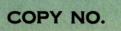
This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

ונואן	ISTRIAL CONFIDENTIAL
DECLA	State D
DALE NOV 38	18
AUTHORIZED BY CL	Cunnyhan
DAMESTIC DESCRIPTION OF THE ADDRESS OF THE DESCRIPTION OF THE DESCRIPT	CANADA CARANTA AND A CANADA AN EXCLUSION A CARANTA AND A


CANADA

DEPARTMENT OF ENERGY, MINES AND RESOURCES

OTTAWA

Mines Branch

9

CANADA

DEPARTMENT OF ENERGY, MINES AND RESOURCES

OTTAWA

MINES BRANCH INVESTIGATION REPORT

IR 70-48

May, 1970

AN EVALUATION OF THE FLOTATION CHARACTERISTICS OF A COPPER-NICKEL ORE FROM DOBIE TOWNSHIP NEAR EMO, ONTARIO FOR LONG LAC MINERAL EXPLORATION LIMITED

by

A. Stemerowicz and R.W. Bruce

Mineral Processing Division

Note: This report relates essentially to the samples as received. The report and any correspondence connected therewith shall not be used in full or in part as publicity or advertising matter.

Copy No.

Industrial Confidential

Mines Branch Investigation Report IR 70-48

AN EVALUATION OF THE FLOTATION CHARACTERISTICS OF A COPPER-NICKEL ORE FROM DOBIE TOWNSHIP NEAR EMO, ONTARIO FOR LONG LAC MINERAL EXPLORATION LIMITED

by

A. Stemerowicz and R.W. Bruce**

- - -

SUMMARY OF RESULTS

The ore contains 0.18% copper, 0.25% nickel and 0.02% cobalt. The best results for bulk sulphide flotation were obtained at a grind of 64% minus 200 mesh and were as follows:

	Wt			Assa	ys %		
	%	Cu	Ni	Co	Fe	S	Insol
Bulk cleaner conc	3.5	3.4	2.9	0.24	44.4	33.1	10.3
				Distrib	ution ?	6	
		Cu	Ni	Co		-	
Bulk cleaner conc		63.8	.43.5	40.1			

Bulk cleaner tailings 16.5 22.4

Selective flotation of copper and nickel concentrates directly from the ore gave results as tabulated below:

	Wt	Assays %			Distribution %		
	%	Cu	Ni	Co	Cu	Ni	Co
Copper conc	0.4	19.00	1.05	0.073	38.6	1.8	1.4
Copper cleaner tail	1.4	3.50	1.19		25.3	7.3	
Nickel conc	1.5	0.70	3.95	0.47	5.5	26.3	34.0
Nickel cleaner tail	7.6	0.36	1.06		14.3	35.3	

*Engineer, and **Head, Non-Ferrous Minerals Section, Mineral Processing Division, Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

CONTENTS

	Ī	2age
Summary of Results		i
Introduction Location of Property Shipment Nature of Investigation Requested Sampling and Analysis Mineralogical Examination		1 1 1 1 3
Outline of Investigation	• • • • •	3
Evaluation and Discussion of Results		$\begin{array}{c} 11\\ 11 \end{array}$
Conclusions		
Acknowledgement	••••	13
Appendix A Screen Analyses of Final Tailings Assay-Size Analyses of Final Tailings		14 14 1.5
Appendix B	•	16
Abbreviations Used in Flotation Test Reports Test 1 - Preliminary bulk flotation test with 1.0 lb/ton		16
caustic starch as talc depressant Test 2 - To float a slime concentrate prior to sulphide		17
flotation Test 3 - Bulk flotation with 2.0 lb/ton caustic starch as talc depressant, also heated rougher concentrate before cleaning in order to desorb Z-6 from mineral surfaces		18 19
Test 4 - Bulk flotation with 1.0 lb/ton caustic starch as talc depressant, also desorbed Z-6 prior to cleaning		
by boiling rougher concentrate slurry Test 5 - To try two-stage bulk rougher float at a fine grind Test 6 - Two-stage bulk rougher float as in Test 5 but (1)	•	20 21
coarser grind (45 min vs 60 min) and (2) caustic starc cut from 2.0 to 1.0 lb/ton	h •	23

Page

Test 7 - Two-stage float as in Test 6 but employed pebble	
grinding Test 8 - To try copper-nickel selective flotation using Z-200 as copper promoter and lime as a depressant for nickel	25
minerals	27
Test 9 - To try 0.2 lb/ton Orzan A as talc depressant	28
Test 10 - To try 0.4 lb/ton Orzan A as talc depressant	29
Test 11 - Comparison for Tests 9 and 10 - no Orzan A added	30
Test 12 - To try magnetic separation on reground bulk cleaner	
concentrate	31
Test 13 - To try copper-nickel separation on bulk cleaner	
concentrate followed by magnetic separation of nickel	
concentrate	32
Test 14 - Bulk rougher float similar to Test 11 but using a finer	
grind along with a 100% increase in promoter addition	33
Test 15 - Repeat of Test 14 but with 0.4 1b/ton Orzan A added	
as talc depressant	34
Test 16 - To try bulk flotation at a coarse grind along with	•
caustic starch as a talc depressant	35
Test 17 - Repeat of Test 16 but grinding time increased from	
10 to 30 min	36
Test 18 - Repeat of Test 16 but grinding time increased from 10	
to 60 min	37
Appendix C	38
Internal Report MS-69-44 - Mineralogical Examination of a Bulk	38
Concentrate	38
Appendix D	39
Summary of Previous Investigations	39
Investigation No. MD 3174	39
Head Sample Analysis	
Mineralogy	
Bulk Flotation	
Copper-Nickel Separation of Bulk Concentrate	
Investigation No. MD 3201	
Head Sample Analysis	
Mineralogy	
Bulk Flotation	42
Copper-Nickel Separation of Bulk Concentrate	42

INTRODUCTION

Location of Property

The property is located in Dobie Township near Emo in the northwestern area of Ontario.

Shipment

Two shipments of percussion drill cuttings were received as follows:

- 1. January 3, 1969 2 drums: net weight 385 1b
- 2. February 3, 1969 26 drums, gross weight 7500 lb

Shipment 1 was stated to be a representative sample of shipment 2 material.

Nature of Investigation Requested

In his letter of July 8, 1969, Mr. P.D. Timms, Manager of Long Lac Mineral Exploration Limited requested a bench-scale investigation on the sample to be followed by pilot-plant tests if the results of the bench-scale tests were favourable. Grades of concentrates to be produced from the sample were not specified but in a subsequent conversation it was stated that a bulk sulphide concentrate should contain a minimum of 8% total combined copper and nickel in order to be acceptable to a nickel smelter.

Sampling and Analysis

Shipment 1 was air-dried and riffled into quarters. One of these quarters was further riffled into 16 portions to provide representative material for investigative tests while the remaining quarters were stored for future use. One of the 16 portions was chosen at random as a head sample. Screen analysis of the head sample is given in Table 1 followed by the chemical analysis in Table 2 and a semi-quantitative spectrochemical analysis in Table 3.

Screen Analysis of	Head Sample
Tyler Mesh Size	Wt %
+35	4.4
+48	. 5.8
+65	10.6
+100	12.8
+1.50	14.7
+200	12.4
+325	15.2
-325	24.1
Total	100.0

TABLE 1

TABLE 2

Chemical Analysis of Head Sample*

Copper (Cu)	-	0.18 %
Nickel (Ni)	-	0.25 11
Cobalt (Co)	-	0.021"
Iron (Total Fe)	-	6.48 "
Sulphur (S)	-	2.79 11
Platinum (Pt)	-	not detectable
Palladium (Pd)	-	0.002 oz/ton

*From Internal Reports MS-AC-69-186 and 189.

TABLE 3

Semi-Quantitative Spectrographic Analysis of Head Sample*

<u>Range %</u>

Elements

Principal constituents 1.0 to 0.1 0.1 to 0.01 Not detected Mg, Si, Fe, Al, Ca Na, Cr, Ni, Ti Cu, Mn, Co, V Ba, Sb, Mo, W, Pb, Sn, Bi Nb, Ta, In, Zr, Ag, Zn, Sr

*From Internal Report MS-AC-69-24.

Mineralogical Examination

Because of the fineness of the sample as received and its low sulphide content it was not thought worthwhile to submit it for mineralogical examination. To get a true picture of occurrences and textural relationships of sulphides and gangue minerals, it would be necessary to study mineralized sections of lump ore. However, a sample of bulk sulphide concentrate produced in a lab batch text was submitted for mineralogical examination a report of which is given in Appendix C.

OUTLINE OF INVESTIGATION

Most of the time spent on this investigation was devoted to the flotation of the sulphides into a single bulk concentrate. Both single-stage and two-stage bulk flotation was tried as follows:

(1) <u>Single-stage bulk flotation</u> - a rougher concentrate was floated off with amyl xanthate and frother after conditioning the pulp with copper sulphate. The rougher concentrate was upgraded by multi-stage cleaning.

(2) <u>Two-stage bulk flotation</u> - a rougher concentrate containing the quick floating copper and nickel minerals was floated off without the aid of copper sulphate. The pulp was then conditioned with copper sulphate to activate the slower floating sulphides and scavenger concentrate was floated off. Both concentrates were cleaned. Soda ash was added to grinding in all tests. Generally, soda ash has a beneficial effect on the flotation of sulphides, especially when it is used in conjunction with copper sulphate.

In the initial bulk flotation test it was noted that talc or some other slimed silicate mineral was floating with the sulphides. Therefore, the practice was adopted of conditioning with a slime depressant prior to the addition of copper sulphate and promoter. Caustic starch (aqueous solution of starch and caustic soda in the ratio 2:1) and Orzan A (Crown Zellerbach Corp. trade name for ammonium lignin sulphonate) were employed as slime depressants. In one test an attempt was made to float off the interfering slimes with an alcohol frother prior to the sulphide float.

Fineness of grind, as measured by the screen analysis of the rougher tailing, was varied from 49 to 94% minus 200 mesh.

In two tests an attempt was made to partially desorb or destroy the xanthate coating on mineral surfaces prior to the cleaning operation by first heating the rougher concentrate slurry to 90°C in one test and by boiling the slurry in the other test. In both cases the hot water was decanted off and replaced by fresh water for cleaning. It was hoped that this treatment would result in improved selectivity between copper and nickel minerals on the one hand and gangue minerals and barren pyrrhotite on the other.

Magnetic separation was tried on a sample of reground bulk concentrate with a view to upgrading the concentrate by removing barren pyrrhotite.

A sample of bulk concentrate was submitted for mineralogical examination to identify the copper and nickel minerals and to determine the degree of association between the nickel minerals and pyrrhotite.

Bulk rougher tailings from tests employing coarse and fine grinds (64% and 85% minus 2000 mesh) were screened and the size fractions were assayed in order to determine distribution of copper and nickel tailing losses.

The production of separate copper and nickel concentrates was tried in only two tests each utilizing a different method as follows:

<u>Copper-nickel selective flotation directly on the ore</u> - a copper rougher concentrate was selectively floated from the ore by employing lime as a depressant for the nickel minerals and Z-200 as a selective copper promoter. Copper sulphate was then added to activate the nickel minerals and a nickel rougher concentrate was floated off with amyl xanthate. Both copper and nickel rougher concentrates were cleaned twice - the former with lime and the latter without additional reagents.

<u>Copper-nickel separation of bulk concentrate</u> - the copper and nickel minerals in the bulk concentrate were separated by using lime as a depressant for the nickel minerals. The chalcopyrite, which was unaffected, was then removed as the froth product which was upgraded by cleaning twice with lime. The nickel concentrate (non-float product) was upgraded by subjecting it to magnetic separation to remove pyrrhotite.

Except as noted, all test products were analyzed by Willroy Mines Limited, an associated company.

Full details of all tests are given in Appendix B.

EVALUATION AND DISCUSSION OF RESULTS

Single-Stage Bulk Flotation

The best results obtained for single-stage bulk flotation (Test 4) are given below in Table 4. These results were obtained at a grind of 64% minus 200 mesh. Caustic starch was employed as a slime depressant and the rougher concentrate slurry was boiled prior to the cleaning operation with the view of improving selectivity by partially desorbing or destroying the xanthate coating on the mineral surfaces.

