This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

NOT TO BE TAKEN FROM THIS ROOM

CAT. NO. 4 L.-M.CO.

REFERENCE

For

AT

INDUSTRIAL CONFIDENTIAL DATE March 15, AUTHORIZED BY RLC.

CANADA

DEPARTMENT OF ENERGY, MINES AND RESOURCES

Mines Branch

COPY NO. 13

Declassified Déclassifié

CANADA

DEPARTMENT OF ENERGY, MINES AND RESOURCES

OTTAWA

MINES BRANCH INVESTIGATION REPORT

IR 69-27

March, 1969

DETERMINATION OF THE GRINDING CHARACTERISTICS OF THREE ORES SUBMITTED BY SOQUEM, STE. FOY, P.Q.

by

T. F. BERRY

Mineral Processing Division

Note: This report relates essentially to the samples as received. The report and any correspondence connected therewith shall not be used in full or in part as publicity or advertising matter.

COPY NO.

March, 1969

Industrial Confidential

Mines Branch Investigation Report IR 69-27

DETERMINATION OF THE GRINDING CHARACTERISTICS OF THREE ORES SUBMITTED BY SOQUEM, STE. FOY, P.Q.

by

T. F. Berry*

SUMMARY OF RESULTS

The following table shows the average calculated work index in kWh/short ton for the three ores tested compared to the two ores of known work index.

WORK INDEX RESULTS

•	Using Ore A	Comparison (13.5)	Using Comparison Ore B (16.4)
Copper ore Zone 1		11.7	10.6
Copper ore Zone 2		12.2	11,0
Zinc-Silver ore		11,5	10.4

* Technical Officer, Mineral Processing Division, Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

INTRODUCTION

On December 16, 1968, a letter was received from Mr. Raymond Raby, Soquem, (Quebec Mining Exploration Company), 2383 Ste. Foy Road, Ste. Foy, P.Q. Mr. Raby stated that they had been unable to standardize their grindability procedure and asked the assistance of the Mines Branch in determining the work index of ores from Louvicourt, Quebec.

Shipment

A box containing 130 lb of ore was received on January 13, 1969. The ore from Louvicourt, in the Val d'Or area of Quebec, was identified as follows:

> Cu Ore 585-1 Zone 1A and 1B Cu Ore Zone 2 Zn-Ag Ore

Investigative Procedure

The method presently used at the Mines Branch to calculate the work index (W_i) of an ore is based on comparative batch grinding tests. The ore under test and an ore, the work index of which is known, are ground under identical conditions. Particle size determinations are made of the feeds and the ground pulps. The results are plotted on log-log paper and the 80% passing sizes are recorded. From these results the work index is calculated.

DETAILS OF INVESTIGATION

Samples weighing 2000 grams of each of the three ores submitted were ground for 15 and 20 minutes respectively. Identical grinding times and conditions were used in grinding two other ores, the work indices of which were known.

Particle-size determinations were carried out on the feeds and ground pulps of the test ores and the comparison ores.

The result of this work is recorded in the following tables.

Particle	Size			Compari	son Ore	Α.			. C	omparis	son Ore E	3.	1
Mionona	Mogh	Fee	ed	15	min -	20	min	Fe Fe	ed	15	min	20	min
MICPOILS	Mesn	% Ret	% Pass	% Ret	% Pass	% Ret	% Pass	% Ret	% Pass	% Ret	% Pass	% Ret	% Pass
1680	10	0.5	99,5					0.4	99.6				
1190	14	12.1	87.4					10.3	89,3				
S40	20	14.9	72.5					15.5	73.8				
590	28	13.0	59.5					14.4	59.4	-		34000,4	
420	35	11.3	48.2					12.8	46.6		100.0		
297	48	S.S	39.4		100.0		. 100.0	10.6	36.0	0.2	99.8		100.0
210	65	7.3	32.1	1.3	98.7	0.4	99.6	9.2	26,8	3.3	96.5	1.2	98.8
149	100	5.5	26.6	5.8	92.9	2.8	96.8	6.4	20.4	12.5	84.0	7.1	91.7
105	150	4.9	21.7	12.0	80.9	8.9	87.9	5.2	15.2	17.2	66.8	15.1	76,6
74	`200	3.6	18.1	11.2	69.7	11,1	76.8	3.7	11.5	15.6	51.2	15.1	61.5
-74	-200	18.1						11.5		51.2		61.5	
56	,			5.2	64.5	4.6	72.2				7		
40	ł			13.6	50.9	14.5	57.7						
28	· ·			12.3	38.6	14.0	43.7					A F	
20	. '			10.1	28.5	11.5	32.2	4	۰.				
·· 14				7.4	21.1	8.4	23,8						
· 10			· .	6.1	15.0	6.9	16.9						•
				15.0		16.9							· · · · · · · · · · · · · · · · · · ·
Total		100.0		100;0		100.0		100.0		100.0		100.0	

