphic	le Ore
OPERATION	min	Solids	рН	used	Ca0	Pine	Z-200				[1		Ī
Conditióning	10	25.0	10.0	500-g cell	0.5									
<u>_</u>			•											
Slime Flotation	5			91		0.04								
					<u> </u>									
Cu Rougher Flotation	2			**			0.02					ļ		
12	3				l		0.02							
		ļ									ļ		<u> </u>	
		ļ			- <u></u>	<u> </u>								
										· <u> </u>				
													· <u> </u>	
		<u> </u>			l <u></u>	<u> </u>					<u> </u>	L	1	
PRODUCT	W	т		ANAL	YSIS	%	······································			DI	STRIB	UTION	<u> </u>	
	%		u						Cu	L				
Cu Rougher conc	11	.3 5	.18						46	.8				
Rougher Tail	75	.1 0	.12						7	•2				
Slimes	13	.6 4	•22						46	•0				
Feed *	100	•0 1	.25						100	0.0		1		
					•									
* Calculated														
our curaced														
.														
														1
								1						
REMARKS:														
High copper losses	High copper losses were incurred in slime flotations in this test.													

TEST NO. 8 SA	MPLE:	High-St	lohide	Ore, Non-Ma	onetic	Fract	ion				DAT	E:		
OBJECT OF TEST: To	determ	ine the	effec	t of slime f	lotati	on, wit	h cyai	nide to			CHA	RGE:	748 gra	ms
co	ntrol c	opper 1	osses,	prior to co	pper f	lotatio	on				TES	TED B	Y:	
	Time	%		Unit				Rea	gents,	lb per	^{ton} ot	E High	-Sulphi	de Ore
OPERATION	min	Solids	рп	used	Coo	NaCN	Pine. 011	Z-200						
Conditioning	10	25.0	10.0	500-g cell	0.5	0.25								
			•			ļ								
Slime Flotation	5_			11		ļ	0.04							
Cu Rougher Flotation	2			ŢŢ				0.02	. <u></u>					
	3			· · · ·				0.02						
Cu Cleaner No. 1				250-g cell										
" No. 2				11										
			L			L								
							i							
											<u> </u>			
PRODUCT	N N	/T		ANAL	YSIS	%				D	ISTRIE	BUTIO	N %	
		<u>~</u>	<u>u</u>						Cu					
Cu Cleaner Conc	5	.2 19	.32						76.	7				
Cu Cleaner Tails	12	•4 C	.85						8.	0				
Slime Float	12	.3 0	.89						8.	4				
Cu Rougher Tail	70	1 0	.13						6.	2				
Feed *	100	.0 1	31	· · ·			· ·		100.	0				
Cu Rougher Conc	17	.6 6	.30						84.	7				
										Ì				
•														
the first states of														
* Galculated									•					
				· · ·										
REMARKS:	<u>H</u>	<u>H</u>	<u>I</u>	<u>1, , , , , , , , , , , , , , , , , </u>	1		<u> </u>				<u> </u>		······································	

,

.

•

,

J.

TEST NO. 9 SA	SAMPLE: High-Sulphide Ore, Non-Magnetic Fraction DATE:														
OBJECT OF TEST:	To det	ermi	ne the	e effe	ct of sulphu	ric ac:	id and	Minere	ee 27 o	n copp	er	CHAI	RGE: 73	6 gram	S
	flotat	ion										TEST	ED BY	<u>′:</u>	
	Tir	me	%	5 4	Unit				Rea	gents,	lb per	tonof	High-	Sulphi	de Ore
. OF LIKATION	m	in S	Solids		used	H2804	Min27	Z-6	DF250						
Conditioning	5		25.0	6.0	500-g cell	1.8	0.04								
Cu Flotation					11				0.008						
									0.000						
Conditioning	5				**			0.05	0.05						
Scavenging	5				11				0.008						
															<u> </u>
	<u> </u>					-						1		-	
5000LIOT		WT	-		ANAL	YSIS	%	····		1	DI	STRIE	UTION	1 %	
PRODUCT		%	Cu	1			~			Cu					
Cu Conc Scavenger conc Final tail Feed * * Calculated		9. 20. 70.	2 1.: 8 (0 0 1	L.94).79).11 L.34						81 12 5 100	.9 .2 .9 .0				

REMARKS:

. . . .

