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APPLICATIONS OF A ZN FACTORIAL DESIGN

IN A MINERALS TESTING AND PROCESSING LABORATORY
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Sutarno* and W, S, Bowman¥¥*

SUMMARY

The two=level factorial experimental design is one of the most
useful designs for use in those types of experiment that involve a general
survey of the effects and interactions of many operational parameters.

This report describes the possible uses of this design in a minerals testing
and processing laboratory. A computer program for this purpose is provided.

It will set up the design matrix and will evaluate the experimental results,

*Research Scientist, and **Technical Officer, respectively, Physical
Chemistry Group, Mineral Sciences Division, Mines Branch, Department
of Energy, Mines and Resources, Ottawa, Canada,
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INTRODUCTION

In both laboratory- and in production-scale operations, one
very often encounters a problem of determining the effects on a certain
process of various parameters of which their theoretical relationships
are often not fully understood. In many cases, the experimenter is
gulded by his "intuition" to consider that a certain variable, A, will have
an effect on the process, whereas another variable, B, which, by itself,
will have no effect but will, in the presence of A, have a significant effect
on the product of the process,

In general, the experimenter encounters the following questions:.
(1) Do variables A, B, C, D, etc., either by themselves or ih the presence

of the operation of the others, have a significant effect on the process?
(2) If so, to what extent?

In the absence of a theoretical answer, an empirical relation
must be developed to answer the above questions.

One of the most economical experimental designs, to perform a
survey to provide the answer to Question (1), and, to a certaln extent, to
Question (2), is the two-level factorial design (ZN design), In this design,
all variables (factors) are investigated at two levels. This design will
involve ZN experimental runs, where N is the number of factors. Thus
ZN will be the number of all possible combinations of these factors.

POSSIBLE APPLICATIONS OF A ZN FACTORIAL DESIGN

IN A MINERALS TESTING AND PROCESSING LABORATORY

In a laboratory for testing and/ or processing minerals, the
ZN factorial design might be used in analytical chemistry, complex syntheses

and in empirical modelling. These applications are discussed hereunder.




(1) Analytical Chemistry

(a). The Development of an Analytical Procedure

. Many analytical procedures are developed for a spééifi‘c purpose.
This is: particularly true in the fleld of. ore analysis. The development of ‘
the procedures is commonly conducted by a highiy-—qualiﬂed scientist.
However, once these procedures have been established, they will be more
valuable if the routine analyses can then be performed by a reasonably
competent technician. Fo r_thi:s reagon, the developer of such procedures
should report the variables in his recommended procedure that require
very strict control and those that require only a moderate degree of
control in order to achieve a result with the desired level of precision.
Thus,. ihe user of these methods will then be able to apply them with
minimum. cost to provide an adequate control and to produce an acceptable
preéision in the final results. |

In. thié case,. a Z'N factorial experiment will provide a thorough
survey of the effects of the appropriate variables.

(b) Determination of the Effect of the Environment on the
Accuracy of an Analytical Procedure

Let us gsuppose that one ‘wanted to. analyse a leaching solution
by a direct physical method. The solution will probably contain elements
besides the one or ones of interest. In this case, one would like to know
the effects of these other elements on the instrumental readings for the
main elements so that appropriate corrections. could be made, if necessary.
If the problem can be solved, a Z‘N experiment would be a very suitable
means of finding ths solution. In this case, the various factors can be
accurately controlled because they are in solution form. This
type of experiment can be extended to a solid system. However, in
this case, one must be careful in using the results because some of the
physical variables, such as particle gsize distribution, particle orientation,

etc. cannot be either fully controlled or specified.




(¢) Calibration of Electronic or Other Physical Testing
Equipment Used in a Laboratory

There are numerous types of electronic equipment used in a
modern analytical laboratory. To operate these items of equipment, the
operator is sometimes required to determine various suitable settings of
the electronic and/ or mechanical dials, depending on the nature of the
sample to be analysed. For a given sample, the readings (responses) may
change from one setting to another. The ZN experimental design is
suited to determining the sensitivities of these various dial settings
in controlling the response of the equipment,

(2) Complex Syntheses

One example of this type of problem is the investigation of the
effect of process variables on the magnetic and ceramic properties of ferrites.
There are numerous variables that may effect the final properties of the
ferrite ceramic; therefore, a ZN factorial experiment should be done because
it 1s the most economical method of investigating all these variables
simultaneously,

(3) A Tool for Empirical Modelling

Should the model be either linear or very close to linear at a
given range of variable levels, a ZN factorial experiment would be very
suitable. If the model is found to be non-linear with respect to some of the
variables in the ranges of interest, the design can be extended into a more
complicated design baged on ZkZN-k etc., instead of on ZN, where Z >2,

depending on the requirements of the information to be obtained.
DESIGN PROCEDURE

The term '"factor'" in a ZN factorial design refers to the
controllable process variables. For example, in chemical analyses, it
could be pH, concentration, etc. These factors can be either qualitative
or quantitative in nature. It is obvious that, for the qualitative factors,

all that can be determined is whether they have any effect on the response
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or not, The term "response" refers to any measurable property of the
process product(s) that is.of interest to the experimenter, In

chemical analysis.,. it means, of course, the final analytical r.e‘su'l_t,
achieved. _ _

In this .discussion, itis convenient to assume that all factors
are quantitative because the qualitativie factors can always be. "artificially"
quantified by expressing them as .2 '"dummy' number,

