This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

Dr. R. Down

CANADA

DEPARTMENT OF ENERGY, MINES AND RESOURCES

OTTAWA

MINES BRANCH INVESTIGATION REPORT IR 67-43

A LABORATORY AND PILOT PLANT INVESTIGATION ON SILVER CONCENTRATE FROM COBALT REFINERY DIVISION, KAM-KOTIA MINES LIMITED, COBALT, ONTARIO

by

W. ARTHUR WALL

MINERAL PROCESSING DIVISION

NOTE: THIS REPORT RELATES ESSENTIALLY TO THE SAMPLES AS RECEIVED. THE REPORT AND ANY CORRESPONDENCE CONNECTED THEREWITH SHALL NOT BE USED IN FULL OR IN PART AS PUBLICITY OR ADVERTISING MATTER.

MAY 10, 1967

COPY NO. 10

Industrial Confidential

Mines Branch Investigation Report IR 67-43

A LABORATORY AND PILOT PLANT INVESTIGATION ON SILVER CONCENTRATE FROM COBALT REFINERY DIVISION, KAM-KOTIA MINES LIMITED, COBALT, ONTARIO

by

W. Arthur Wall*

SUMMARY OF RESULTS

It has been demonstrated that, with a combination of grinding, screening and flotation, it is possible to produce a silver concentrate suitable for direct refining. The tests showed that a combined concentrate assaying nearly 16,000 oz Ag/ton and 3.0% cobalt with a recovery of 89% of the silver in the feed could be made. It was not possible by gravity concentration (cycloning, tabling or jigging) to produce a silver concentrate suitable for direct refining.

* Scientific Officer, Mineral Processing Division, Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

CONTENTS

	Page
Summary of Results	i
Introduction	l
Location of Property Purpose of Investigation Shipments Sampling and Analysis	1 1 1 1
Results of Investigation	3
Details of Investigation	4
Part A. Concentration by Cycloning Part B.1 Concentration by Tabling Part B.2 Concentration by Jigging Part C. Grinding, Screening and Flotation	4 8 12 13
Pilot Plant Investigation	23
Pilot Plant Runs No.1 & 2Pilot Plant Runs No.3 & 4Pilot Plant Run No.5	23 28 31
Discussion of Results and Conclusions	33
Acknowledgement	35

i.i

<u>No.</u>		Page
l	Chemical Analysis of Lot A	2
2	Screen Analysis of Lot A	2
3	Weights and Assays of Lot B	2
4	Screen Analysis of Lot B	3
5	Cycloning of Sample of Lot A, Tests No. 1 to 8.	6
6	65 Mesh Screening of Sample of Lot A, Test No. 9	7
7	Cycloning of +65 Mesh Fraction of Sample of Lot A, Test No. 9	7
8	Cycloning of -65 Mesh Fraction of Sample of Lot A, Test No. 9	7
9	Combined Results of Cycloning Plus and Minus Fractions of Sample of Lot A, Test No. 9	8
10	Screen Sizing of Sample of Lot A, Test No. 10	8
11	Tabling of +48 Mesh Fraction of Sample of Lot A, Test No. 10	9
12	Tabling of +48 Mesh Middling of Sample of Lot A, Test No. 10	9
13	Combined Results of Tabling +48 Mesh Fraction of Sample of Lot A, Test No. 10	10
14	Tabling of +100 Mesh Fraction of Sample of Lot A, Test No. 10	10
15	Screening of Ground Concentrate from +100 Mesh Fraction of Sample of Lot A, Test No. 10	11
16	Tabling of -100 Mesh Fraction of Sample of Lot A, Test No. 10	11
17	Combined Results of Tabling Sample of Lot A, Test No. 10	12
18	Jigging Sample of Lot A, Test No. 11	12
19	Jigging After Grinding Sample of Lot A, Test No. 12	13

