This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

### CANADA



### DEPARTMENT OF ENERGY, MINES AND RESOURCES

**OTTAWA** 

**MINES BRANCH INVESTIGATION REPORT IR 71-3** 

LIBERATION AND FLOTATION CHARACTERISTICS OF SILVER-COPPER ORE FROM SMITHERS, B. C. SUBMITTED BY KENNCO EXPLORATIONS (CANADA) LIMITED

# W. ARTHUR WALL AND R. W. BRUCE

by

MINERAL PROCESSING DIVISION

NOTE: THIS REPORT RELATES ESSENTIALLY TO THE SAMPLES AS RECEIVED. THE REPORT AND ANY CORRESPONDENCE CONNECTED THEREWITH SHALL NOT BE USED IN FULL OR IN PART AS PUBLICITY OR ADVERTISING MATTER.

AL TECHNICAL 8/71 GEGLOGICAL FILES

6

COPY NO.

**JANUARY** 1971

### Mines Branch Investigation Report IR 71-3

### LIBERATION AND FLOTATION CHARACTERISTICS OF SILVER-COPPER ORE FROM SMITHERS, B.C. SUBMITTED BY KENNCO EXPLORATIONS (CANADA) LIMITED

by

### W. Arthur Wall\* and R.W. Bruce\*\*

### SUMMARY OF RESULTS

A flotation investigation was carried out to determine the fineness of grind for the liberation of the valuable constituents in the ore and their flotation characteristics.

Flotation tests resulted in a primary concentrate assaying 40.9 oz silver per ton and 3.66 per cent copper, and containing 61.8 per cent of the silver and 70.1 per cent of the copper in the feed (Test 9). Cleaning the rougher concentrate produced a final concentrate assaying 96.72 oz silver per ton and 10.0 per cent copper, but containing only 40.4 per cent of the silver and 52.8 per cent of the copper in the feed.

The results of the flotation testwork coupled with the mineralogical investigation and the size analysis of a sample of the flotation tailing indicate that the above flotation results are essentially as good as can be expected.

\*Research Scientist, and \*\*Head, Non-Ferrous Minerals Section, Mineral Processing Division, Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

- i -

### CONTENTS

- ii -

|                                                                                       | Page             |   |
|---------------------------------------------------------------------------------------|------------------|---|
| Summary of Results                                                                    | i                |   |
| Introduction                                                                          | 1                | • |
| Location of Property<br>Shipment<br>Purpose of Investigation<br>Sampling and Analysis | 1<br>1<br>1<br>1 |   |
| Mineralogical Examination                                                             | 2                |   |
| Outline of Investigation                                                              | 3                |   |
| Discussion of Results                                                                 | 3                |   |
| Conclusions                                                                           | 4                |   |
| Acknowledgements                                                                      | 5                |   |
| Appendices                                                                            | 6                |   |
| A - Test Data Sheets<br>B - Mineralogical Examination                                 |                  |   |

....

#### INTRODUCTION

#### Location of Property

The property from which this sample was obtained is called the Sam Goosly Prospect and is located at 54° 11' 15" North Latitude, 126° 16' 15" West Longitude. The property is southeast of Smithers, British Columbia.

#### Shipment

Five sacks of ore weighing 330 pounds were received on November 27, 1969.

### Purpose of Investigation

This deposit of ore reportedly contains some tens of millions of tons of material grading 0.7 per cent copper, 4.0 to 5.0 ounces silver, and 0.04 ounces gold per ton. Kennecott Copper Corporation has conducted considerable research work on this ore at their Salt Lake City Laboratory but they were not able to make a marketable grade of copper concentrate from this material.

The Non-Ferrous Minerals Section of the Mineral Processing Division was asked to carry out some metallurgical research on this ore. It was agreed that the Mineral Processing Division would have a mineralogical study done on this sample, and would carry out a limited investigation of flotation characteristics of the ore.

### Sampling and Analysis

Six hand specimens were selected for microscopic examination. The remainder of the ore was crushed to minus half-inch and split into two equal parts. One portion was crushed to minus 10-mesh size and split into 2000-gram samples. One 2000-gram sample was split into halves and one half submitted for microscopic investigation. The remaining half was pulverized, and one portion submitted for chemical analysis and another for semi-quantitative spectrographic analysis. The chemical analysis of the head sample is shown in Table 1. The semi-quantitative spectrochemical analysis is shown in Table 2.

#### TABLE 1



### TABLE 2

| Semi-Quantitative Spectrochemical Analysis* |                         |                                                |             |  |  |  |  |  |  |  |  |
|---------------------------------------------|-------------------------|------------------------------------------------|-------------|--|--|--|--|--|--|--|--|
| Principal Constituent                       | >1.0%                   | Al, Fe, Si                                     | · · ·       |  |  |  |  |  |  |  |  |
| Prominent Constituent<br>Minor Constituent  | < 1.0% > 0.1%<br>< 0.1% | Cu, Ba, Ti<br>Ag, Bi, Ca, Cr,<br>Ni, Pb, V, Zn | Mg, Mn, Mo, |  |  |  |  |  |  |  |  |
| * From Internal Report                      | : MS-AC-69-898          | •                                              |             |  |  |  |  |  |  |  |  |

### MINERALOGICAL EXAMINATION\*

The ore is composed of a fine-grained matrix of quartz and mica (sericite) with small amounts of clay, chlorite, barite, and a deep red biotite, which may be titaniferous. Distributed throughout this matrix is a variety of fine-grained ore minerals.

Six copper-bearing minerals were identified in the sample. These include chalcopyrite, tennantite-tetrahedrite, digenite, malachite, and covellite, of which chalcopyrite is the most prevalent.

The chalcopyrite in the ore is generally very fine-grained. It occurs largely as disseminated grains in gangue, intergrowths with pyrite, tennantite-tetrahedrite and arsenopyrite, and as combinations with pyrite,

\*From Mines Branch Investigation Report IR 70-11 by D.R. Owens

magnetite or rutile in gangue. The chalcopyrite ranges in size from less than one to about 300 microns; the majority of these grains are smaller than 60 microns. The chalcopyrite, due to its small size, contains only a few inclusions of the other minerals in the ore.

Significant amounts of tennantite-tetrahedrite are present in the ore. The silver content varies from a low of 0.2 to a high of 3.8 per cent silver. The tennantite-tetrahedrite grains vary in size from 2 to 50 microns.

One grain of gold, approximately 10 microns in size, was found as an inclusion in chalcopyrite.

It is stated in the report that all of the economic minerals in the ore are very fine-grained and will probably be difficult to liberate by normal grinding methods. It was also reported that the presence of a large proportion of fine-grained mica and a smaller amount of clay would probably increase the problems of beneficiating this ore.

### OUTLINE OF INVESTIGATION

A number of flotation tests were carried out on ore ground to various degrees of fineness and with various combinations of reagents. The fineness of grind was varied from 47 per cent to 98 per cent minus 325 mesh in flotation tests in which the pH of the pulp ranged from 3.0 to 10.0 with various combinations of promoters and frothers.

Full details of all tests are shown in the Mines Branch Test Reports in Appendix A.

DISCUSSION OF RESULTS

Fourteen flotation tests were performed in this investigation to determine the effect of grind, pH, flotation conditions, and reagents on grade and recovery of the silver and copper minerals. The flotation tailing of each test was screened to determine the screen analysis of the tailing. The grind varied from 47.0 per cent minus 325 mesh in Test 1 to 98.8 per cent minus 325 mesh in Test 14. The best recoveries were obtained in Test 9 in which the ore was ground to 75.2 per cent minus 325 mesh. Test 9 flotation tailing assayed 1.75 oz silver per ton and 0.10 per cent copper, and contained 26.1 per cent of the silver and 18.9 per cent of the copper in the feed. Test 11, with a grind of 89.8 per cent minus 325 mesh, was carried out with the same flotation conditions and reagents as Test 9 but gave inferior results. Tests 5 to 10 inclusive were carried out on ore ground to the same degree of fineness (75.2 per cent minus 325 mesh). Various combinations of pH and flotation reagents were investigated. The flotation conditions and reagents used in Test 9 resulted in the highest recovery of silver and copper in the concentrate, and a tailing with the lowest amount of silver and copper.

Tests 11 to 14 inclusive were carried out on ore ground to different degrees of fineness from 89.8 to 98.8 per cent minus 325 mesh. Flotation conditions and reagents similar to those used in Test 9 were employed in these tests. The results of these tests were better than those of tests carried out at a coarser grind with the exception of Test 9. It should be pointed out that the silver and copper assays of the cleaned concentrates produced in Tests 11, 12, 13, and 14 were considerably higher than the assays of clean concentrate in Test 9.

A sample of the flotation tailing from Test 4 was submitted to the Mineral Sciences Division for mineralogical examination to determine the mineralogical composition which results in the high silver and copper content. The Mineral Sciences report (MS-70-47) covering this mineralogical examination is attached as Appendix B. This report states, "The copper content is due mainly to the presence of chalcopyrite; the silver to tennantite or tetrahedrite. Both free and combined grains were observed but the proportions of the two types could not be determined because of the extremely fine grain size".

Another portion of Test 4 flotation tailing was sized in a Cyclo-Sizer and the various size fractions assayed for silver and copper. The size distribution, assays, and metal distribution are shown on Test 4 Data Sheet No. 2. It can be seen that there is no concentration of the silver and copper values in any particular size. The silver and copper are disseminated throughout the gangue, and finer grinding will not materially increase the recovery of copper and silver.

### CONCLUSIONS

The investigation of the flotation characteristic showed that the production of a marketable grade of copper concentrate from this ore will be extremely difficult, if not impossible. In Test 9, which gave the highest recoveries of any of the tests conducted, the cleaned concentrate assayed only 3.66 per cent copper and 40.9 oz silver per ton, with recoveries of 70.1 per cent and 61.8 per cent respectively.

The highest grade concentrate obtained in the investigation assayed 10.0 per cent copper and 96.7 oz silver per ton, with recoveries of 52.8 per cent and 40.4 per cent respectively. These results were obtained only after grinding to nearly all minus 400 mesh. The poor grades and recoveries of valuable constituents in the ore were attributed to their extremely fine-grained occurrence. This was confirmed by mineralogical examination of the ore and of a sample of the flotation tailing. Sub-sieve size analyses of the flotation tailing also indicated that the chalcopyrite and tennantite-tetrahedrite were not free but were present in the tailing as finely disseminated middling particles.

### ACKNOWLEDGEMENTS

The authors wish to acknowledge the assistance of the following members of the Mineral Sciences Division: Mr. D.R. Owens, who carried out the mineralogical examinations of the ore; Mr. D.P. Palombo, who performed the spectrographic analysis; Messrs. J. Cloutier, R. Craig, C.A. Derry, R. Donahoe, J. Graham, J.C. Hole, P. Lanthier, P.E. Maloughney, and C. Smith, who carried out the chemical analysis.

Ъ.

### APPENDICES

· · ·

### APPENDIX A

Test Data Sheets

S

÷.