"These 'q'uant.iltativve factors are then given coded values of -1 and
41 for the lowest and the highest levels, respectively, .of the factor in which
the experimenter is interested; i.e., if the experimenter is interested in
seeing the effect of a pH change from 7-to 8, then he would assign pH = 7
as (~1) and pH = 8 as (+1). In-this .case, therefore, one :lc',o.d,e_d unit of this
particular factor is equal to 0.5 pH unit, Having :asfsiigﬁed the low and
high values to all the factors s the experimenter then ;co.mb’ixnes all these
factors for his .experimental run. There will be .a total of AZN different
combinations for the N factors. This schematic plan is called ‘the "design

matrix',’ The following is an example of a desi gn matrix:

Run ' Factors

No. X, X, T
1 -1 -1 e o S
2 +1 : -1 - -1 ... -1
3 -i +1 -1 | -1 R
4 +1 o o | B |
2N +1 +1 +1 +1 +1




To eliminate any possible time~dependence of the response
(the experimental result), it is desirable to conduct the actual experiments

in a random sequence with respect to the run numbers.,

EVALUATION OF THE RESULTS

One of the advantages of a two=level factorial design is the
ability to evaluate the effects of all factors, including their interactions,
using only relatively simple arithmetic. This simplicity is a consequence
of the orthogonal properties of the design matrix, The interaction columns
in the matrix can be considered as the product of the interacting factors(1).

The mathematical model of the response can be expressed

by the following polynomial:

y, = a1+a2x2+a3x3+a‘ x2x3+ ...... + gi ...[Eq. 17,

where
y; = Tresponse in run number i;
aj = constants (i. e.,, the coefficients); and
8’1 = error in run number i.

The coefficients, aj's, can be computed by the least-squares
method(2).

Equation 1 can be written in a matrix form, thus:

Y = XA+ &
where

Y = a column vector of response Yy

A = a column vector of coefficient a,;

N N J

X = a2 x 2 ) matrix of xij; and

& = a column vector of error €i .

If one can assume that the error, €., is normally distributed

i
with an expected value of 0 and a variance of 52, then the fitted regression

line can be computed as follows:



From Kquation 1, we. get
€ =Y - XA ... Eq.2]

o . 1
The sum of the squares of the error, 51, for all values of i s can be

expressed in the following matrix form:

T:

€€

I

[vy-xal[y-xalk
[yl =aTxTJry-xal

whence

T

VX’I‘ T T

T8 = Yy - aTxTy - vTx A+ xTaTx A v eo[Eq.37

In order for the sum of the squares of the errors to be a minimum,

a(€ €) = O | ..-[Eq-4]

OA

and conse quently,

H
M
s

X" XA ...[Eq.5]

Therefore,
A= (xTx txTy ...[Eq.6]

Equation 5 is commonly known as the normal equation,

If the design is such that the X-matrix is orthogonal, the
resulting pre-multiplication by its: own transpose will be a diagonal matrix.
In the case of ZN factorial design, this diagonai matrix will have diagonal
elements of ZN. The right-hand side of Equation 5 is a column vector

with elements of

*
XT is a transpose of matrix X,
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The left~hand side of Equation 6 is a column vector with elements of a_'s.

Therefore, Equation 6 can be rewritten as:

i=2N
i=1 xij yi
a, = — N ...[Eq. 7]
J 2
where:
j = 1’ 2: ’ ZN:
and
xii = 1,

A computer program has been written in FORTRAN language
for the ZN factorial design and evaluation. Depending on the option selected
by the user, the program will write the design matrix only, or will compute
the coefficients, or will compute the coefficients and write the X~-matrix.
An example of a program listing and of a test run is illustrated in the last

section of this report,
INTERPRETATION OF THE RESULTS

In interpreting the results of a two~level factorial experiment,
one must note that the coefficients, aj’ were computed by drawing a straight
line between two points or between two groups of points, if repeat runs were
performed, Therefore, Equation 1 is only a crude linear approximation of
1
j
of the extent of the effect of a particular factor, In many literature

the model. However, the magnitude of the a;s will provide a good estimate
references, 2 is commonly called the effect total and the 2y~ values are
half of the effect of factor j, including the interaction.
The variance of the aj - values, V [ aj], can be computed from
1 2

the variance - covariance matrix (X X)_ ¢ o In this case, because (XTX)

is a diagonal matrix with elements of ZN,




2
Vial= - ...TEq. 8]
2 ’

where c)'z is the variance of each obser vation. In pvr"actic’e, o‘z is not known;
therefore, it must be estimated, either by repeating or by using previous
knowledge of ‘O_Z values. Another method of estimating the value of cz is by
observing the sum of ‘squares associated with the coefficients. Using
'""Intuition', the smaller sums of isqﬁares can be pooled and used to estimate
the value of cz.

The confidence interval of the coefficients, a, can then be
constructed, B'aséd'on the degrees of freedom of their variance,

The variance of .the"éxpecte'd :res.poﬁse,, ik’ at X = Xk’ V[’%k],

can be computed by the following formula:

5 T T 2 |
VIY, 1l =X XXX o cee [Eq.9]

where Xk is a vector with elemernts of (1, ‘x.kiw o e e e ’szm)’
Having computed the statistical significance of each of the

coefficients [ i, e., of each factor], one can then;evalué,te the importance

of each of these factors. This stage of the evaluation cannot be ‘generalized,

because it depends on various factors.such as the units used, economic

factors, etc.
FRACTIONAL FACTORIAL DESIGN

On the assumptions that the observations are uncorrelated
and have equal variance, the 2 ‘factorial design provides independent
minimum-variance estimates of the grand average and of the (2N -1) effects
which consist of: |
(i) k -main effects;

(11) k(k-1) two-factor.interaction effects;
2

(iii) k{k-1)(k-2) three-~factor interaction effects;
2.3




(iv) k(kei)(k=2) . , . . (k=h-1) h-factor interaction effects; and
h!

