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! THE REGRESSION ANALYSIS OF ORE TREATMENT TEST RESULTS

. PART 2: The Development and Assessment of Second-Order
Regression Equations.

by
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SUMMARY

This report presents examples of the output provided
K by a computer program recently developed by the staff of the

Extraction Metallurgy Division for conducting regression

[t

analyses of test data to produce empirical models relating,
quantitatively, the levels of the significant variables and the
values of important test responses. The meaning of this output
information and how it may be used to assess the value of the
calculated models are discussed, Because the methods used
and the discussion are applicable to any set of test data, this
report may be used as a guide in interpreting any regression
analyses resulting from the Extraction Metallﬁrgy Division's

stepwiserregression computer program.

* Senior Scientific Officer, ** Research Scientist, and ¥k Head, Hydrometallurgy

Section, Extraction Metallurgy Division, Department of Energy, Mines and
Resources, Ottawa, Canada.



INTRODUCTION

It is well known that the amount of information that can be
obtained from a series of experiments can often be greatly increased and be
more valuable if the results are analysed by regression techniques, This is
particularly true if the experiments have been designed with subsequent
regression analysis in mind 1-5)

The purpose of conducting a regression analysis of experimental
data is to find an equation which by relating the test variables to the test
response makes possible the prediction of the response that may be expected
from a given set of test conditions. The successful development of such an
equation can provide the investigator with a broad, quantitative understanding
of the process under study.

The two chief drawbacks to the general use of the methods of
regression analysis are the complexity of the calculations and a lack of
understanding among experimentalists of the statistical concepts involved.
Within the past year, the staff of the Extraction Metallurgy Division has
developed a computer program for doing the calculations required in
conducting a regression analysis of experimental data, This program is now
available for general use; indeed, it has already been used to a considerable
extent, A previous report (Part 1) described how the output from this program
can be used on a relatively simple experimental design~~-involving a few tests--
to show the relative importance of the independent variables involved and how
to assess the first-order models derived from the data, The present report,
Part 2, deals with the assessment of the results of the regression analysis of
a more complex experimental design that permits the development of second=-
order models,

PROCEDURE

The statistical analyses described in this report were based on
data obtained from a laboratory investigation that was conducted in the Extraction
Metallurgy Division to study the acid leaching of an Elliot L.ake uranium ore.
In that investigation four independent variables were studied: initial acid
addition, temperature, initial oxidizer addition, and particle size of the ore.
Each variable was controlled at least once to one of five different levels, as
shown in the four columns headed "Independent Variables' in Table 1. The
variables and variable levels chosen for fhe present work were based on an
earlier study, the results of which were analysed statistically to show the
significant variables involved.(7) '



'Table 1 shows that the levels chosen for the independent variables
in the design of the complete experiment were balanced around an average
or central level, Because of this the experimental design used in the
axporimental work is called a central composite désign. Other experimental >
designsg that would allow the development of second~order models could have |
been used, and thése can be found in standard statistical tests (1-

The complete acid_leaching test program consisted of thirty-two
tests run in random order. Twenty-four tests (Tests 1 te 8 and 12 to 27) were
required to complete the eéxperimental design. Eight replicate tests (Tests
9 to 11 and 28 to 32) were made to provide an independent estimate of the
experimental error involved. The experimental error includes all errors _
attributable to physical measurements, experimental techniques and unknown
random variables., Four system responses (first-hour U304 extraction,
48-~hour U30, extraction, acid consumption, and the final electromotive-force
value of the leaching solution) were measured during each test.

The design used in the experimental work provided sufficient
data for a full second-order relationship between the four variables and the
measured responses to be calculated., Assuming that all the variables are
significant and that the full second-order equation is needed to express the
relationship between the four independent variables and the response under
consideration, the resulting statistical model would have the following form:

‘Response = B + ByX, + B,X, + B.X, + BX, + BX X,

+ ]36){,1)(3 + B XX, * B X X, + BX,X, X

2 2 2 . 2
* B10X3X4 + B11X1 + B19X?, + BIGX'3 ¥ B14X4=

+ Iirror

In this 'model, B, is a constant term, B to B 4 2re the regression coefficients
or parameters to be determined, and Xj to X4 are the independent variables.

The specific values for the coefficients shown in the above general
model for each of the four responses studied were calculated on the Department's
CDC-3100 computer, using the stepwise multivariable regression program DRMEML.
This program was developed by the staff of the Extraction Metallurgy Division.

