Ce document est le produit d'une numérisation par balayage de la publication originale.

CANADA

DEPARTMENT OF ENERGY, MINES AND RESOURCES

STATISTICAL REVIEW OF THE

 "CANADIAN SAMPLING PROCEDURE FOR MECHANICAL SAMPLING, (SECOND DRAFT)", DOCUMENT ISO/TC-102/SC-1 (CANADA-2) $177 E$by
SUTARNO

MINERAL SCIENCES DIVISION

CONTENTS

Page
Summary ii
Introduction 1
Sampling and Preparation Procedure 1
Mathematical Development 4
Re-Computation of the Examples Presented in Appendices B, C , and D of ISO/TC-102/SC-1 (Canada-2) 177E 8
Discussion 31
References 32
Appendix: Document ISO/TC-102/SC-1 (Canada-2) 177E-Sampling
I Scope 35
II Summary 35
III Terminology 37
IV Sampling Procedure 39
V Preparation Procedure 43
VI Final Sample(s) 45
Appendix A 46
Appendix B Calculations 49
Appendix C Calculations 52
Appendix D Calculations 54

Mines Branch Investigation Report IR 71-63
STATISTICAL REVIEW OF THE "CANADIAN SAMPLING
PROCEDURE FOR MECHANICAL SAMPLING, (SECOND DRAF'T)'", DOCUMENT ISO/TC-102/SC-1 (CANADA-2) 177E
by
Sutarno*

SUMMARY

The second draft of the Canadian proposal for the sampling procedure for mechanical sampling submitted to ISO/TC-102 has been reviewed from the statistical point of view. The sampling scheme was found to be reasonable but the formulae used to evaluate the results were found to be unsuitable. A more conventional scheme for evaluating the results from the sampling scheme by analysis of variance techniques is presented. The experimental results presented in the Appendices B, C, and D of the second draft were re-computed by this method. The second draft, along with its Appendices, is given as an Appendix to the present report for comparison purposes.

[^0]
INTRODUCTION

During recent discussions between the author and Mr. N.S. Eaton, Chairman, CAC $* / \mathrm{ISO} / \mathrm{TC}-102^{1}$, on the subject of the second draft of "Canadian Sampling Procedure for Mechanical Sampling", Document ISO/TC-102/SC-1 (Canada-2) $177 \mathrm{E}^{2}$, the author expressed his disagreement with the formulae used to evaluate the data. Formulae (2) and (3), found in the Appendix A of the above document**, use the standard deviation of the range as a measure of the analysis and preparation errors. In the opinion of the author, these formulae are not suitable for this purpose. The standard deviation of the range is not usually used directly as a measure of a variation. For this reason, it was agreed that the author would review the statistical aspects of the above document and would re-compute the data presented in Appendices B, C and D of the second draft by a more conventional method. This report gives the results of that study.

SAMPLING AND PREPARATION PROCEDURE

The sampling and preparation procedure described in Appendix A of the above document can be illustrated schematically in Figure 1. The number of increments $\% * *$ necessary to obtain a certain precision depends on the quality variation (intrinsic variation) within the consignment and on the characteristic variations associated with various steps throughout the procedure.
*CAC = Canadian Advisory Committee
ISO = International Standards Organization
$\mathrm{TC}=$ Technical Committee
$\mathrm{SC}=$ Sub-Committee
**The complete document, with its own Appendices, is given as an Appendix to this report (see pages 33 to 55).
***For definition of the various terms used herein, see the Appendix, pages 37 to 39 .

Suppose that the number of increments required in order to make a satisfactory assessment of the consignment was estimated to be k. These increments were then divided at random into r sub-samples with c increments forming each sub-sample. Since the number of sub-samples must be an integer, it is obvious that k must be an integral multiple of c; also $\mathrm{k}=\mathrm{cr}$.

Each sub-sample was then submitted to a screening (sieving) analysis. Having passed through this analysis, the size fractions were then re-combined to form the original r sub-samples. These sub-samples then underwent a division process to provide m final samples from each sub-sample. Each of these final samples was then analysed for the quality to be determined, with n replicate analyses being performed for each final sample, i.e., a total of $n \times m \times r$ analyses.

From the above procedure, the following statistics were required to be estimated:

1. The top size of the consignment.
2. The analysis error.
3. The preparation error.
4. The quality (intrinsic) variation throughout the consignment.
5. Total variation of the property to be analysed.
6. The number of increments necessary to achieve a certain required degree of precision.

The top size of the consignment was determined directly from the sieving test. All the other statistical parameters can be estimated simultaneously by the analysis of variance method.

The basic assumption of this method is that the total variations of the analysed values are caused by:

1. The variation between the sub-samples, i.e., the intrinsic variation of the consignment.
2. The variation due to the sample preparation (i. e., due to lack of mixing, etc.).
3. The variation due to the analytical error.

Figure 1. Sampling and Preparation Scheme.

Having estimated the various causes of variation, one can then estimate the number of increments necessary to obtain results with any required degree of precision.

MATHEMATICAL DEVELOPMENT

Based on the above assumption concerning the causes of variation, the following mathematical model can be used to describe the sampling and analysis procedure:

$$
\begin{equation*}
x_{i j v}=u+b_{i}+y_{i j}+z_{i j v} \tag{Eq.1}
\end{equation*}
$$

where
$x_{i j v}=$ the individual value of the analytical result,
$u=$ the true value of the particular quality to be determined,
$b_{i}:=$ the deviation due to the quality variation of the sub-samples,
$y_{i j}=$ the deviation due to the preparation error, and
$z_{i j v}=$ the deviation due to the analytical error.
A further assumption will be that $b_{i}, y_{i j}$ and $z_{i j v}$ are independent, normally-distributed variables with means of zero and variances of ψ^{2}, ω^{2} and σ^{2}; respectively.

The splitting of the sums of squares of the various deviations from the means leads to the following analysis of variance table ${ }^{3}$.

TABLE 1
Analysis of Variance

Source of Variation	Sums of ${ }^{\text {Squares }}$	Degrees of Freedom	Mean* Squares	Quantity Estimated
Between Sub-samples	$\operatorname{mn}_{i=1}^{i=r}\left(\bar{x}_{i} \ldots{ }^{-\bar{x}} \ldots\right)^{2}$	($\mathrm{r}-1$)	s_{3}^{2}	$\sigma^{2}+n \omega^{2}+m n \psi^{2}$
Preparation	$\sum_{i=1}^{i=r} \sum_{j=1}^{j=m}\left(\bar{x}_{i j} .-\bar{x}_{i .}\right)^{2}$	$r(m-1)$	S_{2}^{2}	$\sigma^{2}+n \omega^{2}$
Analyses	$\begin{aligned} & \sum_{i=1}^{i=r} \sum_{j=1}^{j=m} \quad \sum_{i=1}\left(x_{i j v}-\bar{x}_{i j}\right)^{2} \end{aligned}$	$\operatorname{rm}(\mathrm{n}-1)$	S_{1}^{2}	σ^{2}
Total	$\begin{gathered} i=r \quad j=m \quad v=n \\ \sum_{i=1} \sum_{j=1} \sum_{v=1}\left(x_{i j v}-\bar{x} \ldots\right)^{2}, ~ \end{gathered}$	rmn-1	$S_{\text {total }}^{2}$	

"Note: "Mean Squares" is the ratio between the sums of squares and its number
of degrees of freedom.
The quantities with a bar (superscript) and dots (subscript) are the means of those particular variables. The number of the dots corresponds to the level of summation, thus:

$$
\begin{aligned}
& \bar{x}_{i_{0} .} \quad=\sum_{j=1}^{j=m} \sum_{v=1}^{v=n} x_{i j v / m n} \\
& \bar{x}_{i j .} \quad=\sum_{v=1}^{v=n} x_{i j v / n}
\end{aligned}
$$

From the Table 1 , the variance components, ψ^{2}, ω^{2} and σ^{2}, can be estimated by the following formulae:

$$
\begin{align*}
& \sigma=S_{1} \tag{Eq.2}\\
& \omega=\left\{\frac{S_{2}^{2}-S_{1}^{2}}{n}\right\}^{\frac{1}{2}} \tag{Eq.3}\\
& \psi=\left\{\frac{S_{3}^{2}-S_{2}^{2}}{m n}\right\}^{\frac{1}{2}} \tag{Eq.4}
\end{align*}
$$