(v) a single k - factor interaction effect (1).

Hence, this design is the most economical one to undertake
in a complete survey of all possible variables,

In many cases, however, the number of possible factors is
large and a complete ZN factorial design becomes prohibitive in cost,
Furthermore, it is often the case that the high-order interactions are
either negligible or difficult to explain in terms of their physical meaning.
In these cases, unnecessary to perform a complete survey
of the effects of these variables. In these situations, a fractional two-level
factorial design may be more economical, This desiom is commonly
referred to as a ZN—P factorial design. It must be noted, however, that, by
decreasing the number of experiments, some information will be lost.

Depending on the information that the experimenter wishes to
obtain from his experiments, there are various types of fractional factorial
design. There are no definite rules that will be applicable to all situations.
However, numerous papers have been written on this subject. Among
these, papers by Box and Hunter (1, 3) gave an excellent description of
this subject and an N, B. S, publication (4) gives a list of plans for various
fractional replications of a factorial design up to 16 factors,

EXAMPLE OF THE APPLICATION OF A ZN FACTORIAL DESIGN

IN THE CALIBRATION OF AN ANALYTICAL EQUIPMENT

In industry, one very often encounters the problem of performing
the quick analysis of a solution containing several elements that interfere
with one another in their determinations. In a laboratory, this problem is
commonly solved by separating the interfering elements before a particular
physical or chemical method is applied for the desired element, This
procedure, however, can be tedious and, in some cases, impossible to
perform, For example, if one has to analyse a leaching solution on-line,

most probably the solution will contain several other elements that might



- 0 -

interfere With the determination of the de—si‘red‘ element. Therefore, it is
necessary to ca11brate the instrument: with a solution: contalning approximately
the same: set- of elements. For this problem, a ZN factor1a1 experlment is
economically acceptable. Having done the: ca11brat1on, a
correction procedure may then he. developed that can be programmed
dire,c_:,tly into the instrument.

S‘uppes,e the 1e~acbi-ng solution contains. six elements: A, B, C,
D, E,and F and that the typical operating concentration of these elements
are AQ, B’o»’ C,o, D’o’ E.o,and' Fo.«" respectively. The most probable limiting
concentrations are A(-), to A(+), B(-) to B(:’+.);,, etc.; therefore, one can assign
A(-) as (-1), A(+), as (+1), etc., in coded units, A unit t_ra-nsfo-r.mation can
be found from the requirement: that [A(+) - o.]‘ = F_'AO - A(=)) = {in coded .
units. , S

The next step will be to set up the design matrix or the
experime’hta;l' plan. For this purpose; ZN“ bottles of the solutions, containing
all the elements concerned with, c‘oneen.f;ration- combinations _ac,co,rdingx, to
the design matrix, are prepared. N readings (for the N elements) are then
taken on each bottle. The total number of instrum_eﬁtal readings w;vill thus. be
N, Z.N. - From these readings, N sets of c.oefficieﬁts,aj , can be comput_ed.
There will be a total of N, 27 such coefficients for the N elements. For the
purposes of further discus sion, these coefficients will be called the
calibratmn coefficients..

The development of the corrections will involve the solution of

the following set of equations:

y, =2 f(cv) + av-j;f{cltczl?‘ L -aka[‘Cf" 0 :CQ  ...[Eq.10]

where
v =  the reading for element v;

coefficients of the main effect for elemenf, vy

»
i

vi
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a . and a.v = coefficients of the interaction effects,
C = concentration of element v¥,

The above Equation 10 gives rise to a set of non-linear equations. However,
the solution that will be of interest will be a set of real and positive values
of CV. The complexity of the solution of Equation 10, of course, depends
on the nature of the calibration coefficients, a, which may be positive or
negative,

In many practical cases, the extent of the interferences is not
too severe. It probably will fall into either of the following two categories:

(i) The interference is small:

In this case, as a first approximation, one can simplify

Equation 10 into a set of independent equations:
¥y = a + a C ceo [ Eq. 117

The value of Cv1 from this first approximation can be substituted into
Equation 10 to compute a closer approximation until the value of {Cvn-—Cvn-*‘i‘
will be smaller than a certain arbritrary quantity. A statistical parameter,
such as the standard deviation or a multiple thereof, can be used as this
arbitrary quantity for this purpose,

(ii) Thre interference is not small but is concentrated in the
linear portion of Equation (10). '

In this case, as a first approximation, one can use the root of

a set of N linear equations of the type:

Vo= 207 ) ci +av2 CZ' v avNCN .+ [Eq.12]

above. Further procedures will be the same as in (i).

*f represents the functional dependencé of the response on this quantity.
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COMPUTER PROGRAM FOR A ZN FACTORIAL EXPERIMENT
o a. Pufgo‘se' To set the design matrix and to evaluate the experimental
results of a ZN factorial expenment for N having values up to 7.

The output of this program is in the form of re_gression
coefficients for all factors and their inter’aclti‘ons. To compute the factor
effect, these coefficients, except a (which is constant), must be multipl-ied
by a factor of 2 to allow for the complete range of the factor values. The
‘constant, a s is the effect total. o '

b. Language: The program was written in FORTRAN language. The user
should also provide a 'suitable set of control cards for his particular

system,

c. General Description: The flow=chart of this program is illustrated

in Figure 1,

(i) Data Cards:

Card i. Title card, Upto 80 columns of aiphanumeric information,

Card 2, Number of factors., Integer. iﬁput in Column 2.
' Options: Integer input in Column 5. There are three options

that will control the output: o |

{a) 1; design matrix only will be printed;

(b) O or blank; the experimental results and thé regressions,

and the sum of squares will be printed; ‘and

(c) 2; the same as (b), plus the X-matrix will be printed.