TEST NO. 10	SAMF	LE: Hi	gh-Sul	phide	Ore, Non-Mag	netic	Fractio	on .		<u> </u>		DATI	Ξ:		
OBJECT OF TEST	To d	etermi	ne the	effec	ct of sulphur	ic aci	d and Z	Z-200 c	on copp	er		CHAP	RGE:	738 g	rams
	flot	ation			· .	:						TEST	ED B	Y:	
		Time	%		Unit				Rea	gents,	lb pe	r ton of	High	-Sulphi	de Ore
OPERATION		min	Solids	ΡŪ	used	H2S04	Z-200	DF250							
Conditioning		10	25.0	6.0	500-g ce11	1.8									
				•		-								_	
Cu Rougher Flot	ation	2			11 		0.02	0.008							
		3					0.02				· · ·				
	1				05011										-
Cu Cleaner No.	1				<u> 250-g_cell</u>								•		
5				<u> </u>	<u>1</u>								-		
												_			
·															
	(<u> </u>	<u> </u>							<u> </u>		
PRODUCT		W	т		ANAL	YSIS	%	·····	·		D	ISTRIE	UTIO	<u>v %</u>	
		90	° C	<u>u </u>						Cu					
0. 01		1 1 1	2 0	55						8/1					
Cu Cleaner Conc			-2 0	.96						3	1				
Cu Rougher Tail		84	.5 0	.20						12	.9				
Feed *		100	.0 1	•29						100	•0		1		
		1 1 5		22						87	1				
Cu Rougner Conc	÷.	15	• 5 1	• 2 2			• •			01	• 1				
													1		
*Calculated															
• . ·															
· · · · · · · · · · · · · · · · · · ·					•						۹ 				
•						. •								ĺ	
REMARKS															

TEST NO. 11 SAMP	LE: H	igh-S	ulphic	le Ore								DAT	E:		
OBJECT OF TEST To inc	corpor	ate t	he bes	ţ pro	cedures	of the	previo	ous te	sts to	cónfi	m a	CHA	RGE:	+000 gr	ams
concentrate.	p	rouuc			agnetic	1ron C	oncenti	race a		opper		TES	TED B	Y:	
OPERATION	Time	%		1	Jnit				Rea	igents,	lb per	tono	f High-	-Sulphi	de Ore
	min	Solid	5		used	H2S04	CuS04	Z-6	Min27	DF250					
Grinding to -100 mesh	30	57.1		Bal	1 Mill										
Magnetic Separation			<u> </u>	Sal	a										
Magnetics Conditioning	10	33.3	6.0	100	<u>)-g cell</u>	1.8	0.5								
11	5	ļ			11	ļ		0.10	L	ļ					
Pyrrhotite Flotation	5	ļ			11					0.56					<u> </u>
Non-Mags-Conditioning	5	25.0	6.0	100	0 <u>-g cell</u>	1.8			0.04						
Cu Rougher Flotation	5		- 		11		ļ		ļ			<u> </u>			
Scavenging	5	ļ	_ _		11			0.05		0.008					ļ
						-			l						
Cu cleaner No. 1				500	<u>-g cell</u>		ļ		 						
NO• 2				250	-g cell										
<u>_</u>	- d	1	1			1				1					1
PRODUCT		⊤				YSIS	%					STRI	BUTION	1 %	
		• ·	Ee	Cu	<u> </u>	<u>Ni</u>	<u>Co</u>		_	Fe		Cu	S		
Iron Conc	12	.5 7	1.17	0.01	0.31					18.	5	0.2	0.2		
Pyrrhotite Float	49	.2 6	1.69	0.11	27.92	0.14	0.09			63	1 _	10.2	75.9	ł	
Total Magnetics*	61	•7 6	3.61	0.09	22.33					81	.6	10.4	76.1		
				10 07		0.00	0.07						0.5		
Gu Gleaner Conc	2	.0 2	4.27	1 25	22.28	0.00	0.07				.U 8	2 8	2.5		
Cu Bougher Conc*		.6 2	3.61	11.02	17.78							75.5	3.5		
ou nougher conce				11.02	11.10							1303	5.5		
Scavenger Conc	7	.9 3	9.24	0.64	37.97	0.12	00.15			6	4	9.5	16.6		
Scavenger Tail	26	.8 1	8.28	0.09	2.54					10	.2	4.6	3.8		
Cu Rougher Tail*	34	.7 2	3.05	0.21	10.60					16.	.6	14.1	20.4		
				1 00	11 00					10		00 (
Total Non-Magnetics*	38	• 3 2	3.10	1.23	11.28						==	89.0			
	100		0 10	0 52	10 10					100	0 1		100 0		
reeu^	100	•• 4	0.10	0.05	10.10				<u> </u>			00.9	100.0		
REMARKS:															

;

The Scavenger Concentrate consisted mainly of pyrite. Recovery of Nickel and Cobalt was impractical.