The true value, u, can be estimated by the grand mean:

$$
\begin{equation*}
\overline{\mathrm{x}} \ldots \sum_{i=1}^{i=r} \sum_{j=1}^{j=m} \sum_{\mathrm{j}=1}^{v=n} x_{i j v / r m n} \tag{Eq.5}
\end{equation*}
$$

with a variance of

$$
\begin{align*}
v[\bar{x} \ldots] & =v[\bar{b}]+V[\bar{y} \ldots]+V[\bar{z} \ldots] \\
& =\frac{\psi^{2}}{r}+\frac{\omega^{2}}{r m}+\frac{\sigma^{2}}{\operatorname{rmn}} \\
& =\frac{m n \psi{ }^{2}+n \omega^{2}+\sigma^{2}}{r m n} \\
V[\bar{x} \ldots] & =\frac{S_{3}^{2}}{r m n} \tag{Eq.6}
\end{align*}
$$

The 95% confidence interval of the mean can then be computed as:

$$
\left.\overline{\mathrm{x}} \ldots \mathrm{t}^{-t} 0.975,(\mathrm{r}-1) \mathrm{V} \bar{x}^{\bar{x}} \ldots\right]^{\frac{1}{2}} \leq u \leq \overline{\mathrm{x}} \ldots+\mathrm{t}_{0.975,(r-1)} \mathrm{V}[\overline{\mathrm{x}} \ldots]^{\frac{1}{2}}
$$

where ${ }^{0}{ }_{0.975,(r-1)}$ = the value from the t-distribution with degrees of freedom of ($\mathrm{r}-1$) and a 5% level of significance. These values, for various values of r, are listed in Table ll.

The precision, as it is defined in the ISO/TC-102/SC-1 (Canada-2) 177E document (see Appendix, page 39) can then be computed as:

$$
\begin{align*}
P & =t_{0.975,(r-1)}\left(\frac{S_{3}^{2}}{\mathrm{rmn}}\right)^{\frac{1}{2}} \\
& =t_{0.975,(r-1)}\left\{\frac{\mathrm{mn} \psi^{2}+\mathrm{n} \omega^{2}+\sigma^{2}}{\mathrm{rmn}}\right\}^{\frac{1}{2}} \\
& =t_{0.975,(r-1)}\left\{\frac{\psi^{2}}{\mathrm{r}}+\frac{\omega^{2}}{\mathrm{rm}}+\frac{\sigma^{2}}{\mathrm{rmn}}\right\}^{\frac{1}{2}} \tag{Eq.8}
\end{align*}
$$

If the quality variation is expressed as Q, the standard deviation of the particular characteristic throughout the consighment, and c is the number of increments to form a sub-sample, then

$$
\begin{equation*}
Q^{2}=c \psi^{2} \tag{Eq.9}
\end{equation*}
$$

Thus: $\quad P=t_{0.975,(r-1)}\left\{\frac{Q^{2}}{r c}+\frac{\omega^{2}}{r m}+\frac{\sigma^{2}}{r m n}\right\}^{\frac{1}{2}}$
where
$r c=k$, the number of increments,
$r m=$ total number of final samples being analysed,
rmn $=$ total number of analyses performed.
Q, ω, σ are the standard deviations of the intrinsic variation, the preparation and the analyses, respectively.

The relative precision can also be defined as:

$$
\begin{equation*}
P_{r e l}=\frac{P}{x} \quad \times 100 \% \tag{Eq.11}
\end{equation*}
$$

and the total variation as:

$$
\begin{equation*}
\sigma_{\text {total }}=\left\{\sigma^{2}+\omega^{2}+\psi^{2}\right\}^{\frac{1}{2}} \tag{Eq.12}
\end{equation*}
$$

RE-COMPUTATION OF THE EXAMPLES PRESENTED IN APPENDICES B, C,AND D
 OF ISO/TC-102/SC-1 (CANADA-2) 177E

In these examples the following parameters were used:

$$
\begin{aligned}
\mathrm{c} & =5 \\
\mathrm{r} & =20 \\
\mathrm{~m} & =2 \\
\mathrm{n} & =2
\end{aligned}
$$

The computations in the present review were performed on a CDC 6600 digital computer; the results and the original data are listed in Tables 2 to 10.

TABLE 2a

WAW UATA

N1	42	－3］	$2 ?$
57.64	57.98	52.104	b2．0a
54．45	$5 A .31$	57.15	57.33
59．43	59.77	59.67	与－．tir
60.40	60.59	60.40	60．54
$6 \cap .73$	60.74	60.41	60.910
5R．78	59.17	ち． 53	54．5A
61.05	61.06	60.65	nc． 56
60.0 ？	F0．0．	ら0．61	ち¢．らす
67．29	＊2．1）	51.56	61.34
63.91	＋3．55	53.57	53.54
59.95	59.47	ちヲ．51	59.6
57.67	97.49	55.83	54.60
61.19	＋1）． ¢ 1	01.59	51．6＂
63.78	4.3 .47	m3．4．5	tx．1x
60.30	＋0．4．4	50.44	hr． 7 h
58．？ 7	54.40	59.10	54．97
59.37	59.29	勺\＆． 74	52．49
58.87	54.54	59．98	52.47
60.20	60.10	59.87	5．7．74
59.71	54.94	60.28	60.10

TABLE $2 b$


```
ANAIVGIS INF VARIANCE TABLEE
```


TABLE 2c


```
NUMAFK OF INRLFOAFNTS RFOMIKED FON VAKTOIS PWECISIONS
N|JMiFFir (IF
    PwFCISION PFRCFNT
        INNC.
    A&SC!uTF NEIATTVE
        ii <.70 4.54
        40
        2.3a
        -i
        1.4?
        . 3r
        1.08
        1.8:
        M
        .40 1.51
        100 0%9 1.3?
        120 .72 1.17
        14r
        lが
        [4:\
        .46 1.1:1
        .41 1.0%
        .37 .94
        20
        .54 .90
        22! •72 .45
        247 .49 .4>
        257 *47 .79
        24.4 .45 .76
        30n •44 .7?
        3?.1 4.42 . . %!
        340 .41 .634
        35: -40 -6人
        3%1) . 39 .65
        4i) . 39 063
        4?0 -.37 .ウ1
        44i . . .60 
        45? . 35 .50
        44: . 24 .57
        ち01 . 34 .54,
```


TABLE 3a

APPFNDTX 4. PUA-OF-THE-MINE, SAMPIFD REFORE GLENDTNG - LERCFNT MOTSTURF RAW DATA

A1	$\Delta \ddot{7}$		bl	R2
10.15	10.16		10.28	10.20
17.5 ?	10.76		10.48	10.6\%
7.44	7.36	:	7.52	7.5
9.40	4.56		9.64	9.5%
$7.9 ?$	7.84		7.88	7.44
9.84	9.76		9.88	1). 014
9.37	$9.3 ?$		9.36	2.40
7.68	7.7 ?		7.68	7.76
9.60	8.52		9.12	9.00
7.80	7.34		3.12	4.00
$9.5 ?$	9.44		9.48	9.44
9.80	9.76		9.00	9.68
2.04	¢. 16		8.00	7.97
7.35	7.411		7.52	7.5 ?
7.36	7.40		7.44	7.56
7.95	7.97		8.04	7.46
8.32	4.44		8.48	म. .44
9.12	9.00		8.04	2.04
9.36	9.56		9.64	9.84
9.58	9.69		9.96	17.04

TABLE 3b

TABLE 3c

APPENDIX A. RUN-OF-THF-HINE, SAMPLFD BFFORE GIFNOING - PFRCENT MOISTURF

NUMRER OF INCREMFNTS REQUTPED FOR VARTOIS DRECISIONS

NUMFF! OF	PFECCISTON	PERCFNT
Jus.	AHSOUUTE	HELATTVF
30	1.61	18.51
$4 ?$.45	9.77
His	. 64	7.39
M	. 54	6.27
100	. 47	5.44
120	.43	4.91
140	. 29	4.51
160	. 37	4.19
180	. 34	3.93
300	- 3 ?	3.7?
220	. 31	3.54
240	.29	3.30
250	- ? 8	3.24
290	.37	3.11
300	.26	3.00
320	.25	2.90
340	. 25	2.81
360	.34	2.77
380	.23	2.56
400	.23	2.59
420	. 2 ?	2.5?
449	.71	2. 46
4 ¢	.?1	2.41
$4{ }^{30}$.71	2.3 h
500	.20	2.31