Caf'd's 3 to (3 + N), Lower level of factor i 1n Columns 1-10. Upper level

of factor i in Columns 11-20. Both are floating-point inputs
with decimal point, Name of factor i in Columns 21-26,
Unit of factor i in Column 31-36. Both are alphanumeric

informations.




( START )

OPTION
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READ TITLE,
NO. OF FACTORS,

OPTIONS

READ
FACTORS
AND UNIT

SET uP
DESIGN
MATRIX

READ
EXPERIMENTAL
RESULTS
PRINT
COMPUTE RESULTS,
COEFFICIENTS, | OPTION COEFFICIENTS,
AND (0), 2) AND
SUM OF SQUARES SUM OF SQUARES
v

Figure 1.

N .
Flow-chart of the Computer Program for a 2 Factorial

Experiment,
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Cards (4 + N) to {3 + N+ ZN). Observed response of run v in Columns
1-10.. Floating-point inputs with decimal point. Run sequence, f
sample number or other identification numbers in Columns
77-80. Integer inp,ut'. '

(These cards are only required if the option is other than 1),

NOTE: Since the program was written in a standard sequence of runs,

the responses must be entered in the same sequence as with the

design matrix (from R.un No. 1 to Run No. ZN)

(ii) Test runs:- '

The program listing and the test run {Example run) for
Options 1 and 2 are given imrfxediafely’ f§110w'1ng the Refer‘ences in this report
(see pages 17 to 27 ), This run was performed using a CDC 6400 computer.
The data used in this run were the results of a measured weight~loss on
the Mn-Zn ferrite that occurred during sintering, _Six factors were
investigated in this experiment. They were calcination temperature, milling
time, forming pressure, éintering temperature, soaking time and sintering
atmosphere., The épecimens Were'in the form of toroids with 1.5 in. O.D. and
6. 75 1n I.D. The weight losses were expressed in per cent of the original
weight of the specimens, |

The result of the analysis of theée data, in the form of regression

coefficients and sums of squares of errors associated with the corresponding

- factors, are listed on pages 29 and 31 . Both the design matrix and the

complete X~matrix are listed for this test run on pagés 25 and 33 to 43.
Any one or both of these mé.tric,es can, of course, be omitted at the option

of the operator.
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PROGRAM MAIN(INPUT.OUTPUT. TAPE1=INPUT « TAPE3=0UTPUT)

PROGRAMME FOR TWO LFVEL FACTORIAL DESIGN

T Sy e W W D T W G D et el I W e U ) D S G R B > D D D G D G D D . G G G e

RFAL LAREL

FORTRAN V

NIMENSTON LAREL (128) 9+XM(12847) 9X(1289128)4Y(128) +A(128) 4SS (128)
DIMFNSTON FACT(7)9UNIT(7)vXFACT(?-Z)9RUN(128)oTITLE(l6)9NX(128)

DIMFNSION HDG(7)

DATA ICR/1/,4,LPT/3/
DATA LABEL/6HCONST, ¢ 6HA

16/HAC +6HARC
26HACD y6HRCD
I6HCF W6HACE
46HABDE  +6HCDE
SAHABF +6HHARF
66HANF W 6HRNDF
T6HFEF +6HAEF

86HARCEF 46HDEF
Q6HRCNEF +6HARCDFEF
16HACG »y6HBCG
26HCNG +6HACDG
3I6HAREG +AHCEG
46HRNEG  «6HARDEG
S6HAFG +6HRFG
66HDFG +AHADF G
7AHARCDF G4 6HEFG
R6HBCEFG +6HARCEFG

»6HD
+HHARCD
+6HBCE
y6GHACDE
+6HCF
+6HARDF
+6HBEF
+AHADEF
s 6HG
+AHARCG
+6HBCDG
+6HACFG
+AHCDFEG
+6HARFG
sAHBNFG
+HHAEFG
«AHDEFG

y6HRB
«HHAD
+6HE
+6HABCE
+6HRCDE
+6HACF
s 6HCDF
+6HABEF
s AHBDEF
+6HAG
s 6HDG
+6HARCDG
+AHBCEG
«6HACDEG
«6HCF G
+6HARDF G
+AHBEFG
«6HADEFG

Q6HACDEFG«6HRCOREF G4 6HSEVEN /

1 READ (TCR41000)
1000 FORMAT (16AS5)

READ (ICRs1001) NFACTWNOPT

1001 FORMAT (I2+13)
N = 2##NFACT
AN= N/?2
NO 2 I=1.N
DO 2 J=1,NFACT
Al=1
A=)
L = AI/(2.0%%(A )~
2 XM(TeJ) = (=1)#aL

TITLE

+6HAR
» 6HBD
s 6HAE
s 6HNE
»6HABCDE
¢+ 6HBCF
+6HACDF
¢ 6HCEF
+6HABDEF
+6HRG
+6HADG
s 6HEG
s 6HARBRCEG
+6HBCDEG
+6HACF G
+6HCDHFG
+6HABEFG
s 6HRNEFG

1.0)) + 1,0 - 1,0/AN

+6HC +6HAC
+6HABD +6HCD
s 6HBE s 6HABE
+6HADE » 6HBDE
s 6HF 26 HAF
+6HABCF  46HDF
s 6HBCDF  ¢6HABCDF
s6HACEF 46HBCEF
s6HCDEF ¢6HACDEF
s 6HABG s6HCG
+6HBDG +6HABDG
+6HAEG +6HBEG
¢+ 6HDEG ' 6HADEG
26HABCDEG s 6HF G
s6HBCFG +6HABCFG
+6HACDFG +6HBCDFG
s6HCEFG o6HACEFG
+6HABDEF G« 6HCDEFG