No.		Page
20	Jigging Sample of Lot A in a Special Jig, Test No. 13	13
21	Assays of Screen Fractions after Grinding Sample of Lot A, Test No. 14	14
22	Flotation of -200 Mesh Fraction of Sample of Lot A, Test No. 14	14
23	Combined Results of Grinding and Floating Sample of Lot A, Test No. 14	15
24	Assays of Screen Fractions after Grinding Sample of Lot A, Test No. 15	15
25	Flotation of -200 Mesh Fraction of Sample of Lot A, Test No. 15	16
26	Combined Results of Grinding and Floating Sample of Lot A, Test No. 15	16
27	Assays of Screen Fractions after Stage Grinding Sample of Lot A, Test No. 16	16
28	Flotation of -200 Mesh Fraction of Sample of Lot A, Test No. 16	17
29	Combined Results of Grinding and Floating Sample of Lot A, Test No. 16	17
30	Cyclic Grinding and Floating Tests on Samples of Lot A, Tests No. 17 to 21	18
31	Assays after Dry Grinding and Screening of Sample of Lot A, Test No. 22	20
32	Flotation of -200 Mesh Fraction of Sample of Lot A, Test No. 22	21
3 <u>3</u>	Combined Results of Dry Grinding and Floating of Sample of Lot A, Test No. 22	21
34	Assays after Dry Grinding and Screening of Samples of Lot A, Test No. 23	22
35	Flotation of -200 Mesh Fraction of Sample of Lot A, Test No. 23	22
36	Combined Results of Dry Grinding and Floating of Sample of Lot A, Test No. 23	22

<u>No</u> .		Page
37	Assays of Products after Wet Grinding and Screening Material from Lot B, Pilot Plant Runs No. 1 and 2	26
38	Flotation Reagents and Conditions for Pilot Plant Run No. 1	26
39	Flotation of -200 Mesh Fraction of Sample of Lot B, Pilot Plant Run No. 1	26
40	Flotation Reagents and Conditions for Pilot Plant Run No. 2	27
41	Flotation of -200 Mesh Fraction of Sample of Lot B, Pilot Plant Run No. 2	27
42	Calculated Results of Flotation of Sample of Lot B, Pilot Plant Runs No. 1 and 2	27
43	Calculated Total Results of Sample of Lot B, Pilot Plant Runs No. 1 and 2	28
44	Assays of Products after Wet Grinding and Screening Sample of Lot B, Pilot Plant Runs No. 3 and 4	29
45	Flotation Reagents and Conditions for Pilot Plant Run No. 3	29
46	Flotation of -200 Mesh Fraction of Sample of Lot B, Pilot Plant Run No. 3	29
47	Flotation of -200 Mesh Fraction of Sample of Lot B, Pilot Plant Run No. 4	30
48	Calculated Results of Flotation of Samples of Lot B, Pilot Plant Runs No. 3 and 4	30
49	Calculated Total Results of Sample of Lot B, Pilot Plant Runs No. 3 and 4	3.1
50	Weights and Assays of Products after Wet Grinding and Screening Sample of Lot B, Pilot Plant Run No. 5	31
51	Flotation Reagents and Conditions for Pilot Plant Run No. 5	32

No.		Page
··52* ·	Flotation of -200 Mesh Fraction of Sample of Lot B, Pilot Plant Run No. 5	32
53	Calculated Total Results of Sample of Lot B, Pilot Plant Run No. 5 •••••••••••	33
54	Assays of Simultaneous Samples from Flotation, Pilot Plant Run No. 5	33
55	Combined Results, Lot B, Filot Plant Runs	34
		· · · ·

FIGURES

1	Cyclone Assembly		5
2	Flowsheet Pilot Plant Rur	ns No. 1 and 2	21 ₂
3	Flowsheet Pilot Plant Rur	ns No. 3, 4 and 5	25

vi -

INTRODUCTION

Location of Property

The smelter of Cobalt Refinery Limited which is now operating as Kam-Kotia Mines Limited, Cobalt Refinery Division, is located approximately six miles southwest of Cobalt, Ontario. The Cobalt Refinery purchases locally produced silver in the form of table and flotation concentrates and smelts these concentrates in their custom smelter to silver metal and cobalt, nickel and arsenic compounds.

Purpose of Investigation

Mr. J. N. Cram, General Manager of Cobalt Refinery Division, requested that an investigation be carried out to determine the feasibility of producing a high grade silver concentrate from the locally purchased table concentrates which would be suitable for direct silver refining. The following processes were suggested:

- a) Concentration by a compound water cyclone.
- b) Gravity concentration using either tables or jigs.

c) Grinding, screening and flotation.