Results of Grinding Tests for W_i Calculations - Comparison Ores

lesults	of	Grinding	Tests	for	Wi	Calculations	-	Louvicourt	Ores
---------	----	----------	-------	-----	----	--------------	---	------------	------

<u>.</u>						A					7								
Parti	cie į	Cı	1 Ore 5	85-1 -	Zone 1	A and I	.В		(u Ore	Zone 2				· · · · · · · · · · · · · · · · · · ·	Zn-Aş	g Ore		
Siz	e i	Fe	eed	15	min	20	min	Fe	ed	15	min	20	min	j <u>F</u> e	eed	15	min	<u>, 20</u>	min
Mu	Mesh	% Reti	% Pass	% Ret	% Pass	% Ret	% Pass	% Ret	% Pass	% Ret	% Pass	, % Ret	% Pass	% Ret	% Pass	% Ret	% Pass	% Ret	% Pass
1680	10 14	0.5	99.5 83.4					0.7 20.6	99.3 78.7	-				0 <i>.</i> 5 19.1	99.5 80.4		114441	e Frank	
840	20 28	23.3	60.1 44 0					24.0 13.7	54.7	2016-121 	essi taltata E			23.5	56.9 44 3				
420	35	9.5	34.5		,		100.0	8.8	32,2				100.0	8.2	36.1	0 1	100.0		100.0
297 210	48 65	6.4 5.2	28,1 22,9	0,6	99.4	0.2	99.8	5.3	25,9 20,6	1.2	98.8	0,3	99.7	5.3	24.8	0.1	99.9 99.1	0.2	99.8
149 105	100 150	4,0 3,8	18,9 15,1	3.8 8.8	95,6 86,8	$\begin{array}{c} 1.6\\ 5.2\end{array}$	98.2 93.0	4.0 3.4	16.6 13.2	5.9 10.4	92.9 82.5	2.6 7.3	97.1 89.8	4.3 3.9	20.5 16.6	4.1 8.8	95.0 86.2	1.8 5.4	98.0 92.6
74 -74	200 -200	3.2 11.9	11.9	11.9 74.9	74.9	11.1	81.9	$\begin{array}{c} 2.4 \\ 10.8 \end{array}$	10.8	11.9 70.6	70.6	11.4	78,4	·2.9 13.7	13.7	11.9 74.3	74.3	10.9	81.7
56						5.2	76.7					2,7	75.7					5.3	76.4
28						16.2	45.3					15.8	45.9				_	16.8	45.1
20 14					27 Dea - 1440	11.2	34.1 26.4					11.8 9.4	$\begin{array}{c} 34.1 \\ 24.7 \end{array}$					12.2 8.5	$\begin{array}{c} 32.9\\24.4\end{array}$
10 -10		-			- E-John E Bad Creater	6.6 19.8	19.8		-		•	8.2 16.5	16,5					6,5 17,9	17.9
Total		100,0		100.0		100.0		100.0		100.0		100.0		100.0		100.0	•	100,0	

TABLE 2

۲.,

A.,

Table 3 shows the 80% passing points in microns for the comparison ores and the Louvicourt ores, and Table 4 shows the work indices which were calculated from the Bond work-index formula:

Unknown Ore	Known Ore
$^{W}i\left(\frac{10}{\sqrt[7]{F_{80}}}-\frac{10}{\sqrt[7]{F_{80}}}\right) =$	$^{W}_{i}\left(\frac{10}{\sqrt{P}_{80}}-\frac{10}{\sqrt{F}_{80}}\right)$

TABLE 3

80% Passing Points

	Product	Comparison Ore A	Comparison Ore B	Zone 1 Ore	Zone 2 Ore	Zn-Ag Ore
F ₈₀	Feed	1030	970	1200	1400	1300
P80	15 min grind	105	· 148	85	105	85
P80	20 '' ''	76	115	67	.67	67

· TABLE 4

		•			
Product	Comparison	Comparison	Zone 1	Zone 2	Zn-Ag
·	Ore A	Ure B	Ore	Ore	Ore_
15 min grind	(13.5)		11.3	12.6	11,1
20 '' ''			12.1	11,8	11,9
7 milio analas d		(20.4)		11 6	10.3
15 min grind 20 " "		(16.4)	10,3	10.5	· 10,6

Results of Work Index Calculations

CONCLUSIONS

The grinding characteristics of these ores when compared to two ores of known work index indicate that they are medium-soft ores and should grind easily.

Generally, ores under test should be compared with ores which have similar work index. For this reason, the results obtained using the comparison ore with a work index of 13.5 kWh/short ton are a better indication of the work which will be required to grind these ores.