® @ W e & W S 8 S S 8 " e e e e

READ (ICR41010) (XFACT(Is1)aXFACT(192)«FACT(I)9UNIT(I)sI=14NFACT)

1010 FORMAT (2F10.2+A6
WRTTE (LPT+1050)

s4X9AR)

1050 FORMAT (1H1+T20,"FACTORIAL FXPERIMENTS"//)

WRITE (LPT41051)
1051 FORMAT (1H0.16A5/
WRITE (LPT41057)

TITLE
/)
NFACTeN

1052 FORMAT (T104"NUMBER OF FACTORS

]g :ll
WRITF (LPT41053)

16//7)

I,16//T104"NUMBER OF RUN

1053 FORMAT (T4 e"NO"eT10+"FACTORM s T244MLOW (=1)"yT449"HIGH (+1)14T714"0

INE CODED UNIT FQ.
N0 12 I=1+NFACT

Ton/7)

T = (XFACT(I+2)=XFACT(T41))/7.0
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A0

65

70

75

]0

RS

90

95

1no

108

PROGRAM

MATN

17
1054
13
1055
14
1054
15
16
1057

17

1007

1063

34
1064

107n

35
36
1045

7
R

1061

- 19 -
TRACF. CDC 6400 FTN V3,0-P265 OPT=0

J o= PRa(I-1)+1]
WRITE (LPT«1054) LAREL (J) 9FACT(T) oXFACT(T91) o XFACT(I92) sUNIT(I) o To

TUNIT(I)

FORMAT (3XeA2eT10+AAT209F1042eT384F10.29T529A69T70eF10.29TB49A6/)
IF (NOPT=1) 171317

WRITE (LPT+1055) .

FORMAT (1H1sT204"THF DESIGN MATRIX"//)

DO 14 K=14NFACT

J=2## (K=1) +1

HDG (K) =L AREL (J)

WRITE (LPT+1056) (HDG(K) ¢K=1eNFACT)

FORMAT (T4 «"RUN NO"T20+47 (4XeA6) /)

DO 16 I=1eN

NO 15 K=1«NFACT

NX(K)=XM(T oK) +XM (T ¢K) /N

WRITE (LPT+1057) TsLABEL(I) ¢ {NX(K)eK=14NFACT)
FORMAT (T4+T49T144A6eT22413e6110)

GO TO 1

DO 4 I=1laN

X(I+1)=1,0

DO &4 J=1eNFACT

N1 = 2##(J=-1)

N0 4 Jl=1.N1

J2 = Nl + Jl

X(Ted2) = X(TeJl) # XM(IsJ)

READ (ICR1002) (Y(I)sRUN(I)eI=14N)

FORMAT (F10.396AXe14)

WRITE (LPT«1063)

FORMAT (1H] 4 T20+"EXPERIMENTAL RESULTS"//)

NO 4 K=1NFACT

J o= pai(K=1)+1

HDG (K) = LARFL (J)

NRITE (LPT«1064) (HNG(K) ¢K=1«NFACT)

FORMAT (T4 «"RUN NONT2P«"EXPTNO" 9y T34,""OBSERVED" ¢+ TS0,47 (8XsA2) /)
WRITE (LPT«1070)

FORMAT (1HN)

DO K T=1eN

NO 35 K=1«NFACT

=Pt (K=1) +]

NX(K)=X(Ted)+X{(TsJ)/N

WRTITE (LPTe1065) T+t ABFL(I)eRUN(I)eY(I) e (NX(K) +eK=1sNFACT)
FORMAT (T4elaeT14eA6+TP2914eT32eF12.49T5047110)

NN a J=14+N

A(J)=0

N0 7 I=1eN

A(J) = A(J) + X(TeJ)uY (D)
A(J) = A(J)/N

SS(.)) = A(J)#A(J)#N
WRITF (LPT+1061)
FORMAT (1H1//+T6WMREGRESSTNON COEFFICIENTS AND THEIR SUM OF SQUARE

165M// ¢TG4« WNUMBER ¢ T1 34 WVARTARLEM A T2S ¢ MCOEFFICIENTY s T40 o"SUM OF SQUA
PREGQUGTTO 4 MNIMBFRU G TR0 ¢y WWARTARBLF"4aTO24"COEFFICIENT"«T1074"SUM OF SQ
RUIARFSH/ /)

N1 = N/°
nNO 30 TI=1eM1
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115

170

175

130

138

PRNGRAM

MATN

30
10627
1

21
18

19
1058

1060
20
22

1060
24

26

TRACF

N2 = N1 +

WRITF (LPTael 06?)

1

CDC /400 FTN V3.0-P265 0PT=0

ToLARFL (T) «A(I)9SS(I)sN23LABEL (N2) 4A(N2) ¢SS (N2)

FORMAT (M0 4 T4 0TGeT144A6eF 16,6eT37aF17.8¢eT709149TBl14A6F16.,69F17,.8

)

TF (NOPT =-1) 1.1.21

L =1

Kl = 12#(l.-1) +1

K2 = 17%L

WRTTFE (LPT+105%) L

FORMAT (1H1/7eT504"X-MATRIX"4TIA//)
(LAREL (J) o J=K14K2)
FORMAT (T4 «MRUN NO'"eT26412(2Xeh6) /)

HRTTE (LPT41059)

NO 272 T=1eN
N0 20 J=K1laeK?