TABLE 4

Product	Wt		Assays %*			Distribution %				
	%	Cu	Ni	Insol	Со	Fe	S	Cu	Ni	Co
Bulk cleaner conc Bulk cleaner tail No. 2 Bulk cleaner tail No. 1 Final tailing		1.03 0.78	1.80 1.30	10.34 23.12 35.11	0.24 0.015	44.4 4.48	33.1 0.56	63.8 4.1 12.4 19.7	43.5 5.7 16.7 34.1	
Feed (calcd)	100.00	0.19	0.23		0.021			100.0	100.0	
<u>Calculated assays</u> lst stage bulk cl conc Bulk rougher conc	4.24 7.21			12.54 21.84				67.9 80.3	49.2 65.9	

Best Results for Single-Stage Bulk Flotation (Test 4)

*Co, Fe, and S assays from Internal Report MS-AC-70-108.

Two-Stage Bulk Flotation

Two-stage bulk flotation was tried at grinds of 84.6% minus 200 mesh (Test 5), 75.4% minus 200 mesh (Test 6) and 93.6% minus 200 mesh (Test 7). In all three tests caustic starch was employed as a slime depressant. Results are shown in Table 5.

FABLE 5	
---------	--

						, 		
Test	Product	Wt Assa		Assays S	%	Distribution %		
No.	Product	%	Cu	Ni	Insol	Cu	Ni	
5	Bulk cleaner conc Combined bulk cl tail Scavenger cleaner conc Combined scav cl tail Final tailing	1.21 0.75 2.16 3.02 92.86	5.90 3.52 0.85 0.69 0.045	2.70 2.27 1.80 1.05 0.08	6.50 28.52 6.73 39.56	39.9 14.7 10.3 11.7 23.4	16.8 8.7 20.0 16.4 38.1	
	Feed (calcd)	100.00	0.18	0.19		100.0	100.0	
	Bulk rougher conc (calcd)	1.96	4.99	2.54	14.93	54.6	25.5	
6	Bulk cleaner conc Combined bulk cl tail Scavenger cleaner conc Combined scav cl tail Final tailing	1.92 1.06 2.05 2.16 92.81	5.15 1.78 0.65 0.75 0.04	2.90 1.67 1.70 1.12 0.08	9.04 38.56 7.88 44.37	53.6 10.2 7.2 8.8 20.2	27.0 8.6 16.9 11.6 35.9	
2	Feed (calcd)	100.00	0.18	0.21		100.0	100.0	
	Bulk rougher conc (calcd)	2.98	3.95	2.46	19.55	63.8	35.6	
7	Bulk cleaner conc Combined bulk cl tail Scavenger cleaner conc Combined scav cl tail Final tailing	2.10 1.43 1.29 2.95 92.23	4.60 1.97 0.40 0.62 0.035	2.65 1.73 1.70 1.06 0.08	5.06 24.08 5.16 48.59	53.5 15.6 2.9 10.1 17.9	27.3 12.1 10.7 13.8 36.1	
	Feed (calcd)	100.00	0.18	0.20	· .	100.0	100.0	
	Bulk rougher conc (calcd)	3.53	3.54	2.28	12.77	69.1	39.4	

Results for Two-Stage Bulk Flotation

By combining weights and assays of the numerous products produced in the two-stage bulk flotation tests it was possible to obtain a large number of grade:recovery combinations. These are plotted in Figure 1. Only one curve each for copper and nickel has been drawn through the points. Differences in locations of points for each test would allow the drawing of separate curves but these differences are not considered to be significant. For example, a difference in analysis of copper and nickel in the tailing of 0.005% and 0.01% respectively, which is within the limits of experimental error, would result in differences in recovery of 3% for copper and 5% for nickel.

A comparison of the best results obtained for single-stage bulk flotation (Test 4) versus the results for two-stage bulk flotation as given by the curves in Figure 1 is shown in Table 6.

TABLE 6

Comparison of Results Single-Stage vs Two-Stage Bulk Flotation

Product	Grade % Cu + Ni	Recovery by single-stage flotation, % Test 4		Recovery by two-stage flotation % from Figure 1 curves		
· .		Cu	Ni	Cu	Ni	
Bulk cleaner conc lst stage bulk cl conc Bulk rougher conc	6.26 5.67 4.19	63.8 67.9 80.3	43.5 49.2 63.9	61.5 63.0 74.0	35.5 40.0 62.5	

The above comparison shows that in most cases for the same concentrate grade a significantly higher copper and nickel recovery was obtained by single-stage bulk flotation.

Effect of Removal of Xanthate Prior to Cleaning

The removal of xanthate from mineral surfaces by heating the bulk rougher concentrate pulp prior to cleaning (Tests 3 and 4) resulted in an improvement in selectivity in the cleaning operation as evidenced by the superior results attained in Test 4. Boiling the pulp (Test 4) appeared to be more effective than heating to a lower temperature of 80°C (Test 3).

Effect of Slime Depressants

The results of bulk flotation with and without the addition of various amounts of the slime depressants Orzan A and caustic starch are compared in Table 7.

TABLE 7

Grind Test % Slime No200 m Depressant		Bu	ılk Rou	Tailing					
		1b/ton	Wt	A	lssays	%	Assays %		
	200 m		%	Cu	Ni	Inso1	Cu	Ni	
11	64.4	None		6.76	1.99	1.73	22.33	0.03	0.12
9	11	Orzan A	0.2	6.42	2.13	1.78	20.44	0.03	0.10
10	11	Orzan A	0.4	6.33	2.23	1.86	20.32	0.035	0.10
17	11	caustic starch	1.0	6.58	2.18	1.76	22.86	0.04	0.10

Comparison of Bulk Flotation Results Using Various Amounts of Orzan A and Caustic Starch

The most significant difference in results obtained in the one test above which was done without the addition of slime depressant (Test 11) was the higher nickel loss in tailing. A slightly lower grade of concentrate (copper + nickel content) was obtained in this test but after two cleaning stages the concentrate was upgraded to about the same cleaner concentrate grade as the other tests under comparison. More thorough testing would be required to definitely prove the need for employing slime depressants but was not carried out as the results would not materially affect the economics of processing this ore.

Effect of Fineness of Grind

Bulk flotation was tried at grinds ranging from 49 to 93.6% minus 200 mesh. It was found that there was no advantage in grinding finer than about 64% minus 200 mesh. At a grind of 49% minus 200 mesh (Tests 1 and 16) there was a significant increase in copper and nickel losses in the tailing.

Flotation of Slimes Prior to Sulphide Flotation

In Test 2 the flotation of a slime concentrate was tried as a means of reducing the amount of slimes floating with the sulphides in the subsequent bulk sulphide float. The slimes were floated by the simple expedient of adding an alcohol frother and this was followed by bulk sulphide flotation using standard procedure. Results are in Table 8.

TABLE 8

Product	Wt		Assays %		Distribution %				
Product	%.	Cu	Ni	Ni Insol Cu .60 42.35 58.0 2.55 6.81 19.7 .35 42.19 5.0 0.085 17.3		Ni			
Slime conc Bulk cl conc Bulk cl tail Final tailing	2.37 4.08 1.76 91.79	4.55 0.90 0.53 0.035	1.60 2.55 1.35 0.085	6.81	5.0	15.6 42.7 9.8 31.9			
Feed (calcd)	100.00	0.19	0.24	· · ·	100.0	100.0			
Bulk rougher conc (calcd)	5.84	0.79	2.19	17.47	24.7	52,5			

Results of Slime Flotation Prior to Sulphide Flotation (Test 2)

As can be seen from the results it was not possible to float off a slime concentrate without also floating a considerable amount of sulphides, especially chalcopyrite. Despite the removal of a considerable weight of slimes in the initial slime float there was no significant reduction in the amount of slimes floating with the sulphides.

Magnetic Separation of Bulk Concentrate

The results of magnetic separation of a sample of reground bulk concentrate are given in Table 9.

TABLE 9

Results of Magnetic Separation of Bulk Concentrate (Test 12)

Product	Wt		•	Assa	······································	Distribution %				
Froduct	%	Cu	Ni	Insol	Со	Fe ·	S	Cu	Ni	Co
Non-magnetics	63.0	4.00	2.80	13.37	0.29	40.2	32.4	96.5	84.1	95.0
Magnetics	37.0	0.25	0.90	4.35	0.026	55.4	34.5	3.5	15.9	5.0
Bulk cl conc (calcd)	100.0	2.61	2.10	10.04	0.19	45.8	33.2	100.0	100.0	100.0

*Co, Fe and S assays from Internal Report MS-AC-70-108.

As can be seen, 37% of the weight of the bulk concentrate was removed as magnetics resulting in an appreciable improvement in concentrate grade but this was accompanied by a substantial loss of nickel in the magnetics.

Mineralogical Examination of Bulk Concentrate

A mineralogical examination of a bulk concentrate (see report in appendix) identified the nickel minerals as nickeliferous pyrrhotite, pentlandite and violarite. It was concluded in the report that it would be difficult to concentrate the nickel effectively because of small, nickel-bearing inclusions in the pyrrhotite and the significant nickel content of the pyrrhotite itself (0.4% as measured with the electron probe).

Distribution of Copper and Nickel Losses in Tailing

Assay-size analyses of a sample of bulk flotation tailings (see Appendix A page 16) showed that the greatest loss of both copper and nickel was in the minus 500-mesh fraction (25 microns). At a grind of 64% minus 200 mesh (Test 17) 49% of the copper and 48% of the nickel was lost in the minus 500-mesh fraction while at a finer grind of 85% minus. 200 mesh the losses in this fraction were increased to 62% and 58% respectively.

Flotation of Separate Copper and Nickel Concentrates

The results of flotation of separate concentrates by the two methods outlined, viz. selective flotation from the ore and separation of bulk concentrate, are given in Tables 10 and 11.

ΤA	BL	E,	1	0

Dec. June 4	Wt			Assays	%*			Dist	ributic	on %
Product	%	Cu	Ni	Insol	Co	Fe	S	Cu	Ni	Со
Copper conc Combined copper cl tail Nickel conc Combined nickel cl tail Final tailing	1.39 1.52	.0.70 0.36		12.81 51.04 7.87 44.85		33.3 44.2		25.3	7.3 26.3 35.3	1.4 34.0
Feed (calcd)	100.00	0.19	0.23		0.021			100.0	100.0	

Results of Selective Flotation Directly From Ore (Test 8)

*Co, Fe and S assays from Internal Report MS-AC-70-108.

TABLE 11

Results of Copper-Nickel Separation of Bulk Concentrate (Test 13)

Product	Wt			Assays	s %*			Dist	ributio	on %
Froduct	%	Cu	Ni	Insol	Co	Fe	S	Cu	Ni	Co
Copper conc Combined copper cl tail Nickel conc (non-mags) Magnetics Combined bulk cl tail Final tailing	0.37 0.78 1.95 1.61 1.85 93.44	1.00 0.20 1.05	0.90 1.15	7.69 15.72	0.13 0.30 0.029	42.3	35.0 30.7 34.6	13.2 11.4	11.5 25.7 6.7	1
Feed (calcd)	100.00	0.17	0.22		0.021			100.0	100.0	
Separation tail (calcd)**	3.57	0.64	1.97	10.90	0.18	49.0	32.5	13.3	32.4	30.1

*Co, Fe and S assays from Internal Report MS-AC-70-108. **Nickel concentrate before magnetic separation.

The two methods gave similar copper results but selective flotation from the ore gave a better grade of nickel concentrate. The low-grade nickel concentrate obtained by subjecting the bulk concentrate to copper-nickel separation can be upgraded by magnetic separation, but, as was the case when this was tried on a bulk concentrate (Test 12), a substantial amount of nickel was lost in the magnetics.

CONCLUSIONS

A satisfactory grade of bulk concentrate could not be produced from the sample because of the intimate association of some of the nickel with pyrrhotite. The nickeliferous pyrrhotite can be rejected to produce concentrate grades with the required 8% combined copper + nickel content (See Figure 1) but only at the expense of a severe decrease in nickel recovery.

From the limited work done on selective flotation indications were that it would be possible to produce a copper concentrate containing only about 1% nickel but maximum nickel concentrate grade would be limited to about 4% nickel because of the presence of nickeliferous pyrrhotite.

It was not possible to obtain a tailing containing less than about 0.08% nickel. For most ores this would be considered to be a low value but on this low-grade sample it represents a loss of about 1/3 of the contained nickel.

Because of this, it is concluded that it would not be economical to treat this low-grade material. Hydrometallurgical methods might be feasible but these are beyond the scope of this investigation.