Abbreviations used in Data Report Sheets

| RM                              | Rod Mill                           |
|---------------------------------|------------------------------------|
| CaO                             | Lime                               |
| Z-6                             | Potassium Amyl Xanthate            |
| 404                             | Aero Promoter 404                  |
| DF 250                          | Dowfroth 250 - Frother             |
| Aero 31                         | Aerofloat 31 - Promoter            |
| Z-200                           | Isopropyl Ethyl Thiono Carbamate – |
|                                 | Promoter                           |
| Amo Phos                        | Mono-ammonium Phosphate - Modifier |
| 317                             | Sodium Isobutyl Zanthate           |
| Na <sub>2</sub> CO <sub>3</sub> | Sodium Carbonate                   |
| CA                              | Cresylic Acid                      |
| $H_2SO_4$                       | Sulphuric Acid                     |
| 3501                            | Aero Promoter 3501                 |
|                                 |                                    |

| TEST NO. 1          | SAMPL                                 | E:       | Kennco       | Expl         | oratio   | on (Cana | da) Lin | nited                                 |                                       | ······································ |         |             | DA    | TE: Ja     | n. 16,  | 1970 🕔    |
|---------------------|---------------------------------------|----------|--------------|--------------|----------|----------|---------|---------------------------------------|---------------------------------------|----------------------------------------|---------|-------------|-------|------------|---------|-----------|
| OBJECT OF TEST:     | Preli                                 | imina    | ry Gri       | nding        | and (    | Concentr | ation ' | Test                                  |                                       |                                        |         |             | СН    | ARGE:      | 2000-g  | •         |
|                     |                                       |          |              |              |          |          | • •     | · · · · · · · · · · · · · · · · · · · |                                       | · · · · · · · · · · · · · · · · · · ·  |         |             | TE    | STED B     | Y: W.A. | W.        |
| OPERATION           | 1                                     | Time     | %            | ъΗ           |          | Jniť     |         |                                       |                                       | Reag                                   | jents,  | lb pe       | r ton |            |         |           |
|                     |                                       | min      | Solids       |              |          | used     | CaO     | <b>Z-6</b>                            | 404                                   | DF250                                  |         |             |       |            |         |           |
| Grinding (58.4%-200 | m)                                    | 30       | 67           |              | 7x14     | RM       |         |                                       |                                       |                                        |         |             |       |            |         | 1         |
|                     |                                       |          |              |              |          | ·        |         |                                       |                                       |                                        |         |             |       |            |         |           |
| Conditioning        |                                       | 15       | 50           | 10.2         | 2000-    | g cell   | 4.0     | 0.10                                  | 0.05                                  | 0.04                                   |         | · · · · · · |       |            |         |           |
|                     |                                       |          |              |              | <u> </u> |          | ļ       |                                       |                                       |                                        |         |             | _     |            |         |           |
| Flotation           | · · · · · · · · · · · · · · · · · · · |          | 25           |              |          |          |         | ļ                                     | · · · · · · · · · · · · · · · · · · · |                                        |         |             |       |            |         |           |
| Companying          |                                       |          | 25           | 0 5          |          |          |         | 0.10                                  | 0.10                                  |                                        |         |             |       |            |         |           |
|                     |                                       | <u> </u> |              | 9.5          |          | ·······  |         | 0.10                                  | 0.10                                  |                                        |         | <del></del> |       |            |         |           |
| Cleaning            |                                       | 3        |              |              | 500-2    | cell     | 1       |                                       |                                       |                                        |         |             |       |            |         |           |
|                     |                                       |          |              |              | 1        |          | 1       |                                       |                                       |                                        |         |             | 1     |            |         |           |
|                     |                                       |          |              |              |          |          |         |                                       |                                       |                                        |         |             | •     |            |         |           |
|                     |                                       | , , ,    |              | •            |          |          |         | · ·                                   |                                       |                                        |         |             |       |            |         | · · · · · |
| PRODUCT             |                                       | w-       | F.           |              |          | ANAL     | YSIS    | %                                     |                                       |                                        |         | D           | ISTR  | IBUTIO     | N %     |           |
|                     |                                       | .%       |              |              | Ag(1)    | Cu(2)    |         |                                       |                                       |                                        | 1       | Τ           | Ag    | Cu         |         |           |
| Cu clean conc       |                                       | 2.       | .5           | 12           | 22.31    | 2.86     |         |                                       | • •                                   |                                        |         | 1           | 0.8   | 18.1       |         |           |
| Cu cléan tail       |                                       | 4.       | .0           | 2            | 2.66     | 2.02-    | -       |                                       |                                       | · ·                                    |         | 1           | 7.6   | 20.5       |         |           |
| Scavenger conc      |                                       | 3        | .9           | 1            | 7.40     | 1.35     |         |                                       |                                       |                                        |         | 1           | 3.2   | 13.3       |         |           |
| Kougher tail        |                                       | 89.      | •0           |              | 3.30     | 0,212    |         |                                       |                                       |                                        |         | 5           | 8.4   | 48.1       |         |           |
| Feed (calcd)        |                                       | 100.     | •0           |              | 5.15     | 0.395    |         |                                       |                                       | · ·                                    |         | 10          | 0.0   | 100.0      | ,       |           |
| Cu rougher conc (ca | lcd)                                  | 6.       | .5           | . 2          | 2.52     | 2.34     |         |                                       | •                                     |                                        |         | 2           | 8.4   | 38.6       |         |           |
|                     |                                       |          |              |              |          |          | Í       |                                       |                                       |                                        |         |             |       | · ·        |         |           |
|                     |                                       |          |              |              |          |          |         |                                       |                                       |                                        |         |             |       |            |         |           |
|                     |                                       |          | 1            |              |          |          |         |                                       |                                       |                                        |         | ·           | •     | <b>*</b> . |         | • •       |
|                     |                                       |          |              |              |          |          |         |                                       |                                       |                                        |         |             |       |            |         |           |
|                     |                                       |          |              |              |          |          |         |                                       |                                       |                                        |         |             |       |            | • •     |           |
|                     |                                       |          |              |              |          |          | 1       |                                       |                                       |                                        |         |             |       |            |         |           |
|                     |                                       |          |              |              | ,        |          |         |                                       |                                       |                                        |         |             | ••••  |            |         |           |
| REMARKE Crind 4     | 7.0 00                                | r cer    | ll<br>t minu |              | meeh     | <u> </u> | l       |                                       |                                       | 1                                      | <u></u> | l           |       | 1          |         |           |
| (1) From Internal R | eport 1                               | MS-AC    | -70 - 10     | .3 J2J<br>)7 | 1110511  | •        |         |                                       |                                       | •                                      |         |             | . • • |            | · · ·   |           |
| (2) From Bondar & C | legg Re                               | eport    | A-10-        | 70           |          |          |         | ·                                     |                                       |                                        |         |             |       |            |         |           |
|                     |                                       | -        |              |              |          |          | ·       |                                       |                                       |                                        |         |             |       |            | ····    |           |

î.

2. .

\$

٦

| TEST NO. 2 SAMP          | LE: K       | ennco 1 | Explor | ation      | (Canada        | ) Limi   | .ted       |          |          |         |          | DA     | TE: Ja                                | n. 19, 1 | .970     |
|--------------------------|-------------|---------|--------|------------|----------------|----------|------------|----------|----------|---------|----------|--------|---------------------------------------|----------|----------|
| OBJECT OF TEST: Regr     | ind C       | oncent  | rate b | efore      | Cleanin        | g        |            |          |          |         |          | СН     | ARGE:                                 | 2000-g   |          |
|                          |             |         |        |            |                |          |            |          |          |         |          | TE     | STED E                                | Y: W.A.  | W        |
| OPERATION                | Time        | %       |        | ι ι        | Jnit           |          |            |          | Rea      | igents, | lb p     | er ton | · · · · · · · · · · · · · · · · · · · |          |          |
| OFERATION                | min         | Solids  | pn     | ι          | used           | CaO      | <b>Z-6</b> | 404      | DF250    | Aero31  |          |        |                                       |          | ļ        |
| Grinding (58.4%-200m)    | 30          | 67      |        | 7x14       | RM             |          |            |          |          |         |          |        |                                       |          | ]        |
|                          |             |         |        |            |                |          |            |          |          |         |          |        |                                       |          |          |
| Conditioning             | 15          | 50      | 10.6   | 2000       | <u>-g_cell</u> | 4.0      | 0.10       | 0.05     | 0.04     | 0.05    |          |        |                                       |          | <u> </u> |
|                          |             |         |        | ·          |                |          |            |          |          | · .     |          |        |                                       |          | .        |
| Flotation                |             | 30      | 10.0   |            |                |          | 0.10       | 0.05     | <u> </u> | 0.05    | <b> </b> |        |                                       |          |          |
| Crind conc               | /.5         |         |        | Pohh       | 10 Mill        | ·        |            |          |          |         |          |        |                                       |          |          |
|                          | <u>_4</u> J |         |        | reou       | IE MIII        | <u> </u> | <u> </u>   |          |          |         | <u> </u> |        |                                       |          | 1        |
| Cleaning                 | 5           |         | [      | 500-       | g cell         |          |            | 0.025    | 0.02     | 1       |          |        |                                       |          |          |
|                          |             |         |        |            |                |          |            |          |          |         |          |        |                                       |          | ļ        |
| Recleaning               | 1           |         |        | 250-       | g cell         |          |            |          |          | ļ       |          |        |                                       |          |          |
|                          |             |         |        |            |                |          | L          |          | <u></u>  |         |          |        |                                       |          | <u> </u> |
| PRODUCT                  | W           | т       |        |            | ANAL           | YSIS     | %          |          |          |         | 1        | DISTR  | IBUTIC                                | N %      |          |
|                          | 9           | 6       |        | $Ag^{(1)}$ | $Cu^{(2)}$     |          |            |          |          |         |          | Ag     | Cu                                    |          |          |
| Copper clean conc        | 2           | .3      | 5      | 3.5        | 6.08           |          |            |          |          |         |          | 24.2   | 35.0                                  |          |          |
| Cu clean tail (combined) | 12          | .3      |        | 9.37       | 0.72           |          |            |          |          |         |          | 22.6   | 22.3                                  |          |          |
| Rougher tail             | 85          | •4      |        | 3.17       | 0.20           |          |            |          |          |         |          | 53.2   | 42.7                                  |          |          |
| Feed (calcd)             | 100         | .0      |        | 5.09       | 0.40           |          |            |          |          |         | 1        | 00.0   | 100.0                                 |          |          |
| Rougher conc (calcd)     | 14          | .6      | 1      | 6.33       | 1.57           |          |            |          |          |         |          | 46.8   | 57.3                                  |          | _        |
|                          |             |         |        |            |                |          |            | -        |          |         |          |        |                                       |          |          |
|                          |             |         |        |            |                |          |            |          |          |         |          |        |                                       |          |          |
|                          |             |         |        |            |                |          |            |          |          | )       |          |        |                                       |          |          |
|                          |             |         |        |            |                |          |            |          |          |         |          |        |                                       |          |          |
|                          |             |         |        |            |                |          |            |          |          |         |          |        |                                       |          |          |
|                          |             |         |        |            |                |          |            |          |          |         |          |        |                                       |          |          |
|                          | -           |         |        |            |                |          |            | ļ        |          |         |          |        |                                       |          |          |
|                          |             |         |        |            |                |          |            | <u> </u> |          |         |          |        | <u> </u>                              |          |          |
| REMARKS: (1) From Inte   | ernal       | Report  | MS-AC  | 2-70-1     | L07            |          |            |          |          |         |          |        |                                       |          |          |
| (2) From Bond            | lar-Cl      | egg &   | Co. Re | eport      | A-13-70        |          |            |          |          |         |          |        |                                       |          |          |
|                          |             |         |        |            |                |          |            |          |          |         |          |        |                                       |          |          |