~

TEST NO. 12	EST NO. 12 SAMPLE: Low-Sulphide Ore, Cobber Concentrate DATE:															
OBJECT OF TEST	To f	inves	tigate	the	recove	erv of	iron fr	om the	magnet	ic cobb		(CHAR	GE:	2000 gr	ams
	conc	entr	ate by	magn	etic	separat	ion						TEST	ED B	Y:	
		Fime	%		1 1	Jnit				Reag	ents, l	b per t	on			
. OPERATION		min	Solids	рп	1	used										
Magnetic Separat:	ion				Sala	a	· ·								-	
			}													
Grinding of the			[
Magnetic Fract:	ion	30	57.1		Ball	L Mill										
					1											
Magnetic Separat:	ion		L		Sala	<u>a</u>										
· · · · · · · · · · · · · · · · · · ·		<u></u>	ļ			······································	<u> </u>	ļ					.			
Hydro Separation Wade															· .	
											· · · · ·					
· · · · · · · · · · · · · · · · · · ·																
			<u> </u>	<u> </u>	<u> </u>									<u> </u>	<u> </u>	
PRODUCT		W				ANA	LYSIS	%		r	<u> </u>	DIS	TRIB	UTIO	<u>N %</u>	
		9%	> F	e	<u></u>	<u> </u>					Fe					
Magnetic Iron Cor	nc.	72	.2 67	.56	0.02	1.59					90.1					
Hydroseparator ov	verflow	0	.8 43	.05							0.7					
No. 2 Non-Magneti	ic tail	19	•4 15	.87							5.7					
No. 1 Non-Magneti	ic tail	$\left\ \frac{7}{7} \right\ $	<u>.6</u> 25	•20							3.5	.				
Original Feed*		100	•0 54	•12			•				100.0					
_							:	· .								
* Calculated																
-																
								•					-			
						•										
REMARKS:										· · · · · · · · · · · · · · · · · · ·						
Conce	entratio	n rai	tio on	orig	inal o	re base	es: 1/72	2.2×5	$\frac{5}{2} = 2$.	5:1						
•	100															

۰.

*

· .

•

• •

TEST NO. 13 SAMPI	ST NO. 13 SAMPLE: Low-Sulphide Ore, Cobber Conc DATE:												
OBJECT OF TEST:				har iron oor			flatati		mento a to	CH	IARGE: 2	000 gra	ms
from from	the	e a 10 magnet	ic cor	ncentrate.	centrat	e by		on or p	yrrnot:	TE	STED B	Y:	
	Time	%	<u>~</u> ⊔	Unit				Reage	ents, Ib	per tor			
OPERATION	min	Solids		used	H2SO4	Z-6	DF250						
Grinding to -100 mesh	30	57.1		Ball Mill	·								
							-						
Magnetic Separation		1		Sala			<u> </u>					_	
			6.0	1 1 0 0 0 1 1	1.0	0 1			·				
Gonditioning	5		0.0	1000-g cell	1.8	0.1							
Pyrrhotite Elotation	5	<u> </u>					0.04						
							<u> </u>						
							<u> </u>			l			
PRODUCT	W	Т		ANAI	YSIS	%				DISTI	RIBUTIO	N %	
	%	6 F	e	Cu S					Fe	Cu	S		
	67	5 66	01	0.01 0.22					00	0 /. 1	0.6		
Final from Conc Pyrrhotite Float	5	.0 59	.06	0.27 17.61					5.	5 9.6	40.6		
Magnetic Separation Tai	1 27	.5 24	.68	0.42 3.60					13.	86.3	49.8		
Feed *	100	.0 53	.84	0.15 2.17					100.0	0 100.0	100.0		
* Calculated			1										
	1												
• •													
		!!					<u> </u>	1	11	<u> </u>	1		
REMARKS: Concentratio	n Rat	io on	origi	nal ore basis	: 1/67	7.5 x	$\frac{55}{22} = 2$	7:1					
						1	00						

TEST NO. 14 SAMP	PLE: T	.ow-Su1	nhide	Ore, Cobber	Tailin	·		<u></u>		DA	ГE:		
OBJECT OF TEST: To	invest	igate	the re	ecovery of co	pper u	sing M	inerec	27 and	· · ·	СНА	ARGE:	2000 gr	ams
xon	thate	(2-6)				0		·		TES	TED B	Y:	×
	Time	%		Unit				Reag	ents. Ib p	er ton (of Low-	Sulphid	e Ore
OPERATION	min	Solids	рп	used	H2S04	Min 27	Z-6.	DF 250					
Grinding to -100 mesh	30	57.1	` `	Ball Mill	· · ·								
			•										
Conditioning	5	33.3	6.0	1000-g cell	1.8	0.04	0.05						
			<u></u>										
Cu Rougher Flot'n	5			17				0.008					
	<u> </u>												
Cu Cleaner No. 1				250-g cell									1
" No. 2				1.1									
				· · · · · · · · · · · · · · · · · · ·				<u> </u>					
·				}									
		<u> </u>			l								
	1 10/	<u> </u>			Vele	0/	l		<u></u>		BUTIO	N %	<u>.</u>
PRODUCT		·			.1313		1	·	<u> </u>				
	_	<u> C</u>	<u>u</u>						<u>Gu</u>				
Cu Cleaner Conc	1 1	0 7	86				ł		26 0				
Cleaner Tails	3	.7 0	.58						9.8				
Rougher Tail	95	.3 0	.12						53.3				
Feed*	100	.0 0	•21						100.0				
					-		1						
<u>.</u>													
* Calculated	(
	·	· ·									ĺ		
						•							
									•				
						-					1		
		!!		<u> </u>			<u> </u>	<u> </u>	111		l		
REMARKS:								η, '					