MX () =X(Ted) +X(TaJ) /N
WRITE (LPT1050)
FORMAT (I17+T123A64T2141218)

L = L+1

TF (N=K2)
K3 =N=-k?
IF (12-K3)

Kl=K?2+1

K2=K3+K?
GO TO 19
FND

lele?4

18418426

TosLLABFL (I) o (NX (J) 0o J=K1eK2)

_I'Z—
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FACTORTAL EXPERIMENTS

TEST RUN NO. 1 (OPTION 1)
TWO LFVFL FACTNRIAL EXPERIMENTAL PLAN FOR FTVE FACTORS

NUMRFR OF FACTORS

: 5
NIMRFR 0OF RUNS : 32

FACTOR LOW (=1) HIGH (+1) ONE CODED UNIT FQ. TO
CALC. 900.00 1000.00 DEG.C 50,00 DEG.C
MILL 24.00 48400 HOUIR 12.00 HOUR
PRESS 500000 1N000.00 PST 2500.00 PST
TEMP, 1250.00 1300.00 DFG.C 25.00 DEG.C
cNAK 120.00 240400 MINUTE 60.00 MINUTE

- €2 -
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THE DESIGN MATRIX

[T e e e e e e e e i e B e B s B B R I B B I B e e B B B B B e B e e B e
[ [ T T D T D I R R R R R RN N B |

[ 2N I D T I B B | I U I O R B A |

[ ]
- Lt
v c L W wuc
z C c_ o000 bW WO wWwocwcooo
o r OO £COoT000 LWIWOUTWOCTCOOT
CaaaIae C da OadICLCcFaOaCfaCaraCa0da
c
P4
FNMIPECNLCTC O~ NI CRNLOO ~AMNIUCNTT O~
W R e Rl R e e K R LA G A Y ¢ O A VIl o Vi o U VI ¢ U o VI A VI 4 0 4 0 3N 40
m
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FACTORTAL FXPERIMENTS

TEST RUN NO. 2 (OPTION 2)

MANGANESF ZINC FERRITF

NO

mT MmO O 2

NUMBFR OF FACTORS

NUMRFR OF RUNS

FACTOR

CALC,
MTLL

PRESS

OXYGEN

LOW (=1)

900,00
24,00
5000.00
1250,00
120,00

50

MEASURED RESPONSE IS WEIGHT LOSS NURING SINTERING

- e

a8

&

64
HIGH

1000.00
48.00
10000.00
1300.N00
240.00

4400

(+1)

DEG.C
HOUR
PS1
DEG.C
MINUTE

PERC.

ONE CODED UNIT EQ. TO

50.00  DEG.C
12,00  HOUR
2500.00  PSI
25.00  DEG.C
60.00  MINUTE

175 PERC.

=Lz -
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RUN NN

- bk bt ot ot ol et s
ODNIASF LV DODNIAH WY =~

AV
-_—2

AV IRY)
Y]

VIR IR IR
I~NIAE

v
Rl

n

CONST,
A

Q
AR

r

AC

RC

ARC

n

aD

an
AdD
cn -
ACH
acn

ARCh
3

AR
RE
ARF
ACF
ace
ARCF
NE
ADF
RBRNDF
ARNDF
CNF
ACNF
RCNF
ARCNF

AF
RF
ARF
cF
ACF
RCF
ARCF
nF
ADF
anpf
ARDF
rF
ACNHF
ACDF
AWCNF

AEF
RFF
ARFF
CEF
ACFF
aCcFF
ARCFF
NEF
ADFF
RNFEF
8RANFF
CDFF
ACDFF
RCNFF
ARCDFF

FXPFRIMFNTAL QFSULTS

EXPT MO

29

30
Pa
kY
49
53
S
3
50
54
82
56

13
1

18
1n
la
12
14
57
A

59
A3
58
~?
an
A
17
7?1

19
3
1R
22
2N
7u

ORSFRVED

1.1900
<0300
1.9400
1.2000
1.5A00
«6400
1.9500
11800
1.5A00
« 1500
1.9%00
1.1800
1.570N0
141700
1.9400
1.2200
1.4300
AN
l.94n0
t.1900
1.5200
1.0A00
1.9100
1.2300
14590
lo2nn0
1.3%00
1.2700
10000
1.°300
149400
12200
1.1700
2700
1.9300
100200
1an300
« 3700
1.49100
1.0700
1457200
«H200
19600
1.2300
145300
1.,26400
19400
l1.270n
1.3700
o 1unn
1.9100
1.1400
1.4500
6000
1.#300
1.1100
l.6200
1.2700
1.9600
12500
1,5400
1.2100
1.9400
1.1900

-1
=1
-1
-1
-1
=1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
=1
-1
-1
-1
-1
-1
-1
-1
-1

=1

-1
-1

-1
-1

=1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-"

~1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1
-1
-1
-1
-1
=1
-1

]
— - - s g

-1
-1
-1
-1
-1
-1
-1

Pt pt et st s

o

-1
-1
-1
-1
-1
-1
-1

Yt et b et ot

=1
-1
-1
-1
-1
=1
-1
=1

[N D U U )

LI U U U T T T T IR O I B UL UL U L U T T T U T T N N N |
Pt et Pt it ot (ot ot font font ok gt Pk fonk b ont D ok fh Gt Sk Yt ot b otk fd S ek ok ot Gt Gt b Gk ok Pk Pk it Gt Pt ot it ot Yt pt st et Pd Gt b Bkt fod oS P h ot o Pk st Gt Gt ot ot Pt

LN T T J T T T U T U U MO TN U U IO U T I IO TR T N TN N N ']
P ot S ot bttt P bt ot ot ol S ot Yt ot o h P ok P ok et ot ot ot ot e S Pk ekt b b et it st St ot ol Pt ol ik d s ot kSt St (o ) i 1 ft okt P i e b Pt e ot
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NUMRER

s W N

n

10
11

12
11
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32

VARTARLF

CONST.