A FORTRAN listing of DRMEML is available and with minor modifications it
can also be used on either UNIVAC-1108 or IBM/360 system computers,
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RESULTS OF REGRESSION ANALYSIS AND DISCUSSION

‘he levels used for the four independent variables investigated
in this work are shown in Table 1, in the columns headed Xys Xpy X3 and Xy.
The measured and predicted values for each of the four responses observed
are also given in this table., The predicted values are those obtained by
inserting the tabulated values of the independent variables into the regression
equations finally developed and shown in Tables 2 to 5.

The results shown in Tables 2 to 5 were obtained by first
calculating first-order or linear models. Where it was shown that the first-
order models did not fit the data, second-order models were developed. Further
assessment of the model's value was obtained from a study of (a) the sources
of over-all variation in response, (b) the percent of variation in response due
to each significant term, and (c) the standard error of the estimate of the
response mean due to the model's lack of precision. All of these statistics
are calculated simultaneously with the derivation of the regression model and
are produced by the computer program used,

Table 2 gives the results of the regression analysis, the relevant
response being the extraction of uranium at the end of the first hour of leaching.
The empjirical model shown (Table 2 (a)) is a second-order model containing
terms Xl and X3 and the cross product term X2X3, along with the first-order
term in X3, The second-order model is shown because the first-order one,
which was calculated first, did not fit the observed data. Actually, the second-
order model shown in Table 2 is not as good a fit to the data as we would likej
but more complex models could not be calculated with the experimental
design used,

The lack-of-fit test used here is based on the deviations between
the observed values of the response (first hour's extraction in Table 1) and
those values of the response that can be predicted by the model (Table 2).
These deviations have two causes: the inadequacy with which the model fits
the data, and the inherent experimental error, The lack-of-fit test compares
the observed variances associated with these two causes of deviation. If
there is no significant difference between these two variances, we accept the
model as fitting the test data to within the limits of experimental error,

With this introduction, the statistical meaning of the lack-of-fit
variance test in Table 2(d) becomes clear, For the model in Table 2(a) to be
an acceptable fit to the test data, the ratio of lack-of-fit variance to the
experimental error variance must not be statistically significant., With the
results in Table 2(d), this ratio is significant at the 95 per cent confidence
level with a numerical value of 3,48%, However, it would have been insignificant
if the value had been 3.44%, Consequently, the data, although significant at a

* See any table of variance ratios or F-test (see Reference 8),
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95 per cent confidence level, are not significant at a 94 per cent level, With
these data, then, we could with reservations accept the model in 2(a) as being
an acceptable fit, since the relevant variance test is very close to being not
significant.

- The other variance test shown in 2 (d), the regression variance
over the residual variance, must be significant if the model is to be useful
for predictive purposes. The regression variance is the fraction of the total
variance in the response (first hour's extraction) that is accounted for by
the terms in the model in 2 (a), The residual variance is the difference
between the total variance and the regression variance.  With these definitions
in mind it will be apparent that, since a good model should account for a very
large proportion of the total response variance, the ratio of regression
variance to residual variance should be not only significant but also, as has
been stated by Draper‘( ), at least four times the tabulated value given in the
Table of variance ratios'”’/. In the example in Table 2 (d), the numerical
value of the variance ratio is 16,26, which is highly significant at the 95
per cent confidence level since this value is almost six times the lowest
value(2.73, from Table of Variance Ratios) needed for statistical significance.

,Section (b) of Table 2 shows the experimental error observed
in this test work, and also the error that may be expected between a response
estimated from the equation for specific conditions and the observed value of
the response in a test run under the same cenditions., On the basis of the
statistical theory of normal distribution (3), the results in Table 2 (b) show
that the experimental error is ‘such that, if the true extraction for the given
set of variables is8-83,7 per cent (the response mean shown in 2 (a)), about
68 per cent of the responses obtained in a series of replicate tests would fall
within the range of 83.7 + 1.33 per cent, while about 95 per cent of the responses.
would be in the range of 83.7 + 2. 73 per cent. Also, if a set of conditions
were chosen*so that when these condltlons were substituted in the model an
extraction of 83.7 per cent was predlcted the observed responses from a series
of replicate tests run under these conditions would be in the range of 83.7 +
2.24 per cent 68 per Cent of the time and 83.7 + 4. 60 per cent 95 per cent
of the time.