'I'ABLE 4
Appendix B. Run-Of-The-Mine, Sampled Before Blending

Statistic	Percent Iron	Percent Moisture
Grand Mean	60.02	8.72
Intrinsic Standard Deviation	3.75	2.26
Preparation Standard Deviation	0.34	0.11
Analyses Standard Deviation	0.13	0.08
Total Standard Deviation	1.72	1.02
Precision at 100 Increments	0.79	0.47

TABLE 5a

APPFNDIX C＇TRON GNF CONCFNTRATE－PRRCFNT TRON HANUATA

A 1	$\triangle 2$		Bl	H2
66．3n	4．6．4．		GF． 28	6h． 34
6h． 29	かち．1．）		55.12	Griolit
hr． 4 4	F， 5.34		fin．${ }^{\text {a }} 0$	のち． 34
6F． 4 \％	Kh． 34.		65．2\％	65．5n
66.44	66．47		6S．36	65．34
6 Cc .64	65．5？		65．3＊	6 －．17
65.39	65.53		65.72	65．854
65.47	6.5 .69		55．64	65.37
65.31	65.53		65.39	65．45
65.64	65.69		65.7 ？	65.77
65.88	65.85		65.80	65.02
65.39	65.61		65.47	65.45
． 66.28	66.37		66.60	66.37
is6． 28	46.32	$\therefore 1$	46.28	64．15
6ヶ．？ 9	6．6．09		66.36	Sf． 24
65.52			66.44	65.36
66.28	4．6． CH		b6． 20	6f． 29
66.52	56.29		65.36	56．28
6f． 36	F6．1？		65.28	6f． 20
66.36	66.36		6．5．28	6f．44

TABLE 5b

		VARIANCE TABL		
SOURCFS	OF VAPIATION	Sudc of ©0リMRES	DEGOFEC Or FREFOOL:	$\begin{aligned} & \text { ME:" } \\ & \text { SDUG:0FS } \end{aligned}$
RFETMEF N	SHI-SAmplfs	9.6977	14	. 5.57
DREDARAT	10:	. 2553	20	-133
GETMEEN	ANAI YCiFS	. 4934	$4 n$. 11116
WITHIN	FIAAI. SA\%PIF			
TOTAL		10.2963	79	. 1303

	F-RATIO F	RIRUTIOM
F.95(10. 29)	38.12	2.14
F.95(20.40)	1.25	1.84
GRANI MFAN	66.17726	*
RETWEFN SIL-SAMDIFS VAHLANCE	.1231	STGNIFICANT
PRFPARATION VARIANCE	.0013	TA:SIGNTFICAAT
QFTWEE:V ANALYEFS VAZIANC.	. 0106	
TOTAL VADIANCE	.1350	
VARTANCE OF THF GHAMA) WEAM	.0053	
95 PFRCENT COVFISENCH INTFRVAL	65.91 Tr	n6.34
RFLATIVF DIWECJGTIN	.25	PFLCEN:

TABLE 5c

APPF!NIX C. IUOU RFE COGCEMTRATE - PERCEMT IIOM

NUAGFR OF INCRFWIFNTS REXUTREO FOR VARTOMS WRFCISIOAS
N!SAAELOF

PGECISTON PERCENT
ABSOIUTE BELATTVF

20	. 57	. 45	
40	. 30	. 45	
60	. 23	. 34	.
小?	.19	. 29	:
101	.17	. 35	
120	.15	.23	
149	. 14	.21	
169	. 13	.19	
180	. $)$?	. 12	
200	.11	.17	
2.20	.11	.14	
240	.10	.15	
250	. 10	. 15	.
280	.10	. 14	
300	.99	.14	
320	. 09	. 13	
34%	. 09	.13	
360	. 08	.13	
3 an	- 18	. 17	
400	. 98	. 1 ?	
420	-号	. 1 ?	
440	. 7^{4}	.11	
4513	.17	. 11	
4 40	. ! 1	. 1)	
500	. 17	.11	

TABLE 6a

$$
\begin{gathered}
A P D F A D I X C . I 2 O N \text { SOE CONCFATOATE - PFPCFNT AOISTUAF } \\
\text { RAW UATA }
\end{gathered}
$$

A1	42	H1	122
$\because .44$	2.20	2.fin	$2.7 ?$
2.7?	r.ha	-.64	2.60
7.76		?.40	2.12
2.811		$\because 80$	2.44
2. 224	7.40	2.84	2.80
2.4 H	2.57	2.36	$2.41)$
2.64	2.54	P.64	2.64
?.54	2.64	2.64	2.64
2.72	2.72	7.72	$2.7 n$
2.52	?.55	2.48	2.4%
2.? 0	?.15	2.04	2.04
?.64	2.411	?.68	?. 64
3.09	2. 36	$? .96$	2.96
2.64	?. 54	?.60	?.6!
2.60	2.60	2.56	2.60
2.64	2.62	2. 56	2.611
2. 44	?. 44	2.40	2.36
2.00	1.96	1.88	1.97
?.80	?.4n	?.76	$\because .75$
2.92	2.95	?.96	2.45

TABLE 6b

TABLE 6c

ADPFNDTX C．IRON ORF CONCFUTRATF－LEFCENT VOTSTURF

NUMRER OF TNCREMFNTG REOTTLEG FUR VARTUIG WPELISIOFS

```
NIMAF= DF
        T!NC.
```

PIFFICION PERCFNT
AムSCLUTE RELATTVF

2n	． 40	15.32
40	.31	¢．0\％
6	.16	6．1\％
－	.13	5.13
1in	.12	4.51
12！	.11	4.07
140	.10	3.73
1ヶら	.09	3.4%
14．9	．19	3.25
20\％	． 68	3.04
？？ 1	－ry	2.97
24%	.07	$2.8 n$
？¢	．17	2.62
290	.77	2.50
300	．${ }^{17}$	2．49
$3 ? .1$	． 0 ¢	2．4n
$3 i_{4}{ }^{2}$	． 05	2.37
3fin	． 0 ¢	2.24
3 con	． 06	2．0．）
4111	.06	2.14
4.10	.75	2.07
4：91	.115	2.104
＋5：	.115	1.90
44.1	.95	1.95
509	.105	1.91

TABLE 7

Appendix C. Iron Ore Concentrate

Statistic	Percent Iron	Percent Moisture
Grand Mean	66.07	2.62
Intrinsic Standard Deviation		
Preparation Standard Deviation	0.78	0.56
Analyses Standard Deviation	0.04 (Ins)	0.04
Total Standard Deviation	0.10	0.03
Precision at 100 Increments	0.37	0.25

Ins $=$ Statistically insignificant at 5\% level of significance.