The present method of treating table concentrates at the refinery results in the retention of silver values in the process for a considerable period of time. If the silver content of the concentrate could be raised to approximately 16,000 ounces silver per ton and the cobalt lowered to 3.0%, the silver extraction could be readily effected, without roasting and/or smelting, by direct silver refining at a considerable financial saving.

Shipments

A five hundred pound sample of table concentrate was received on July 20, 1966. This was prepared by Cobalt Refinery Division and was said to be as representative as possible of the table concentrate treated in the smelter. This shipment will be referred to as Lot A.

A three ton shipment of table concentrate was received on November 1, 1966 from Cobalt Refinery Division for a pilot plant investigation. This shipment will be referred to as Lot B.

Sampling and Analysis

The Lot A sample of table concentrate was sampled and assayed by Cobalt Refinery Division. The analysis of the head sample is shown in Table 1.

TABLE 1Lot A Analysis

Silver	2,012 oz per ton
Cobalt	7.9%
Nickel	2.5%
Sulphur	6.0%
Arsenic	35.6%
Iron	20.3%
Silica	3.2%
Insoluble	17.1%
· · ·	

A duplicate head sample was screened, and the various size fractions assayed with the results shown in Table 2.

TABLE 2

Screen Analysis of Lot A

Mesh	Weight	Assays		Distribution %			
	%	Ag oz/ton	Go %	Ag	Co		
+ 28 - 28+ 65 - 65+100 -100+200 -200	12.7 34.0 10.8 22.6 19.9	5,104.8 2,611.2 1,412.4 983.6 804.0	8.8 7.3 5.6 6.2 9.4	31.3 42.9 7.4 10.7 7.7	15.0 33.1 8.2 18.7 25.0		
Total	100.0	2,071.0	7.5	100.0	100.0		

The Lot B shipment of table concentrate was a composite of three lots of concentrate from Silverfields Mine and Hi Ho Mine with weights and assays as tabulated in Table 3.

TABLE 3

Weights and Assays of Lot B Shipment

Lot. No	Weight	Assays					
	lb	Ag oz/ton	Co %				
1 2 3	1000 3000 2000	2,705 1,372 2,430	8•95 8•68 6•50				
Total	6000	1,947	00.8				

A screen analysis of a duplicate head sample of this Lot B shipment is shown in Table 4_{\circ}

Mesh	Weight %
$\begin{array}{r} + 20 \\ - 20 + 28 \\ - 28 + 35 \\ - 35 + 48 \\ - 48 + 65 \\ - 65 + 100 \\ - 100 + 150 \\ - 150 + 200 \\ - 200 + 325 \\ - 325 \end{array}$	3.9 11.1 12.1 10.3 10.2 10.7 9.1 13.8 10.7 8.1

TABLE 4

Screen Analysis

RESULTS OF INVESTIGATION

The recovery of metallic silver from table concentrate as reported in Mines Branch Investigation Report IR 66-77 has been investigated further. It has been demonstrated both in the laboratory and in the pilot plant that up to 67% of the silver in the table concentrate can be recovered in a concentrate assaying between 15,000 and 22,000 ounces silver per ton by grinding and screening. It has been demonstrated further that it is possible, by flotation, to concentrate the silver in the screen undersize. The concentrate obtained by flotation assayed between 5,000 and 12,000 ounces silver per ton and contained between 21 and 51% of the silver in the original feed.

In laboratory Test 22, a combined concentrate assaying 15,937 ounces silver per ton and 2.73% cobalt was produced. This concentrate represented 11.6% of the weight and contained 89.0% of the silver in the head sample.

The metallic concentrates obtained in the five pilot plant runs assayed 22,191 ounces silver per ton and 0.82% cobalt in 4.4% of the weight of the heads and contained 51.5% of the silver in the heads. The flotation concentrate obtained from the -200 mesh material assayed 9,319 ounces silver per ton and 5.46% cobalt, in 6.9% of the weight of the heads and contained 34.0% of the silver in the heads. The combined concentrate assayed 14,327 ounces silver per ton and 3.65% cobalt in 11.3% of the weight of the heads and contained 85.5% of the total silver. The test work carried out in an attempt to concentrate the silver in the table concentrate in a compound water cyclone did not produce satisfactory result. So little concentration of the silver was obtained that it was considered that further cyclone test work was not warranted.