Sections (c) and (e) of Table '2"a‘i:é_—gwalé?é‘l'iywéélz-explanatory.
Section (e) shows that, while 70.6 per cent of the variation observed in the
response can be explained by the significant independent variables given in
the model, 26.6 per cent of the variation is unexplained, This unexplained .
variation is due to the size of the experimental error, which in turn can be
due to operator error, or to the effect of an important variable which was not
controlled in the test work because its importance was not recognized. Because

* No regression model should be used to predict a response by substituting values
of the independent variables outside of the ranges used in the test work,
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of the size of the unexplained variation, careful consideration should be given
to the possibility that a significant variable has been overlooked. Section

2 (c) shows the relative importance of the significant terms on the basis of
how much of the total regression variation (70.6 per cent) is attributable to
each significant term.

To sum up the results in Table 2, the best model we can derive
from the test data is:

I*‘:’Lrs‘c.-lmur"U:3 0, extfaction ;”59.35
+ 15.6 X,
+ 0,11 XX,
+ 0,001 Xf

- 6.06 X2,

where X, is acid addition (1b/ ton), X, is temperature (°C), and X4 is the
oxidizer addition (lb/ton). A study of this model shows that the initial
uranium extraction rate is influenced mainly by the amount of oxidizer added
(X3), since this variable appears in three of the five terms in the model.

The model also shows that, because of the negative term associated with the
X3 term, the rate of increase in the uranium extraction rate decreases with
increased oxidizer addition. Increases in the acid addition (X;) and in the
temperature (X;) result in minor (as compared to the effect of oxidizer) but
significant increases in the extraction rate. The grind (X,) had no significant
effect on the initial extraction rate, since it did not appear in any of the terms
of the model. The model, therefore, has given us considerable insight into
the way the process can be controlled,

Opposed to this, the border-line significance of the lack-of-fit
test in 2 (d), the 26 per cent unexplained variation in 2 (e), and the fact that
the response predicted from the model could deviate from the observed
response more than could be expected due to experimental error about one
third of the time (2 (b)), all show that the model's predictive power is limited.
If it is thought that the predicted response must be closer than + 4,6 per cent
(2 (b)) to the response observed from an actual experiment, then further study
and experiments would be needed to improve the precision of the model.
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: Detailed analyses similar to that done with the resulis of Table 2
(tully described above) can be done for Tables 3, 4 and 5. Table 3 shows that
the second-order model for the 48~hour uranium extraction contains the same
variables as were contained in the model for the first hour's extraction (Table 2).
However, the 48-hour extraction is more dependent on acid addition and '
temperature, and less dependent on oxidizer addition;than was the first hour's
extraction, Neither the fit of the 48-hour-extraction model to the data, nox ¢
its predictive power, is as good as were those of the model with the first

hour's extraction as the response.

Table 4 relates the acid consumption to the operating variables.
As might be expected, the second-order model shows that the consumption
of acid increases with increasing acid addition and temperature. Table 4
also shows that this model fits the data more closely than do the models in
Tables 2 and 3 and can predict acid consumption from the operating variables
with a relatively high degree of precision.

Table 5 shows a first-order model relating final e.m.f. of the
leaching solution to leaching temperature. Although only 30 per cent of the
variation in the observed e.m.f, values is accounted foxr by this model, the
very high experimental error observed here makes it meaningless to try to
develop a more complex model, This conclusion is valid because the ratio
of lack-of-fit variance to. experimental error variance is not significant
(5 (d)). The model shows only that the 48~hour e.m.f. decreases as the leaching
temperature increases. However, the reason for the high experimental error
must be found and eliminated, if the effect of the operating variables on final -
e.m.f. is to be clarified further. '

WA

The discussion of the results given in this report is applicable
to the results of any regression analysis done with the computer program that
was used in this work. The program produces results similar to that shown
in the tables reproduéed here, regardless of the source of the data or of the
experimental design used. Consequently, this report can be used as a guide
in interpreting the results obtained from regression analyses run on any set
of experimental results.
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TABLE 2

Regression Results for First-Hour U30

8

Extraction

(a) Empirical Model

confidence level of 95%.

Response Mean = 83,7% Deviation in Response = + 3.9%

= y 2 2
U304 Ext 1 hr (%) = 59.35 + 15.6 X3 + 0.11 Xy Xq + 0.0014 Xy - 6.06 X3

Note: Included terms are significant and variation in the response due
to each is greater than that due to experimental error at a

(b) Standard Error of Estimate for Response Mean

Confidence Level of 95%

Source Standard Error Interval
Empirical Model +2.24 +4.60
System or Exp. Error +1.33 +2.73

(c) Variation in Response Due to Significant Terms

Variables Percent of Variation Coefficients
X3 25.4 15,59095
X2X3 15,8 0.1094828
) X1X1 3.9 0.001366662
X3X3 25.5 ~ 6.063556
Total 70.6
Constant Term in Empirical Model 59.352685

(d) Variance Tests

Source Deg Freedom |F-Calculated
Regression Varia.nme-/ Residual Variatice 4, 27 16.26%
Lack-Fit Variance / Exp. Error Variance 20,7 3.48%

* Indicates Statistical Significance at a Confidence Level of 95%

(e) Overall Variation in Response

Source Amount (%)
Significant Independent Variables 70.6
Unexplained Sources or Lack of Fit 26.6
System or Experimental Error 2.7
Total 100.0
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TABLE 3

Regreséion Results for 48-Hour U308 Extraction .