ι ω ι

٠٠,

| TEST NO. 3       SAMPLE: Kennco Exploration (Canada) Limited         OBJECT OF TEST:       Finer Grind                                        |                   |                      |                                       |                               |                                        |           |       |             |        |          |                    |                          | E: Jaı                     | n. 23, | 1970            |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|---------------------------------------|-------------------------------|----------------------------------------|-----------|-------|-------------|--------|----------|--------------------|--------------------------|----------------------------|--------|-----------------|
| OBJECT OF TEST: Fin                                                                                                                           | er Gri            | nd                   |                                       | •                             |                                        | · ·       | •     | •           | •      |          | ,                  | CHA                      | RGE:                       | 2000-g |                 |
|                                                                                                                                               | •<br>             |                      | · · · · · · · · · · · · · · · · · · · | ·<br>·                        |                                        | <u></u>   |       | · · · · ·   |        |          |                    | TES                      | TED B                      | Y: W.A | •W•             |
| OPERATION                                                                                                                                     | Time<br>min       | %<br>Solids          | рH                                    | L                             | Jnit<br>Ised                           | C=0       | 2-200 | 404         | Rea    | Igents,  | Amo                |                          | ·                          |        | <u> </u>        |
| Grinding (98.3%-200m)                                                                                                                         | 60                | 67                   |                                       | 7x14                          | RM                                     | 040       | 2-200 |             | 01230  | ACT OF 1 | <u>enos</u>        |                          |                            |        |                 |
| Conditioning                                                                                                                                  | 15                | 25                   | 0 6                                   | 2000                          |                                        | 4.0       | 0.10  | 0.05        |        | <u>.</u> |                    |                          |                            |        |                 |
| Condicioning                                                                                                                                  |                   |                      | . 9.0                                 | 2000                          | J-g Cell                               | 4.0       | 0.10  | 0.05        | <br> . |          |                    |                          |                            |        | -               |
| Copper flotation                                                                                                                              | 5                 | 22                   | 7.5                                   | 1                             |                                        |           | · .   |             | 0.04   |          |                    | ·                        | -                          |        |                 |
| Scavenger No. 1                                                                                                                               | 5                 | 22                   |                                       |                               | · · · · · · · · · · · · · · · · · · ·  |           | 0.10  |             |        | 0.05     | ······             |                          |                            |        | · · · · · · · · |
| Scavenger No. 2                                                                                                                               | 5                 |                      | 7.5                                   | <br>                          | · <u>····</u>                          |           | 0.05  |             |        | 0.05     | 4.0                | · · ·                    |                            |        |                 |
|                                                                                                                                               |                   |                      |                                       | <u> </u>                      |                                        |           |       |             |        |          |                    |                          |                            |        |                 |
|                                                                                                                                               | · · · ·           |                      |                                       |                               | ······································ | · · · · · |       | · · · · · · | х<br>х |          |                    |                          | -                          |        |                 |
| PRODUCT                                                                                                                                       | W                 | т                    |                                       |                               | ANAL                                   | YSIS      | %     |             |        |          | DI                 | STRIE                    | BUTIO                      | N %    |                 |
|                                                                                                                                               |                   |                      |                                       | Ag(1)                         | <u>Cu</u> (2)                          |           |       |             |        |          |                    | g                        | Cu                         |        |                 |
| Copper conc<br>Scavenger conc No. 1<br>Scavenger conc No. 2<br>Rougher tail                                                                   | 7<br>4<br>5<br>82 | .4<br>.5<br>.6<br>.5 | 3                                     | 5.26<br>9.36<br>5.87<br>2.405 | 3.42<br>0.58<br>0.35<br>0.148          |           |       |             |        |          | 48<br>7<br>6<br>37 | 3.8<br>7.9<br>5.2<br>7.1 | 60.1<br>6.2<br>4.7<br>29.0 |        |                 |
| Feed (calcd)                                                                                                                                  | 100               | .0                   |                                       | 5.34                          | 0.42                                   |           |       |             |        |          | 100                | 0.0 1                    | 00.0                       |        | •<br>• • •      |
|                                                                                                                                               |                   |                      |                                       |                               |                                        |           |       |             |        |          |                    |                          |                            | · · ·  |                 |
|                                                                                                                                               |                   |                      |                                       |                               |                                        | ·         |       |             |        |          |                    |                          |                            |        | •<br>•          |
|                                                                                                                                               |                   |                      |                                       |                               |                                        |           | •••   | •           | ·      |          |                    |                          |                            |        | -               |
| KEMARKS:     Grind 80.4 per cent minus 325 mesh.       (1) From Internal Report MS-AC-70-112       (2) From Bondar-Clegg & Co. Report A-19-70 |                   |                      |                                       |                               |                                        |           |       |             |        |          |                    |                          |                            |        |                 |

# MINES BRANCH FLOTATION TEST REPORT Sheet 1 of 2

•••

4

| TEST NO. 4       SAMPLE: Kennco Exploration (Canada) Limited       DATE: Jan. 29, 1970         OD 1507 05 7507 0400000000000000000000000000 |                                                                                                   |                |              |                    |                       |          |       |       |       |                                 |                |                 |                      |        |       |   |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------|--------------|--------------------|-----------------------|----------|-------|-------|-------|---------------------------------|----------------|-----------------|----------------------|--------|-------|---|
| OBJECT OF TEST: Diff                                                                                                                        | erent                                                                                             | Flotat         | ion Re       | eagent             | s - Cvc               | losize   | Float | Tails |       |                                 |                | CH,             | ARGE                 | : 2000 | )-g   |   |
|                                                                                                                                             |                                                                                                   |                |              |                    |                       |          |       |       |       |                                 |                | TE              | STED                 | BY: W  | I.A.W | • |
|                                                                                                                                             | Time                                                                                              | %              |              | Ι ι                | Init                  | Τ        |       |       | Rea   | igents,                         | lb per         | ton             |                      |        |       |   |
| OPERATION                                                                                                                                   | min                                                                                               | Solids         | рп           | u                  | sed                   | Amo      | 317   | 404   | DF250 | Na <sub>2</sub> CO <sub>3</sub> | <b>Z-200</b>   |                 |                      |        |       |   |
| Grinding (100%-200 m)                                                                                                                       | 60                                                                                                | 67             |              | 7x14               | RM                    |          |       |       |       |                                 |                |                 |                      |        |       |   |
| Conditioning                                                                                                                                | 5                                                                                                 | 35             | 7.2          | 2000-              | g cell                | 4.0      |       |       |       |                                 |                |                 |                      |        |       |   |
| Flotation No. 1                                                                                                                             | 4                                                                                                 | 20             | 7.2          |                    |                       |          | 0.10  | 0.10  | 0.06  |                                 |                |                 | -                    |        |       |   |
| Conditioning                                                                                                                                | 5                                                                                                 | 20             | 8.5          |                    |                       | <u> </u> |       |       |       | 4.0                             | 0.15           |                 |                      |        |       |   |
| Flotation No. 2                                                                                                                             | 15                                                                                                | 20             | 8.4          |                    |                       |          |       |       |       |                                 |                |                 |                      |        |       |   |
|                                                                                                                                             |                                                                                                   |                |              |                    |                       | <u> </u> |       |       |       |                                 |                |                 |                      |        |       |   |
|                                                                                                                                             |                                                                                                   |                |              | <u> </u>           |                       |          |       |       |       |                                 |                |                 |                      |        |       |   |
| PRODUCT                                                                                                                                     | W                                                                                                 | т              |              |                    | ANAL                  | YSIS     | %     |       |       |                                 | D              | STR             | IBUT                 | ION 9  | %     |   |
|                                                                                                                                             | 9                                                                                                 | 6              |              | <sub>Ag</sub> (1)  | <sub>Cu</sub> (2)     |          |       |       |       |                                 | A              | g               | Cu                   |        |       |   |
| Float conc No. 1<br>Float conc No. 2<br>Rougher tail                                                                                        | 5<br>13<br>81                                                                                     | .9<br>.1<br>.0 | 42<br>6<br>2 | .12<br>.325<br>.05 | 3.79<br>0.41<br>0.129 |          |       |       |       |                                 | 54<br>15<br>30 | ••6<br>•2<br>•2 | 58.6<br>14.1<br>27.3 |        |       |   |
| Feed (calcd)                                                                                                                                | 100                                                                                               | .0             | 5            | .47                | 0.38                  |          |       |       |       |                                 | LOC            | 0.0             | 100.0                |        |       |   |
|                                                                                                                                             |                                                                                                   |                |              |                    |                       |          |       |       |       |                                 |                |                 |                      |        |       |   |
|                                                                                                                                             |                                                                                                   |                |              |                    |                       |          |       |       |       |                                 |                |                 |                      |        |       |   |
| REMARKS: (1) From In<br>(2) From Bo                                                                                                         | REMARKS: (1) From Internal Report MS-AC-70-122<br>(2) From Bondar-Clegg & Co. Ltd. Report A-28-70 |                |              |                    |                       |          |       |       |       |                                 |                |                 |                      |        |       |   |

.

1 1

S

-

, **5**, **6**,

# MINES BRANCH FLOTATION TEST REPORT Sheet 2 of 2

| TEST NO. 4SAMPLE: Kennco Exploration (Canada) LimitedDATE: Jan. 29, 1970OBJECT OF TEST:CHARGE: |                                                                                   |             |          |            |          |       |          |          |          |            |        |             |        | 1970      |          |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------|----------|------------|----------|-------|----------|----------|----------|------------|--------|-------------|--------|-----------|----------|
| OBJECT OF TEST:                                                                                |                                                                                   |             |          |            |          |       |          |          |          |            |        | CHA         | RGE:   |           |          |
|                                                                                                |                                                                                   |             |          |            |          |       |          |          |          |            |        | TES         | TED BY | <u>':</u> |          |
| OPERATION                                                                                      | Time                                                                              | %<br>Salida | pН       | . <b> </b> | Jnit     | .     | 1        | r        | Rea      | gents,     | ib per | ton         | -1     | · ·       | 1        |
|                                                                                                |                                                                                   | Solias      |          |            |          |       | +        |          |          |            |        |             |        |           |          |
| Cyclosize flotation tail                                                                       | ings                                                                              |             | <u> </u> |            |          |       |          |          |          | ·          |        |             |        | 1         | +        |
| · · · · · · · · · · · · · · · · · · ·                                                          |                                                                                   |             |          |            |          |       |          | · · ·    |          |            |        |             |        | 1         | 1.       |
|                                                                                                |                                                                                   |             |          |            |          | -     |          |          |          |            |        |             |        | 1         |          |
|                                                                                                |                                                                                   |             |          |            |          |       |          |          |          |            |        |             |        |           |          |
| · · · · · · · · · · · · · · · · · · ·                                                          |                                                                                   |             |          |            |          |       |          |          |          |            |        |             |        | <u> </u>  |          |
|                                                                                                |                                                                                   |             |          | ·  ·       |          |       | <u>_</u> | <u> </u> | <u>`</u> | <u> </u>   |        |             |        | <u>  </u> |          |
|                                                                                                |                                                                                   |             |          |            |          |       | <u> </u> |          |          |            | · · ·  |             |        |           |          |
|                                                                                                |                                                                                   |             |          |            |          |       |          |          |          | . <u> </u> |        |             |        |           | +        |
|                                                                                                | . <u></u>                                                                         | · ·         |          |            |          |       | 1        |          |          |            |        |             |        |           |          |
|                                                                                                |                                                                                   |             |          |            |          |       |          |          |          |            |        |             | ·      |           |          |
| BRODUCT                                                                                        | W                                                                                 | Τ           |          |            | ANA      | LYSIS | % (1)    |          | <u> </u> |            | DI     | STRIE       | BUTION | %         |          |
|                                                                                                | %                                                                                 | 6           |          | Ag         |          | Cu    |          | L        |          |            |        | Ag          |        | Cu        | <u>.</u> |
| +40.6 micron                                                                                   | 4                                                                                 | .4          |          | 1.91       |          | 0.18* |          |          |          |            |        | <b>4.</b> 7 |        | 6.2       | ,        |
| +30.9 "                                                                                        | 10                                                                                | .7          |          | 2.105      |          | 0.14  | 1.       |          |          | ·          | 1:     | 2.4         |        | 11.6      |          |
| +22.5 "                                                                                        | 22                                                                                | .0          |          | 1.965      |          | 0.13  | 1        |          |          |            | 23     | 8.8         |        | 22.5      |          |
| +15.5 <sup>11</sup>                                                                            | 1 24                                                                              | .8          |          | 1.735      |          | 0.12  |          |          |          |            | 2      | 3.7         |        | 23.3      | х.       |
| Slime                                                                                          | 21                                                                                | .2          |          | 1.715      | · · · ·  | 0.13  | ł        |          |          |            | 20     | ).1         |        | 21.7      |          |
|                                                                                                |                                                                                   |             |          |            |          |       |          |          |          |            | •      |             |        |           |          |
| Rougher tail (calcd)                                                                           | 100                                                                               | .0          |          | 1.81       |          | 0.129 |          |          |          |            | 100    | 0.0         |        | 100.0     |          |
| •                                                                                              |                                                                                   |             |          |            |          |       |          | Ì        | -        |            |        |             |        |           |          |
| · · ·                                                                                          |                                                                                   |             |          |            |          |       |          |          | -        |            |        |             |        |           |          |
|                                                                                                |                                                                                   |             |          |            |          |       |          |          |          |            |        |             |        |           |          |
|                                                                                                |                                                                                   |             |          |            |          |       |          |          |          |            |        |             |        |           |          |
| . •                                                                                            |                                                                                   |             |          |            |          |       |          |          |          |            |        |             |        | , ·       |          |
| ·.                                                                                             |                                                                                   |             |          |            |          |       | <u> </u> | L        |          | <u>  </u>  |        |             |        | · .       | ·        |
| REMARKS: Flotation t                                                                           | REMARKS: Flotation tailings washed in hot water and methyl hydrate before sizing. |             |          |            |          |       |          |          |          |            |        |             |        |           |          |
| <ul> <li>Calculated</li> <li>(1) From Inter</li> </ul>                                         | nal R                                                                             | enort P     | 45-41    | c-70-17    | '5 and ' | 98    | •        |          | •        | ¢.         |        |             |        |           |          |
|                                                                                                | nar N                                                                             | chore t     | 10 - M   | 0 10 II    |          |       |          |          |          |            |        |             |        |           |          |

2 . .