[T}

AC
ac
ARC

AD
RD
ABND
co
ACD
ACD

ARCH

AE
RE
ARE
CE
ACF
RCE
ARACE
nE

ADE
ARDE
COE
ACDF
ACDE
ABCDE

CNEFFTICIFNT

1.350625
=+362R12
«213125%
=.014063
«N49063
« 026250
-«0546R7
=.07217%0
«119684
068750
=+0R9KRT
= N56R75
=+031250
=e ND1562
028125
«001562
«N40000
. 025312
=«N33750
=-.115937
=.020937
-+001250
«N12R12
=.005000
=+005937
=«N05625
«003437
~.N03750
=.010000
-.027812
«006875
021562

REGRESSION COEFFICIENTS AND THEIR SUM OF SQUARES

SUM 0F SQUARES

116.74802500
B4 42450625
2.90702500

«N1265625
« 15405625
«04410000
+ 19140625
«02R890000
«916R0625
«30250000
51480625
«20702500
«06250000
00015625
+05062500
«N0015625
«10240000
« 04100625
07290000
201625625
« 02805625
«00010000
+01050625
.00160000
00225625
00202500
«00075625
00090000
« 00640000
04950625
«00302500
« 029755625

NUMBER

33
3%
35
364
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
s3
54
55
56
57
58
59
60
61
62
63
64

VARIABLE

AF
RF
ARF
cF
ACF
ACF
ARCF
nF
ADF
ROF
ARDF
COF
ACDF
BCDF
ARCDF
EF
AEF
REF
ABEF
CEF
ACEF
BCEF
ABCEF
NEF
ADEF
ADEF
ABDEF
CDEF
ACDEF
ACDEF
ABCDEF

COEFF ICIENT

=e 021562
=+ 00A750
+004063
«001875
~«013750
=«011562
« 013125
«010312
+ 025000
«020313
=+ 008750
=.005938
+0096R7
«009375
-.007812
=.010625
=+015937
-+ 015625
«014687
+016250
003750
«00468R
=+008125
=+010937
004375
=+000312
= 014375
-+ 007812
=~+002812
« 000625

005937,

+ 005625

- 31 -

SUM OF SQUARES

+07297562%
+00490000
« 00105625
«00022500
«01210000
«00RE5625
01102500
+ 00680625
+ 04000000
02640625
+ 00690000
00225625
+ 00600625
« 00562500
+00390625
« 00722500
+ 01625625
01562500
+01380625
«01690000
+00090000
« 00140625
+ 00422500
« 00765625
« 00122500
.00006625
» 01322500
«00390625
+00050625
«00002500
« 00225625
«00202500
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1

X=MATRIX

D] ARD

AC BC ARC AD

AR

A

COMST,

RUN NO

-1
1

1
=1
-1
1

1
-1
1
-1
=1
1

1
-1
-1
1
-1
1

1
=1
-1
1

1
-1
1
=1
-1
1

1
-1
-1
1
-1
1

1
-1
=1
1

1
=1
1
=]
-1
1

1
-]
-1
1
-1
]

1
-1
-1

1 -
-1
1
-1
1
-1
1
-1
-1
1
-1
1
-1
1
-1
1
1
-1
1
-1
1
-1
1
-1
-1
1
-1
1
-1
1
-1
1
1
-1
1
-1
1
-1
1
!
-1
1
-1
1
-1
1
-1
1
1
-1
1
-1
1
-1
1
-1
-1
1
-1
1
-1
1
-1
1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
!
1
1
1
1
1
1
!
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
=1
1
1
1
1
1
1
1

ot pa ot ot ot gt et ot b i Pt Pt o ot ot ot gt ot et Pt o P P Pt et g ot g P P et et gt e Ptk gt ot ot ot A o ot Pt et ot ot e ey ot St

w
.

- L [ L Lo Wit
v [=] w w Wwwc . 'S W e W Lihhwhwwo
2 B (% c cceo L b tC LLuCLCCC [ LLC LLCLCCC LblLLUbLUWCLLULCLOCC
< o oca ccaxcocCcQa LhouwCCouccrcLoa LboucCclouccrceclatubaunioonowoccoaceoa
O a U T a0 A0 CLAIAOC T a0 A0 dIAdLITICCIAdCACC T auaqIaOaIaoaraOac«
- ~ c~nm L E~N LFLMNTCOCC~AMIULCNTZC~AMNMIULCMNACOCC~OAMIUNLPMNTOOS ~0LM I
O RQ]\.]]M]]]]I????N?P????m‘?\?\??}?bahhhbbhbh:...v:..b:..v.hq_::,ﬁﬁ.nsﬁ
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2

X=MATRIX

CE ACE ACE ARCE

ARF

AF

E

RACN ARCD

aCn

cn

RUN NN

1
-1
=1

1
~1

1

1
-1
=1

1

1
-1

1
-1
-1

1

1
-1
-1

1
-1

1

1
=1
-1

1

1
-1

1
=1
-1

1

.
- L
['g [=] U L Lwe
z < c cce 73 [T T LucCclLlcCcCcC
[=} o coeo ccogceea LugulClauccocCoOa
eI CCada T CafdOCICULITILC T ICaTal aTa
_rIULrPTOCC~ACCIUNLIMNT S~ UM OoC~Q

P~ A A AR

-1
=1

AfF
RF
aRF
CF

34
5
36
37

-1
-1
-1
-1
=1
-1

ACF
ACF

kL]