A comparison of the results of this investigation with the results of previous investigations, a summary of which is given in Appendix D, indicates that the mineralization of the sample submitted is similar to the high-grade sample investigated in Investigation No. MD 3201 (see page 43). In both cases a high-grade concentrate could not be produced because of the presence of nickeliferous pyrrhotite. The mineralization of the low-grade sample investigated in Investigation No. MD 3174 (see page 41) must differ substantially as there was no difficulty in producing a high-grade bulk concentrate once the problem of talc depression was solved.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the assistance of the following members of the Mineral Sciences Division: Dr. D. Harris who carried out the mineralogical examination of the bulk concentrate, Mr. D.P. Palombo who did the spectrographic analysis and Messrs. D.H. Charette, P.E. Moloughney, R. Donahoe, C. Smith, and R. Craig who carried out the chemical analyses as noted. A grateful acknowledgement is also extended to Mr. C.R. Dunphy, Chief Chemist and his staff at Willroy Mines Limited, who did most of the chemical analyses in this investigation.

APPENDIX A

Screen Analyses of Final Tailings

10-m	in Rod Mill Grind	l - Test l
Tyler Mesh Size	Wt % Retained	Cumulative Wt
		% Retained
+48	0.2	0.2
+65	4.7	4.9
+100	14.4	19.3
+150	16.4	35.7
+200	15.3	51.0
+325	17.2	68.2
-325	31.8	100.0
Total	100.0	
30~m	in Rod Mill Grind	- Test 2
+65	· 0.1	0.1
+100	2.1	2.2
+150	14.8	17.0
-+200	18.6	35.6
+325	22.4	58.0
-325	42.0	100.0
Total	100.0	
45~m	in Rod Mill Grind	- Test 6
+100	0.2	0.2
+150	6.1	6.3
+200	18.3	24.6
+325	26.8	51.4
-325	48.6	100.0
Total	100.0	
60~m	in Rod Mill Grind	- Test 5.
+150	2.2	• 2.2
+200	13.2	15.4
	28.9	44.3
-325	55.7	100.0
Total	. 100.0	

. 60~mj	n Ball Mill Grind*	- Test 7
+100	0.1	0.1
+1.50	0.9	1.0
+200	5.4	6.4
+325	24.4	30.8
-325	69.2	100.0
Total	100.0	

*with ceramic pebbles

Assay-Size Analyses of Findl Tailings

Test 17

30-min Rod Mill Grind

•

Tyler	Wt	Assa	ys %	Distribution %				
Mesh Size	%	Cu	Ni	Cu	Ni			
+150 +200 +270	18.0 18.1 12.3	0.03 0.025	$0.05 \\ 0.05 \\ 0.10$	14.7 12.3	8.3 8.4 11.4			
+270 +325 +400	9.5 5.1	0.025 0.025 0.02	0.10 0.10 0.10	8.4 6.5 2.7	8.8 4.7			
+500 500	11.1 25.9	0.02 0.07	0.10 0.20	. 6.0 49.4	10.3 48.1			
Total	100.0	0.037	0.11	100.0	100.0			

. 1971 197

Test 18

Tyler	Wt	Assa	ys %	Distribution %				
Mesh Size	%	·' Cu	Ni	Cu	Ni			
+200 +270 +325 +400 +500 -500	15.3 16.6 12.1 5.7 14.9 35.4	0.025 0.02 0.025 0.02 0.02 0.02	0.075 0.075 0.075 0.075 0.10 0.20	10.2 8.9 8.1 3.0 8.1 61.7	9.3 10.2 7.4 3.5 12.1 57.5			
Total	100.0	0.037	0.12	100.0	100.0			

60-min Rod Mill Grind

APPENDIX B

Abbreviations Used in Flotation Test Reports

- RM Rod mill
- BM Ball mill

SA Soda ash

CS Caustic starch - aqueous solution of caustic soda and starch in the ratio 1:2

Z-6 Dow Chemical Co. trade name for potassium amyl xanthate

DF 250 Dowfroth 250 - Dow Chemical Co. frother

MIBC Methyl isobutyl carbinol - alcohol frother

Orz A Orzan A, Crown Zellerbach trade name for ammonium lignin sulphonate

- 16 -

. .

.

.

					Explorat				-4					b. $18/$			
				tatio	n test w	with 1.0 lb/ton caustic starch						CHARGE: 3000 g TESTED BY: A.S.					
as			essant								11			Y: A.S			
OPERATION	Time	3	pН	1	Jnit				· · · · · · · · · · · · · · · · · · ·	agents,		er ton			-1		
	min	Solic	is	L	sed	SA	CS	CuSO ₄	Z-6	DF250							
Grinding	10	65		7 x	14 RM	1,0											
Conditioning				2000	-g cell												
No. 1	5		*				1.0		<u> </u>								
No. 2	5							0.2									
Bulk rougher				2000	-g cell	<u> </u>							-				
Stage 1	1								0.033	0.027							
Stage 2	1								p.033								
Stage 3 ·	2								0.066								
Bulk cleaners																	
No. 1	2				g cell					0.013							
No. 2	112			250-	g cell										·		
No. 3	1			11	11 11												
	W.	т II			ANAL	YSIS	%			1	[DISTRI	BUTIO	N %			
PRODUCT	9/	, -	Cu	Ni	Insol	1				Cu		Ni			1		
								+							-		
Bulk cleaner conc		. 66 2	2,63	2,50	6,96					67	.7	46.9					
Bulk cleaner tail No. 3 """ No. 2	11	.38) .29)1	10	1 20	50.36					0	.0	7.7					
" " No. 1		. 80		1.30	30.30						. •	1.1					
Final tailing	11	11	0.045	0,12						23	.3	45.4					
Feed (calcd)		.00 0		0,25				+		100		100.0					
Bulk rougher conc (calcd		.13 2		2.21	17,37					76	.7	54.6					
											1						
	!!		ł					<u></u>	1					1			
REMARKS: Screen analy	'sis o:	f rou	igher ta	iling	, 49.0%	minus	200 me	sh.									
Rougher frot	n coa	ted w	vith dir	ty, g ic <u>s</u>	rev slim	e.											

. .

.

TEST NO. 2 SAME	PLE:	Long L	ac Mi	neral	Explorat	ion L	td.						E: Fe		
OBJECT OF TEST: To f	loat a	. slime	conc	entrat	te prior	to sul	lphide :	flotat	ion.			CHA	RGE:	3000	g
												TES	TED B	Y: A.	s.
OPERATION	Time	%	рН		Unit				Rea	gents,	lb per	ton			
OPERATION	min	Solids	рп		used	SA	MIBC	CS	CuSo ₄	Z-6	DF250				
Grinding	30	65		7x14	4 RM	2.0									
Slime flotation Stage 1	1	-	7.3	200	D-g cell		0.027				1				
¹¹ ¹¹ ¹¹ ²	2						0.013								
Conditioning No. 1	5		8.3	1		1		1.0							
" No. 2	5					İ			0.2				-	1	
Bulk rougher Stage 1	1									0.033	1				
¹¹ ¹¹ ¹¹ 2	1									0.033					
¹¹ ¹¹ · 11 3	2							•		0,066					
Bulk cleaner No. 1	13			500	-g_cell						0.013				
" " No. 2	1			250	-g cell						0.003				
" " No. 3	1			• 11	17 17						0.003				
					:										
	W	'T		<u></u>	ANAL	YSIS	%			1	DI	STRI	JUTIO	N %	·
PRODUCT	9	/6	Cu	Ni	Insol		}		.	Cu	L N	i			1
Slime conc		37 4.		1.60	42.35		1		· · · · · · · · · · · · · · · · · · ·	59	3.0 15	.6			1
Bulk cleaner conc	: /	08 0.	1	2.55	6.81					11	0.7 42				
Combined bulk cl tail	11.	76 0.			42.19						,	.8	1		
Final tailing	14		1	0.085						11	7.3 31	1			
Feed (calcd)	100.	00 0.	19	0.24						100	0.0 100	.0			
Bulk rougher conc (calco	1) 5.	84 0.	79	2.19	17.47					24	.7 52	.5			
						•									1.
								-	· .						·
												ł			
								-							
												1			
												•			1
REMARKS: Screen an	alvsis	of ro	ugher	taili	ing, 64 4	of min	us 200 ·	mesh							
Bulk roug	her fr	oth ap	peare	d to h	be cleane	er that	n Test	1.							
-		-													

.

.

					xplorati							· · · · · · · · · · · · · · · · · · ·	E: Fe				
OBJECT OF TEST: Bulk											also		RGE:				
neated ro conc to 80°C b	efore	clear	ing i	n orde	r to des	orb Z-6 from mineral surfaces						TESTED BY: AS					
OPERATION	Time	%	Hq	1	Jnit				Rea	.gents, l	b per	ton					
	min	Solid	5		used	SA	CS	CuSO₄	Z-6	DF250							
rinding	30	65		7x14	RM	2.0							ĺ	1			
Conditioning		1	1	2000	-g cell							1	1				
No. 1	5						2.0					1					
No. 2	5		8.0					0.2	_								
Bulk rougher				2000	-g cell			1									
Stage 1	· 카					1			0,033	0.026							
11 2	12								0,033								
11 3 -	1								0.066	0.013							
11 4	1								0,066					1			
esorption*																	
Bulk cleaner No. 1	17			500-	g cell					0.013							
" " No. 2	1			<u> </u>	g cell												
PRODUCT	l w	τI			ANAL	YSIS	%				D	STRI	BUTIO	N %	·····		
	9	11	Cu	Ni	Insol			1	1	Cu		i					
Sulk cleaner conc	11			2.45	7.33					61.		4.9					
Sulk cleaner tail No. 2	11			1.73	2 J					8.	ſ	3.6		1			
NO. 1	11	11			51.60					8.	1	6.6					
Final tailing	11	1		0.078						22.		4.9					
Feed (calcd)	100	.00 ().17	0.21						100.	0 10	0.0					
st stage cleaner conc**		.49 2	17	2 23	9,85				· ·	70.		8.5					
Bulk rougher conc**	11	.48 2			16.23					78.		5.1					
1045.00 00110.	ll ŭ	2															
	11	11	}		1			1	ł	11		1		1	1		

** Calculated.

.

1

					Explora									b. 20,	
OBJECT OF TEST: Bulk									depre	ssant				3000	
also desorbed Z-6 pr	ior to	clear	ling	by boil	ing rou	gher co	nc slu	rry.					TED B	Y: A.S	•
OPERATION	Time	%	-tq	1	Jnit				Rea	igents,	b per	ton			
	min	Solid	s ^{p.}	·	used	SA	CS	CuSO4	Z-6	DF250					
Grinding	30	65		7 x	14 RM	1.0			· · ·						
Conditioning				2000	-g cell		1								1
No. 1	5		7.	5			1.0								
No. 2	5							0.2							
Bulk rougher				2000	-g cell										
Stage 1	1								0.02	0.026					
· 2	1								0.02						
" 3	2								0.026	0.013					
Desorption ***															
Bulk cleaners					·										
No. l	11/2			500-	g cell					0.013					•
No. 2	2			250-	g cell					0.003					
	W	r			ANA	LYSIS	%				DI	STRI	BUTIO	N %	
PRODUCT	%	, -	Cu	Ni	Insol	Co	Fe	S	1	Cu		Ti	Со		1
Bulk cleaner conc	3	51 3	3.40	2.86	10.34		44.4	33.1		63.8	2 15	3.5	40.1		1
Bulk cleaner tail No. 2	11	11	.03	1.80	10.34 23.12	0.24	44 . 4	22.1		4.		5.7	4 0. L		
" " No. 1	- II	11	.78	1.30	35.11					12.4	1	5.7			
Final tailing		11	0.04	0.085		0.015	4.48	0.56	5	19.		1.1			
Feed (calcd)		00 0		0.23		0.021			1	100.0					1
·									1		->				-
lst stage cleaner conc*		24 2		2.68	12.54					67.	1).2			
Bulk rougher conc**	7.	21 2	.08	2.11	21.84					80.:	3 65	5.9			
			•												
															l.
								1							ļ
									1						
									1			•			
REMARKS: Screen anal: * Bulk rougher conc was off and replaced by co	filter	ed, r	epult	ed wit	h fresh	inus 20 water :	0 mesh and bo	iled fo	or 5 mi	n. The	e hot	wate	r was	then de	ecant

- 20 -

.