-6

| TEST NO. 5 SAM        | PLE: K         | ennco  | Explo  | ration   | (Canada  | a) Limi  | ted       |          |          |        |          | DATE           | : Apr | il 28,  | 1970           |  |
|-----------------------|----------------|--------|--------|----------|----------|----------|-----------|----------|----------|--------|----------|----------------|-------|---------|----------------|--|
| OBJECT OF TEST: Flot  | ation          | at aci | d nul  |          |          |          | -         |          |          |        |          | CHAR           | GE:   | 2000-8  | 5              |  |
|                       |                |        |        |          | ······   |          |           |          |          |        |          | TEST           | ED B  | Y: W.A. | . W.           |  |
| OPERATION             | Time           | %      | На     | L        | Jnit     |          | ,         | <u> </u> | Rea      | gents, | lb per   | ton            |       |         | <del></del>    |  |
|                       | min            | Solids |        | . L      | ised     | C.A.     | $H_2SO_4$ | 317      | 404      | Ca0    | $Na_2CO$ | Aero31         |       |         |                |  |
| Grinding(97.4%-200m)  | 60             | 67     |        | 7 x      | 14 RM    |          |           |          |          |        |          |                |       |         | ļ              |  |
| Conditioning          | 2              | 45     |        | 2000     | )-g cell | 0.12     |           |          |          |        |          |                |       |         |                |  |
| Flotation No. 1       | 3              | 30     | 6.6    | <b>_</b> |          |          |           |          |          |        |          |                |       |         |                |  |
|                       |                |        | ···    |          |          |          |           |          |          |        |          | <u> </u>       | -     |         | ┼────┼         |  |
| Conditioning          | 2              |        | 3.0    |          |          | 0.08     | 12.0      |          |          |        |          |                |       |         | ┼┥             |  |
| Flotation No. 2       |                |        | 4.3    |          |          |          |           |          |          |        |          | <u> </u>       |       |         | ┼───╆          |  |
| Conditioning          | 2              |        |        |          | <u> </u> | ·        |           | 0.05     | 0.05     |        |          | <u> </u>       |       |         | <u>† – – †</u> |  |
| Flotation No. 3       | 5              |        | 4.0    | 1        |          |          |           |          |          |        |          | 1              |       |         |                |  |
|                       |                |        |        |          |          |          |           |          |          |        |          |                |       |         |                |  |
| Conditioning          | 5              |        | 8.5    |          |          |          |           | 0.05     | 0.05     | 4.0    | 12.0     | 0.04           |       |         |                |  |
| Flotation No. 4       | 4              |        | 8.5    |          |          |          |           |          |          |        |          | L              | L     | 1       |                |  |
| PRODUCT               | W.             | τŀ     |        |          | ANAL     | YSIS % * |           |          |          |        | DI       | DISTRIBUTION % |       |         |                |  |
|                       | %              | 6      |        | Ag       |          | Cu       |           |          |          |        |          | Ag             |       | Cu      |                |  |
| No. 1 Concentrate     |                | 8      |        | 22 0%    |          | 1 00     |           |          | 1        |        | 20       |                |       | 22.2    |                |  |
| No. 2 Concentrate     | 3              | .0     |        | 52.26    |          | 4.66     |           |          |          |        | 30       | ).4            |       | 34.2    |                |  |
| No. 3 Concentrate     | 2              | .8     |        | 18.14    |          | 1.62     |           |          |          |        | 9        | 9.8            |       | 11.2    | ļ              |  |
| No. 4 Concentrate     | 1              | .5     |        | 7.51     |          | 0.65     |           |          |          |        |          | 2.2            |       | 2.4     |                |  |
| Rougher tailing       | 87             | .9     |        | 2.18     |          | 0.14     |           |          |          |        | 37       | 7.1            |       | 30.0    |                |  |
| Feed (calcd)          | 100            | .0     |        | 5.16     |          | 0.41     |           |          |          |        | 100      | 0.0            |       | 100.0   |                |  |
|                       |                |        |        |          |          |          |           |          |          |        |          |                |       |         | .              |  |
|                       |                | 11     |        |          |          |          |           |          |          |        |          |                |       |         |                |  |
|                       |                |        |        |          |          |          |           |          |          |        |          |                |       |         |                |  |
|                       |                |        |        |          |          |          |           |          |          |        |          |                |       |         |                |  |
|                       |                |        |        |          |          |          |           |          |          |        |          |                |       |         |                |  |
|                       |                |        |        |          |          |          |           |          |          |        |          |                |       |         |                |  |
|                       |                |        |        |          |          |          |           |          |          |        |          |                |       |         |                |  |
|                       |                |        |        |          |          |          |           |          | <u> </u> |        |          |                |       |         |                |  |
| REMARKS: * From Inte: | m <b>al</b> Re | port M | S-AC-7 | 70-524   | and 535  | 5.       |           |          |          |        |          |                |       |         | 1              |  |
|                       |                |        |        |          |          |          |           |          |          |        |          |                |       |         |                |  |

| OBJECT OF TEST:         Pulp washed before flotation         CHARGE: 2000-g<br>TESTED BY: W.A.W.           OPERATION         Time %<br>min Solids         pH         Unit<br>used         C.A.         317         404         Na2C03         Z-200         Image: Constraint of the second                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Definition         Time %<br>min Solids         pH         Unit<br>used         C.A.         317         404         Na2C03         Z-200         Image: Color of the second seco |  |
| OPERATION         Time %<br>min Solids         pH         Unit<br>used         C.A.         317         404         Na2C03         Z-200           Grinding (97.1%-200m)         60         57         7 x/4 RM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| min         Solids         used         C.A.         317         404         Na2C03         Z-200           Grinding (97.1%-200m)         60         57         7 x/4 RM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Grinding (97.1%-200m) 60 57 7 x/4 RM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| wasning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Conditions 5 45 6.5 2000-g cell 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Flotation No. 1 3 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Conditioning         1         20         0.10         0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Flotation No. 2 5 20 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Flotation No. 3 15 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| WT ANALYSIS % * DISTRIBUTION %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| PRODUCT % Ag Cu Ag Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| No. 1 concentrate 2.1 57.56 5.52 15.2 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| No. 2 concentrate         5.7         18.03         1.91         19.8         26.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| No. 3 concentrate 5.8 16.52 1.36 18.4 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Rougher tailing 86.4 2.81 0.18 46.6 37.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Feed (Calcd) 100.0 5.20 0.41 100.0 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| REMARKS: Ground pulp filtered and washed twice in filter with hot water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| * From Internal Report MS-AC-70-524 and 535.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

, 00 1

| TEST NO. 7 SAME     | PLE: K | ennco i  | Explor    | ation (( | Canada | a) Lim | ited    |                                       | ,     |                                 |               | DA       | TE: May | 20, 19   | 70    |
|---------------------|--------|----------|-----------|----------|--------|--------|---------|---------------------------------------|-------|---------------------------------|---------------|----------|---------|----------|-------|
| OBJECT OF TEST: Rep | eat of | Test 1   | No. 4     | plus Reg | grind  | of Ro  | ugher C | onc.                                  |       |                                 |               | ĊH,      | ARGE:   | 2000-g   |       |
|                     |        |          |           |          | -      |        |         |                                       |       |                                 |               | TES      | STED E  | 3Y: W.A. | W.    |
| ODERATION           | Time   | %        |           | Unit     | :      |        |         |                                       | Rea   | igents,                         | lb per        | ton      |         |          |       |
| OPERATION           | min    | Solids   | pm        | use      | d      | Amo    | 317     | 404                                   | DF250 | Na <sub>2</sub> CO <sub>3</sub> | <b>z-</b> 200 |          |         |          |       |
| Grind (97,1%-200m)  | 60     | 67       |           | 7x14 RM  | <br>1  | PROS-  |         |                                       |       |                                 |               |          |         |          |       |
| Condition           | 5      | 35       |           | 2000-g   | cell   | 4.0    |         | · · · · · · · · · · · · · · · · · · · |       |                                 |               |          |         |          |       |
| Float No. 1         | 4      | 20       | 6.5       |          |        |        | 0.10    | 0.20                                  | 0.08  |                                 |               |          |         |          |       |
| -                   |        |          |           |          |        |        |         |                                       |       |                                 |               |          |         |          |       |
| Condition           | 5      | 20       | 8.4       |          |        |        |         |                                       |       | 5.0                             | 0.10          |          | -       |          |       |
| Float No. 2         | 15     | 20       | 8.4       |          |        |        |         | 0.10                                  |       | ļ                               | 0.10          | <b></b>  |         |          |       |
|                     |        |          |           | 5 11 1   | 25.77  |        |         |                                       |       |                                 |               |          |         |          |       |
| Grind concentrate   | 45     |          | · · · · · | Pebble   | Mill   |        | ·       |                                       |       |                                 |               | <u> </u> |         |          |       |
| Clean conc No. 1    | 5      |          |           | 500-9 0  | ell    |        |         | 0.025                                 | 0.01  |                                 |               | <u> </u> |         |          |       |
| Clean conc No. 2    | 2      |          |           | 250-0 0  | 011    |        | 1       | 0.025                                 | 0.01  |                                 |               |          |         |          |       |
| Great conc No. 2    |        |          |           | 230-g C  |        |        |         |                                       |       |                                 |               |          |         |          |       |
|                     |        | <u>г</u> |           |          |        | VSIS   | •/      |                                       | I     | I <u></u>                       | וח            | STR      |         | )N %     |       |
| PRODUCT             | %      | 6        | Ασ        | oz/ton   |        | C11    | NSCu    | SCu                                   |       |                                 |               | <u>с</u> | Cu      | NSCu     | SCu   |
|                     |        |          |           | 02/001   |        |        |         | <u> </u>                              |       |                                 |               | <u>D</u> |         |          |       |
| Clean conc (1)      | 2      | .8       | 70        | •80 _    |        | 7.30   | 0.48    | 6.82                                  |       | 1                               | 3             | 9.9      | 53.1    | 22.0     | 58.8  |
| Clean tail No. 1    | 10     | .6       | 8         | .12      |        | 0.48   | 0 13    | 0 35                                  |       |                                 | 1             | 7.4      | 13 3    | 23 7     | 11 4  |
|                     |        |          |           | •••      |        | 0.10   | 0.15    |                                       |       |                                 | -             |          | 10.0    | 20.7     | 11.4  |
| Clean tail No. 2    | 2      | .1       | 20        | .82      |        | 1.33   | 0.34    | 0.99                                  |       |                                 |               | 8.8      | 7.3     | 11.9     | 6.4   |
|                     |        | _        | -         | 00       |        | 0 1 2  | 0.07    |                                       |       |                                 |               | 2 0      | 06 7    |          | 05.4  |
| Kougher tail        | 84     | • 2      | L         | •99      |        | 0.12   | 0.03    | 0.09                                  |       |                                 | 3             | 3.9      | 26.3    | 42.4     | 23.4  |
| Feed (calculated)   | 100    | .0       | 4         | .96      |        | 0.38   | 0.06    | 0.32                                  |       |                                 | 10            | 0.0      | 100.0   | 100.0    | 100.0 |
|                     |        |          |           |          |        |        |         |                                       |       | 1                               |               |          |         |          |       |
|                     |        |          |           |          |        |        |         |                                       |       | ł                               |               |          |         |          |       |
|                     |        |          |           |          |        |        |         |                                       |       |                                 |               |          |         |          |       |
|                     |        |          |           |          |        |        |         | •                                     |       |                                 |               |          |         |          |       |
|                     |        |          |           |          |        | 1      |         |                                       |       |                                 |               |          |         |          |       |
|                     |        |          |           |          |        |        |         |                                       |       |                                 |               |          |         |          |       |
| REMARKS: *From Inte | rnal R | eport M  | IS-AC-    | 70-564,  | 568,   | 592 an | .d 621. | -                                     |       |                                 |               |          |         |          | •     |
| (1) Sulphur A       | ssay = | 31.49%   | 2         | -        |        |        |         |                                       |       |                                 |               |          |         |          |       |
| Insol               | " =    | 23.37%   | /<br>     |          |        |        |         |                                       |       |                                 |               |          |         |          |       |
| C0                  | =      | 0.047    | ,         |          |        |        |         |                                       |       |                                 |               |          |         |          |       |