• • •

TEST NO. 15	SAMP	LE: L	ow-Sul	phide	Ore, Cobber 1	Cailing	<u> </u>					DATE	:		
OBJECT OF TEST:	To i	nvest	igate	the re	covery of con	oper us	sing x	anthate	(Z-6)			CHAR	GE: 20	00 gra	ns
												TEST	ED BY	(:	
		Time	%		Unit				Reag	ents.	lb per	tonof	Low-S	ulphid	e Ore
. UPERATION		min	Solids	pri	used	H2S04	<u>Z-6</u>	DF250							
Grinding		30	57.1		Ball Mill										
	1			•											
Conditioning		10	33.3	6.0	1000-g ce11	1.8									ļ
												ļ			
Cu Rougher Flot'r	n	1			11		.01	•032					ļ		
11		1			11 .		.01						ļ		ļ
11		1			11		.01					ļ			
11		2			11		.01	.008					ļ		ļ
								ļ					<u> </u>	_	
Cu Cleaner No. 1					250-g ce11			<u> </u>							
" No. 2															
NO• 3			<u> </u>			<u> </u>		<u> </u> _				<u></u>	<u> </u>		<u> </u>
PRODUCT		w-	т		ANAL	YSIS	%				DI	STRIB	UTION	1 %	
1.1000001		%		u						Cu					
Cu Cleaner Conc No. 3 Cleaner Tai No. 2 Cleaner Tai No. 1 Cleaner Tai Cu Rougher Tail Feed* * Calculated	il il il	1 0 2 5 <u>89</u> 100	.3 8 .9 1 .2 0 .7 0 .9 0 .0 0	.73 .18 .65 .26 .07 .21						52. 5. 6. 7. <u>28.</u> 100.	.8 .1 .6 .0 .5 .0				
REMARKS:															