Sheet 1 of 2

TEST NO. 5 SAI	MPLE: L	ong La	c Mine	ral E	xplorati	on Ltd				·····		DAT	E: Ma	rch 13/	69
OBJECT OF TEST:			- h]]r		her floa	+ o+ o	fino	anind				СНА	RGE:	3000 g	
10				roug		a. a		grinu.				TES	TED B	Y: A.S.	
OPERATION	Time	%	рН	L	Jnit				Rea	igents,	lb per	ton			
	min	Solids		L L	used	SA	CS	Z-6	MIBC	DF250	$CuSO_4$				
Grinding	60	65		7 x	14	1.33									
Conditioning	10		6.9*		-g cell		2.0	0.053	0.04	0.013					
Bulk rougher				11	11										
Stage 1	2			ļ											
11 2	2			ļ		ļ	ļ	0,033					-		
Conditioning	5		7.6				[0,50				
Scavengers					·		<u> </u>		<u> </u>						
Stage 1	2	<u> </u>		1			<u> </u>	0,066				ļ			
11 2	2					1	1	0.066							
Chest 2	<u></u>			 .		<u> </u>	· ·					<u> </u>			
(continued on Sheet 2)	<u> </u>					1					·····				
·		<u> </u>		1			L			<u> </u>					
PRODUCT	W 9	, 				YSIS	%	1					BUTIO	IN %	
·			Cu	Ni	Insol					Cu		Ni			
Bulk cleaner conc		.21 5.		.70	6,50					39.		6.8			
Bulk cleaner tail No.		.27 4.		.80	15.80					11		3.9			
NO.	11	.48 3. .16 0.		.95 .80	35.67 6.73					10	1	4.8			
Scavenger cleaner cond Scav cleaner tail No.	11	.37 0.		.80 .40	13.14					11	•	2.7			
" " No.	14	.57 0.		.45	16.60					11		4.3			
" " No.		.79 0.		.25	34.29					11	1	5,1			
" " " No.		.29 0.		.65	60.50					11		4.3			
Final tailing		.86 0.		.08						23		8.1			
Feed (calcd)		.00 0.		.19					1	100	.0 10	0.0			
· · · · · · · · · · · · · · · · · · ·	· -														
								•							
REMARKS:	<u>!</u> }	!!			1			<u> </u>	1		<u>l</u>			L	1
Screen and	alysis o	f fina	l tail	ing,	84.6% mi	nus 20	0 mesh				•				
*before ac	ldition	of rea	gents.												

٠.

Sheet 2 of 2

- 22 -

TEST NO. 5 SAMP	PLE: I	Long La	ac Min	eral	Explorat	tion Lt	:d.					DA	TE: M	arch 1	3/69	
OBJECT OF TEST:												СН	ARGE:		······	
												TE	STED	ЗΥ:		
OPERATION	Time	%		1 1	Unit	1			Rea	gents	, lb p	per ton				
OPERATION	min	Solids	рН		used					DF25	2					<u> </u>
Bulk cleaners		1													-	
. No. 1	$1\frac{1}{2}$			500-	g cell					0.00	7					
No. 2	11/2			250-	g cell					0,00	7					
Scavenger cleaners														1		
No. 1	$1\frac{1}{2}$			500-	g cell					0.00'	7					
No. 2	1			250-	g cell					0.00	3					
No. 3	1			11						0.00						
No. 4	1			"	11					0.00						
											1					
				· ·									ĺ		•	
PRODUCT	W.	τ			ANAL	_YSIS	% *			1		DISTR	BUTI	DN %		
FRODUCT	. %	é C	lu	Ni	Insol						lu	Ni				
lst stage bulk cl conc	1.4	18 5.	64	2.72	8.20				1	4(5.6	20.7				
Bulk rougher conc	. 1.9			2,54	14.93					11	1.6	25.5				
3rd stage scav cl conc	2.5	3 0.	84	1.74	7.67					11	.9	22.7				
2nd stage scav cl conc	.3.1	0 0.	82	1;69`	9:31					14	1.3	27.0				
lst stage scav cl conc	3.8	39 0.	83	1.60	14.38					18	3.0	32.1				
Scavenger conc	5.1	8 0.	76	1,36	25.87					22	2.0	36.4	1			
Bulk cl & Scav cl conc	3.3	37 2.	66	2.12	6.65		:			50).2	36,8				
Bulk rougher & Scav conc	: 7,1	4 1.	92	1,69	22.86					76	5.6	61.9				
								•								
·																
								• •	}							
	ļļ				<u> </u>			<u> </u>	1	11	<u> </u>		<u> </u>			
REMARKS: * Calculated																
											• •					
															;	

.

Sheet'l of 2

MINES BRANCH FLOTATION TEST REPORT

.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						xplorati				**====				rch 13,	
OPERATION Time % min pH Unit used Reagents, lb per ton Salds PH Used SA CS Z-6 DF250 Cuso,										rser gr	ind				
OPERATION min Solids PH used SA CS Z-6 DF250 CusoA Image: Conditional conditera conditional conditene conditional conditene c	(45 min vs 60 min) and	(2) ca	austi	c starc	h cut	from 2.	0 to 1	L.O 1b/	/ton			TE	STED E	3Y: A.	s.
min Solids used SA CS Z-6 DF250 CusoA Image: Constraint of the second sec	OPERATION	Time	%	DH DH	1	Jnit				Rea	gents, lb	per ton	I		
Conditioning 10 7.0* 2000-g cell 1.0 0.053 0.026 Image: Conditioning Bulk rougher 2 """""" 0 0.013 0 0 0 ""2 2 0.013 0.013 0 0 0 0 0 Conditioning 5 7.2 0.013 0.050 0 0 0 Bulk scavenger 0 0.066 0.006 0 0 0 0 Stage 1 2 0 0.066 0 0 0 0 0 "2 2 0.066 0 0 0 0 0 0 "2 2 0.066 0 0 0 0 0 0 (continued on Sheet 2) 1 1 1 1 0 0 0 0 0 0 Sulk cleaner conc 1.92 5.15 2.90 9.04 53.6 2.7 2.5 1 " No.1 0.51 1.45 1.35 50.68 4.0		min	Solid	s		used	SA	cs	Z-6	DF250	CuSO ₄				
Bulk rougher " " " " " Image: Constraint of the second seco	Grinding	45	65	-	7 x	14 RM	2.0								
Stage 1 2	Conditioning	10		7.0*	2000	-g cell		1.0	0.053	0.026					
" 2 2 0.013 Conditioning 5 7.2 0.013 0.50 Bulk scavenger 0.066 Stage 1 2 0.066 " 2 2 0.066 (continued on Sheet 2) PRODUCT WT $\frac{\sqrt{11}{\sqrt{2}}$	Bulk rougher				11	T1 11		1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Stage 1	2						1	1						
Bulk scavenger Image: Construction of the second seco	¹¹ 2	2					1	-	1	0.013		·			
Bulk scavenger 2 0.066 0.066 0.066 "2 2 0.066 0.066 0.066 0.066 "2 2 0.066 0.066 0.066 0.066 (continued on Sheet 2) 0.066 0.066 0.066 0.066 0.066 PRODUCT WT ANALYSIS % 0.057RIBUTION % 0.066 0.25 2.00 2.05 21.81 2.7 2.5 " No. 1 0.25 2.00 2.05 21.81 2.7 2.5 " " No. 1 0.51 1.45 1.35 50.68 4.0 3.3 Scavenger cleaner tail No. 4 0.24 0.55 1.55 18.34 0.7 1.8 " " No. 3 0.33 0.85 1.45 2.54 0.7 1.8 " " No. 3 0.33 0.52 0.90 1.25 40.80 2.5 3.1 1.5 " " No. 3 0.33 0.55 1.55 1.5 1.5 2.3 1.5 1.5 </td <td>Conditioning</td> <td>5</td> <td></td> <td>7.2</td> <td> </td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>0,50</td> <td></td> <td></td> <td></td> <td></td>	Conditioning	5		7.2					1		0,50				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bulk scavenger														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2							0.066	İ					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2								1				1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								1.							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(continued on Sheet 2)									1				1	·
% Cu NiInsol Cu NiBulk cleaner conc1.92 5.15 2.90 9.04 53.6 27.0 Bulk cleaner tail No. 3 0.25 2.00 2.05 21.81 2.7 2.5 ""No. 1 0.51 1.45 1.35 50.68 4.0 3.3 ""No. 1 0.51 1.45 1.35 50.68 4.0 3.3 Scavenger cleaner conc 2.05 0.65 1.70 7.88 7.2 16.9 Scav cleaner tail No. 4 0.24 0.55 1.55 18.34 0.7 1.8 ""No. 3 0.33 0.85 1.45 25.44 1.5 2.3 ""No. 2 0.52 0.90 1.25 40.80 2.5 3.1 ""No. 1 1.07 0.70 0.85 57.78 4.1 4.4 Final tailing 92.81 0.04 0.08 20.2 35.9 35.9					1	· · · · · · · · · · · · · · · · · · ·			1						
% Cu NiInsol Cu NiBulk cleaner conc1.92 5.15 2.90 9.04 53.6 27.0 Bulk cleaner tail No. 3 0.25 2.00 2.05 21.81 2.7 2.5 ""No. 1 0.51 1.45 1.35 50.68 4.0 3.3 ""No. 1 0.51 1.45 1.35 50.68 4.0 3.3 Scavenger cleaner conc 2.05 0.65 1.70 7.88 7.2 16.9 Scav cleaner tail No. 4 0.24 0.55 1.55 18.34 0.7 1.8 ""No. 3 0.33 0.85 1.45 25.44 1.5 2.3 ""No. 2 0.52 0.90 1.25 40.80 2.5 3.1 ""No. 1 1.07 0.70 0.85 57.78 4.1 4.4 Final tailing 92.81 0.04 0.08 20.2 35.9 35.9		l w	T I		•	ANAI	YSIS	%		<u> </u>		DISTE)N %	
Sulk cleaner conc 1.92 5.15 2.90 9.04 Bulk cleaner tail No. 3 0.25 2.00 2.05 21.81 53.6 27.0 """No. 2 0.30 2.15 1.90 31.95 3.5 2.8 """No. 1 .0.51 1.45 1.35 50.68 4.0 3.3 Scavenger cleaner conc 2.05 0.65 1.70 7.88 7.2 16.9 Scavenger cleaner tail No. 4 0.24 0.55 1.55 18.34 0.7 1.8 """No. 3 0.33 0.85 1.45 25.44 1.5 2.3 """No. 1 1.07 0.70 0.85 57.78 4.1 4.4	PRODUCT	11	1	<u></u>	N14	· · · · · · · · · · · · · · · · · · ·		/3				1			
Bulk cleaner tail No. 3 0.25 2.00 2.05 21.81 """No. 2 0.30 2.15 1.90 31.95 """No. 1 .0.51 1.45 1.35 50.68 Scavenger cleaner conc 2.05 0.65 1.70 7.88 Scav cleaner tail No. 4 0.24 0.55 1.55 18.34 """"No. 3 0.33 0.85 1.45 25.44 """"No. 2 0.52 0.90 1.25 40.80 """"No. 1 1.07 0.70 0.85 57.78 4.1 4.4 Final tailing 92.81 0.04 0.08 20.2 35.9 0						· · · · · · · · · · · · · · · · · · ·									
"""" No. 2 0.30 2.15 1.90 31.95 """" No. 1 0.51 1.45 1.35 50.68 Scavenger cleaner conc 2.05 0.65 1.70 7.88 Scav cleaner tail No. 4 0.24 0.55 1.55 18.34 """" No. 3 0.33 0.85 1.45 25.44 """" No. 2 0.52 0.90 1.25 40.80 """" No. 1 1.07 0.70 0.85 57.78 Final tailing 92.81 0.04 0.08 20.2 35.9						4 L					11				
""" No. 1 .0.51 1.45 1.35 50.68 4.0 3.3 Scavenger cleaner conc 2.05 0.65 1.70 7.88 7.2 16.9 Scav cleaner tail No. 4 0.24 0.55 1.55 18.34 0.7 1.8 """ No. 3 0.33 0.85 1.45 25.44 1.5 2.3 """ No. 2 0.52 0.90 1.25 40.80 2.5 3.1 """ No. 1 1.07 0.70 0.85 57.78 4.1 4.4	Bulk cleaner tail No. 3	11	11	1		1 1					11	1			
NO. 1 .0.31 1.45 1.35 50.68 Scavenger cleaner conc 2.05 0.65 1.70 7.88 Scav cleaner tail No. 4 0.24 0.55 1.55 18.34 """"No. 3 0.33 0.85 1.45 25.44 """"No. 2 0.52 0.90 1.25 40.80 """"No. 1 1.07 0.70 0.85 57.78 Final tailing 92.81 0.04 0.08 20.2 35.9		11	11			1 1		1			11	1			
Scav cleaner tail No. 4 0.24 0.55 1.55 18.34 0.7 1.8 """"No. 3 0.33 0.85 1.45 25.44 1.5 2.3 """"No. 2 0.52 0.90 1.25 40.80 2.5 3.1 """"No. 1 1.07 0.70 0.85 57.78 4.1 4.4 Final tailing 92.81 0.04 0.08 20.2 35.9 55.9	NO, I	11	11) 1					11	4			
"""" No. 3 0.33 0.85 1.45 25.44 1.5 2.3 """" No. 2 0.52 0.90 1.25 40.80 2.5 3.1 """" No. 1 1.07 0.70 0.85 57.78 4.1 4.4 Final tailing 92.81 0.04 0.08 20.2 35.9 55.9	-	11	11			1 1					1	1			
No. 3 0.33 0.85 1.45 25.44 " " No. 2 0.52 0.90 1.25 40.80 " " No. 1 1.07 0.70 0.85 57.78 2.5 3.1 Final tailing 92.81 0.04 0.08 20.2 35.9		11	11	1		1 1					11	1			
No. 2 0.52 0.90 1.25 40.80 2.5 3.1 '' '' No. 1 1.07 0.70 0.85 57.78 4.1 4.4 4.1 Final tailing 92.81 0.04 0.08 20.2 35.9 55.9	NO. 3	11	11	1							11				
Horizontal Principal tailing Princitailting Principal tailing Pri	NO. Z	0.	11			1 1					11	1	· ·		
			11	1		57.78									
Feed (calcd) 100.00 0.18 0.21 100.0 100.0															
	Feed (calcd)	100.	.00 (0,18	0.21					1	100.0	100.0			
									. .			}			
								1					.	1	
		1										1			
									1						
		<u> </u>				<u> </u>]							<u> </u>	1	
	REMARKS: Screen anal	ysis d	of fir	nal tai	ling.	75.4% m	inus 2	200 mee	ħ						•
REMARKS: Screen analysis of final tailing, 75,4% minus 200 mesh		dition	1 of 1	reagent	s	· · · // //		.oo mea	***						
			~ ~ ~ ~												
REMARKS: Screen analysis of final tailing, 75.4% minus 200 mesh * before addition of reagents.															