| TEST NO. 8 SAMP                       | PLE: K | ennco  | Explo  | ratior          | ı (Canad                              | la) Lim     | ited     |          |      |         |          | DA       | ГЕ: Ма     | y 21, 19 | 970         |
|---------------------------------------|--------|--------|--------|-----------------|---------------------------------------|-------------|----------|----------|------|---------|----------|----------|------------|----------|-------------|
| OBJECT OF TEST:                       | forent | Peago  | nto    |                 |                                       |             |          |          |      |         |          | СНА      | RGE:       | 2000-g   | ·           |
|                                       |        | Reage  |        |                 |                                       |             |          |          |      |         | ÷        | TES      | TED B      | Y: W.A.  | •W•         |
| OPERATION                             | Time   | %      | пн     | · 1             | Jnit                                  |             |          |          | Re   | agents, | lb per   | ton      |            |          |             |
|                                       | min    | Solids |        | ι               | ised                                  | Amo<br>Phos | CaO      | 3501     | 404  | DF250   | Z-200    |          |            |          |             |
| Grind (96.0%-200m)                    | 60     | 57     |        | 7x14            | RM                                    |             |          |          |      |         |          |          |            |          |             |
|                                       |        |        |        |                 |                                       |             |          |          |      |         |          |          |            |          |             |
| Condition                             | 5      | 40     | 9.0    | 2000-           | g cell                                | 4.0         | 6.0      |          |      |         |          | ļ        |            |          |             |
|                                       |        |        |        | - <b> </b>      |                                       | ·           |          | ļ        |      | _       |          | <u> </u> |            |          |             |
| Float                                 | 5      | 30     | 9.0    |                 |                                       |             |          | 0.10     | 0.20 | 0.06    | L        | ·        |            |          |             |
| Condition                             |        |        |        |                 |                                       |             | <u> </u> | <u> </u> | ļ    |         | 0.10     |          |            |          |             |
| Condicion                             |        |        |        |                 | · · · · · · · · · · · · · · · · · · · |             |          | ·        |      | · · · · | 0.10     |          |            |          | · · · · · · |
| Float                                 | 10     | 30     | 9.0    |                 |                                       |             | +        | 0.10     |      |         |          |          | _ <u> </u> |          |             |
|                                       |        |        |        | 1               |                                       |             | · ·      | 1        |      |         |          |          |            |          |             |
|                                       |        |        |        |                 |                                       |             | 1        |          |      |         |          |          |            |          |             |
|                                       |        |        |        |                 |                                       |             |          |          |      |         |          | ŀ        |            |          |             |
| PRODUCT                               | w-     | г 📗    |        |                 | ANA                                   | YSIS        | %*       |          |      | 1       | DI       | STRI     | BUTIO      | N %      |             |
|                                       | %      |        | As     | z oz/t          | on                                    | Cu          |          |          |      |         | A        | le l     |            | Cu       |             |
| No. 1 Gu conc                         | 7.0    | 45     |        | 33.68           |                                       | 3.28        |          |          |      | •       | 47       | .7.      |            | 59.7     |             |
|                                       |        |        |        |                 |                                       | 0.20        |          |          |      |         |          | •        |            | 57.1     |             |
| No. 2 Cu conc                         | 5.     | 76     |        | 6.71            |                                       | 0.46        | •        |          |      |         | 7        | .3       |            | 6.3      | ъ.          |
| Rougher tail                          | 86.    | 79     |        | 2.73            |                                       | 0.16        |          |          |      |         | 45       | .0       |            | 34.0     |             |
| Feed (calculated)                     | L00.0  | o      |        | 5.26            |                                       | 0.41        |          | · · · .  |      |         | . 100    |          |            | 100.0    |             |
|                                       |        |        |        |                 |                                       |             |          |          |      |         |          |          |            |          |             |
| ·                                     |        |        |        | Į               |                                       | •           |          |          |      | -       |          |          |            |          |             |
|                                       |        |        |        |                 |                                       |             |          |          |      |         |          |          |            |          |             |
|                                       |        |        |        |                 |                                       |             | .'       |          |      |         |          |          |            |          |             |
|                                       |        |        |        |                 |                                       |             |          |          |      |         |          |          |            |          |             |
| · .                                   |        | -      |        |                 |                                       | •           |          |          |      |         |          |          |            |          |             |
| · ·                                   |        |        |        |                 |                                       |             |          | · . ·    |      |         |          |          |            |          | 8           |
| REMARKS: *From Intern                 | al Rep | ort MS | 5-AC-7 | '0 <b>-</b> 564 | and 56                                | <u> </u>    |          | <u></u>  |      |         | <u>_</u> | <u> </u> |            | <u></u>  |             |
|                                       | •      |        | •      |                 |                                       |             | ~        |          |      |         |          |          |            |          |             |
| · · · · · · · · · · · · · · · · · · · | ·      |        |        |                 |                                       | · · ·       |          |          |      | ۰.      |          |          |            |          |             |
|                                       |        |        |        |                 |                                       |             |          |          |      | • .     |          | •        |            |          |             |

L 10

| TEST NO. 9                             | SAMP    | LE:       | .E: Kennco Exploration (Canada) Limited DATE: June 17, 1970 |         |             |          |                      |      |        |              |          |   |          |          |        |          |
|----------------------------------------|---------|-----------|-------------------------------------------------------------|---------|-------------|----------|----------------------|------|--------|--------------|----------|---|----------|----------|--------|----------|
| OBJECT OF TEST                         | :       |           |                                                             |         |             |          |                      |      |        |              |          |   | СНА      | RGE:     | 2000-g |          |
|                                        | pH ac   | ljustm    | ent wi                                                      | th NA   | 2003        |          |                      |      |        |              |          |   | TES      | TED B    | Y: WAW |          |
| OPERATION                              |         | Time      | %                                                           | На      | 1           | Jnit     | Reagents, Ib per ton |      |        |              |          |   |          |          |        |          |
|                                        |         | min Solic |                                                             | F · · · |             | used     |                      | 404  | A 31   | <u>z-200</u> | DF250    |   |          |          |        |          |
| Grind (97.4%-200                       | m)      | 60        | 67                                                          |         | 7x14        | R M      |                      |      |        |              |          |   |          |          |        |          |
| - 11. I                                |         |           |                                                             |         | 0.000       |          |                      | 0.10 | 0.07   |              |          |   |          |          |        |          |
| Condition                              |         |           | 40                                                          | 8.0     | 2000        | g. cell  | 4.0                  | 0.10 | 0.04   |              |          |   |          |          |        |          |
| Flotation                              |         | 4         | 25                                                          | 8.0     |             |          |                      |      |        | 0.10         |          |   |          |          |        |          |
| riocación                              |         |           |                                                             | 0.0     | +           | ·····    |                      |      |        | 0.10         |          |   |          |          |        |          |
| Scavenger No. 1                        |         | 5         | 25                                                          | 8.0     |             |          |                      |      |        | 0.10         | 0.06     |   |          |          |        |          |
|                                        |         |           |                                                             |         |             |          |                      |      |        |              |          |   |          |          |        |          |
| Scavenger No. 2                        |         | 5         | 25                                                          | 7.5     |             |          |                      | 0.10 |        |              |          |   |          |          |        |          |
| ······································ |         |           |                                                             |         |             |          |                      |      |        |              |          |   | ļ        |          |        |          |
| · · · · · · · · · · · · · · · · · · ·  |         |           |                                                             |         | ļ           | ·····    |                      |      |        |              |          |   | ļ        |          |        |          |
|                                        |         | 1         |                                                             |         | <u> </u>    |          | <u> </u>             |      |        |              | <u> </u> |   | <u> </u> |          |        | <u> </u> |
| PRODUCT                                |         | W o/      | [                                                           | i.      |             |          | YSIS :               | *    |        | - <u>r</u>   |          |   | STRI     | BUTIO    | N %    |          |
|                                        |         |           |                                                             |         | g oz/       |          | Cu %                 |      |        |              |          |   | <u>g</u> |          | Cu     |          |
| N7- 1                                  |         |           | <u>.</u>                                                    |         | 40 <b>0</b> |          | 2 66                 |      |        |              |          |   | 61 8     |          | 70 1   |          |
| No. 1 conc.                            |         | 0.        |                                                             |         | 40.9        |          | 5.00                 |      | Ì      |              |          |   |          |          | /0.1   |          |
| No. 2 conc.                            |         | 7.        | 2                                                           |         | 5.96        |          | 0.45                 |      |        |              |          |   | 8.1      |          | 7.7    |          |
| No. 3 conc.                            |         | 5.        | 7                                                           |         | 3.69        |          | 0.25                 |      |        |              |          |   | 4.0      |          | 3.3    |          |
|                                        |         |           |                                                             |         |             |          |                      |      |        |              |          |   |          |          |        |          |
| Rougher tail                           |         | 79.       | 1                                                           |         | 1.75        |          | 0.10                 |      |        |              |          |   | 26.1     | <i>.</i> | 18.9   | [        |
| Feed (calcd.)                          |         | 100.      | 0                                                           |         | 5.29        |          | 0.42                 |      |        |              |          | 1 | 0.00     |          | 100.0  |          |
|                                        |         |           | - II                                                        |         |             |          |                      |      |        |              |          |   |          |          |        |          |
|                                        |         |           |                                                             |         |             |          |                      |      |        |              |          |   |          |          |        |          |
|                                        |         |           |                                                             |         |             |          |                      |      |        |              |          |   |          |          |        |          |
|                                        |         |           |                                                             |         |             |          |                      |      |        |              |          |   |          |          |        |          |
|                                        |         |           |                                                             |         |             |          |                      |      |        |              |          |   |          |          |        |          |
| REMARKS: * Fro                         | m Tnter | mal P     | anorte                                                      | MG_ /   | ~ 70-6      | 34 and 4 | <u> </u>             |      | ······ | <u></u>      |          |   |          |          |        |          |
| ·· <b>FIO</b>                          |         | nar A     | -Por co                                                     | 110 M   |             |          |                      |      |        |              |          |   | -        |          |        |          |
|                                        |         |           |                                                             |         |             |          |                      |      |        |              |          |   |          |          |        |          |