TABLE 8a

```
\trianglePPFADIX 1). TZOO: OKF DFLIFTS - HFRCENT THON －AN UんTA
```

Al	$n, 1$	H1	$4{ }^{\prime \prime}$
67.97	fis．tic	65.95	6i．94
55．97	65．95	6「．79	65.95
65.37	大り．63	65.55	から．47
55．6．3	45．63	65.47	65.55
55.47	－5．4 4	5ら．31	が，45
65.63	A5．45	55．6．3	65．45
65.63	1－5．45	4.5 .6 .3	65．4b
65.42	65.39	65.44	$65.3]$
65.49	65.39	55.48	6－．47
65．4．4）	65.47	F．5．48	65．47
65.48	65.37	－55．40	＋5．31
65.40	55．31	55.49	65.34
55.37	らち．2．？	55.48	$5 \div .31$
65.42	がっ入入	55.32	6\％．31
65.47		65.47	65.34
65.47	65.55	65.47	65．34
65.55	－5．+4	65.39	65．43
65．34	65．31	65.23	65.31
65.31	4－5．15	65.48	65.41
$65 . ? 3$	6ら．3！	55.39	6テ．31

TABLE 8b


```
    AMAI, \IC OF VAFIANCF TAHLE
\begin{tabular}{|c|c|c|c|}
\hline SOUPCFS OF VAこTATTOA & GUMS OF SO!JARFS & \[
\begin{aligned}
& \text { DFGOFES OF } \\
& \text { FPEFDOM }
\end{aligned}
\] & :AFAN SOUAWFS \\
\hline  & 2.1153 & 14 & .1113 \\
\hline PRFPARATMA & .1432 & 1) & -1072 \\
\hline QFTWFEV ANA1 Y SFC & .2653 & 4) & .1066 \\
\hline  & & & \\
\hline TOTAL & \(2.523 \%\) & 19 & . 179 \\
\hline
\end{tabular}
```

F.95(19. 20)
F.75(20.40)

F-RATIO F-DISTHIGUTION
$15.55 \quad .2 .14$
$1.09 \quad 1.94$

GRANO AFAN
65.4766

QETWEFN SUF-SAMPIES VARIANCE - OPG品 STGNIFTCANT

DRFPARATION VARYAMCF -000.3 INSIGNIFICANY

RET:NEEN: ANALYCFS VARTAMCF . 0066

TOTAL VAHIANCE
.0329

VAQTANCF OF THF (KAMIS WEAM: .OOl4 :
95 PEPCENT CONFINFINF INTFQVAL 55.40 10 65.55
RELATTVE PGECISIDN
.12
PFRCENT


```
NIJPFF% !?F
    INC.
    PGFCISTON PERCFNT
    AHSQMUTF FEEISTIVE.
```

\bigcirc	．27	.41
4 ？	． 14	． 21
69	.11	． 15
以？	.1 .9	． 14
119	．\quad 汹	． 1.
10^{0}	．17	.11
140	$\because: 15$	． 10
1 ${ }^{\text {a }}$	－ils	．1） 0
is．	．$: 5$.010
2！？	． 15	－（1） 2
アウッ	.05	． 09
$\cdots+$.05	． 07
？¢	．05	.07
290	．1）4	． 07
30%	－114	． 07
32^{n}	．114	． 05
74：9	．114	． 06
	． 114	． 13
349	． 14	． 05
40^{n}	． 114	－Of
$4{ }^{4} 1$	．114	． 06
44 ？	．1） 4	． 05
4F．，	－73	． 05
4 ar	.113	． 05
	.03	． 05

TABLE 9a

TABLE 9b

```
APPFNFIIX II. IROM ORF PELLFTS - PERCENT MOISTINE.
```

 ANAI YSTG OF VARTANCF TAHLE
 | SOURCFS | OF VARIATION | SJMS DF SQUARES | DEGREES OF FREFDOM | $\begin{gathered} \text { MEAN } \\ \text { SQUAOFS } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| AETWEEN | SUH-SAMPLES | 1.5705 | 19 | .9927 |
| PREPARAT | ION | .0933 | 20 | - 01047 |
| AETWEEN | ANALYSES | .1019 | 40 | - 1025 |
| WITHIN | FINAL SAMPLF. | | | |
| TOTAL | | 1.7657 | 79 | -11224 |

	F-RATIO F-	IBUTION
F. 95 (19, 20)	17.72	2.14
F.95(20,40)	1.83	1. 84
GRAND MEAN	. 8399	
BETWEEN SUR-SAMPIIES VARIANCE	.0195	SIGNIFICANT
PREPARATION VARIANCE	.0011	INSIGNIFICANT
RETWEFN ANALYSFS VARIANCF	.0025	
TOTAL VARYANCE	. 02.31	
VARIANCE OF THE (GRANO MEAN	.0010	
95 PFRCENT CONFIDENCE INTERVAL	.77 T0	.91
RELATIVE PRECISION	8.01	PFRCENT

TABLE 9c

ADPFMDIX O. IMOM GRF HELLETS - DERCENT MOTSTURE

NJAEFO OF IMCRFMFUTS KEGITRED FOR VARJOIS PGFCISIDNS

Nijuber of	+6:CISION	PERCFMT
Inc.	AFSQQUTF	LEL. AT TVE
!	.?3	27.23
41	. 12	14.31
69	.79	10.87
4!	.78	9.17
190	. 17	8.01
120	.16	7.23
140	. 06	6.64
159	.15	6.17
1×0	.15	5.79
200	.15	5.47
? 21	.14	5.20
24	- 18	4.97
20\%	.114	4.77
?at	. 04	4.5%
309	.94	4.47
724	. 04	4.2%
34%	.93	4.14
369	.03	4.0 ?
399	.73	3.91
401	.13	3.81
43%	. 03	3.71
4.90	.93	3.63
451	-1) 3	3.54
4%	.13	3.47
590	.03	3.40

TABLE 10
Appendix D. Iron Ore Pellets

Statistic	Percent Iron	Percent Moisture
Grand Mean	65.48	0.84
Intrinsic Standard Deviation	0.36	0.31
Preparation Standard Deviation	0.02 (Ins)	0.00 (Ins)
Analyses Standard Deviation	0.08	0.05
Iotal Standard Deviation	0.18	0.15
Precision at 100 Increments	$0 . .08$	0.07

Ins $=$ Statistically insignificant at 5% level of significance.

TABLE 11
Values of $t(r-1) \xrightarrow{\text { at } 95 \% \text { Percentage Point for }}$
Various Numbers of Sub-Samples r ${ }^{(4)}$

r	${ }^{t}(\mathrm{r}-1)$	r	${ }^{t}(x-1)$	r	${ }^{t}(\mathrm{r}-1)$	r	${ }^{t}(\mathrm{r}-1)$
2	12.706	. 12	2.201	22	2.080	41	2.021
3	4.303	13	2.179	23	2. 074	61	2.000
4	3.182	14	2.160	24	2.069	121	1.980
5	2.776	15	2.145	25	2.064	∞	1.960
6	2.571	16	2.131	26	2.060		
7	2.447	17	2.120	27	2.056		
8	2.365	18	2.110	28	2.052		
9	2.306	19	2.101	29	2.048		
10	2.262	20	2.093	30	2.045		
11	2,228	21	2.086	31	2.042		

DISCUSSION

Equation 8 shows that the precision of a sampling scheme depends on the square root of the quality (intrinsic) variance of the consignment, the preparation variance and the analyses variance, and inversely as the number of sub-samples (number of increments), the number of final samples taken from each sub-sample, and the number of replicate analyses performed for each final sample. The optimum values of c, r, m and n to obtain a certain required degree of precision for a particular quality of consignment depend on practical considerations. As an example, in the case of the chemical analyses presented in Appendix B of the ISO document, the major component of variance is the intrinsic variance, Q^{2}; thus, the only way that the precision can be improved is by increasing the number of increments. Having to increase the number of increments ($\mathrm{r} \times \mathrm{c}$), one can then either increase r or c , depending on the cost of analysis and on the preparation capability. Increasing r will result in an increased of the number of analyses; on the other hand, increasing c will increase the amount of material per sub-sample to be handled and, presumably, will also increase the preparation variance, ω^{2}. In another situation, for a particular quality, where σ^{2} is the dominant component of variance, increasing n may be the most economical method to increase the precision.

Tables 2c, 3c, 5c, 6c, 8c, and 9c, show the effect of various magnitudes of variation of the qualities on the number of increments required to obtain various degrees of sampling precision. Another factor that also depends on the number of sub-samples is the quantity $t_{0.975,(r-1)}$. Table 11 shows this dependence; it is strongly dependent on r for the lower values of r, and then becomes nearly constant at $r \geq 20$.

REFERENCES

1. Sutarno, "Visit to the Loading and Sampling Facilities of the Iron Ore Company of Canada in Sept-Iles, P. Q., and of the Quebec Cartier Mining Company in Port Cartier, P.Q., August 16-18, 1971", Mineral Sciences Division Visit Memorandum MSV 71-32 (1971).
2. "Canadian Sampling Procedure for Mechanical Sampling; Answer. to Doc.102/1N 162E", Document ISO/TC-102/SC-1 (Canada-2) 177E September, 1970.
3. K. A. Brownlee, "Statistical Theory and Methodology in Science and Enginee ring", Published by John Wiley and Sons, Inc., New York (1960), pp. 389-395.
4. W.H. Beyer, "Handbook of Tables for Probability and Statistics", Published by The Chemical Rubber Co., Cleveland, Ohio, 2nd Edition (1968).