- 23 -

Sheet	: 2	of	2

- 24 -

MINES BRANCH FLOTATION TEST REPORT

TEST NO. 6 SAMP	LE: L	ong La	c ^M ine	ral E	xplorat	ion Lto	1.					DAT	E: Ma	arch 13,	1969
OBJECT OF TEST:												CHA	RGE:		
<u> </u>			•									TES	TED E	3Y:	
OPERATION	Time	%		1	Jnit			-,· -	Rea	gents,	lb pe	er ton	· · · · ·		
OFERATION	min	Solids	рН		used				DF250						<u> </u>
Bulk cleaners				1											1
. No. 1	1	1		500-	g cell				0.007						1
No. 2	1				g cell			1	0.003				_		
No. 3	1			tt	11 11				0.003						
Scavenger cleaners			ĺ								·-·-				1
No. 1	1			250-	g cell				0.007						
No. 2	1			TT	11 11				0.003				•		1
No. 3	1			11	11 11				0.003						
No. 4	1			11	11 11				0.003						
·		[<u> </u>												
								<u> </u>							
				<u> </u>											
PRODUCT	W	т			ANA	LYSIS	%*				E	DISTRI	BUTIC	N %	
	9	6 (Zu	Ni	Insol					Cu	L	Ni			
2nd stage bulk cl conc 1st " " " " Bulk rougher conc 3rd stage scav cl conc 2nd " " " " 1st " " " " Scavenger conc Bulk cl + Scav cl conc Bulk rougher + Scav conc	2. 2. 2. 2. 2. 3. 4. 3. 7.	47 4 98 3 29 0 52 0 14 0 21 0 97 2	.47 .95 .64 .66 .70 .70 .83	2.80 2.69 2.46 1.68 1.65 1.59 1.40 2.28 1.84	10.51 13.12 19.55 8.97 11.05 15.98 26.60 8.44 23.68					56. 59. 63. 7. 9. 11. 16. 60. 79.	8 9 4 9 8	29.5 32.3 35.6 18.7 21.0 24.1 28.5 43.9 64.1			•
REMARKS: * calculated	<u></u>		ł		· · · · · · · · · · · · · · · · · · ·	<u> </u>	I					·····			

Sheet 1 of 2

TEST NO. 7 SAMP	PLE: I	long La	ac Min	eral	Explora	tion Lto	d.	<u></u>		<u> </u>		DAT	E: Mar	ch 18/6	59
OBJECT OF TEST: Two-	stage	float	as in	Test	6 but	employe	d pebb	le grin	nding			CHA	RGE:	3000 g	
												TES	TED BY	/: A.S.	
OPERATION	Time	%	рН		Jnit	1			Rea	igents,	Ib per	ton			
OPERATION	min	Solids	рп		used	SA	CS	Z-6	DF250	CuSO ₄					
Grinding	60	65		12-i	n. BM	2.0			[
Conditioning	10	İ	7.2*				1.0	0.053							
Bulk rougher															
Stage 1	2								0.013						
" 2	2						ļ						-		
Conditioning	5									0,50					
Scavenger															
Stage 1	2							0.066							
¹¹ 2	2							0,066							
(continued on Sheet 2)				·											
		1													
	l w	T	·		ANA	LYSIS	%		·····	1	D	STRI	SUTION	v %	
PRODUCT	9	. 11	Lu	Ni	Insol					Cu		Ni			
Bulk cleaner conc	2	10 4	60	2,65	5,06					53,	E 9	7.3			
Bulk cleaner tail No. 3		11		2,55	7.39					5.	1	3.8			
""" No. 2				1.85	15.08					1.	,	1.5			
" " " No. 1	1		1	1.45	30.90					8.	•	6.8			
Scavenger cleaner conc	11			1.70	5,16					2.	1	0.7			
Scav cleaner tail No. 3	11	11	1	1,65	14,98					0.		1.8			
" " No, 2		11	1	1,45	34.03					1 1.		2.8			
" " No. 1		11	1	0,80	54.17				ļ	7.	1	9.2			
Final tailing	11	-21		0,08						1 17.		6.1		-	
Feed (calcd)		00 0		0,20					_	100.		0.0			
													1		
]	1												
REMARKS: Screen anal	ysis d	of roug	her t	ailin	g, 93.69	6 minus	200 m	esh,							
* before ad	dition	ı of re	agent	s.	•										

- 25 -

Sheet 2 of 2

TEST NO. 7 SAMP	LE: L	ong La	c Min	eral E	xplorat	ion Lto	1.			- · · · · · · · · · · · · · · · · · · ·	DA	TE: Ma	.rch 18/	/69
OBJECT OF TEST:											CH.	ARGE:		Ì
											TES	STED B	Y:	
OPERATION	Time	%		1 1	Jnit				Reag	jents, Ib	per ton			
OPERATION	min	Solids	pН	1	used				DF250					
Bulk cleaners				1										
. No, 1	1			500-	g cell				0.007					1 1
No. 2	1				g cell				0.007					
No. 3	1			11	1 11									
Scavenger cleaners						1						••		
No. 1	1			500-	g cell				0.007					·
No. 2	1			250-	g cell				0.003					
No. 3	1				1 11 				0.003					
		ļ												
			ļ				ļ.							
				<u> </u>		· · ·								
PRODUCT	W.				ANAI	_YSIS	% *		_		DISTR	IBUTIO	N %	
	. %	C	u	Ni	Insol					Cu	Ni			
2nd stage bulk cl conc	2.	40 Å	.47	2,64	5.35					59.4	31.1		•	
lst " " " "	. 2.	1	.26	2.59	6.00					60.6	32.6			
Bulk rougher conc	3.		.54	2,28	12.77					69.1	39.4			
2nd stage scav cl conc	.1.	51 0	.43	1.69	6.60					3.6	12.5			
lst stage scav cl conc	1.	90 0	.51	1.64	12.23					5.3	15.3			
Scavenger conc	4.	24 0	.56	1,18	35.37					13.0	24.5			
Bulk cl & scav cl conc	3,	39 3	.00	2.29	5,10				•	56.4	38.0			
Bulk rougher & scav conc	7.	77 1	.91	1.68	25.10					82.1	63.9			
								· ·						
REMARKS:			!		······		<u> </u>	<u> </u>				·		·

* calculated

26 -

1

· • •

Grinding 6 Conditioning 1 Copper rougher Stage 1 """"2 Conditioning Nickel rougher Stage 1 """2 Conditioning Nickel rougher Stage 1 """2 Conditioning Nickel rougher Stage 1 """2 Copper cleaner No. 1 """No. 2 Nickel cleaner No. 1 """No. 2 PRODUCT Copper conc Copper cleaner tail No.2 """No.1	epressa		kel s	-			the state of the s								1969
OPERATIONTGrinding6Conditioning1Copper rougher Stage 11""""""Conditioning1Nickel rougher Stage 1"""""2"""3Copper cleaner No. 1""Nickel cleaner No. 1"""No. 2Nickel cleaner No. 1""No. 2PRODUCTCopper concCopper cleaner tail No.2""""""No. 1"		nt fo					using	Z-200	as con	oper			RGE:		
Grinding 6 Conditioning 1 Copper rougher Stage 1 """"2 Conditioning Nickel rougher Stage 1 """2 Conditioning Nickel rougher Stage 1 """2 Conditioning Nickel rougher Stage 1 """2 Copper cleaner No. 1 """No. 2 Nickel cleaner No. 1 """No. 2 PRODUCT Copper conc Copper cleaner tail No.2 """No.1	imal	10 10	r nic	ckel r	ninerals							TES	TED B	Y: A.S	
Grinding 6 Conditioning 1 Copper rougher Stage 1 """"2 Conditioning Nickel rougher Stage 1 """2 Conditioning Nickel rougher Stage 1 """2 Copper cleaner No. 1 """3 Copper cleaner No. 1 """No. 2 Nickel cleaner No. 1 """No. 2 PRODUCT Copper conc Copper cleaner tail No.2 """No.1	nne	%	рН	L	Init]			Rea	gents,	lb per	ton			
Conditioning 1 Copper rougher Stage 1 """"2 Conditioning Nickel rougher Stage 1 """"2 Conditioning Nickel rougher Stage 1 """2 Copper cleaner No. 1 """3 Copper cleaner No. 1 ""No. 2 PRODUCT Copper conc Copper cleaner tail No.2 """No.1	min So	lids	рп	u	sed	Lime	CS	Z-200	CuSO₄	Z-6	DF250				
Copper rougher Stage 1 """" 2 Conditioning Nickel rougher Stage 1 """ 2 """ 2 """ 2 """ 2 """ 3 Copper cleaner No. 1 """ No. 2 Nickel cleaner No. 1 """ No. 2 PRODUCT Copper conc Copper cleaner tail No.2 """ No.1	50 6	5		12-ir	1. B.M.*	2.0				· · · · · · · · · · · · · · · · · · ·					1
Conditioning Nickel rougher Stage 1 """"2 Conditioning Nickel rougher Stage 1 """2 Copper cleaner No. 1 """3 No. 2 Nickel cleaner No. 1 ""No. 2 PRODUCT Copper conc Copper cleaner tail No.2	.0		8.5**	2000-	-g cell		1.0	0.04							1
Conditioning Nickel rougher Stage 1 """"2 Copper cleaner No. 1 ""No. 2 Nickel cleaner No. 1 ""No. 2 PRODUCT Copper conc Copper cleaner tail No.2 """No.1	1			11	11 11										1
Nickel rougher Stage 1 """"2 Copper cleaner No. 1 ""No. 2 Nickel cleaner No. 1 "No. 2 PRODUCT Copper conc Copper cleaner tail No.2 ""No.1	1							0.026							1
""""2 """3 Copper cleaner No. 1 ""No. 2 Nickel cleaner No. 1 "No. 2 PRODUCT Copper conc Copper cleaner tail No.2 ""No.1	5		8.4						0,5						1
" " " 3 Copper cleaner No. 1 " No. 2 Nickel cleaner No. 1 " No. 2 PRODUCT Copper conc Copper cleaner tail No.2, " " No.1	2									0.066		1			+
Copper cleaner No. 1 ""No. 2 Nickel cleaner No. 1 "No. 2 PRODUCT Copper conc Copper cleaner tail No.2 ""No.1	1									0,066					1
""No. 2 Nickel cleaner No. 1 ""No. 2 PRODUCT Copper conc Copper cleaner tail No.2, """No.1	1									0.066					1
No. 2 Nickel cleaner No. 1 ""No. 2 PRODUCT Copper conc Copper cleaner tail No.2 """No.1	1	1	1.7	250-g	; cell	0.5					0.003			-	1
" " No. 2 PRODUCT Copper conc Copper cleaner tail No.2 " " No.1	1	1	1.9	TT T	1 11	0.3					0.003				
PRODUCT Copper conc Copper cleaner tail No.2	1			500-g	; cell						0.007				1
Copper conc Copper cleaner tail No.2 " " No.1	1			250-g	; cell										1
Copper conc Copper cleaner tail No.2 " " No.1	WT				ANAL	YSIS	%			1	DI	STRIE	BUTIO	V %	
Copper cleaner tail No.2	%	Cu		Ni	Insol	Co	Fe	S		Cu	1	Ni 🗌	Co		
Copper cleaner tail No.2	0,39	19.0	0 1	05	12.81	0.073	33.3	27.7	7	38,	6 7	L.8	1.4		
" " No.1	0.34	7.8		05	28.10	5.075	55.5	27.1		13.	1	3.1			
	1,05	2.1	1	90	58.47					11.)	1.2			
Nickel conc	1,52	0.7	1	95		0.47	44.2	38.1	-	5.	,	5.3	34.0		
Nickel cleaner tail No.2	1.79	0.4	0 1.	75	24.78					3.	1	3.7			
" " " No.1		0.3	-		51,04			}		10.	6 21	L.6			
	89,11		35 0.					[16.		9.3			
	100.00	<u></u>								100.					
lst Stage Cu cl conc ***	0,73	13.7		1	19.93					52.	1	1.9			
Copper rougher conc	1.78	6.8	•	1	42.66					63.	1	9.1			
lst Stage Ni cl conc	3.31	0.54	1	1	17.01					9.	4	0.0			
Nickel rougher conc	9.11	0.4	1		38.67			1		19.		L.6		1	
Cu ro + Ni ro conc	10.89	1.48	8 1.	48	39.33			•		83.	7 70	0.7			
<u> </u>			1							<u> </u>	I		I		
EMARKS: Screen analysi	s of f:	inal t	taili	.ng, 9	4.2% min	us 200) mesh								
* with ceramic	pebble	es		- /	, - -										
** before addi *** all interm														_	