- 11

| CHARGE: 2000-g           CHARGE: 2000-g           Time         %         PH         Unit         Reagents. Ib per tor         TESTED BY: WAW           OPERATION         Time         %         PH         Unit         Reagents. Ib per tor         Ib per tor           Grind (96.02-200m)         60         57         7. x : 14 RM         4.0         0.20         0.05         Image: Colspan="2">Image: Colspan="2">CHARGE: 2000-g           Condition         2         45         8.5         2000-g cell         0.08         Image: Colspan="2">Image: Colspan="2">CHARGE: 2000-g           Condition         1.5         200-g cell         0.08         Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Condition           1.5         9.1         Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Condition           1.5         9.1         Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Condition           1.5         9.1         Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"           PRODUCT         WT         ANALYSIS * <th>TEST NO. 10</th> <th>SAMP</th> <th>LE:</th> <th>Kennco</th> <th>Exp]</th> <th>lorati</th> <th>on (Cana</th> <th>da) Lin</th> <th>nited</th> <th></th> <th></th> <th></th> <th></th> <th>DAT</th> <th>E: J</th> <th>uly 8,</th> <th>1970</th>                                                                                                                                                                                                                                                                                                                                               | TEST NO. 10                           | SAMP  | LE:     | Kennco   | Exp]    | lorati   | on (Cana  | da) Lin  | nited |      |        |        |       | DAT            | E: J       | uly 8, | 1970 |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|---------|----------|---------|----------|-----------|----------|-------|------|--------|--------|-------|----------------|------------|--------|------|--|--|--|
| OPERATION         Time         %         pH         Unit         Respents. ib per ton           Grind (96.0%-200m)         60         57         5 x 14 RM         4.0         0.20         0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OBJECT OF TEST:                       | Repe  | eat of  | Test     | 9.      |          |           |          | •     |      |        |        |       | CHARGE: 2000-g |            |        |      |  |  |  |
| OPERATION         Time<br>min<br>Solids         pH<br>solids         Unit<br>used         Reagents. Ib per ton           Grind (96.02-200m)         60         57         7.x:14 RM         4.0         0.20         0.05         1         1         1           Condition         2         45         8.5         2000-g cell         0.08         1         1         1           Float No. 1         3.5         30         8.5         0.03         0.08         1         1         1           Float No. 1         3.5         9.1         0.20         0.03         0.08         1         1         1           Float No. 2         1.5         9.1         0.20         0.03         0.08         1         1         1           PRODUCT         WT         ANALYSIS *         DISTRIBUTION %         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |       |         |          |         |          |           |          |       |      |        |        |       | TESTED BY: WAW |            |        |      |  |  |  |
| min Solida         min Solida         used         Na <sub>2</sub> CO <sub>2</sub> 404         A31         2-200           Grind (96.0%-200m)         60         57         Z.x.14 RM         4.0         0.20         0.05         1         1           Condition         2         45         8.5         2000-g cell         0.08         1         1           Float No. 1         3.5         30         8.5         0.020         0.03         1         1           Condition         1.5         9.1         0.20         0.03         1         1         1           Float No. 2         1.5         9.1         0.20         0.03         0.08         1         1           PRODUCT         WT         ANALYSIS *         DISTRIBUTION %         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OPERATION                             | Time  | %       | ьΗ       |         | Unit     |           |          |       | Rea  | gents, | lb per | ton   |                |            |        |      |  |  |  |
| Grind (96.0%-200m)       60       57       7.x 14 RM       4.0       0.20       0.05       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       <th1< th=""></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |       | min     | Solids   |         |          | used      | $Na_2CO$ | 404   | A31  | Z-200  |        |       |                |            |        |      |  |  |  |
| Condition         2         45         8.5         2000-g cell         0.08         1         1           Float No. 1         3.5         30         8.5         0.03         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>Grind (96.0%-200m)</td> <td></td> <td>60</td> <td colspan="2">0 57</td> <td>7. x</td> <td>14 RM</td> <td>4.0</td> <td>0.20</td> <td>0.05</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Grind (96.0%-200m)                    |       | 60      | 0 57     |         | 7. x     | 14 RM     | 4.0      | 0.20  | 0.05 |        |        |       |                |            |        |      |  |  |  |
| Condition       2       45       8.5       2000-g cell       0.08       1       1         Float No. 1       3.5       30       8.5       0.03       0.03       0.04       0.04         Condition       1.5       0.20       0.03       0.08       0.04       0.04         Float No. 2       1.5       9.1       0.20       0.03       0.08       0.04         Float No. 2       1.5       9.1       0.20       0.03       0.04       0.04         PRODUCT       WT       ANALYSIS *       DISTRIBUTION %         Mo. 1 conc       7.7       30.88       3.14       47.6       57.4         No. 2 conc       13.3       7.28       0.58       19.4       18.2         Rougher tail       79.0       2.09       0.13       33.0       24.4         Feed (calcd)       100.0       5.00       0.42       100.0       100.0       100.0         REMARKS: * From Internal Report MS-AC-70-720 and 730.       30.8       30.4       100.0       100.0       100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |       |         |          |         |          |           |          |       |      |        |        |       |                |            |        |      |  |  |  |
| Float No. 1       3.5       30       8.5       0.03       1       1         Condition       1.5       0.20       0.03       0.08       0       0         Float No. 2       1.5       9.1       0       0       0       0       0         Float No. 2       1.5       9.1       0       0       0       0       0       0         PRODUCT       WT       ANALYSIS *       DISTRIBUTION %         Mo. 1 conc       7.7       30.88       3.14       47.6       57.4         No. 2 conc       13.3       7.28       0.58       19.4       18.2         Rougher tail       79.0       2.09       0.13       33.0       24.4         Feed (calcd)       100.0       5.00       0.42       100.0       100.0         REMARKS: * From Internal Report MS-AC-70-720 and 730.       33.0       24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Condition                             |       | _2      | 45       | 8.5     | 5 2000   | )-g cell  | · ·      |       | ·    | 0.08   |        |       |                |            |        | +    |  |  |  |
| Float No. 1       3.5       30       8.5       0.03       1       1       1         Condition       1.5       0.20       0.03       0.08       0       0       0         Float No. 2       1.5       9.1       0.20       0.03       0.08       0       0       0         Float No. 2       1.5       9.1       0       0       0       0       0       0         PRODUCT       WT       Analysis *       DISTRIBUTION %         Mo. 1 conc       7.7       30.88       3.14       47.6       57.4         No. 2 conc       13.3       7.28       0.58       19.4       18.2         Rougher tai1       79.0       2.09       0.13       33.0       24.4         Feed (calcd)       100.0       5.00       0.42       100.0       100.0         REMARKS: * From Internal Report MS-AC-70-720 and 730.       33.0       24.4       100.0       100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |       |         |          |         |          |           |          |       |      |        |        |       |                | _          |        | -    |  |  |  |
| Condition         1.5         0.20         0.03         0.08         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th=""> <th0< th=""></th0<></th0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Float No. 1                           |       | 3.5     | 30       | 8.5     | <u>}</u> |           |          |       | 0.03 |        |        |       |                |            |        |      |  |  |  |
| Schultton       1.5       9.1       0.000       0.000       0.000       0.000         Float No. 2       1.5       9.1       0.000       0.000       0.000       0.000         PRODUCT       WT       ANALYSIS *       DISTRIBUTION %         Mo. 1 conc       7.7       30.88       3.14       47.6       57.4         No. 1 conc       13.3       7.28       0.58       19.4       18.2         Rougher tail       79.0       2.09       0.13       33.0       24.4         Feed (calcd)       100.0       5.00       0.42       100.0       100.0         REMARKS: * From Internal Report MS-AC-70-720 and 730.       33.0       34.2       34.2       34.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Condition                             |       | 15      |          |         |          |           |          | 0.20  | 0.03 | 0 08   |        |       |                |            |        |      |  |  |  |
| Float No. 2       1.5       9.1       All of the second |                                       |       |         |          | · · · · |          |           |          | 0.20  | 0.05 | 0.00   |        |       |                |            |        |      |  |  |  |
| PRODUCT         WT         ANALYSIS *         DISTRIBUTION %           PRODUCT         WT         ANALYSIS *         DISTRIBUTION %           No. 1 conc         7.7         30.88         3.14         47.6         57.4           No. 2 conc         13.3         7.28         0.58         19.4         18.2           Rougher tail         79.0         2.09         0.13         33.0         24.4           Feed (calcd)         100.0         5.00         0.42         100.0         100.0           RemarkS:         * From Internal Report MS-AC-70-720 and 730.         33.0         24.4         33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Float No. 2                           |       | 1.5     |          | 9.1     | -        |           |          |       |      |        |        |       |                |            |        |      |  |  |  |
| PRODUCT         WT         ANALYSIS *         DISTRIBUTION %           Mo. 1 cone         7.7         30.88         3.14         47.6         57.4           No. 2 cone         13.3         7.28         0.58         19.4         18.2           Rougher tail         79.0         2.09         0.13         33.0         24.4           Feed (calcd)         100.0         5.00         0.42         100.0         100.0         100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |       |         |          |         |          |           | 1        |       |      |        |        |       |                |            |        | 1    |  |  |  |
| PRODUCT         WT         ANALYSIS *         DISTRIBUTION %           Mo. 1 conc         7.7         30.88         3.14         47.6         57.4           No. 1 conc         13.3         7.28         0.58         19.4         18.2           Rougher tail         79.0         2.09         0.13         33.0         24.4           Feed (calcd)         100.0         5.00         0.42         100.0         100.0         100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                     |       |         |          |         |          |           |          |       |      |        |        |       |                |            |        |      |  |  |  |
| PRODUCT         WT<br>%         ANALYSIS *         DISTRIBUTION %           No. 1 conc         7.7         30.88         3.14         47.6         57.4           No. 2 conc         13.3         7.28         0.58         19.4         18.2           Rougher tail         79.0         2.09         0.13         33.0         24.4           Feed (calcd)         100.0         5.00         0.42         100.0         100.0           RMARKS: * From Internal Report MS-AG-70-720 and 730.         730.         730.         730.         730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |       | _       |          |         |          |           |          |       |      |        |        |       |                |            |        |      |  |  |  |
| %         Ag oz/t         Cu%         Ag         Cu           No. 1 conc         7.7         30.88         3.14         47.6         57.4           No. 2 conc         13.3         7.28         0.58         19.4         18.2           Rougher tail         79.0         2.09         0.13         33.0         24.4           Feed (calcd)         100.0         5.00         0.42         100.0         100.0           Rougher tail         79.0         2.09         0.13         33.0         24.4           Feed (calcd)         100.0         5.00         0.42         100.0         100.0           Remarks: * From Internal Report MS-AC-70-720 and 730.         33.0         24.4         100.0         100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRODUCT                               |       | W       | г        |         |          | ANAL      | YSIS *   |       |      |        |        | DIS   | STRIE          | BUTIO      | N %    |      |  |  |  |
| No. 1 conc       7.7       30.88       3.14       47.6       57.4         No. 2 conc       13.3       7.28       0.58       19.4       18.2         Rougher tail       79.0       2.09       0.13       33.0       24.4         Feed (calcd)       100.0       5.00       0.42       100.0       100.0         RemarkS: * From Internal Report MS-AC-70-720 and 730.       730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |       | %       |          | A       | g oz/1   |           | Cu%      |       |      | ·      |        | A     | g              |            | Cu     |      |  |  |  |
| No. 2 conc       13.3       7.28       0.58       19.4       18.2         Rougher tail       79.0       2.09       0.13       33.0       24.4         Feed (calcd)       100.0       5.00       0.42       100.0       100.0         RemarkS: * From Internal Report MS-AC-70-720 and 730.       730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No. 1 conc                            |       | 7       | 7        |         | 30 88    |           | 3 14     |       |      |        |        | 47    | .6             |            | 57.4   |      |  |  |  |
| No. 2 conc       13.3       7.28       0.58       19.4       18.2         Rougher tail       79.0       2.09       0.13       33.0       24.4         Feed (calcd)       100.0       5.00       0.42       100.0       100.0         RemarkS:       * From Internal Report MS-AC-70-720 and 730.       730.       100.0       100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. I Conc                            |       |         | • /      |         | 50.00    |           | 3.14     |       |      |        |        | 1 - ' | ••             |            | 57.4   |      |  |  |  |
| Rougher tail       79.0       2.09       0.13       33.0       24.4         Feed (calcd)       100.0       5.00       0.42       100.0       100.0       100.0         REMARKS:       * From Internal Report MS-AC-70-720 and 730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No. 2 conc                            |       | 13      | .3       |         | 7.28     |           | 0.58     |       |      |        |        | 19    | .4             |            | 18.2   |      |  |  |  |
| Rodgner tall       79.0       2.09       0.13       33.0       24.4         Feed (calcd)       100.0       5.00       0.42       100.0       100.0         REMARKS:       * From Internal Report MS-AC-70-720 and 730.       730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Develop tot 1                         |       | 70      |          |         | 2 00     |           | 0 12     |       |      |        |        | 22    |                |            | 24.4   | . [  |  |  |  |
| Feed (calcd)       100.0       5.00       0.42       100.0       100.0       100.0         REMARKS:       * From Internal Report MS-AC-70-720 and 730.       Report MS-AC-70-720 and 730.       Report MS-AC-70-720 and 730.       Report MS-AC-70-720 and 730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kougner tall                          |       | 19      | ••    •• | ·       | 2.09     |           | 0.12     |       |      |        |        | 55    | .0             |            | 24.4   | · .  |  |  |  |
| REMARKS: * From Internal Report MS-AC-70-720 and 730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Feed (calcd)                          |       | 100     | .0       |         | 5.00     |           | 0.42     |       |      |        |        | 100   | .0             | ;          | 100.0  |      |  |  |  |
| REMARKS: * From Internal Report MS-AC-70-720 and 730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |       |         |          |         |          |           |          |       |      |        |        |       |                |            |        |      |  |  |  |
| REMARKS: * From Internal Report MS-AC-70-720 and 730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |       |         |          |         | •        |           | 1        |       |      |        |        |       |                |            |        |      |  |  |  |
| REMARKS: * From Internal Report MS-AC-70-720 and 730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |       |         |          |         |          |           |          |       |      |        |        |       |                |            | ļ      | ·  . |  |  |  |
| REMARKS: * From Internal Report MS-AC-70-720 and 730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |       |         |          |         |          |           |          |       |      |        |        |       |                | . 1        |        |      |  |  |  |
| REMARKS: * From Internal Report MS-AC-70-720 and 730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |       |         |          |         |          |           |          |       |      |        |        |       |                |            |        |      |  |  |  |
| REMARKS: * From Internal Report MS-AC-70-720 and 730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , . ·                                 |       |         |          |         |          |           | ·        |       | -    |        |        |       |                |            |        |      |  |  |  |
| REMARKS: * From Internal Report MS-AC-70-720 and 730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |       |         |          |         |          |           |          |       |      | · · ·  | -      |       |                |            |        |      |  |  |  |
| - The internal Report H5-AC-/0-/20 and /50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REMARKS: * From                       | Thic  |         |          | L       | -70-7    | 20 and 7  | <u> </u> |       |      | •      |        |       | · ·            |            |        | · ·  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | Turel | .nai Ki | shorr r  | 19-AC   |          | .o anu 7. | .0.      |       |      |        |        |       |                |            |        |      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |       |         |          |         |          |           |          | · .   |      | -      |        |       | • •            | <u></u> *. | · .    |      |  |  |  |