Tabling produced a concentrate assaying 5,000 oz of silver per ton. This concentrate contained 34.4% of the silver (see Table 17) in the feed (Lot A). The grade of concentrate was not suitable for direct refining.

Jigging was also unsatisfactory (see Table 19).

DETAILS OF INVESTIGATION

Part A: Cyclone Concentration

Mr. Cram requested that the Compound Water Cyclone be tested to determine its effectiveness in concentrating the silver in the table concentrate.

The cyclone used in these tests was a Single Compound Water Cyclone (Type "S" cone) with a 4 inch wide vortex finder, manufactured by Cyclone Engineering Sales Ltd., Edmonton, Alberta. The cyclone was set up as illustrated in Figure 1. The cyclone was installed above the pump feed box into which both the cyclone underflow and overflow could discharge. Piping was so arranged that the pulp could be pumped either to the cyclone or to the pump feed box. By adjusting the valves in the pump discharge piping, the desired cyclone pressure was obtained.

In testing the cyclone, a pulp at the desired percent solids was prepared in the pump feed box by adding the correct weight of table concentrate and water. The pulp was pumped to the cyclone at the desired pressure. The cyclone overflow and under flow returned to the pump feed tank. After a bed had been established in the cyclone and conditions had become stabilized, simultaneous samples of the underflow and overflow were taken for exactly the same period of time. These samples were dried, weighed and sampled for analysis. A series of eight tests was made to determine the optimum operating conditions. The operating conditions and results are tabulated in Table 5.

It was considered that sized material might be more amenable to concentration in a cyclone than unsized material. Consequently, a test was carried out on material separated into plus and minus 65 mesh fractions. The screen analysis is tabulated in Table 6.

All cyclone testing was carried out on samples of Lot A Table Concentrate.

· · · · · · · · · · · · · · · · · · ·	1	Test C	Underflow					Overflow						
Test No.	Solids	Pressure	Vortex Finder	Vortex Finder	Weight %	Assay	rs	Distrib	ution %	Weight %	Assay	7S	Distribu	tion %
	10 .	psi "	Diameter in.	Clearance in.		Ag oz/ton	Co %	Ag	Go		Ag oz/ton	Co %	Ag.	Со
1	4.8.	10	2	0.5	46.5	1536	8.6	39.1	65.1	53.5	2152	4.0	60.9	34.9
2	4.8	25	2	0.5	47.8	2323	3.7	42.6	37.5	52.2	2871	5.7	57•4	62.5
3	4.8.	10	2	0.75	50.5	1888	8.6	63.5	51.2	49.5	1104	8.4	36.5	48.8
4	4.8	5	1.375	0.5	88.3	1688	5.7	95.9	89.6	11.7	5 40 :	5.0	· · 4.1	10.4
5	4.8	10	1.375	0.75	88.3	548	4.2	88.6	87.3	11.7	530	4.6	11.4	12.7
6.	15.0	10	2	0.5	29.8	2170	7.7	34.0	36.1	70.2	1788	5.8	66.0	63.9
V	15.0	16	2	0,75	15.9	1784	6.5	15.2	22.6	84.1	1880	4.2	84.8	77.4
8	15.0	22	2	0.5	22.0	1984	6.5	26.3	35.6	78.0	1568	5.4	73.7	74•4
_														

TABLE 5Cyclone Tests Nos. 1 to 8

*

TABLE 6									
Screen	Size	of	Sample	of	Lot	<u> </u>	Test	No.	2

Mesh Weight		Assays	2	Distribution %		
	0/0 /0	Ag oz/ton	Co %	Ag	Co	
+65 -65	55 .1 44 . 9	1886 1219	4.89 7.69	65 , 5 34.5	43.8 56.2	
Total	100.0	1587	6.15	100.0	100.0	

The two fractions were cycloned separately under the following conditions:

Per cent solids	6 -30	15.0	
Pressure 1b/sq in.		10.0	
Vortex Finder Diameter	1 10	2.0	inches
Vortex Finder Clearance		0.5	inches

The results are tabulated in Tables 7, 8 and 9.