19
()]

-

-1

ARCF

Pt ot e P gt =t ot g omd 0 o pmd =t

ot et gt Pt gt G pnd gt =t ot ey S Pt P gt pd gt Pt gt et G4 S o
1 LI I | 1 LI ] "
et P P g ot P P et gt ot Pt A gt P a gt 7t
1] ' ' L | ' ] ' ' [} ) ]
et et pmd ol ot gnd pmd At Pt ot pmd gt ot Gmd At b g P4 Gt =t O Pt ey

111 3 01t

-1
1
1

-1
1

=1

-1
1
1

-1

-1
1

-1
1
1

=1

-1
1
1

-1
1

-1

-1
1

L

w ('S [ [Foy TRy e

'S LLcC 'S Ly LibWLwweo
LLCLECL LLLbLULULLCLLLOCLODSCCO
LccoaclCauLuboLiaouccarclCeao
CdTIdi dIquULEIA AT CCATCELUCT
~OLCCFULCNCOoC~ACI U CNT OO ~0AC S
[CIRC IR QR I IR IR RC RS Tl ol Vol (ol o ol To T To TRV SV A o o o
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RUN ND

N et et it et ot ot ot ot
DO PNIASFIV=DODPNIPALSWN -~

N
—

N VYWV VNNNVNVIUY
209DPNIPAP LV

OPBP~NIPNEL W~

&
-2

LRt o
CDNIPAP WY

B
-3

Bl
N

PRI AL AN
FUV—~OODINIINFW

CANST,
4

Y
&8

C

aAC
ac
ARC
n

an
RD
AQn
cn
acn
RCN
ARCH
E

AF
aF
ARF
CF
ACF
RCF
ARCE
nF
ANF
RNF
ARNE
cNF
ACDE
ACHE
ARCDE
3

AF
AF
ARF

. CF

ACF
acF
ARCF
nF
ADF
ADF
ARNF
cnF
ACDF
ACNF
ARCOF
EF
AEF
AFF
ARFF
CFF
ACFF
ACFF
ARCEF
DEF
ANFF
ANFF
ARNEF
ChFF
ACDEF
ACNEF
ARCDEF

e

O O

-1
-1
=1
-1
=1
-1
=1
=1
-1
=1
-1
=1
-1
-1
-1
-1

ot Bt sk o ot Pt ot e o st ok et ek Bk et

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

——

ADE

anF

A=MATRIX

ARNE

1
=1
=1

1

1
-1
=1

1
-1

1

1
-1
=1

1

1
-1
-1

1

1
-1
-1

1

1
-1

1
-1
=1

1

1
-1
=1

1

1
=1
=1

1

1
-1
-1

1
-1

1

1
-1
=1

1

1
-1
-1

1

1
=1
-1

1

1
=1

1
-1
=1

1

1
=1
=1

1

cnF

=1
-1
-1
=1

1
— ot ot s ot ot s

)
0 ot ot et it et ot ot

ACNE

1
-1
)
=1
-1
1
-1
1
-1
1
=1
1
1
-1
1
-1
-1
1
=1
1
1
-1
1
-1
1
-1
1
-1
-1
1
=1
1
1
-1
1
-1
-1
1
-1
1
-1
1
=1
1
1
-1
1
=1
-1
1
-1
1
1
-1
1
=1
1
-1
1
=1
=1
1
=1
1

BCHE

1
1
-1
-1
=1
-1
1
1
-1
=1
1
1
1
1
-1
-1
-1
-1
1
1
1
1
=1
=1
1
1
-1
-1
-1
|
1
1
1
1
-1
-1
-1
-1
1
1

ARCDE

-1
1
1

-1
1

-1

=1
1
1

-1

-1
1

F

LT T U U T T L U TN U T TR U UL U U LU U U T TN U T T )
I I P S s il el el E e e e e e e e ad A T I e e S )
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RUN NN

ODNIPNS W™

ACh
acn
ARCD

AE
L3

CF
ACF
ACF
ABCE
OF
ADF
8nNF
ARNF
CNE
ACDE
ACNE
ARCNE

AF
8F
ARF
CcF
ACF
ACF
ARCF
OF
ADF
AnF
ABDF
COF
ACOF
BCNF
ARCDF
€F
AEF
RFF
AWFF
CFF
ACFF
ACFF
ARCEF
DFF
ADFF
BNFF
ARNEF
CNEF
ACDEF
ACNEF
ARCDEF

]
(b bt et Pt

Tt et bt Bt

ACF

-1

-1

-1

-1
-1

-1

-1

-1
-1

-1

-1

-1
-1

-1

-1
-1
-1

-1
-1

-1

-1
-1

-1

-1

-1
-1

-1

-1
-1

-1
1

ACF

X=MATRIX

ARCF

1
-1
-1

1
-1

1

1
-1

1
-1
=1

1
-1

1

1
-1

1
=1
=1

1
-1

1

1
-1

1
-1
-1

1
-1

1

1
-1
-1

1

1
-1

1
-1
-1

1
-1

1

1
-1

1
-1
-1

1
-1

1

1
=1

1
-1
-1

1
-1

1

1
-1

1
-1
=1

1

L)
bt bt bt et bt (ot ot ot et

=1
-1
-1
=1
-1
=1
-1

1
b Bt b ot Yk ot Ykt Pt

=1
-1
-1
-1

-1
-1
-1
~1
-1
-1
-1
=1
-1
-1

11
o ol ol adad ad

-1
=1
~1
-1
=1
-1

[

4

BNF

ARDF

1
-1
-1

1

1
-1
=1

1
=1

1

1
-1
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