- 12 -

| TEST NO. 11 SAMP         | LE:     | Kennco    | Explo  | ration (Canad | la) Lin    | nited |            |       |           |       | ATE: Se | ept. 24, | 1970 |
|--------------------------|---------|-----------|--------|---------------|------------|-------|------------|-------|-----------|-------|---------|----------|------|
| OBJECT OF TEST: Repe     | at of   | Test      | 9 at f | iner grind.   |            |       |            |       |           | C     | HARGE:  | 2000-g   |      |
|                          |         | <u></u>   | 1      | -             |            |       | ····       |       |           |       | ESTED E | 3Y: WAW  |      |
| OPERATION                | Time    | %         | pН     | Unit          |            | 1.01  |            | Rea   | Ib per to | n<br> |         |          |      |
|                          | min     | Solids    |        | used          | $Na_2CO_3$ | 404   | <u>A31</u> | Z-200 | DF250     |       |         |          |      |
| Grind (1)                | 75      | 67        |        | 7 x 14 RM     |            | 0.10  | 0.07       |       |           |       |         |          | _    |
| Condition                | 15      | 35        | 8.0    | 2000-g cell   | 4.0        | 0.10  | 0.04       |       |           |       |         |          |      |
| Flotation                | 4       | 25        | 8.0    |               | • •        |       | 0.06       | 0.10  | 0.02      |       |         |          |      |
| Scav float No. 1         | 5       | 25        | 8.0    |               |            |       |            | 0.10  |           |       |         |          |      |
| Scav float No. 2         | 5       | 25        | 7.5    |               |            | 0.10  |            |       |           |       |         |          |      |
|                          |         |           |        |               |            |       |            |       |           |       |         |          |      |
| Clean total conc         | 2       |           |        | 1000-g cell   |            |       |            |       |           |       |         |          |      |
|                          |         |           |        | JOO-g Cell    |            |       |            |       |           |       |         |          |      |
| ke-fectean               | <u></u> |           |        | 250-g cell    |            |       |            |       |           |       |         |          |      |
| L                        | W       | ,<br>т II |        | ANAL          | YSIS *     |       |            |       | <b>I</b>  | DIST  | RIBUTIC | N %      |      |
| PRODUCT %                |         |           | Ag     | oz/ton        | Cu%        |       |            | 1     |           | Ag    |         | Cu       |      |
| Clean conc               | 4       | .2        | 6      | 0,60          | 6.00       |       |            |       |           | 50.3  |         | 58.9     |      |
| Cleaner tail             | 5       | .1        |        | 6.93          | 0.45       |       |            |       |           | 7.0   |         | 5.4      |      |
| Reclean & Re-reclean tai | 1 1     | •5        | 2      | 7.86          | 1.89       |       |            |       |           | 8.3   |         | 6.5      |      |
| Rougher conc (calcd)     | 10      | .8        | 3      | 0.70          | 2.81       |       |            |       |           | 65.6  |         | 70.8     |      |
| Rougher tail             | 89      | .2        |        | 1.95          | 0.14       |       |            |       |           | 34.4  |         | 29.2     |      |
| Feed                     | 100     | .0        |        | 5.05          | 0.43       |       |            |       |           | 100.0 |         | 100.0    |      |
|                          |         |           |        |               |            |       |            |       |           |       |         |          |      |
|                          |         |           |        |               |            |       |            |       |           |       |         |          | ľ    |
|                          |         |           |        |               |            |       |            |       |           |       |         |          |      |
|                          |         |           |        |               |            |       |            |       |           |       |         |          |      |
|                          |         |           |        | <u> </u>      |            |       |            | 1     |           |       |         |          |      |
| REMARKS: * From Inte     | rnal 1  | Reports   | s MS-A | C-70-899 and  | 907.       | _     |            |       |           |       |         |          |      |
| (1) Flotatio             | n tai   | Ling 8    | 5.4 pe | r cent minus  | 400 me     | sh.   |            |       |           |       |         |          |      |
|                          |         |           |        |               |            |       |            |       |           |       |         |          |      |

.

| TEST NO. 12 SAMP                | LE:     | LE: Kennco Exploration (Canada) Limited DATE: Sept. 25, 1970 |               |               |             |         |      |       |            |        |                                       |          |        |          |  |  |  |
|---------------------------------|---------|--------------------------------------------------------------|---------------|---------------|-------------|---------|------|-------|------------|--------|---------------------------------------|----------|--------|----------|--|--|--|
| OBJECT OF TEST:<br>Finer grind. |         |                                                              |               |               |             |         |      |       |            |        | CHAF                                  | RGE:     | 2000-g |          |  |  |  |
| £'i.                            | ner gr  | ind.                                                         | · ··· · · · · |               | · ·         | · · ·   | ·    |       |            |        | TESTED BY: WAW                        |          |        |          |  |  |  |
|                                 | Time    | %                                                            | ~~            | Unit          |             |         |      | Rea   | igents,    | lb per | ton                                   |          |        |          |  |  |  |
|                                 | min     | Solids                                                       |               | used          | Ano<br>Phos | 317     | 404  | DF250 | $Na_2CO_3$ | Z-6    | Ca0                                   |          |        | <u> </u> |  |  |  |
| Grind (1)                       | 75 .    | 57                                                           |               | 7 x 14 RM     |             |         |      |       |            | · ·    |                                       |          |        |          |  |  |  |
|                                 |         |                                                              |               |               |             |         |      |       |            |        |                                       |          |        |          |  |  |  |
| Condition                       | 15      | 35                                                           | 6.5           | 2000-g cell   | 4.0         | 0.10    | 0.10 |       |            |        |                                       |          |        |          |  |  |  |
| Flotation                       | 4       | 20                                                           | 6.9           |               | <u> </u>    |         |      | 0.08  |            | •      |                                       |          |        |          |  |  |  |
| Condition                       | 10      | 20                                                           | 8.5           |               |             |         |      |       | 4.0        | 0.10   |                                       |          |        |          |  |  |  |
| Flotation                       | 3       | 20                                                           | 8.5           |               |             |         |      |       |            |        |                                       |          | ·      |          |  |  |  |
| Condition                       | 5       | 25                                                           | 10.3          |               |             | 0.10    |      |       |            |        | 8.0                                   | ļ        |        |          |  |  |  |
| Flotation                       | 15      | 25                                                           | 9.8           |               | · .         | 0.10    |      |       |            |        |                                       |          |        |          |  |  |  |
|                                 |         |                                                              |               |               |             |         |      | 0.01  |            |        |                                       |          |        |          |  |  |  |
| Clean combined conc             | 3       |                                                              | 8.0           | 500-g cell    |             |         | ·    | 0.01  |            |        | ļ                                     |          |        |          |  |  |  |
| Reclean                         |         |                                                              | 7.9           | 250-g cell    |             |         |      |       | ·          |        | · · · · · · · · · · · · · · · · · · · |          |        | ·        |  |  |  |
| Re-reclean                      |         | <u>   </u>                                                   | 7.9           | <u> </u>      | <u> </u>    |         |      | [     | <u> </u>   |        | L                                     | <u> </u> |        | <u> </u> |  |  |  |
| PRODUCT                         | W       | T                                                            |               | ANAL          | -YSIS "     | Y 515 " |      |       |            |        | STRIB                                 | UTIO     | N %    |          |  |  |  |
|                                 |         | 0                                                            | Ag            | oz/ton        | Cu%         |         |      |       |            |        | 1g                                    |          | Cu     |          |  |  |  |
| Clean conc                      | 4       | .3                                                           | 6             | 0.49          | 6.17        |         |      |       |            | -      | 51.4                                  |          | 61.8   |          |  |  |  |
| No. 1 clean tail                | 9       | .0                                                           | ľ             | 6.86          | 0.43        |         |      |       |            |        | 2.2                                   |          | 9.1    |          |  |  |  |
| No. 2 clean tail                | 1       | .4                                                           | 1             | 6.48          | 1.17        | . '     |      |       |            |        | 4.6                                   |          | 3.7    |          |  |  |  |
| No. 3 clean tail                | 0       | .7                                                           | 2             | 8.71          | 2.33        |         |      |       |            |        | 4.0                                   |          | 3.7    |          |  |  |  |
|                                 |         | ,                                                            |               |               |             | - ·     |      |       |            | · · -  |                                       |          |        |          |  |  |  |
| Rougher conc (calcd)            | 15      | •4                                                           | 2             | 3.70          | 2.18        |         |      |       |            |        | 2.2                                   |          | /8.3   |          |  |  |  |
| Rougher tail                    | 84      | .6                                                           |               | 1.66          | 0.11        |         | -    |       |            |        | 7.8                                   | i i i    | 21.7   |          |  |  |  |
|                                 |         | ••                                                           |               | 1.00          |             |         |      |       |            |        |                                       |          |        |          |  |  |  |
| Feed                            | 100     | .0                                                           |               | 5.05          | 0.43        |         |      | · .   |            | 10     | 0.0                                   |          | 100.0  |          |  |  |  |
|                                 |         |                                                              |               |               |             | •       |      |       |            |        |                                       | · · · ·  |        |          |  |  |  |
|                                 |         |                                                              |               |               | -           |         |      |       |            |        |                                       |          |        |          |  |  |  |
|                                 |         |                                                              |               |               |             |         |      |       |            |        |                                       |          |        |          |  |  |  |
|                                 |         | -                                                            |               |               |             |         |      |       |            |        |                                       |          |        |          |  |  |  |
|                                 |         |                                                              |               |               |             |         |      |       |            |        | .   ·                                 |          | -      |          |  |  |  |
| REMARKS: * From Tata            | mal D   | anort c                                                      | MS_AC         | _70_808 and 0 |             |         |      |       |            |        |                                       |          | • •    |          |  |  |  |
| (1) Flotation                   | n tail  | ing 93.                                                      | 2 ner         | cent minus 4  | 400 mes     | Ь.      |      |       | • •        |        |                                       |          | · · ·  |          |  |  |  |
|                                 | . ctat. |                                                              | - Por         |               |             |         |      |       |            |        | •                                     | •        |        |          |  |  |  |