TABLE 7

Cycloning +65 Mesh Fraction

Product	Weight	Assays		Distribution %		
1.00000	%	Ag oz/ton	.Co %	Ag	Co	
Underflow Overflow	25.9 74.1	1,937 1,868	6.34 4.38	26.6 73.4	33.6 76.4	
+65 mesh	100.0	1,886	4.89	100.0	100.0	

TABLE 8	3
---------	---

Cycloning -65 Mesh Fraction

Product	Weight	Assays	5	Distribution %		
	%	Ag oz/ton	Co %	Ág	Co	
Underflow Overflow	26 .3 73 . 7	1,590 1,088	8.68 7.34	34 .3 65 . 7	29.7 70.3	
-65 mesh	100.0	1,219	7.69	100.0	100.0	

	TABLE 9)		
Combined	Results	Test	No.	9

Product	Neight.	Assays	3	Distribution %		
	%	Ag oz/ton	Co %	Ag	Co	
Underflow Overflow	26.1 73.9	1,762 1,479	7.52 5.86	29 .7 70 .3	31.2 68.8	
Feed	100.0	1,553	6.29	100.0	100.0	

Part B 1. Concentration by Tabling (Test No. 10)

An attempt was made to upgrade a sample of Lot A by tabling a sized product. A sample of Lot A was screened and the fractions assayed as shown in Table 10.

TABLE 10

Screen Analysis

Mogh	Weight	Assays		Distribution %		
16.511		Ag oz/ton	Co %	Ag	Co	
+ 48 +100 -100	38.5 28.0 33.5	3,192 1,385 854	8.86 6.27 8.77	64.6 20.4 15.0	42.1 21.6 36.3	
Total	100.0	1,902	8.10	100.0	1.00.0	

The +48 mesh fraction was tabled to produce a concentrate, a middling and tailing. The concentrate was tabled to produce a cleaner concentrate and a cleaner tailing. The results are shown in Table 11.

The middling product obtained in the previous test was tabled to give a cleaner concentrate and a cleaner tailing as shown in Table 12.

	Wei	Veight % Assays Distribution			ition	%		
Product	This Test	Total	Ag oz/ton	Co %	This Ag	Test Co	Tota Ag	al Co
Cl conc Cl tail	6.2 14.0	2.4 5.4	6,960 5,190	8.66 9.98	13.7 22.7	6 ₊1 15¢7	8.8 14.7	2.6 6.6
Ro conc Midd. Tail	20.2 64.5 15.3	7.8 24.8 5.9	5,738 3,104 196	9.57 10.42 1.36	36.4 62.7 0.9	21.8 75.8 2.4	23.5 40.5 0.6	9,2 31,9 1,0
+48 mesh	100.0	38.5	3,172	8.86	100.0	100.0	64.6	42.1

TABLE 11Tabling +48 Mesh Fraction

Tabling of Middling Product

	Wei	ght %	Assays		Distribution %			
Product	This	Total	Ag	Co	This	Test	Tota	ıl
	Test		oz/ton	9/0	Ag	Co	Ag	Co
Cl conc Cl tail	18.9 45.6	7.3 17.5	4,380 2,575	9.98 10.62	25.9 36.8	21.3 54.5	16.8 23.7	950 22 . 9
Midd	64.5	24.8	3,104	10.42	62.7	75.8	40.5	31.9

The cleaner concentrates from the two previous tests were combined and the cleaner tailings were combined to produce the results shown in Table 13.

The -48+100 mesh fraction of the screen sizing was tabled with the results as shown in Table 14.

TABLE 13	
----------	--

Combined Results +48 Mesh Fraction

	Weight %		Assays		Distribution %			
Product	This Total		A 0		This Test		Total	
	Test	TOPAT	ag oz/ton	× %	Ag	Co	Ag	Co
Cl conc Cl tail Ro tail*	25.2 59.5 15.3	9.7 22.9 5.9	5,022 3,190 196	9.65 10.45 1.36	39.6 59.5 0.9	27.4 70.3 2.3	25.6 38.4 0.6	11.5 29.5 1.0
+48mesh	100.0	38.5	3,1.92	8.86	100.0	100.0	64.6	42.0

* This term is used to indicate rougher tailing in this and subsequent Tables.