*** all intermediate products calculated

.

•

.

TEST NO. 9 SAMI	PLE:	Long L	ac Min	eral Exploi	ration L	td.					DAT		<u>ril 22,</u>	1969
				an A as tal						ļ	ĊHA	RGE:	3000 g	5
											TES	TED B	Y: AS	
OPERATION	Time	%	рН	Unit				Rea	.gents,	lb per	ton			
	min	Solids		used	SA	Orz A	CuSO,	Z-6	DF250					
Grinding	30	65		7 x 14 RM	2.0		1						· · · · · · · · · · · · · · · · · · ·	
Conditioning				2000-g cel		1							·····	
No. 1	5		6.9			0.2						_		
No. 2	5						0.2							
Bulk rougher				2000-g cel	1							• •		
Stage_1	1				·*	1		0.033	0.027					
" 2	1			-				0.033				···		
n 3 ·	2						1		0.013					· · ·
Bulk cleaners	ć													1
No. 1	1			500-g cell					0.007					
No. 2	1			250-g cell					0.003					
		ĺ												
	W	Т		AN	ALYSIS	%			1	DI	STRIE	SUTIO	N %	
PRODUCT	%		1	Ni Insol			1		Cu		Vi			
Bulk cleaner conc		.78 2		2.00 9.93					72.		7.5			
Combined bulk cl tail		.64 1		1.15 51.08	5				10.		7.4			
Final tailing Feed (calcd)	100	.58 0 .00 0	16	0.15					<u> </u>		5.1			
Bulk rougher conc (cald				1.78 20.44					82.		1.9			
din iougnoi conc (cai		••••		2011					02.	5				
													•	
					•									
•														
							· ·		1					
									.					
REMARKS:	<u></u>			·· ···································		<u>.</u>				·····			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Clean and b	right f	froth i	in cle	aners.										

TEST NO. 10 SAM	PLE:	Long La	ac Min	eral	Explorat	ion Lt	d.					DAT		pril 22	
OB LECT OF TECT.					as talc							CHA	RGE:	3000 g	
												TES	TED B	Y: A.	S.
OPERATION	Time	%	рН		Jnit				Reag	gents, li	o per	ton			
	min	Solids	PII		used	SA	Orz A	CuS0,							
Grinding	30	65		7 x	14 RM	2.0		÷					1		
Conditioning	1			2000	-g cell	1	1								1 1
No. 1	5		6.9				0.4								
No. 2	5							0.2		1					
Bulk rougher (as in				1									-		
Bulk cleaners { Test 9										ĺ			1		1
•															Í
-															
													1		
			ļ	<u> </u>											
PRODUCT	W.	т			ANAL	YSIS	%	i			DI	STRI	BUTIO	N %	
FRODUCT	9	6 Cu	1	Ni	Insol					Cu	1 N	i			<u> </u>
										1					
Bulk cleaner conc				2.10	9.47					67.3	43	5.8 ·			
Combined bulk cl tail		.92 1.		1.30	45.23					13.8	1	.8			
<u>Final tailing</u>		.67 0.		0.10	-					18.9		.4			
Feed (calcd)	100.			0.21	00.07					100.0					l
Bulk rougher conc (cal	cap 6.	.33 2.	23	1.86	20.23					81.1	55	.6			
								• •							
REMARKS: Fund		1 -		. 1			• …					`			
Froth appe	ared to	b be cl	eaner	than	that ob	tained	in Tes	st 9.							

.

.

TEST NO. 11	SAMF	LE:	Long	Lac Mi	neral	Explora	ation L	td.				DA	TE: Apr	. 22, 1	969
OBJECT OF TES	ST:			Teete	0 1	10	0	h a d		- · · · ·		CH,	ARGE:	3000	g .
	Comp		i ior	lests	9 and	10 - no	o Orzan	A add	ea				STED B	Y: A.	S.
OPERATIO	DN I	Time	%	pН		Jnit				Rea	gents, Ib	per ton		- <u>.</u>	
		. min	Solids	\$	L .	Jsed	SA	CuSO,							
Grinding		30	65	ļ		14 RM	2.0	ļ							
Conditioning					2000	-g cell		1						· ·	
No. 1 No. 2		5		6.9				0.2					~		
	•			<u> </u>				0.2							
<u>Bulk rougher</u> Bulk cleaners	as in Test 9			1											
Burk creaners	<u>`</u>				 										
•															
•								1				· · ·			
·								·							
					<u> .</u>	•	ļ								
· · · · · · · · · · · · · · · · · · ·				1											
PRODUC	:т	W W	[L	·····		ANA	YSIS	%				DISTR	IBUTIO	N %	
	· · ·	%		Cu	Ni	Insol		•			<u> </u>	Ni		<u> </u>	•
Bulk cleaner co	onc	4.	13 2	.55	2.00	9.75					64.9	32.2			
Combined bulk		. 2.	63 1	.10	1.30	42.08					17.8	13.3			
Final tailing			24 0		0.15						17.3	54.5			
Feed (calcd) Bulk rougher co			00 0		0.26	22.33			-	-[100.0				
bulk lougher co	MC (Cald		10 1		1.75	22.33					02.7	40.0			
								•	• .						
				Į											
REMARKS:	``````````````````````````````````````	<u> </u>	<u> </u>	ł	l	1			1	1			1		
Fair	ly clean	float	desp:	ite ab	sence	of slim	ne depr	essant	•						
						·····	· · · · ·					•	•		ċ

OBJECT OF TEST: To try magnetic separation on reground bulk cleaner conc CHARGE: 2 x 3000 g TESTED BY: A.S. OPERATION Time % pH Unit Reagents, lb per ton Image: concentration on reground bulk cleaner concentration on reground bulk cleaner concentration Reagents, lb per ton Image: concentration on reground bulk cleaner concentration on reground bulk cleaner concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration on reground bulk cleaner concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration Image: concentration on reground bulk cleaner concentration	TEST NO. 12 SAMPL	E: Lo	ong La	c Min	eral E	xplorat	ion Lto	1.		· · · · · · · · · · · · · · · · · · ·		D.	ате: _{Арт}	il 23,	1969
OPERATION Time % min pH Unit used Reagents. ib per or Grinding Bulk rougher Test 10 Image: Solid									aner co	me		Ci	HARGE:	2 x 30	00 g
OPERATION min Solids PH used Orz A Grinding as in												·····		Y: A.S	•
min Solids used Urz A user	OPERATION	Time	%	Прн						Reag	ents, It	per to	۱ 		
Bulk rougher Test 10 Image: Separation Image: S		min	Solids	š		used		Orz A							
Bulk cleaner Bulk cl conc regrinding 15 50 ** 0.2* Magnetic separation *** 0.2*								1							
Bulk c1 conc regrinding 15 50 ** 0.2* 0	Bulk rougher Test 10					· · · · · · · · · · · · · · · · · · ·									
Magnetic separation *** Image: Constraint of the separately in	Bulk cleaner														
Magnetic separation *** Image: Constraint of the separately in								_							
PRODUCT WT ANALYSIS % DISTRIBUTION % Cu Ni Insol Co Fe S Cu Ni Co Insol Inso	Bulk cl conc regrinding	15	50	<u> </u>		**		0.2*					·		
PRODUCT WT ANALYSIS % DISTRIBUTION % Cu Ni Insol Co Fe S Cu Ni Co Insol Inso				<u> </u>											
PRODUCT % Cu Ni Insol Co Fe S Cu Ni Co Mon-magnetics 3.00 4.00 2.80 13.37 0.29 40.2 52.4 69.1 32.2 41.4 Magnetics Combined bulk c1 tail 1.76 0.25 0.90 4.35 0.026 55.4 34.5 2.5 6.1 2.2 6.5 Final tailing '93.45 0.033 0.15 52.24 0.076 22.8 12.7 10.8 7.9 6.5 53.8<	Magnetic separation					***								<u> </u>	
PRODUCT % Cu Ni Insol Co Fe S Cu Ni Co Mon-magnetics 3.00 4.00 2.80 13.37 0.29 40.2 52.4 69.1 32.2 41.4 Magnetics Combined bulk c1 tail 1.76 0.25 0.90 4.35 0.026 55.4 34.5 2.5 6.1 2.2 6.5 Final tailing '93.45 0.033 0.15 52.24 0.076 22.8 12.7 10.8 7.9 6.5 53.8<															
PRODUCT % Cu Ni Insol Co Fe S Cu Ni Co Mon-magnetics 3.00 4.00 2.80 13.37 0.29 40.2 52.4 69.1 32.2 41.4 Magnetics Combined bulk c1 tail 1.76 0.25 0.90 4.35 0.026 55.4 34.5 2.5 6.1 2.2 6.5 Final tailing '93.45 0.033 0.15 52.24 0.076 22.8 12.7 10.8 7.9 6.5 53.8<				1											
PRODUCT % Cu Ni Insol Co Fe S Cu Ni Co Mon-magnetics 3.00 4.00 2.80 13.37 0.29 40.2 52.4 69.1 32.2 41.4 Magnetics Combined bulk c1 tail 1.76 0.25 0.90 4.35 0.026 55.4 34.5 2.5 6.1 2.2 6.5 Final tailing '93.45 0.033 0.15 52.24 0.076 22.8 12.7 10.8 7.9 6.5 53.8<	- <u></u>							- <u> </u>			<u> </u>				
PRODUCT % Cu Ni Insol Co Fe S Cu Ni Co Mon-magnetics 3.00 4.00 2.80 13.37 0.29 40.2 52.4 69.1 32.2 41.4 Magnetics Combined bulk c1 tail 1.76 0.25 0.90 4.35 0.026 55.4 34.5 2.5 6.1 2.2 6.5 Final tailing '93.45 0.033 0.15 52.24 0.076 22.8 12.7 10.8 7.9 6.5 53.8<				1											
PRODUCT % Cu Ni Insol Co Fe S Cu Ni Co Mon-magnetics 3.00 4.00 2.80 13.37 0.29 40.2 52.4 69.1 32.2 41.4 Magnetics Combined bulk c1 tail 1.76 0.25 0.90 4.35 0.026 55.4 34.5 2.5 6.1 2.2 6.5 Final tailing '93.45 0.033 0.15 52.24 0.076 22.8 12.7 10.8 7.9 6.5 53.8<		11 w/-	г II	<u>.</u>		ΔΝΔ		%	<u> </u>		1		RIBUTIO	N %	<u></u>
Non-magnetics 3.00 4.00 2.80 13.37 0.29 40.2 32.4 69.1 32.2 41.4 Magnetics 1.76 0.25 0.90 4.35 0.026 55.4 34.5 2.5 6.1 2.2 41.4 Combined bulk c1 tail 1.76 0.25 0.90 4.35 0.026 55.4 34.5 2.5 6.1 2.2 41.4 2.5 6.1 2.2 41.4 2.5 6.1 2.2 41.4 2.5 6.5 7.6 53.8 7 10.8 7.9 6.5 7.6 53.8 7 6.5 7.6 53.8 7 6.5 7.6 53.8 7 6.5 7.6 53.8 7 7.6 53.3 7 6.5 7.16 58.3 8 7 6.5 7 7 6.5 7 7 6.5 7 7 6.5 7 7 6.5 7 7 6.5 7 7 6.5 <t< td=""><td>PRODUCT</td><td>11</td><td></td><td>1</td><td>Ni</td><td></td><td></td><td>·,= ·· · · · · · · · ·</td><td>S</td><td>1</td><td>C11</td><td></td><td></td><td></td><td></td></t<>	PRODUCT	11		1	Ni			·,= ·· · · · · · · · ·	S	1	C11				
Magnetics 1.76 0.25 0.90 4.35 0.026 55.4 34.5 2.5 6.1 2.2 Combined bulk c1 tail 1.9 1.05 1.15 52.24 0.076 22.8 12.7 10.8 7.9 6.5 Final tailing '93.45 0.033 0.15 52.24 0.076 22.8 12.7 10.8 7.9 6.5 Feed (calcd) 100.00 0.17 0.26 100.00 100.00 100.0 100.0 100.0 Bulk cleaner conc (calcd) 4.76 2.61 2.10 10.04 71.6 38.3 82.4 46.2 100.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							<u> </u>								
Combined bulk cl tail 1.79 1.05 1.15 52.24 0.076 22.8 12.7 10.8 7.9 6.5 Final tailing 93.45 0.033 0.15 100.00 100.0 100.0 100.0 Peed (calcd) 100.00 0.17 0.26 100.0 100.0 100.0 100.0 Bulk cleaner conc (calcd) 4.76 2.61 2.10 10.04 71.6 38.3 Bulk rougher conc (calcd) 6.55 2.19 1.84 21.57 82.4 46.2 100.0 REMARKS: Two 3000g batches were ground and floated separately - cleaner concentrates were combined for regrinding and magnetic separation. *Added to disperse slimes	Non-magnetics	11	14					1			11	,	•		
Final tailing .93.45 0.033 0.15 17.6 53.8 Feed (calcd) 100.00 0.17 0.26 100.0 100.0 100.0 Bulk cleaner conc (calcd) 4.76 2.61 2.10 10.04 71.6 38.3 Bulk rougher conc (calcd) 6.55 2.19 1.84 21.57 82.4 46.2 REMARKS: Two 3000g batches were ground and floated separately - cleaner concentrates were combined for regrinding and magnetic separation. *Added to disperse slimes	Ū,	11	()					1	1		11		1		
Feed (calcd) 100.00 0.17 0.26 100.0 100.0 100.0 Bulk cleaner conc (calcd) 4.76 2.61 2.10 10.04 71.6 38.3 Bulk rougher conc (calcd) 6.55 2.19 1.84 21.57 82.4 46.2 REMARKS: Two 3000g batches were ground and floated separately - cleaner concentrates were combined for regrinding and magnetic separation. *Added to disperse slimes						52.24	0.076	22.8	12.7		51	1			
Bulk cleaner conc (calcd) 4.76 2.61 2.10 10.04 Bulk rougher conc (calcd) 6.55 2.19 1.84 21.57 REMARKS: Two 3000g batches were ground and floated separately - cleaner concentrates were combined for regrind- ing and magnetic separation. *Added to disperse slimes															
Bulk rougher conc (calcd) 6.55 2.19 1.84 21.57 82.4 46.2						10.04				1				·	
ing and magnetic separation. *Added to disperse slimes	-	11	41	(()	1			
ing and magnetic separation. *Added to disperse slimes															
ing and magnetic separation. *Added to disperse slimes															
ing and magnetic separation. *Added to disperse slimes															
ing and magnetic separation. *Added to disperse slimes															
ing and magnetic separation. *Added to disperse slimes									· .						
ing and magnetic separation. *Added to disperse slimes								-							
ing and magnetic separation. *Added to disperse slimes															
ing and magnetic separation. *Added to disperse slimes		<u> </u>				1	1	-	-	<u> </u>	11		1	<u> </u>	1
*Added to disperse slimes	ing and momentia	hes w	vere gi	round	and f	loated	separat	cely - d	cleaner	concen	trates	were c	ombined	for reg	rind-
			ill w	ith s	teel h	all cha	rge								