$\begin{array}{lll}I & S & 0\end{array}$

INTEPNATIONAL ORGANIZATION FOR STAADARUTZATION TECHNTCAL COMITTEE IO2 - TRON ORES SUB-COMITMEE I - SAMPLING

Canadian Sanpling

Procedure for Mechonical

Sampling (Second Dreit)

- Answer to Doc. 102/3n 162e

IRON ORE COMPANY OF CANADA

Sept-Iler, Quebec, January 14, 1970.

Secretariat of ISO/TC 102/SC 1,
Japanese Industrial Standards
Committee,
Agency of Industrial Sclence and Technology,
Ministry of International
Trade and Industry,
3 - 1 Kasumigaseti 1 , Chiyodaku,
Tokyo, Japar.
ATTEMTTON: Mr. S. Kurachi, Chief of Standards Diviston

Ecal Síl,
Enclosed please find a copy of document CAC/XSO/
TC 102/SC 1 M1 "Sampling and Preparation of Iron Ore *
Second Draft'.

This i:, the procedure referred to 1 n 1 tem 3.1
of the letter from Mr. S. F. Coolsma of Canadian Standards Association to yourself on January 7, 1970.!

We apologize for the delay and hope you will
find this method useful in your preparation of a mechanical sampling method.

Thank you.

NSE/Ym'

Enc1.' '
C.C. Mr. S. F. Coolsma
SARAPIING AND PREPARATION OF IROIN ORE

SECOND DRAFT

I SCOPE

The method covers the procedures for obtaining representative samples of a consignment and for the preparation of final samples for all the determinations required under various conditions of sampling and preparation.

II SUMMARY

The method is an increment sampling method where the number of increments is based on statistical analysis of the intrinsic variation of the characteristics desired within the ore type and the overall or total precision desired (4.4). The size of the increments is based on the top size of the ore type (4.5). The representativeness of the final sample (s) is a product of the manner in which the increments were taken (4.2). The increments are analysed individually, as sub-samples or as a gross sample (5.1-5.2-5.3).

The preparation procedures are based on a size weight ratio until the size sample is removed where crushing is continued with division in the same size weight ratio (5.6). The sample for moisture is removed before crusilng or at greater than $3^{\prime \prime}$ (10 mm) and drying is then performed at $105 \pm 5^{\circ} \mathrm{C}$ to constant weight. The analysts sample is then pulverized to pass 150 microns. ihe following flow sheet shows the possible methoda with resultant samples,

3．1 CONS IGNENTThe total quantity of ore to be sampled．（Such as a shipment，trainload，or．day＇s production）．
3.2 TNCREMENTQuantity of ore obtained by a sampling device at one time with asingle operation．
3.3 SUB－SAMPJ．E
Quantity of ore consisting of several increments taken from part of a consignment．
3．4 GROSS SAMPLEWhe gunntity ot ore consisting of all the fucremants taken from aconsignment．
3．5 SUB－GROSS SAMPLE
A sample representative of the gross sample．
3.6 PRTMARY TNCREMENTS
Increments taken from a total presentation of the consignment．
3．7 SECONDARY INCREMENTS
Increments taken from primary increments．or primary samples．
3.8 SPACING OF INGREMENTS（DEFINITION）Systematic spacing is equal in time or position（tons）over the consign－ment．Random spacings are selected by chance in time or position overthe ニニローさかamert．
3.9 TOP SIZE.

The length of a side of a square sieve opening upon which is retained .1 to 5% of the ore.
3.10 ACCURACY.

A measure of agreement between an experimental result and the true valuc.

3.11 ERROR

Difference of an observation or a group of observations from the best obtainable estimate of the true value.

3.12 BTAS (SYSTEMATIC ERROR)

An error that is consistently positive or negative. (The cause of blas can qenerally be detected and eliminated by correction of the mothod or revision ot the equipment used tor sample collection, storage, preparation, analysis or data presentation or any combination of these factors.)

3.13 CHANCE ERROR

An error which has equal probability of being positive or negative. The mean of the chance errors resuliting from a series of observations approaches zero as the number of observations is increased.

3.14 SAMPLE PREPARATJON

Includes (1) Division - Reduction in, weight
(2) Crushing - Reduction in size to $\frac{1}{2 \prime \prime}$ (10 mm)
(3) Pulverizing - Reduction is size beyond $\frac{11}{2}$ (10 mm) and
(4) Drying at $1050 \mathrm{C} \pm 5^{\circ}$.
3.15 RTFFLE

Riffie is a stationary sampler for continuous diversion of a portion
 an assembly comprising an even number of equally staed chutes, adjacent chutes discharging in opposite aides).
3.16 INCREMENT DIVISION

That process of sample division whereby the entire sample is spread out on a flat surface with uniform thickness and rectangular shape. The surface is divided into segments of equal area. With a flat botom tool a scoopful of sample of equal weight is taken from each segment and combined to form a divided sample.

3.17 FOREIGN MATERIAL

A substance not normally included in a consignment. (Must not exceed .1 \% by weight).
3.18 VARIANCE σ^{2}

The average of the squared deviations from the mean.
3.19 STANDARD DEVIATION σ

The square root of the variance.
3.20 PRECISTON
95% confidence level or twice the standard deviation (26)

XV SAMPLING PROCEDURE
4.1 Variation in handing procedures make it impossible to publish rigid rules for all parameters but the size of the increments and the minimum number of increments are defined and are based on the top size of the ore and the intrinsic variation of the characteristics to be tested. The representativeness of the final sample is also a factor of the method of collecting increment.
4.2 Method of collecting increments:

The reprosentativeness of the final samples fa directly related to the mernod or coilecring rie increments and is aivided inco the following three types and where possible Type I should be used. Type I will always take preference over Type II and likewise Type II over Type III.

ISO/TC 102/SC 1 (Canada-2) 177 TE

TYPE I - Those increments which are collected in precise accord with previously assigned rules on timing and location that are free of any bias. (i.e.: All constituents or particles of a consignment have an equal probability of being sampled.) The size of increment and method of obtaining the increment are also engineered to be free of blas. Examples:
a) A full cross section cut fiom a stopped belt.
b) From a cutter moving across a falling stream at uniform speed taking a full cross section without allowing the receptacle to overflow.
c) From full grapples during discharge.

These increments form a statistically representative sample.
TYPE II - Some measure of human discretion is exercised in selection of the primary increments either by procedure or by design (part stream cut, etc..). The representativeness is then subject to proof of non-bias. Proof of non-bias is obtained periodically by check sampling of five (5) consignments by stopped belt method all within calculated precision or 9 out of 10 within precision and the other within 1.5 times precision or proof of 95% within precision.

TYPE III - These increments are taken from a stationary consignment, i.e.: the entire consignment is not presented to the sampler. Guide lines for this procedure are given but the statistics are not valid and the samples are assumed to be representative. Agreement should be made between producer and consumer before this type of sampling is used.
4.3 The top size, the total precision of sampling the errors of preparation and analysis, and the intrinsic variation of the characteristic (s) desired are determined periodically by collecting 100 increments systematically or at random from an ore type, combining these in groups of 5 to form 20 sub-samples which are prepared in duplicate and analysed in duplicate as shown in Appendix "A".

These variables must be determined for each ore type and each sampling station as further blending would decrease the variations whereas possible segregation (moisture, size, etc..) would increase the variations at destination over origin.

Should this not be practical, agreement between producer and consumer should be obtained as to the size and number of increments to use and the mubut de maples to anajoce.