OBJECT OF TEST: To investigate the recovery of iron and copper after magnetic separation at minus 48 mesh CHARGE: 4000 grams TESTED BY: TESTED BY: TESTED BY: OPERATION Time % olds PH Unit used Reagents. Ib per ton of Composite Ore compo	EST NO. 16 SAMPLE: Composite - 45% High-Sulphide: 55% Low-Sulphide DATE:																			
TESTED BY: TESTED BY: OPERATION TESTED BY: OPERATION TESTED BY: OPERATION TESTED BY: Crinding to -48 mesh 15 Solide PERagenis. Is per ton of Composite Ore Magnetic Separation Sala Non-2000 Solide Ore Magnetic Fraction 20 Solide TESTED BY: Magnetic Fraction Sala Solide One-06 Magnetic Flotation Sala One-0.056 Magnetic Fraction 20 Solide One-0.056 Magnetic Flotation Sala One-0.056 Magnetic Fraction Solide OISTRIBUTION % Probuct WT AnALYSIS % DISTRIBUTION % Primail Tron Conc 2.6 Out on and and and and and and and and and an	OBJECT OF TEST: To investigate the recovery of iron and copper after magnetic separation at minus 48 mesh CHARGE: 4000 gram TESTED BY: TESTED BY:												ams							
OPERATION Time % No Dut Solids Unit used Time % H2304 Z-6 Min27 DP230 Composite Ore Grinding to -48 mesh 1.5 57.1 Ball Mill Image: Composite Ore		separ	ration	at m	inus 4	8 mes	h .				_			TES	TED BY	:				
Original Solids min Solids Principal Solids H2S04 Z=6 Min27 DF250 Solids Solids Grinding to -48 mesh 15 57.1 3all Mill Solids Solids </td <td colspan="2">OPERATION</td> <td>Time</td> <td>%</td> <td></td> <td></td> <td colspan="2">Unit</td> <td colspan="12">Reagents, Ib per ton of Composite O</td>	OPERATION		Time	%			Unit		Reagents, Ib per ton of Composite O											
Grinding to -48 mesh 15 57.1 Ball Mill Image: Separation Sala Image: Separation Image: Separati	OPERATION		min	Solids	p.,		used	H2S04	Z-6	Min27	DF250									
Magnetic Separation Sala Image of the second s	Grinding to -48 m	nesh	15	57.1		Ball	Mill									· .				
Regrinding Image: Conditioning 20 57.1 Ball Mill Image: Conditioning 100	Magnetic Separation				·	· Sala														
Magnetic Fraction 20 57.1 Ball Mill Image: Conditioning 10 33.3 6.0 1000-g cell 1.8 0.10 Magnetic Floation 5 " 0.056 100 10 <	Regrinding																			
Conditioning 10 33.3 6.0 100-g cell 1.8 0.10	Magnetic Fraction Conditioning Pyrrhotite Flotation Magnetic Separation		20	57.1			Ball Mill										l			
Pyrhotite Flotation 5 " 0.056	Conditioning		10	33.3	6.0	1000	1000-g cell		0.10							l				
Magnetic Separation Sala	Pyrrhotite Flotation		5	ļ	ļ		11			ļ	0.056		ļ			[
Regrinding 20 57.1 Ball Mill 000-4	Magnetic Separation				<u> </u>	Sala	Sala							_		ļ				
Non-Magnetic Fraction 20 57.1 Ball Mill Image: Stress of the str	Regrinding				. 			ļ									 			
Conditioning 5 33.3 6.0 1000-g cell 1.8 0.04 Cu Rougher Flotation 5 - " - <	Non-Magnetic Frac	tion	20	57.1		Ball	<u>Mill</u>													
Cu Rougher Flotation 5 " Output Distribution Cu Cleaner No. 1,2,3 250-g cel1 Distribution PRODUCT WT ANALYSIS % Distribution Final Iron Conc 23.4 69.66 0.01 0.03 38.3 0.6 0.8 Magnetic Finisher Tail 2.6 20.48 0.01 0.30 39.6 0.9 Pyrrhotite Float 2.0 57.62 C.26 22.62 39.3 21.8 67.3 Cu Cleaner Conc 1.0 24.50 19.89 23.20 0.6 57.9 2.4 Cu Rougher Tail 2.3 20.00 0.75 9.56 11.1 4.9 2.2 Cu Rougher Conc* 3.3 21.50 6.54 13.63 11.4 4.9 2.4 Cu Rougher Tail 19.78 0.12 6.38 100.0 100.0 100.0 100.0 Feed* 100.0 42.50 0.34 9.75 100.0 100.0 100.0 100.0 Regrinding was done to minus 100 mesh. Copper sulphatè was not Regrinding was	Conditioning		5	33.3	6.0	1000	<u>-g cell</u>	1.8	ļ	0.04										
Cu Gleaner No. 1,2,3 VT ANALYSIS % DISTRIBUTION % PRODUCT $\frac{WT}{\%}$ $\frac{ANALYSIS %}{Fe}$ $DISTRIBUTION %$ Final Iron Conc 23.4 69.66 0.01 0.03 38.3 0.6 0.8 Magnetic Finisher Tail 2.6 20.48 0.04 0.20 1.3 0.3 - - Rougher Iron Conc* 2.6.0 64.78 0.01 0.30 39.6 0.9 - - - 68.1 - <t< td=""><td colspan="2">Cu Rougher Flotation</td><td>5</td><td>ļ</td><td></td><td></td><td>11</td><td></td><td>ļ</td><td> </td><td></td><td></td><td></td><td>-</td><td></td><td> </td><td> </td></t<>	Cu Rougher Flotation		5	ļ			11		ļ	 				-						
PRODUCT WT ANALYSIS % DISTRIBUTION % Final Iron Conc 23.4 69.66 0.01 0.03 38.3 0.6 0.8 Magnetic Finisher Tail 2.6 20.48 0.04 0.20 1.3 0.3 - Rougher Iron Conc* 26.0 64.78 0.01 0.30 39.6 0.9 0.8 Pyrrhotite Float 29.0 57.62 C.26 22.62 39.3 21.8 67.3 Total Magnetics* 55.0 60.98 0.14 12.07 78.9 22.7 68.1 Cu Cleaner Conc 1.0 24.50 19.89 23.20 0.6 57.9 2.4 Cu Rougher Conc* 3.3 21.50 6.54 13.63 1.1 4.9 2.2 Cu Rougher Tail 41.7 19.78 0.12 6.38 1.9.4 14.5 27.3 Total Non-Magnetics* 45.0 20.00 0.59 6.91 100.0 100.0 100.0 Feed* 100	Cu Cleaner No. 1,	2,3		<u> </u>	<u> </u>	1250-	<u>g_cel1</u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>		<u> </u>				
% Fe Cu S Fe Cu S Final Iron Conc 23.4 69.66 0.01 0.03 38.3 0.6 0.8 Magnetic Finisher Tail 2.6 20.48 0.04 0.20 39.6 0.9 0.8 Rougher Iron Conc* 26.0 64.78 0.01 0.30 39.6 0.9 0.8 Pyrrhotite Float 29.0 57.62 C.26 22.62 39.3 21.8 67.3 Total Magnetics* 55.0 60.98 0.14 12.07 78.9 22.7 68.1 Cu Cleaner Conc 1.0 24.50 19.89 23.20 0.6 57.9 2.4 Cu Rougher Tails 2.3 20.00 0.75 9.56 11.1 4.9 2.2 Cu Rougher Tail 41.7 19.78 0.12 6.38 11.7 62.8 4.6 Gu Rougher Tail 41.7 19.78 0.12 6.38 100.0 100.0 100.0 100.0 </td <td colspan="2">PRODUCT</td> <td>W</td> <td>т </td> <td></td> <td></td> <td>ANAL</td> <td>YSIS</td> <td>%</td> <td></td> <td></td> <td></td> <td>D</td> <td>ISTRIE</td> <td>BUTION</td> <td>%</td> <td></td>	PRODUCT		W	т			ANAL	YSIS	%				D	ISTRIE	BUTION	%				