. .

***12-in. Sala drum separator.

.

1

. .

TEST NO. 13 SAMP	PLE:	Long	Lac Mi	neral	Explora	tion Lt	.d.					TE: Apri	1 30,	1969
OBJECT OF TEST: To t							cleaner	conc	followe	ed by		ARGE:	<u>2 x 30</u>	
magr	netic	separ	ation	ofnic	kel con	c					TES	STED B	Y: <u>A</u> .	S.
	Time	%			Unit	1			Reag	jents, Ib	per ton			
OPERATION		Soli	hq ds		used	Lime	DF250							
Grinding) as in		1		<u> </u>				<u> </u>		· · · · ·				
Bulk rougher Test 10													· ·	
Bulk cleaners		·			<u> </u>									
					·······									
Bulk cl conc regrinding	15	50			*	0.66	<u> </u>							
		- 50										·		
Copper-nickel separation	1	<u> </u>	11.		g cell	0.80	.0013							
<u>Stage 1 `</u> " 2	$\frac{1}{1}$		<u> </u>	<u> </u>		10.00	.00013							
Copper cleaners	└── <u>─</u>			_						·				
No. 1	1 1/2	2		8 250-	g cell	0.40	.0006		<u> </u>					
No. 2	1 1/2		11.			0.40	.0000							
Magnetic Separation		 												
	l	1		12-1	n. Sala		<u> </u>]	1				
PRODUCT	W	11				LYSIS			r	<u> </u>		IBUTIO	N %	·
		6	Cu	Ni	Insol	Co	Fe	S		<u> </u>	<u>Ni</u>	<u>Co</u>		1
Copper conc	0	. 37	20.50	1.30	5.50	0.13	32.7	35.0		44.4	1.8	2.3		
Copper cleaner tail No.	2 0	.25	4.75	3.05	7.36					7.0	1			
- îr '' No.		.53	2.00	3.25	7.85					6.2	6.6			
Non-mags (nickel conc)		.95	1.00	2.85	15.72		42.3			11.4				
Agnetics .	14	.61	0.20	0.90		0.029	57.2	34.6		1.9		2.2		
Combined bulk cl tail	11	.85	1.05	1.15	52.25					11.4	1			
Final tailing		44	0.033					l		17.7				·
Feed (calcd) Separation tailing **	100	. 56	0.17	0.26	10.90					13.3	100.0			
separation taring	3	. 30	0.04	1.97	10.90					15.5	20.9			
														·
REMARKS: Two 3000-g b ng and copper-nickel se	atches	s wer	e grou	nd and	floated	d separ	ately -	clean	er conc	entrate:	s were (combined	for r	regri
								es wer	- 1116	and and	τεματρο	SU WICH	TTG2U	walt
* 8-india. Abbe porc	elain	mili	with	steel	Dall Cha	arge.					· · · · · · · · · · · · · · · · · · ·			

1 32 1

Nickel conc before magnetic separation.

											t		May 1, 1	
									ner grii	nd		·	3000 §	-
			<u>)0% inc</u> 		<u>in prom</u>	loter a	<u>idditio</u>	1		ents, ib			3Y: <u>A.S</u> .	
OPERATION	Time	% Solid:	pH	í	Jnit Jseđ	SA	CuSO	76	DF250					
Grinding		1			1 4 . D) (1	4	0	DF250					
Conditioning	60	65			<u>14 RM</u> -g cell	2.0								
No. 1	5	1	6.9	2000	-g_Cell					1				
No. 2	5						0.2							
Bulk rougher		1	-				0.2							
Stage 1	1			1		1		0.066	0.027					1
¹¹ 2	1							0.066						
11 3 .	2		1		· · · · ·				0.013			ĺ		1
Bulk cleaners								.,				Í		1
No. 1	1			500-	g cell				0.007					
No. 2	1	250-g cell 0.003												
PRODUCT	W	τ			ANAL	YSIS	%				DISTR	IBUTIC	N %	
FRODUCT	9	6	Cu	Ni	Insol					Cu	Ni			
									1					
Bulk cleaner conc		.35 2		2.20	8.94					67.5				
Combined bulk cl tail		.85 0		1.15	46.17					15.6	14.8			
Final tailing Feed (calcd)		.80 0 .00 0		$\frac{0.10}{0.22}$						16.9	42.0			
Bulk rougher conc (calc				0.22	23.68					100.0	100.0			
AIR IOUGHEI CONC (Cale		. 20 1	.90	1.70	23.00					83.1	58.0			
								•						
REMARKS: Samoon anal		~ ~ .		•				·			-	·		
Screen anar		: ilna	i tail:	ıng,	34.6% mi:	nus 20	U mesh	vs 64.	.4 % min	us 200 i	nesh fo	r 30mi	n	
grind in Te	st 11.													

TEST NO. 15	SAMF	LE: I	ong La	ic Min	erall	Explorat	ion Lt	d.					DA.	TE: May	7 1. 19	69
OBJECT OF TE	EST: Rep	eat of	Test	14 bu	t witl	n 0.4 lb	/ton O	rzan A	added				CH	ARGE:	3000 g	Ţ
	as	talc d	lepress	sant									TES	STED B	Y: A.	S.
005047		Time	%	1	1	Jnit				Reag	gents,	lb p	er ton			
OPERAT	ION		Solids	рН	1	Jsed	SA	Orz A	CuS0,	1						ĺ
Grinding		60	65		7 x 1	L4 RM	2.0									
Conditioning			_	1	1											
No. 1								0.4							_	
No. 2							1		0.2							
Bulk rougher	as in				1			<u> </u>								
Bulk cleaners	Test 14				İ									1		
-																
		•						.								
PRODU		W	τ			ANAL	YSIS	%				1	DISTR	IBUTIO	N %	
PRODU		. %		u	Ni	Insol				1	Cu		Ni			
,																
Bulk cleaner co			.77 2.		2.05						62.		43.6			
Combined bulk of	el tail	2	.96 1.	00	1.15	46.50					17.		15.2			
Final tailing	······		.27 0.		0.10						19.		41.2			
Feed (calcd)			.00 0. .73 1.	$\frac{17}{74}$	0.22	23.74					100.		00.0			
Bulk rougher co	onc (calcd) /	•/4 1.	74	1./1	23.74					80.	0	58.8			
											[]					
										}						
				<u> </u>	•									<u> </u>		
REMARKS:																
•																

	TNO. 16 SAMPLE: Long Lac Mineral Exploration Ltd. ECT OF TEST: To try bulk flotation at a coarse grind along with												7 27, 19	
OBJECT OF TEST: To t	trv bul	k flot	ation	at a coarse g	rind :	along	with						3000 g	
caus	stic_st	arch_a	s a ta	lc depressant							TES	TED B	Y: A.S	3.
OPERATION	Time	%	На	Unit				Rea	agents,	lb pe	r ton		· · · · ·	
	min	Solids		used	SA	CS	CuSO	Z-6	DF250					
Grinding	10	65		7 x 14 RM	1.0	1		1						1
Conditioning		1		2000-g cell		1		1		1				1
No. 1	5		7.1			1.0								
No. 2	5						0.5							
Bulk roughers												-		
Stage 1	1							0.033	0.027					
11 2	1	ļ						0.033						
11 3 .	2		ļ					0.066						
Bulk cleaners	<u> </u>	ļ				ļ				ļ				
No. 1 1 500-g cell . 0.013														
No. 2 1 0.003														
	<u> </u>	<u> </u>							<u> </u>					<u> </u>
PRODUCT WT ANALYSIS % DISTRIBUTION %														
TRODUCT .	%	6 (Cu	I N	li Insol					Cu		Ni			
Bulk cleaner conc		.67 3.		.95 10.82	[25.4			
Combined bulk cl tail Final tailing		.94 0. .39 0.).80 56.35).20						.7	8.3			
Feed (calcd)		.00 0.		0.28					100		00.0			
Bulk rougher conc (calc		.61 2.		.44 31.07							33.7			
					1									
							· .	ļ						
											1			
	Щ	<u> </u>	l	<u> </u>					11	[L	
REMARKS: Screen ana	lvsis	of fin	al tai	ling, 49.0% m	inus 3	200 me	sh.							
						200 110	U.I. •							

. .