ISO/TC 102/SC I (Cannda-2) 177E
4.4 The minimuin number of increments required are calculated by the follow. ing formulae but must never be less than 10 .
$s t=\sqrt{\frac{\sigma_{v}{ }^{2}}{5}+S p^{2}+S a^{2}}$
WHEFE St $=$ Total Variation
$S p=$ Preparation Error
$\mathrm{Sa}=$ Analysis Error
AND $\quad \sigma_{v}=$ Intrinsic Variation
St, $S p$ and Sa are determined from 4.3 and O vis calculated by the following:
$2 \sigma t=2 \sqrt{\frac{\sigma v^{2}}{n}+\frac{S p^{2}}{m}+\frac{S a^{2}}{1}}$
Where 2 ot $=$ Total Precision Desired
$n=$ Number of Increments
$\mathrm{m}=$ Number or Repeated Preparations
$1=$ Number of Repeated Analysis.
m and 1 will equal the number of increments, sub-samples or sub-gross samples used and will be'l if only l gross sample is used.
4.5 The minimum size of increment is determined by the following table based on the top size of the ore type:

Varlation in the construction of the sampling device, the flow or size consist of the ore, may make it impractical to collect increments as small as the minimum weight specifted. In such rases: collert an th.
 of increments regardless of large excess of individual increment weight. (This weight usually can best be divided with eecondary sampling following the same size weight ratio.)

4.9. DISTRIBUTTION OF INCREMENTS

The fincrements are to be distributes throughout the entire consignment systematically with a random start. Should there be a sequence fin movement of the consignment such that the sampling could become "in phase" with a changing variable, the sampling cycle should be altered or randomly selected.
4.7 DIMENSIONS OF THE SAMPLING DEVICE

The effective opening of the sampling device should have a mininum dLmenstion of 3 times the top size of the ore.

4.8 PRESERVATION OF MOISTURE

The increments obtained during the sampling period shall be protected from changes in composition due to exposure to rain, snow, wind, sun, contact with absorbent materials and extremes of temperature. The
 prevent both loss of flnes and motsture. Samples in whfch moisture content is important shall be protected from excessive air flow and then shall be stored in moisture-tight containers. Metal cans with adr-tight lids or heavy vapor-impervious bags, properly sealed, are satlsfactory for this purpose.
4.9 CONTAMINATION

The sampling arrangement shall be planned so that contamination of the increments with foreign material is avoided.

MECHANLCAL SYSTEM FEATURES (FALLING STREAMS)
With mechanized systems, it is essential that the system as a whole including the sample cutter, chutes, conveyors, crushers and other devices be self-cleaning and non-clogging and be designed in a manner that will minimize the need for maintenance.

In the choice of mechanical sampling. s.ystems, it is necessary that over and above the strength requirements which would be calculated by onginone from bult densities, speeds, ete... the zucte: must maet the specitications of this method. f.e.:

1) The cycle of the sampler shall be fast enough to take required number of increments in the smallest consignment at the accuracy desired.
2) The cutter shall take a fulj cross section perpendicular to the stream at uniform speed with leading and trailing edges following the same plane.
3) The cutier shall have a minimum opening dimension of three times the top size of the ore.
4) The sampler shall operate at a speed such that the minimum weight will be equivalent to the weight of ore on the preceding conveyor for the cutter opening width at normal operating conditions or by the table 4.5, whichever is greater. The speed shall also be such that the cutter does not overflow. EXAMPLE: Belt Speed - $580 \mathrm{ft} / \mathrm{min}$.

Long Tons per hour - 4500
$\therefore \quad$ bs. $/ \mathrm{ft}=\frac{4500 \times 2240}{580 \times 60}=290$
With a 4 inch cutter $=4 / 12 \times 290=97$ ibs.
5) Secondary sampling required the same specifications.

V PREPARATION PROCEDURE

The procedure of combining increments is divided into three methods.
5.1 Analyse every fncrement and average results by weight. (Although this would be the most accurate method, it is seldom practical.)
5.2 Combine increments to form sub-samples. Analyse each sub-sample and average the results by weight.
5.3 Combine all the increments to form a gross sample from which:
a) One sample will be taken the result reported

5.4 The preparation procedure following will be done on each increment in 5.1 each sub-sample in 5.2 , on the grose sample in 5.3 (a), and on the sub-gross samples in 5.3 (b).

ISO/TC 102/SC 1 (Canoda-2) $177 / \mathrm{E}$

5.5 The procedure at this point is also dependent upon the determinations required and the following three factors are directly related to the preparation:

1) Is moisture to be determined?
2) Is size to be determined?
3) Volume \& weight of sample (s) required?

Moisture determination limits the procedure to a minimum of handing, crushing to not less than $\frac{3_{2}^{\prime \prime}}{}$ and that the samples are collected in moisture-tight containers. (Moisture should be determined as quickly as possible).

Size determination limits the procedure to no crushing until the size sample is removed at the proper weight to top size ratio. Total volume and weight required are of course directly related to the final. gross samiles needed and requires examination of the minimum weight and minimun number of increments at the outset to see that the final samples will be large enough.
5.6 Reduction of sample weight whether fincrement, sub-ámples, gross sample, or sub-gross sample.

5.6.1 Division of samples to reduce the welght are subject to the following rules:

1) Use dividing equipment (riffles) that will provide a divided sample with the same size distribution as the original sample. Test equipment for bias.
2) Use secondary increments: The secondary sampler must be out of phase with primary, if fed directly. e.g.: Primary set at ton interval, secondary at time interval, or different timing cycles, or blend the entire primary sample. In any case, the minimum size and number of increments must be adhered to.
2.1) Tertiary sampling may be applied under the same restrictions as secondary sampling.
3) Increment division: Proceed as defined in 3.1.5 taking at least 16 areas.
 shovel method may be used to divide samples down to a minimum weight of $300 \mathrm{1bs} .(135 \mathrm{Kg}$).
5.6.2 Crushing - Division Racto: Should size not be reçuired or after removal of the size sample, the following schedule of crushing is to be followed in conjunction with division 5.6.1.

TOP SIZE

8	$\prime \prime$	200	mm
$4 \prime \prime$	100	mm	
2	$\prime \prime$	50	mm
$1^{\prime \prime}$	25	mm	
$\frac{1}{2} \mathbf{n}^{\prime \prime}$	10	mm	
.04	1	mm	
.006	$\prime \prime$.15 mm	

MLNSMM TOTAS WETGIEP

$19,200 \mathrm{lbs}$	8,600	kg
$2,400 \mathrm{lbs}$	1,080	kg
300 lbs	135	kg
40 lbs	18	kg
5 lbs	2.3	kg
1 lb	.45	kg
$\frac{3}{4} \mathrm{lb}$.100 kg	

(The table from $\frac{1}{2}$ " to $8^{\prime \prime}$ is based on a cubic factor with a $4^{\prime \prime}$ cube as the base with a Sp. Gr. of 5.0 i.e.: $5 \times 62.4 \times$ $1 / 3 \times 1 / 3=12$ lbs. In order that this piece represents less than $.5 \%$ of the total weight, a factor of 200 must be applied or $200 \times 12=2,400 \mathrm{lbs}$.) The last two sizes are based on practical two stages pulverizing to a 150 micron sample of 100 grams.
5.7 Drying - The moisture sample is to be removed during the crushing division above at $\frac{1}{2}$ " or greater.

The remaining sample may then be dried to constant weight at $105^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for fur ther crushing and division. (5.3)
5.8 Pulverizing - Is then performed on dry samples on the last two weightsize ratios of 5.6.2 if required.

VI FINAL SAMPLE (S)

The final samples in size and weight are dependent on the characteristics to be tested but the following general rules apply.

1) Analysis sample should be at least 100 grass dried at $105 \pm 5^{\circ} \mathrm{C}$ and pulverized to at least 150 microns.
2) Size sample should be relative to the tahle in 5 a. 2.
3) . Moisture sample should not be crushed below $\frac{3}{2}$ " and should be at least 2.3 kg in weight.

ISO/TC 102/SC 1 (Canada-2) In'VE

APPENDTX "A"

A - REQUERED

1) Determine top sizes of the ore type.
2) Determine the total variation of the characteristic destred.
3) Determine the standard deviation of duplicate analyses for the charactertstic destred.
4) Determine the standard deviation of duplicate preparations for the characteristic desired.
5) Galculate the intrinsic variation.
6) Calculate the number of increments required.
b - procedure
Obtain 100 increments systematically or randomly throughout a consignent (s) of the ore type desired to evaluate. .

Combine these increments in sequence or randomly in groups of 5 to form 20 sub-samples.

Sieve the entire sub-samples through a sieve or sieves down to 10 mim to determine the top size, i.c.: the largest sieve greater than 10 mm containing . 1 to 5% by weight. Weigh plus and minus portions and re-combine. Record top size. (1)

Prepare samples for the characteristic desired obtaining two samples A and B from each re-combined sub-samples above.