Final Iron Conc 23.4 69.66 0.01 0.03 Magnetic Finisher Tail 2.6 20.48 0.04 0.20 Rougher Iron Conc* 26.0 64.78 0.01 0.30 Pyrrhotite Float 29.0 57.62 C.26 22.62 Total Magnetics* 55.0 60.98 0.14 12.07 Cu Cleaner Conc 1.0 24.50 19.89 23.20 Cu Cleaner Tails 2.3 20.00 0.75 9.56 Cu Rougher Tail 41.7 19.78 0.12 6.38 Cu Rougher Tail 41.7 19.78 0.12 6.38 Feed* 100.0 42.50 0.34 9.75 100.0 100.0 Regrinding was done to minus 100 mesh. Copper sulphatè was not used in pyrrhotite flotation. 100.0 100.0 100.0			9	6 · _]	^r e	Cu	S			<u> </u>	_	_ F	e	Ju	<u>s</u>					
Magnetic Finisher Tail 2.6 20.48 0.04 0.20 Rougher Iron Conc* 26.0 64.78 0.01 0.30 Pyrrhotite Float 29.0 57.62 0.26 22.62 Total Magnetics* 55.0 60.98 0.14 12.07 Gu Cleaner Conc 1.0 24.50 19.89 23.20 Cu Cleaner Tails 2.3 20.00 0.75 9.56 Cu Rougher Tail 41.7 19.78 0.12 6.38 Total Non-Magnetics* 45.0 0.34 9.75 100.0 100.0 Feed* 100.0 42.50 0.34 9.75 100.0 100.0 100.0 REMARKS: Regrinding was done to minus 100 mesh. Copper sulphatè was not used in pyrrhotite flotation. Copper sulphatè was not	Final Tron Conc		23	.4 6	.66	0.01	0.03					38	3	0.6	0.8					
Rougher Iron Conc* 26.0 64.78 0.01 0.30 Pyrrhotite Float 29.0 57.62 C.26 22.62 Total Magnetics* 55.0 60.98 0.14 12.07 Cu Cleaner Conc 1.0 24.50 19.89 23.20 Cu Cleaner Tails 2.3 20.00 0.75 9.56 Cu Rougher Conc* 3.3 21.50 6.54 13.63 Cu Rougher Tail 41.7 19.78 0.12 6.38 Total Non-Magnetics* 40.0 42.50 0.34 9.75 Feed* 100.0 42.50 0.34 9.75 100.0 100.0 Regrinding was done to minus 100 mesh. Copper sulphatè was not used in pyrrhotite flotation. 100.0 100.0	Magnetic Finisher	Tail	2	2.6 20		0.04 0.20						1	.3	0.3	_					
Pyrrhotite Float Total Magnetics* 29.0 57.62 C.26 22.62 Total Magnetics* 55.0 60.98 0.14 12.07 78.9 21.8 67.3 Cu Cleaner Conc Cu Cleaner Tails Cu Rougher Conc* 1.0 24.50 19.89 23.20 0.6 57.9 2.4 Cu Rougher Conc* 2.3 20.00 0.75 9.56 1.1 4.9 2.2 Gu Rougher Tail 41.7 19.78 0.12 6.38 1.1 4.4.5 27.3 Total Non-Magnetics* 45.0 20.00 0.59 6.91 100.0 100.0 100.0 100.0 Regrinding was done to minus 100 mesh. Copper sulphate was not 100.0 100.0 100.0	Rougher Iron Conc	*	26	26.0 64		0.01	0.30	ĺ				39	.6	0.9	8.0					
Total Magnetics* 55.0 60.98 0.14 12.07 78.9 22.7 68.1 Cu Cleaner Conc 1.0 24.50 19.89 23.20 0.6 57.9 2.4 Cu Cleaner Tails 2.3 20.00 0.75 9.56 0.6 1.1 4.9 2.2 Cu Rougher Conc* 3.3 21.50 6.54 13.63 1.1 4.9 2.2 Gu Rougher Tail 41.7 19.78 0.12 6.38 19.4 14.5 27.3 Total Non-Magnetics* 40.0 42.50 0.34 9.75 100.0 100.0 100.0 REMARKS: Regrinding was done to minus 100 mesh. Copper sulphatè was not 100.0 100.0 100.0	Pyrrhotite Float		29	29.0 57		C,26	22.62					39	<u>.3</u>	21.8	67.3	Ĭ				
Cu Cleaner Conc 1.0 24.50 19.89 23.20 Cu Cleaner Tails 2.3 20.00 0.75 9.56 Cu Rougher Conc* 3.3 21.50 6.54 13.63 Gu Rougher Tail 41.7 19.78 0.12 6.38 Total Non-Magnetics*	Total Magnetics*		55	•0 60	.98	0.14	12.07					78	.9	22.7	68.1					
Cu Cleaner Tails 2.3 20.00 0.75 9.56 1.1 4.9 2.2 Cu Rougher Conc* 3.3 21.50 6.54 13.63 1.11 4.9 2.2 Gu Rougher Tail 41.7 19.78 0.12 6.38 1.11 4.9 2.2 Total Non-Magnetics* 45.0 20.00 0.59 6.91 1.11 14.5 27.3 Feed* 100.0 42.50 0.34 9.75 100.0 100.0 100.0 100.0 REMARKS: Regrinding was done to minus 100 mesh. Copper sulphate was not used in pyrrhotite flotation.	Cu Cleaner Conc	•	1	1.0 24		9.89	.89 23.20					0	.6	57.9	2.4					
Cu Rougher Conc* 3.3 21.50 6.54 13.63 Cu Rougher Tail 41.7 19.78 0.12 6.38 Total Non-Magnetics* 45.0 20.00 0.59 6.91 Image: Feed* 100.0 42.50 0.34 9.75 100.0 100.0 100.0 REMARKS: Regrinding was done to minus 100 mesh. Copper sulphate was not used in pyrrhotite flotation.	Cu Cleaner Tails		2	2.3 20		0.75	.75 9.56					1	.1	4.9	2.2					
Cu Rougher Tail 41.7 19.78 0.12 6.38 19.4 14.5 27.3 Total Non-Magnetics* 45.0 20.00 0.59 6.91 100.0 100.0 100.0 100.0 Feed* 100.0 42.50 0.34 9.75 100.0 100.0 100.0 100.0 REMARKS: Regrinding was done to minus 100 mesh. Copper sulphate was not used in pyrrhotite flotation. Copper sulphate was not	Cu Rougher Conc*		3	•3 21	. 50	6.54	13.63					1	.7	62.8	4.6					
Total Non-Magnetics* 45.0 20.00 0.59 6.91 21.1 77.3 31.9 Feed* 100.0 42.50 0.34 9.75 100.0 100.0 100.0 100.0 REMARKS: Regrinding was done to minus 100 mesh. Copper sulphate was not used in pyrrhotite flotation.	Cu Rougher Tail		41	<u>.7</u> 19	.78	0.12	6.38					19	.4	14.5	27.3					
Feed* Image: The second se	Total Non-Magneti	.cs*	45	•0 20	00.00	0.59	6.91					21	•1	77.3	31.9					
Feed* 100.0 42.50 0.34 9.75 100.0 100.0 100.0 REMARKS: Regrinding was done to minus 100 mesh. Copper sulphate was not used in pyrrhotite flotation. Copper sulphate was not used in pyrrhotite flotation. Image: Copper sulphate was not used in pyrrhotite flotation.				 ·									_							
REMARKS: Regrinding was done to minus 100 mesh. Copper sulphate was not used in pyrrhotite flotation.	Feed*		100	.0 42	.50	0.34	9.75					100	.0 1	.00.0	100.d					
REMARKS: Regrinding was done to minus 100 mesh. Copper sulphate was not used in pyrrhotite flotation.		•														ł				
REMARKS: Regrinding was done to minus 100 mesh. Copper sulphate was not used in pyrrhotite flotation.										<u> </u>										
used in pyrrhotite flotation.	REMARKS:	Rea	rindi	na was	done	to	inue 100	mech	Conne		hatà w		-							
	•	· use	d in	ng was pyrrhc	tite	flota	lion.	me911•	00556	~r ourļ	Juace W	43 1101	••				•			