.

.

TEST NO. 17 SAM	PLE: I	Long L	ac Mir	neral	Explorat	ion Lt	d.					DATE	: May	27/69	
OBJECT OF TEST: Rep	eat of	Test	16 but	grin	ding tin	ne incr	reased	from 10) to 30	min.	0	CHAR	GE:	3000 g	
							·				-	TEST	ED BY	': A.S.	
OPERATION	Time	%	рН	1	Unit			_	Rea	gents, lł	pert	on			
	min	Solids	s		used	SA									
Grinding	30	65		7 x	14 RM	1.0									
Conditioning as in															
Bulk rougher Test 16			<u> </u>												
Bulk cleaners			<u> </u>											<u> </u>	
													-		
	ļ														
	ļ													· · · · · · · · · · · · · · · · · · ·	ļ
•	<u> </u>		<u> </u>	-			+	· · · · · · · · · · · · · · · · · · ·		·					ļ
·····	ļ							<u> </u>							
· · · · · · · · · · · · · · · · · · ·							<u> .</u>								
			1											·	
·	1	1	1					1					[1	
PRODUCT	W .	.			······································	YSIS	%					TRIB	UTION	1 %	
		• <u>C</u>	u	Ni	Insol					Cu	Ni				
Bulk cleaner conc	4	.44 2	.80	2.10	9.46					68.7	44.	6			
Combined bulk cl tail		.14 0		1.05	50.67					10.7					
Final tailing		.42 0	.04	0.10		•				20.6					
Feed (calcd)		.00 0		0.21						100.0					
Bulk rougher conc (calc	d) 6.	.58 2	.18	1.76	22.86					79.4	55.	4			
						•									
													ĺ		
•															
				•										·	
REMARKS: Screen anal	vsis of	fina	1 tail	ing.	63.9% mi	nus 20	0 mesh								
	,														
						ి						-			

Ϋ.

. .

.

.

TEST NO. 18															
OBJECT OF TE	ST: Repe	at of	Test	16 bu	t grin	ding ti	me incr	eased	from			ĊH.	ARGE:	3000	y
	<u> 10 1</u>	<u>o 60 r</u>	nin									TES	STED B	Y: A.	5.
OPERATI	ON	Time	%	pН		Jnit			÷	Reag	ents, lb	per ton			
			Solide	5 		used	SA								
Grinding		60	65	ļ	7 x	14 RM	1.0	ļ						_	
<u>Conditioning</u>	<u>as in</u>						_							_	
Bulk rougher Bulk cleaners	Test 16			<u> </u>											1
bulk cleaners				1							·				
				1		·· ···		<u> </u>							
						··		1							
					_							·		_	
					_						;				
														1	
	•														
PRODU	ст	W.				ANA	LYSIS	%				DISTR	IBUTIOI	V %	
		%	b	Cu	Ni	Insol					Cu	Ni			
Bulk cleaner co		1	.20 2	OF	2.25	10.80					60.2	44.7			
Combined bulk			.57 0		2.25	49.22					69.2 11.9	44.3 12.0			f.
Final tailing			.23 0		0.10						18.9	43.7			
Feed (calcd)		100.	.00 0	.17	0.21						100.0	100.0			
Bulk rougher co	onc (calco	6.	.77 2	.07	1.78	25.39					81.1	56.3			
															1
	1														
									· .						
															{
					•										•
REMARKS:		ii	<u> </u>	<u>i</u>					}]	11	<u> </u>		[
NEWARNS:	Screen ana	lysis	of fi	nal ta	ailing	, 84.7%	minus	200 me	sh.						

APPENDIX C

MINERAL SCIENCES DIVISION

Mineralogy Section

INTERNAL REPORT MS 69-44

<u>Title</u>: A Mineralogical Examination of a Copper-Nickel Bulk Concentrate for Long Lac Mineral Exploration Ltd.

<u>Sample</u>: A sample of the ore was received from Mr. A. Stemerowicz of the Mineral Processing Division on May 28, 1969.

The sample consisted of a concentrate* which had been floated from low-grade percussion-drill cuttings (0.18% Cu, 0.25% Ni) from the Long Lac copper-nickel prospect near Emo, in Dobie Twp., Rainy River District, Ontario.

<u>Purpose</u>: To identify the copper and nickel minerals and to determine the degree of association between the nickel minerals and the pyrrhotite.

<u>Results</u>: The minerals identified in the sample are chalcopyrite, pentlandite, $(Fe, Ni)_9S_8$, Violarite, (Ni_2FeS_4) nickeliferous pyrrhotite, pyrite, galena and magnetite. Electron probe analysis of the pyrrhotite gave 0.4% Ni. The violarite was identified by X-ray diffraction and the composition checked with the electron probe.

Pyrrhotite is the most abundant of the metallic minerals, followed by chalcopyrite, pyrite, pentlandite and violarite. Galena, magnetite and gangue occur in minor amounts.

The concentrate contains grains of different size with the larger grains (40 microns) of pyrrhotite containing inclusions of pentlandite, violarite and chalcopyrite, which range from 3-10 microns. Due to the fine-grained nature of the sample, it is impossible to determine the degree of association of the nickel minerals with the pyrrhotite.

<u>Conclusions</u>: Nickeliferous pyrrhotite, pentlandite and violarite are the nickelbearing minerals in the concentrate. Chalcopyrite is the only copper mineral. Pyrrhotite is the most abundant sulphide in the sample. The small nickel-bearing inclusions in the pyrrhotite and the significant nickel content of the pyrrhotite itself suggest that it will probably be difficult to concentrate the nickel effectively.

*Bulk cleaner conc Test 10, Cu 2.65%, Ni 2.10%, Insol 9.47%.

APPENDIX D

SUMMARY OF PREVIOUS INVESTIGATIONS

Two previous investigations have been carried out on samples from the same deposit, Investigation No. MD3174 (January 23, 1957) and Investigation No. MD3201 (June 24, 1957).

Investigation No. MD3174

Head Sample Analysis

Copper	-	0.28 %
Nickel		0.24 "
Cobalt	-	0.012
Iron	-	5.00 "
Sulphur	-	2.40 !!
Insolubles	•	83.26

Mineralogy

Metallic mineralization is not very prevalent in this sample and is represented by pyrrhotite, chalcopyrite, magnetite, pyrite and pentlandite, named in approximate order of decreasing abundance. In general ore minerals are largely liberated but are associated in places. This is particularly true of pentlandite, all of which, in the sections examined is associated with pyrrhotite as comparatively tiny particles.

The gangue consists largely of pyroxene and plagioclase with some quartz.

Bulk Flotation

Although no mention of it was made in the mineralogical report, talc was evident in the froth and its presence constituted one of the main problems in flotation.

١	Wt		<u>Assays %</u>		Distril	oution %
Product	<u>%</u>	Cu	Ni	Insol	<u>Cu</u>	Ni
Bulk rougher conc Scavenger conc Tailing Feed (calcd)	4.1 6.1 89.8 100.0	5.58 0.34 0.03 0.27	3.76 0.47 0.02 0.20	46.9 40.2	82.6 7.6 9.8 100.0	76.5 14.5 9.0 100.0

At a grind of 62% minus 200 mesh the following results were obtained:

Note the very high insoluble content in the concentrates despite the addition of Guar as talc depressant.

When both bulk and scavenger concentrates were cleaned at an acid pH with sulphur dioxide the insoluble content was lowered to give a substantial improvement in concentrate grades. Results of a test using this scheme were as follows:

			Assays %	-	Distrit	oution %
Product	Wt <u>%</u>	Cu	. <u>Ni</u>	Insol	Cu	<u>Ni</u>
Bulk cleaner conc Bulk cleaner tail Scav cleaner conc Scav cleaner tail Magnetics Tailing Feed (calcd)	1.7 1.5 1.2 2.5 1.7 91.4 100.0	11.50 0.80 0.59 0.32 0.09 0.04 0.26	7.73 0.83 0.66 0.27 0.26 0.02 0.18	13.2 74.6 12.0 71.6 54.4	75.1 4.6 2.7 3.1 0.6 13.9 100.0	72.5 7.0 4.3 3.8 2.4 10.0 100.0

In this test the flotation tailing was run through a magnetic separator to recover the remaining pyrrhotite.

Copper-Nickel Separation of Bulk Concentrate

Only one copper-nickel separation test was reported with the following results:

	Wt			Assays a	%		Distrib	ution %
Product	%	Cu	Ni	Fe	S	Insol	Cu	Ni
Magnetics	4.2	0.28	0.86	46.3	26.5	18.8	4.0	16.0
Copper conc	0.6	26.10	1.98	25.1	25.8	15.4	49.9	4.9
Copper cl tail	0.5	7.12	3.24	15.1	14.4	50.4	11.2	6.6
Nickel conc	2.7	1.72	4.62	26.5	21.5	37.4	16.1	56.2
Tailing	92.0	0.06	0.04	1.9	0.57		18.8	16.3
Feed (calcd)	100.0	0.29	0.23	4.62	2.43		100.0	100.0

The magnetics were obtained by feeding the ground ore to a magnetic separator prior to bulk flotation.

Investigation No. MD 3101

Head Sample Analyses

The samples investigated were of higher-grade material occurring in No. 1 and 2 zones and were obtained from two of the pits existing at that time.

Two shipments were received with the following analysis:

<u>No. 3 (14</u>	tons)	<u>No. 4 (245 lb)</u>
Copper Nickel Cobalt Iron	0.55 % 1.23 " 0.078" 20.80 "	0.72 % 0.98 " 19.44 "
Sulphur Insolubles	12.90 " 55.80 "	13.00 ¹¹ 52.60 ¹¹

Mineralogy

Examination of No. 4 sample showed that metallic mineralization consisted mostly of pyrrhotite and chalcopyrite. Violarite was the chief nickel mineral and occurred always associated with pyrrhotite and/or chalcopyrite. Some pentlandite was present as occasional to rare small particles associated with pyrrhotite. Gangue was found to consist of a medium coarse-grained intergrowth of hypersthene and other pyroxenes along with a little finely disseminated talc.

Bulk Flotation

On the No. 3 sample lab batch flotation of successive bulk concentrates at a grind of 57% minus 200 mesh gave the following results:

· · · · · · · · · · · · · · · · · · ·	Wt	Assays %			Distribution %	
Product	_%	Cu	Ni	Insol	Cu	Ni
Bulk conc No. 1	14.6	3.53	3.86	11.0	86.2	55.6
" No. 2	9.4	0.30	2.15	5.0	4.7	19.9
" No. 3	8.8	0.16	1.37	6.4	2.4	11.9
Tailing.	67.2	0.06	0.19		6.7	12.6
Feed (calcd)	100.0	0.60	1.01		100.0	100.0
Bulk conc No. 1+2 (calcd)	24.0	2.26	3.19	8.6	90.9	75.5
"" No. 1+2+3 (calcd)	32.8	1.71	2.69	8.1	93.3	87.4

The above results were confirmed in a 4-day pilot-plant investigation carried out on the No. 3 sample at a feed rate of 625 lb/hour.

On the No. 4 sample lab flotation of successive bulk concentrates gave individual concentrates that were higher grade than those obtained from No. 3 sample but the end result was the same, i.e. grades and recoveries for combined concentrates were similar (2.00% copper, 2.15% nickel with copper and nickel recoveries of 91.9% and 85.2% respectively).

Copper-Nickel Separation of Bulk Concentrate

Copper-nickel separation was tried in the pilot plant on No. 3 sample but satisfactory grades of copper and nickel concentrates could not be produced. However, on sample No. 4 which had been submitted specifically for further work on copper-nickel separation the following results were achieved in a batch test:

	Wt	1	Assays 🖇	Distribution %		
Product	%	<u>Cu</u> `	Ni	<u>Insol</u>	Cu	Ni
Copper conc	1.6	27.40	0.51	4.6	64.9	0.8
Copper cl tail	0.3	8.41	1.57	31.5	3.3	0.4
Separation tail	5.1	1.76	3.86	16.3	1.2.9	19.0
Scav conc	19.6	0.44	3.10	5.3	12.5	59.1
Tailing	73.4	0.06	0.29		6.4	20.7
Feed (calcd)	100.0	0.69	1.03		1.00.0	100.0
Final nickel conc*	24.7	0.71	3.26	7.5	25.4	78.1

*Separation tailing + scavenger concentrate.