Determine each sample for the characteristic desired in duplicate, i.e.:
A 1 - A 2 and B 1 - B 2
Determine the mean of \bar{A} the mean of \bar{B} the individual analysis ranges $|A 1-A 2|$ and $|B 1-B 2|$ and the individual preparation ranges $|\bar{A}-\bar{B}|$.
THEREFOKE: (2) $\quad \mathrm{St}=\frac{\sigma_{\mathrm{K}}+\bar{\sigma} \overline{3}}{2}$
(3). $\mathrm{Sa}=\frac{\sigma|\mathrm{A} 1-\mathrm{A} 2|+\sigma|\mathrm{B} 1-\mathrm{B} 2|}{2}$
(4) $S p=\sigma|\bar{A}-\bar{B}|$

THAN:
σv is calculated from
(1) of 4.4.
(6) The number of increments is calculated from (2) of 4.4.

Examples are shown in the following appendicies:
" B " A run of the mine ore unblended.
"C" A concentrate
"D" Pellets
Each type is taken at a separate sampling station with a separate falling stream mechanical sampler.

ISO/TC 102/SC 1 (Canaria-2) 177 F

- Appendix "b"

CALCULATIONS

1) Top Size:- $+2^{\prime \prime}$ is 1.14% which is between .5 and 5%, therefore, minimum increment weight must be 9 lbs .
2) Total Variation of Iron:- St
$=\frac{\sigma \bar{A}+\sigma \bar{B}}{2}=\frac{1.63+1.72}{2}=1.68$
3) Precision of Analysis:- Sa
$=\frac{\sigma|A|-A 2|+\sigma| B 1-B 2 \mid}{2}=\frac{.10+11}{2}$
$S a=.105$
4) Precision of Preparation:- Sp

$$
=\sigma|\vec{A}-\bar{B}|=.28
$$

5) Intrinsic variation σ_{v} is calculated from formula (1) of 4.4.

$$
\begin{equation*}
s t=\sqrt{\frac{\sigma v^{2}}{5}+{s p^{2}}^{2}+{s a^{2}}^{2}} \tag{1}
\end{equation*}
$$

$1.68=\sqrt{\frac{\sigma^{2}}{5}+.28^{2}+.105^{2}}$
$\sigma_{v}=3.7$
6) The number of increments (n) is then calculated from formula (2) of 4.4 .
$20 \mathrm{E}=\ddot{\sqrt{\frac{\sigma v^{2}}{n}} \div \frac{S n^{2}}{m} \div \frac{S A^{2}}{1}}$
Using a precision of $2 \times .40$ and 1 gross sample we have

$$
\begin{aligned}
40 & =\sqrt{\frac{3.7^{2}}{n}+\frac{.28^{2}}{1}+\frac{.105^{2}}{1}} \\
\mathfrak{n} & =194
\end{aligned}
$$

7) To obtain a precision of $2 \times .20$ fake $2 n$ increments taking 4 sub-sampies for preparation and analysis from each n.

$$
\begin{gathered}
\frac{2 \sigma t}{\sqrt{2}}=2 \sqrt{\frac{\sigma v^{2}}{n}+\frac{s p^{2}}{m}+\frac{s a^{2}}{1}} \\
\frac{2 x \cdot 20}{-r \frac{2}{2}}=2 \sqrt{\frac{3.7^{2}}{u}+\frac{.28^{2}}{4}+\frac{.105^{2}}{4}}
\end{gathered}
$$

$$
n=227
$$

APPESIX																			
$\pm \mathrm{R}$										M O I S T U R E									
SAXPLE	${ }^{\text {A }}$	A_{2}	\bar{A}	$\mathrm{A}_{1} \mathrm{~A}_{2}$	B_{1}	B_{2}	\bar{E}	$\mathrm{B}_{1}-\mathrm{B}_{2}$	$\bar{A}-3$	A_{1}	${ }^{3} 2$	\bar{A}	${ }^{A_{1}-A_{2}}$	${ }^{\mathrm{B}} 1$	B_{2}	$\stackrel{\rightharpoonup}{B}$	$L_{1}{ }^{-5} 2$	$\vec{A}-\vec{S}$	0×10
41	66.36	66.42	66.39	. 06	66.28	65.34	6ó. 31	. 06	. 08	2.84	2.80	2.82	. 04	2.68	2.72	2.70	. 04	. 12	3.0
2	66.28	66.10	66.19	. 18	66.12	66.10^{-}	60.11	. 02	. 08	2.72	2.EO	2.66	. 12	2.64	2.60	2.62	. 04	. 04	3.2
3	66.44	65.34	66.39	. 10	66.20	66.34	66.27	. 14	. 12	2.76	2.80	2.78	. 04	2.80	2.72	2.76	. 08	. 02	3.1
4	66.44	66.34	66.39	. 10	65.28	65.50	66.39	. 22	$\therefore 0$	2.80	2.80	2.80	. 00	2.80	2.84	2.82	. 04	. 02	2.9
5	66.44	65.42	65.43	. 02	65.36	66.34	66. 35	. 02	. 08	2.84	2.80	2.82	. 04	2.84	2.88	2.86	. 04	. 04	3.4
6	65.64	¢5.53	65.58	. 11	65.88	65.77	55.83	. 21	. 25	2.48	2.52	2.50	. 04	2.35	2.40	2.33	. 04	. 22	3.8
7	65.39	65.53	65.46	. 14	65.72	65.85	65.78	. 13	. 32	2.64	2.64	2.64	. 00	2.68	2.64	2.66	. 04	. 02	3.5
8	65.47	65.69	65.58	. 22	65.64	65.37	65.51	. 27	. 07	2.64	2.64	2.64	. 00	2.64	2.64	2.64	. 00	. 00	3.9
9	65.31	65.53	65.42	: 22	65.39	65.45	65.42	. 06	. 00	2. 72	2.72	2.72	. 00	2.72	2.76	2.74	. 04	. 02	3.9
10	65.64	65.69	65.67	. 05	65.72	65.77	65.75	. 05	. 08	2.52	2.56	2.54	. 04	2.48	2.48	2.48	. 00	. 05	4.1
11	65.88	65.85	65.87	. 03	65.80	66.02	65.91	. 22	. 04	2.20	2.16	2.18	. 04	2.04	2.04	2.04	. 00	. 14	4.1
12	65.39	65.61	65.50	. 22	65.47	65.45	65.45	. 02	. 04	2.64	2.60	2.62	. 04	2.68	2.64	2.66	. 04	. 04	3.7
13	66.28	66.32	66.30	. 04	66.60	66.32	66.45	. 28	. 16	3.00	2.96	2.98	. 04	2.96	2.96	2.96	. 00	. 02	3.4
14	66.28	66.32	66.30	. 04	66.28	66.16	66.22	. 12	. 08	2.64	2.64	2.64	. 00 .	2.60	2.60	2.60	. 00	. 04	- 3.2
15	66.28	66.08	66.18	. 20	66.36	66.24	66.30	. 12	. 12	2.60	2.60	2.60	. 00	2.56	2.60	2.58	. 04	. 02	3.4
16	66.52	60.28	66.40	. 24	66.44	66.35	66.40	. 08	. 00	2.64	$2.68{ }^{\circ}$	2.66	. 04	2.56	2.60	2.58	. 04	. 08	3.5
17	65.23	66.20	66.24	. 08	60.20	65.28	66.24	. 08	. 00	2.44	2.44	2.44	. 00	2.40	2.36	2.38	. 04	. 05	3.9
18	¢́c. 52	66.28	66.40	. 24	66.36	68.28	66.32	. 08	. 08	2.00	1.96	1.98	. 04	1.83	1.92	1.90	. 04	. 08	4.0
19	66.36	66.12	65.24	. 24	66.28	66.20	66.24	. 08	. 00	2.80	2.80	2.80	. 00	2.76	2.76	2.76	. 00	. 04	4.4
20	66.36	66.35	66.36	.00	60.23	66.44	55:36	. 16	. 00	2.92	2.95	2.94	. 04	2.95	2.96	2.96	. 00	. 02	4.4
153n			66.06	. 125	.		65.03	.115	. 08			2.63	. 028			2.60	. 023	. 650	3.6
σ			.39	. 033	-		.33	. 077	. 082			. 73	. 028			. 20	. 022	. 033	