TEST NO. 17 SAMP	PLE: C	omposi	.te - 4	+5% Hig	gh-Sulpl	nide:	55% Lo	ow-Sul	ohide			DA	TE:					
OBJECT OF TEST: To	inves	tigate	the r	ecover	ry of in	on and	l coppe	er usin	ng the			CHA	ARGE: 4	000 gr	ams			
¹¹ S	tandar	d" pro	cedure	2.								TES	STED BY	<i>'</i> :				
	Time	. %	~~	Unit		Reagents, Ib per ton												
	min	Solids		, u	sed	H2S04	Z-6	Min27	DF250			1						
Grinding to -100 mesh	30	57.1		Ball	Mi11													
Magnetic Separation			•	Sala										1				
	Į	[ļ															
Magnetics-Conditioning	10	33.3	6.0	1000-	1000-g cell		0.10											
Pyrrhotite Flotation	5		ļ	l					0.056									
	<u> </u>			1000								_						
Non-Mags-Conditioning	5	33.3	6.0	1000-	-g cell	1.8	<u></u>	0.04										
<u>Cu Rougher Flotation</u>	5			ļ	11									ļ				
0	l	 		500				·				-						
<u>Cu Cleaner No. 1</u>			<u> </u>	<u> 500-</u> g	<u>z cell</u>						,,,,,,,,,,,	-						
" No. 3	l			20-8	7 Cell 11													
	1		<u> </u>	1				<u> </u>							<u> </u>			
PRODUCT	vv	. ╟──		T	ANAL	Y515 1	/0	r	- <u>r</u>				BUTION	1 %				
		<u> </u>	e	<u>Cu</u>	_ <u>_S</u>					Fe		<u>C11</u>	S					
Iron Conc	22	.4 69	•29	0.01	0.17					36	.3	0.6	0.4					
Pyrrhotite Float	27	.6 61	•30	0.10 2	23.90					39	<u>.5</u>	8.4	68.2					
Total Magnetics *	50	.0 64	• 88	0.06	3.28					75	•8	9.0	68.6					
Cu Clasper Conc	1 1	3 25	38 1	8 92 2	3 08						8 7	1 0	3 1					
Cu Cleaner Tails	3	.9 20	.25	0.42	7.69					1	.8	4.9	3.1					
Cu Rougher Conc*	5	.2 21	.50	5.05 1	1.54					2	.6 7	8.9	6.2					
Cu Rougher Tail	44	<u>.8</u> 20	.63	0.09	5.45					21	.6 1	2.1	25.2					
Total Non-Magnetics*	50	•0 20	.72	0.60	6.08					24	•2 9	1.0	31.4		1			
•				Ì							==							
Feed*	100	.0 42	.80	0.33	9.68		:			100	.0 10	0.0	100.d					
											•							
* Calculated																		
					<u> </u>			l		1			<u> </u>	1				
REMARKS: F	inal I	ron Co	nc: 9	6.4% m	ninus 20	0 mesh			· ·									
			7	5.5% n	ninus 32	5 mesh	L											