| TEST NO. 13       SAMPLE:       Kennco Exploration (Canada) Ltd.       DATE:       Oct. 1, 1970         OBJECT OF TEST:       CHARGE:       2000 - |                                       |          |                 |          |             |                  |      |      |            |       |     |       |       | 970    |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|-----------------|----------|-------------|------------------|------|------|------------|-------|-----|-------|-------|--------|---|
| OBJECT OF TEST:                                                                                                                                    |                                       | m - ·    |                 | 1 64     |             | 1                |      |      |            |       |     | СНА   | RGE:  | 2000-g |   |
| Rep                                                                                                                                                | eat of                                | Test     | 11 wit          | n Ilnei  | r grind     | 1.               |      |      |            |       |     | TES   | TED B | Y: WAW |   |
| OPERATION                                                                                                                                          | Time                                  | %        | nН              | Un       | it          |                  |      |      | ton        |       |     |       |       |        |   |
|                                                                                                                                                    | min                                   | Solids   |                 | use      | ed          | Na2003 Z-200 404 |      |      | <u>A31</u> | DF250 |     |       |       |        |   |
| Grind*                                                                                                                                             | 90                                    | 57       |                 | 7 x 14   | 4 RM        |                  |      |      |            |       |     |       |       |        |   |
| Condition                                                                                                                                          | 15                                    | 35       | 8.5             | 2000-g   | g cell      | 6.0              |      | 0.10 | 0.03       |       | _   |       |       |        |   |
|                                                                                                                                                    | · · · · · · · · · · · · · · · · · · · |          |                 |          |             | ·                |      |      |            |       |     | <br>  |       |        | ļ |
| Flotation                                                                                                                                          | 5                                     | 25       | 8.5             |          |             |                  | 0.05 |      |            | 0.02  |     |       |       |        |   |
| Scavenging                                                                                                                                         | 15                                    | 25       | 8.5             |          |             |                  | 0.05 | 0.10 |            |       |     |       |       |        | · |
| Cleaning                                                                                                                                           | 2                                     |          |                 | 500-0    | <u>cell</u> |                  |      |      |            |       |     |       |       |        |   |
| Recleaning                                                                                                                                         | 1                                     |          |                 | 250-9    | cell        |                  |      |      |            |       |     |       |       |        |   |
| <u>Neereuring</u>                                                                                                                                  |                                       |          |                 | 230 6    |             |                  |      |      |            |       |     |       |       |        |   |
|                                                                                                                                                    |                                       |          |                 |          | ·           |                  |      |      |            |       |     |       |       |        |   |
|                                                                                                                                                    |                                       |          |                 |          |             |                  |      |      |            |       |     |       | 1     |        |   |
|                                                                                                                                                    |                                       |          |                 |          |             |                  |      |      |            |       |     |       |       |        |   |
|                                                                                                                                                    | W                                     | г        |                 |          | ANAL        | YSIS (           | 1)   |      |            | 11    | D١  | STRIE | BUTIO | N %    |   |
|                                                                                                                                                    | %                                     |          | Ag              | oz/ton   |             | Cu%              |      |      |            |       |     | Ag    |       | Cu     |   |
| Clean conc                                                                                                                                         | 4                                     | .7       | 5               | 4.58     |             | 5.50             |      |      |            |       | 54  | .2    |       | 62.9   |   |
| Clean & reclean tail                                                                                                                               | 3                                     | .9       | 1               | 3.12     |             | 0.80             |      |      |            |       | 10  | .8    |       | 7.5    |   |
|                                                                                                                                                    |                                       |          |                 |          |             |                  |      |      |            |       |     |       |       |        |   |
| Ro conc (calcd)                                                                                                                                    | 8                                     | .6       | 3               | 5.78     |             | 3.37             |      |      |            |       | 65  | .0    |       | 70.4   |   |
| Scav conc                                                                                                                                          | 1                                     | .9       | 1               | 1.57     |             | 0.79             |      |      |            |       | 2   | .7    |       | 3.6    |   |
| Rougher tail                                                                                                                                       | 89                                    | .5       |                 | 1.60     |             | 0.12             |      |      |            |       | 30  | ).3   |       | 26.0   |   |
|                                                                                                                                                    | 100                                   |          |                 | 1 70     |             | 0 41             |      |      |            |       | 100 |       |       | 100 0  |   |
| reed (carco)                                                                                                                                       | 1100                                  | ••       |                 | 4.13     |             | 0.41             |      |      |            |       |     |       |       | 100.0  |   |
|                                                                                                                                                    |                                       |          |                 |          |             |                  |      |      |            |       |     |       |       |        |   |
|                                                                                                                                                    |                                       |          |                 |          |             |                  |      |      |            |       |     |       |       |        |   |
|                                                                                                                                                    |                                       |          |                 |          |             |                  |      |      |            |       |     |       |       |        | [ |
|                                                                                                                                                    |                                       |          |                 |          |             |                  |      |      |            |       |     |       |       |        |   |
|                                                                                                                                                    |                                       |          |                 | <u> </u> | <u> </u>    |                  |      |      |            |       |     |       |       | 1      |   |
| KEMARKS: * Flotation                                                                                                                               | taili                                 | ng 96.7  | / per           | cent mi  | nus 40      | 0 mesh           | •    |      |            |       |     |       |       |        |   |
|                                                                                                                                                    | гиат 1                                | keports. | 5 m <b>5</b> –A | 0-70-98  |             | 70/•             |      |      |            |       |     |       |       |        |   |
|                                                                                                                                                    |                                       |          |                 |          |             |                  |      |      |            |       |     |       |       |        |   |

\*

I

....

| TEST NO. 14        | SAMP   | LE: K  | Kennco  | Explo  | ration    | (Canad                                | a) Lim                          | ited  |       |                 |                                       |       | DAT    | E: Oc | t. 9, 1 | .970 |
|--------------------|--------|--------|---------|--------|-----------|---------------------------------------|---------------------------------|-------|-------|-----------------|---------------------------------------|-------|--------|-------|---------|------|
| OBJECT OF TEST:    | Pogr   | ind of |         | ntrati | a befo    | re clea                               | ning                            |       |       |                 |                                       |       | CHA    | RGE:  | 2000-g  |      |
|                    | Regi   |        |         |        |           |                                       |                                 | · .   |       |                 | · · · · · · · · · · · · · · · · · · · | ·     | TES    | TED B | Y: WAW  |      |
| ODERATION          |        | Time   | %       |        | U         | nit                                   |                                 |       |       | Rea             | igents,                               | lb pe | r ton  |       |         |      |
| OPERATION          |        | min    | Solids  | рп     | us        | sed                                   | Na <sub>2</sub> CO <sub>2</sub> | Z-200 | 404   | DF 250          | A31                                   |       |        |       |         |      |
| Grind (1)          |        | 50     | 57      |        | 7 x 14 RM |                                       |                                 |       |       |                 |                                       |       |        |       |         |      |
| Condition          |        | 15     | 35      | 7.7    | 2000-     | g_cell                                | 4.0                             |       | 0.10  |                 | 0.04                                  |       |        |       |         |      |
| ·                  |        |        |         |        |           |                                       |                                 |       |       | *               |                                       |       | ^      |       |         | ·    |
| Float No. 1        |        | 4      | 25      | 8.0    |           |                                       |                                 | 0.10  |       |                 | 0.06                                  | •     |        |       |         |      |
| Float No. 2        |        | 5      |         | 8.0    |           |                                       |                                 | 0.10  |       | 0.03            |                                       |       |        |       |         |      |
| Float No. 3        |        | 5      |         | 7.5    |           |                                       | <u> </u>                        |       | 0.10  |                 |                                       |       |        |       |         |      |
|                    |        |        |         |        |           | · · · · · · · · · · · · · · · · · · · |                                 |       |       |                 |                                       | •     |        |       |         | · ·  |
| Filter combined co | mc     | 45     |         |        | Pobb1     | o Mill                                |                                 |       |       |                 |                                       |       |        |       |         |      |
|                    |        | 4.5    |         |        | TEDDT     | e min                                 |                                 |       | · · · |                 |                                       |       | -      |       |         |      |
| Clean conc         |        | 2      |         |        | 500-9     | cell                                  |                                 |       | 0.05  | 0.02            |                                       |       |        |       |         |      |
| Reclean conc       |        | 1 .    |         |        | 250-g     | cell                                  |                                 |       |       |                 |                                       |       |        | 1     | -       |      |
|                    |        | l w    | Τ       |        | <u> </u>  | ANAL                                  | YSIS (                          | 2)    |       | • <u>•</u> •••• |                                       | D     | ISTRIE | BUTIO | N %     |      |
| PRODUCT            |        | %      | 6       | A      | g oz/t    | on                                    | Cu%                             |       |       |                 |                                       |       | Ag     |       | Cu      |      |
| Reclean conc       |        | 2      | .1      | 9      | 6.72      |                                       | 10.00                           |       |       |                 |                                       |       | 40.4   |       | 52.8    |      |
| Cleaner tail       |        | 11.    | .7      | -      | 8.07      |                                       | 0.50                            |       |       |                 |                                       |       | 18.8   |       | 14.8    |      |
| Reclean tail       |        | 1.     | .5      | 3      | 5.43      |                                       | 2.41                            |       |       |                 |                                       |       | 10.5   |       | 9.0     |      |
| Rougher conc (calc | d)     | 15.    | .3      | 2      | 2.92      |                                       | 1.99                            |       |       |                 |                                       |       | 59.7   |       | 76.6    |      |
|                    |        |        | -       |        | 1 00      |                                       | 0 11                            |       |       | · · .           |                                       |       |        |       |         |      |
| Rougher tail       |        | 84.    | • /     |        | 1.80      |                                       | 0.11                            |       |       |                 |                                       |       | 50.5   |       | 23.4    |      |
| Feed (calcd)       |        | 100.   | .0      |        | 5.03      |                                       | 0.40                            |       |       | -               |                                       | 1     | 0.0    |       | 100.0   |      |
|                    |        |        |         |        |           |                                       |                                 |       |       |                 |                                       |       |        |       |         |      |
|                    |        |        |         |        |           |                                       | •                               |       |       |                 |                                       |       | 1      |       |         |      |
|                    |        |        |         |        |           |                                       |                                 |       |       |                 |                                       |       |        |       |         | · ·  |
|                    |        |        |         |        |           |                                       |                                 |       | -     |                 |                                       |       |        |       |         |      |
|                    |        |        |         |        |           |                                       |                                 |       |       |                 |                                       |       |        |       |         |      |
|                    |        |        |         |        |           |                                       |                                 |       |       |                 |                                       | .     |        |       |         | •    |
| REMARKS: (1) F1    | otatio | n tail | Ling 97 | .2 pe  | r cent    | minus                                 | 400 me                          | sh.   |       |                 |                                       |       |        |       |         |      |
| (2) Fr             | om Int | ernal  | Report  | s MS-  | AC-70-    | 996 and                               | 70-10                           | 04.   |       |                 |                                       |       |        |       | ·<br>·  |      |
| 1                  |        |        | ÷ '     |        |           |                                       |                                 |       |       |                 | *                                     | •     |        |       |         |      |

- 16

### APPENDIX B - 1 -

#### MINERAL SCIENCES DIVISION

#### Mineralogy Section

### INTERNAL REPORT MS-70-47

### <u>TITLE</u>: Mineralogical Examination of a Mill Product obtained from beneficiation tests on a Copper Ore from Kennco Explorations (Canada) Limited.

۹°

SAMPLE: A sample of a mill product, labelled "Float-tailing, Test No. 4", was received from Mr. A. Wall of the Mineral Processing Division on April 4, 1970. The sample, all minus 325 mesh in size, was reported by Mr. Wall to contain 2.04 ounces of silver per ton, and 0.128 per cent copper.

<u>PURPOSE</u>: To determine the reason for the high silver and copper content of the mill product.

<u>RESULTS</u>: The mill product was found to consist of small lumps or aggregates of mineral grains. It was, therefore, sieved through a 200 mesh screen to break up these aggregates into individual grains so that polished sections could be prepared. While screening the mill product it was noticed that, while most of it passed through the screen, about one fourth remained as small hard balls (spherical agglomerates) which showed a distinct colour difference. These two fractions were then examined as separate samples. The minerals were identified by microscopical examination of polished sections and oil immersion mounts, and by X-ray diffractometer and electron microprobe analysis.

Both fractions consist almost entirely of the gangue minerals-quartz and mica. The spherical agglomerate is distinguished from the sieved fraction by its generally finer grain size, lower content of metallic minerals and the apparent absence of analcite (which was detected in the sieved sample).

The metallic minerals in both fractions are composed essentially of magnetite, with much smaller amounts of chalcopyrite, tennantite, covellite, digenite(?), hematite, sphalerite, goethite, pyrite and rutile. The copper content is due mainly to the presence of chalcopyrite; the silver-- to tennantite or tetrahedrite.

Both free and combined grains of the metallic minerals were observed, but the proportions of the two types could not be determined because of the extremely fine grain size - mainly less than 15 microns in diameter.

Tickel Signed: M.A. Owen Mineralogy Section Approved: Section Head

Dated: May 11, 1970.

COPIES TO: 1. Mr. A. Wall, Mineral Processing Division

- 2. D. Owens, Mineral Sciences Division
- 3. Divisional Files
- 4. Section Files
- 5. Reports Secretary Files