APPENDIX "C"

CALCULATIONS

1) Top Size:- +10 mesh (1.68 mm) $: 3.6 \%$

As this is less than 10 mm , the minimum increment weight must be 300 gm ,
2) Total Variation of Iron:- St
$=\frac{\sigma \bar{A}+\sigma \bar{B}}{2}=\frac{.39+.33}{2}=.36$
3) Precision of Analysis:- Sa
$=\frac{\sigma|A 1-\triangle 2|+\sigma|\mathrm{B} 1-\mathrm{B} 2|}{2}=\frac{.083+.077}{2}=.08$
() Duecionge of prepordtinn:- Sn
$=\sigma|\bar{A}-\vec{B}|=.082$
5) Intrinsic variation or is calculated from (1) of 4.4.
$s t=\sqrt{\frac{\sigma v^{2}}{5}+s p^{2}+s a^{2}}$
$.36=\sqrt{\frac{\sigma v^{2}}{5}+.08^{2}+.08^{2}}$
$O_{y}=.76$
6) The number of increments (n) iss then calculated from (2) of 4.4.
$2 \sigma_{p}=2 \sqrt{\frac{\sigma v^{2}}{n}+\frac{s p^{2}}{m}+\frac{s a^{2}}{1}}$

$.20=\sqrt{\frac{.76^{2}}{n}+.08^{2}+.08^{2}}$
n $=21$

IR ON O R E P L L L E T S

I R 0 N										M O I I S T									-------
SxiPIE	\bar{S}_{1}	A.	\bar{A}	$A_{1}^{-A} A_{2}$	B_{1}	$\overline{3}_{2}$	छ	$B_{1}-B_{2}$	$\bar{A}-3$	${ }^{\text {A }}$	A_{2}	\bar{A}	$A_{1}-A_{2}$	B_{1}	B_{2}	\vec{B}	$E_{*}-B_{2}$	$\overrightarrow{\mathrm{A}}-\overline{\mathrm{B}}$	$\begin{gathered} \text { SIZE } \\ 8-3+1 \end{gathered}$
1	65.57	65.95	65.91	. 03	05.95	65.75	65.95	. 00	. 04	1.04	1.01	1.03	. 03	. 90	. 86	. 88	.13	. 15	. 3
2	55.87	65.95	65.91	. 08	65.79	65.95	65.87	. 16	. 04	-98	. 96	. 97	. 02	. 96	. 83	. 90	. 13	. 07	. 6
3	65.39.	65.53	65.51	. 24	65.55	65.47	65.51	. 03	. 00	1.03	1.11	1.07	. 08	1.18	1.07	1.12	. 11	. 05	1.2
4	65.63	65.63	65.63	. 00	65.47	65.55	65.51	. 08	. 12	1.08	1.08	1.08	. 00	1.07	1.03	1.05	. 34	. 63	. 2
5	65.47	65.45	65.46	. 02	65.31	65.45	65.38	. 14	. 08	2.09	1.04	1.06	. 05	. 98	. 99	. 98	. 31	. 08	1.0
6	65.63	65.45	55.54	. 18	65.63	65.45	65.54	. 18	. 00	. 57	. 50	. 53	. 07	. 48	. 42	. 45	. 36	. 08	. 4
7	65.63	65.45	55.54	. 18	65.63	65.45	65.54	. 18	. 00	. 73	. 76	. 74	. 03	. 80	. 74	. 77	. 36	. 03	. 2
8	65.48	65.39	65.44	. 09	65.48	65.31	65.40	. 17	. 04	. 66	. 58	. 62	. 04	. 68	. 67	. . 68	. 31	. 06	2.0
- 9	65.48	65.39	65.44	. 09	65.48	65.47	65.48	. 02	. 04	. 74	. 71	. 73	. 03	. 81	. 76	. 79	. 35	. 06	1.3
10	65.40	65.47	65.44	. 07	65.48	65.47	65.48	. 01	. 04	. 87	. 83	. 85	. 04	. 82	. 81	. 82	. 31	. 03	. 3
11	65.43	65.39	55.44	. 09	65.40	65.31	65.36	. 09	. 08	. 95	. 89	. 92	. 06	. 90	. 89	. 89	. 31	. 03	1.4
12	65.40	85.31	65.35	. 09	65.48	65.39	65.44	. 09	. 09	. 83	. 90	. 86	. 07	. 96	. 90	. 93	26	. 07	4.5
13	65.32	65.23	65.28	. 09	65.48	65.31	65.39	. 17	. 11	. 90	. 86	. 88	. 04	. 95	. 94	. 95	. 31	. 07	3.2
14	65.43	65.23	65.35	. 25	65.32	65.31	65.32	. 01	. 03	. 82	. 79	. 81	. 03	. 71	. 73	. 72	. 32	. 09	. 6
15	65.47	65.39	65.43	. 08	65.47	65.39	65.43	. 08	. 00	. 65	. 79	. 72	. 14	. 67	. 76	. 71	39	. 01	. 3
16	65.47	65.55	65.51	. 08	65.47	65.39	65.43	. 08	. 08	. 73	. 79	. 76	. 06	. 69	. 75	. 72	. 36	. 04	1.1
17	65.55	65.48	05.52	. 07	65.39	65.48	65.44	. 09	. 03	. 96	. 76	. 35	. 20	. 90	. 78	. 84	. 12	. 02	5.5
18	65.39	65.31	E5.35	. 08	65.23	65.31	65.27	. 08	. 08	. 85	. 95	. 90	. 10	. 71	. 80	. 75	. 39	. 15	10.4
19	65.31	65.15	55.23	. 16	65.48	65.47	65.48	. 01	. 25	. 74	. 82	. 78	. 08	. 80	. 75	. 77	. 35	. 01	3.8
20	65.23	65.31	65.27	. 08	65.39	65.31	65.35	. 03	. 08	. 82	. 84	. 83	. 02	. 83	. 90	. 86	. 37	. 03	-1.7.
MEAN			65.48	. 105			65.47	. 09	. 06			. 85	. 06			. 83	. 36	. 06	2.0
σ			. 20	. 054			. 16	. 059	. 056			. 14	. 045			. 14	. 037	. 039	

ISO/TC 102/SC 1 (Canado-2) 177E

APPENDIX "D"

CALCULATIONS

1) Top Size:- $+\frac{31}{3 \prime}=2.0 \%$ therefore, the minimum weight per fincre${ }_{1}$ mint must be 2 lbs .
2) Total Variation of Iron:- St
$=\frac{\sigma \bar{A}+\sigma \bar{B}}{2}=\frac{.20+.16}{2}=.18$
3) Precision of Analysis:- Sa
$=\frac{\sigma|\mathrm{A} 1-\mathrm{A} 2|+\sigma|\mathrm{BI}-\mathrm{B} 2|}{2}=\frac{.064+.059}{2}=.06$
4) . Precision of Preparation:- $S p$
$=\sigma|\bar{A}-\bar{B}|=.056=.06$
5) Intrinsic variation σ_{v} is calculated from (1) of 4.4.
$s t=\sqrt{\frac{\sigma v^{2}}{5}+S p^{2}+\mathrm{Sa}^{2}}$
$.18=\sqrt{\frac{\sigma v^{2}}{5}+.06^{2}+.06^{2}}$
$\sigma_{v}=.36$
6) The number of increments are calculated from (2) of 4.4.
$2 \sigma t=\sqrt{\frac{\sigma^{2}}{n} \frac{\operatorname{ma}^{2}}{m} \quad \frac{s^{2}}{1}}$

Using 1 gross sample and a precision of $2 \times .20$ we have
$.20=\sqrt{\frac{.36^{2}}{n}+.06^{2}+.06^{2}}$

n $: 4$

As n is less than 10, we take 10 increments and substitute 10 for n and calculate the precision.
$\sigma_{t}=\sqrt{\frac{.36^{2}}{10}+.06^{2}+.06^{2}}$
$\sigma t \quad .014 \quad$ OR $2 \sigma t=.28$

[^0]: *Research Scientist, Physical Chemistry Group, Mineral Sciences Division, Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