.-

TEST NO.	18	SAMF	LE:	Compos	ite 60)% Hig	sh-Sulph	ide: 40)% Magi	netic (Cobber (Conc		DAT	۲E:					
OBJECT C	OF TEST:	To :	invest	igate	the re	ecover	overy of iron and copper from a composite made									CHARGE: 6000 grams				
 		wit	nout t	he Cob	ber Ta	iling	g using	the "st	andaro	l' proc	cedure.			TES	TED E	3Y:				
. OPE	RATION	Time	ime %		ι	Jnit		-	.	Reag	gents.	lb per	ton	of Con	posite	Ore				
				Solids		L L	used	H2S04	Z-6	Min27	DF250			<u> </u>						
Grinding	to -100	mesh		57.1		Ball	Ball Mill						•							
Magnetic	Separati	.on			ļ	Sala		<u> </u>												
· · · · · · · · · · · · · · · · · · ·	·····				ļ											_				
Magnetics	-Conditi	oning	10	33.3	6.0	2000	l <u>-g cell</u>	1.8	0.10											
Pyrrhotit	<u>e Flotat</u>	ion	10		ļ	<u> </u>	11				0.04		·····							
	011+1-			00.0		1000	· · · · ·				-									
NON-Mags-	r Flotat	ion	5	33.3	6.0	1 1000	<u>-g celi</u> n	1.8		0.04						·				
		· IOII						·												
Cu Cleane	r No. 1				· · · ·	500-														
71	No. 2						g cell													
11	No. 3	ĺ					51													
PRODUCT		w-	τ			ANAL	YSIS	%			1	DI	STRI	BUTIO	N %	j				
			%		Fe		Cu S				1	Fe	(Cu	S		T			
Iron Conc			28	•0 6	7.32	0.01	0.88					37.	.3	8.0	2.1					
Total Mag	netics *		66	0.5	3.41	0.13	13 /0					40.	2	2.9	74.2					
IOCUI IIUg	IIC LLCO			• • • • •	J•+1	0.00	13.47					05			10.5					
Cu Cleane	r Conc		1 1	.5 2	7.33 1	8.83	24.00					0.	.8	72.9	3.1					
Cu Cleane	r Tails		2	4 2	2.00	0.65	8.33					1	1	4.1	1.7					
Cu Roughe	r Conc*		3.	.9 2	4.10	7.64	14.36					1 1.	.9	7.0	4.8					
Gu Kougne:	r Tall -Magneti	e e X	29	29.6 24.8		1 00	/ . 50					14.	<u>6</u> -	9.3	18.9					
·	-Hagneer	C3.		• 5 2	4•70	1.00	0.50					10.		50.5	23•1					
Feed*			100	.0 5	0.47	0.39	11.75					100.	$\frac{1}{0}$	$\frac{1}{1000}$	100.0					
													ł							
* Calcul	ated																			
											<u> </u>	1								
REMARKS:	Final	Iron C	oncent	rate:	96.3%	minu	s 200 me	sh <u>Co</u>	pper I	Recover	y (on c	origina	al or	e bas	is):					
					70.2%	minu	s 325 me	esh 72	.9% (F	Rec) x-	75% Wt	$x \frac{0.39}{0.39}$	Cu Cu	(in T	est)	1	= 64.6			
	*	•									.UU% WE	0.3.	o uu	(1n 0)	rigina	L reed.	/ < •			