(a) Empirical Model

U308 Ext 48 hr (%) = 74.79 + 0.._0033 X:lX2 i- 0.036 X1X3

Response Mean = 90.9% Deviation in Response = + 3.7 %

Note: Included terms are significant and variation in the response due to
each is greater than that due to experimental error at a confidence
level of 95 %. -

(b) Standard Error of Estimate for Response Meéan

Confidence Level of 95%
Source ’ . Standard Error Interval
Empirical Model : +2.13 +4.36
System or Exp. Error E 1.17 _i' 2.39

(c) Variation in Response Due to Significant Terms

Variables ‘ Per cent of Variation Coéfﬁcients -
X1 X2 54.3 0.00328743
X1 X3 - 14,9 " 0.,03615844 -
Total : ‘ 69.2 S
Constant Term in Empirical Model - 74.,790388 - -

(d) Variance Tests

Source o | Deg Freedom F-Calculated
Regression Variance / Residual Variance. 2,29 32.53 %
Lack~Fit Variance /Exp. Error Variance 22,17 4007k

* Indicates Statistical Significance at a Confidence Level of 95% - - -

(e) Overall Variation in Response -

Source o : : Amount (%)
Significant Independent Variables P _ : 69.2
Unexplained Sources or Lack of Fit . 28.6

System or Experimental Error - S 2.2

T

Total 100.0 ... ..

o
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TABLE 4

Regression Results for Acid Gonsumption

(a) Empirical Model

Acid Consumption (1b/t) = 27.55 + 0.016 X X, - 0.0054 x?f - 0.0058 X%

Response Mean = 45,7 lb/ ton Deviation in Response = + 4.6 lb/ ton
Note: Included terms are significant and variation in the response

due to each is greater than that due to experimental error at
a confidence level of 95%.

(b) Standard Error of Estimate for Response Mean

Source Confidence Level of 95%

’ Standard Error Interval
Empirical Model +1:95 +4.00
System or Exp. Error +1.26 +2.57

(c¢) Variation in Response Due to Significant Terms

Variables Percent of Variation Coefficients
X1 X2 51.0 0.01615577
X1 X1 12.5 —0.005416226_
X2 X2 20.3 -0.005802543
Total 83.8
Constant Term in Empirical Model 27.551173

(d) Variance Tests

Source Deg Freedom |F-Calculated
Regression Variance 7Residua1 Variance 3,25 48 ,52%
Lack-Fit Variance / Exp. Error Variance 21,7 2.88

% Indicates Statistical Significance at a Confidence Level of 95%

(e) Overall Variation in Response

Source Amount (%)
Significant Independent Variables 83.8
Unexplained Sources of Lack of Fit 14 .4
System or Experimental Error 1.8

Total 100.0
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TABLE 5

Regression Results for Electromotive Force

(a) Empirical Model

CEMF, (mv)=413.6 - 0.7:X,
Response Mean = 368 mv Deviatioﬁ in Response = + 11.3 mv
Note: Included terms are significant and variation in the response

due to each is greater than that due to experlmental error
at a confidence level of 95%.

(b) Standard Error of Estimate for Response Mean

Source _ .Confidence Level of 95%
o o Standard Error | Interval
Empirical Model : + 9.60 + 19.6
System or Exp. Error "  E 8.50 E 17.4

(c). Variation in Response Due to Significant Terms

Variables |- Percent of Variation Coefficients
X2 - - | 29,..9 o -0.700000
Total . 29.9 '
Constant Term in Empirical Model 413.,59375

(d) Variance Tests

~ Source Deg Freedom | F-Calculated
Regression Variance / Residual Variance | - 1,30 12.77%
Lack=-Fit Varian’ce,/ Exp.Error Variance 23,7 Co 1.30

* Indicates Statistical Significance at a Confidence Level of 95%

(e} Overall Variation in. Response. ,

Source Amount (%)
Significant Independent Variables : . 29.9
Unexplained Sources or Lack of Fit o 56.8
System or Experimental Error 13.3

Total 100.0
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