TABLE	14
-------	----

Tabling -48+100 Mesh Fraction

	Weight %		Assays		Distribution %			
Product	miast –	matra 1	1	0	This	Test	Tot	al
	Test	TOCAL	oz/ton	%	Ag	Co	Ag	Co
Conc Midd Tail	19 .1 45.4 35.5	5.3 12.7 9*9	3,011 1,692 120	10.41 8.67 0.98	41.5 55.4 3.1	31.6 62.8 5.6	8.5 11.3 0.6	6.9 13.6 1.2
+100 mesh	100.0	27.9	1,385	6.27	100.0	100.0	20.4	21.7
			· · · · · · · · · · · · · · · · · · ·					Adata and a second s

The concentrate recovered by tabling the -48+100 mesh fraction of table concentrate was ground in a pebble mill for 10 minutes at 50% solids. The ground pulp was screened into + and -200 mesh fractions as tabulated in Table 15.

The -100 mesh fraction of the original sample was tabled with the results as shown in Table 16.

Weight %		Assays		Distribution %				
Mesh			· 1.~	0	This Test		Total	
	Test	TOCAL	otal Ag oz/ton	%	Ag	Co	Ag	Ço
+200 -200	45•3 54•7	2.4 2.9	5,596 868	8.98 11.60	84.3 15.7	39 .1 60 . 9	7.1 1.3	207. 402
Conc	100.0	5.3	3,011	10.41	100.0	100.0	8.4	6.9

TABLE 15Screening of Concentrate

	TAI	BLE 16	, ,
labling	-100	Mesh	Fraction

Product	Weight %		Assays		Distribution %			
	This Total		Ag Co		Co This Test		Total	
	Test	200ul	oz/ton	%	Ag	Cọ	Ag	Со
Conc Midd Tail	2.2 69.5 28.3	0.8 23.3 9.5	4,337 960 318	8.32 11.30 2.60	11.4 78.1 10.5	2.1 89.5 8.4	1.7 11.8 1.6	0.8 32.5 3.0
-100 mesh	100.0	33.6	854	8.77	100.0	100.0	1.5.1	36.3

The similar products obtained from tabling each of the three size fractions were combined as shown in Table 17. The concentrate is the sum of the cleaner concentrate shown in Table 13, the +200 mesh concentrate shown in Table 15 and the concentrate shown in Table 16. The middlings are the sum of the cleaner tail shown in Table 13, the middling shown in Table 14, the-200 mesh concentrate shown in Table 15 and the middling shown in Table 16. The tailings are the sum of the tailings shown in Tables 13, 14 and 16.

ł

TABLE	17
-------	----

Results of Combined Table Products (Test 10)

Product	Weight	Assay	S	Distribution %	
	%	Ag oz/ton	Co %	. Ag	Co
Conc Midd Tail	12.9 61.8 25.3	5,090 1,931 212	9.45 10.46 1.68	34.4 62.8 2.8	15.0 79.8 5.2
Feed	100.0	1,902	8.10	100.0	100.0

Part B. 2. Concentration by Jigging

4,000 grams of the Lot A concentrate as received were treated in a Denver Mineral I-M Jig, with the following conditions.

Water flow	rate	***	0.18 U.S. gals/min.
Stroke			1/8 inch
Bed screen			30 mesh
Bed	an a	÷.	Steel shot
Feed rate		•••	1600 grams per hour

The results of this test are shown in Table 18.

TABLE 18

Product	Weight	Assay	S	Distribution %		
	%	Ag oz/ton	Co %	Ag	Co	
Hutch Bed Tail	40.6 5.5 53.9	3,671 1,687 723	11.41 8.20 7.08	75.5 4.7 19.8	52.0 5.1 42.9	
Feed	100.0	1,972	8.90	100.0	100.0	

Results of Jig Test No. 11

A second jig test was carried out under similar conditions on 4000 grams of Lot A concentrate which was ground in a rod mill for one hour. The jig bed consisted of 73 grams of steel shot and 110 grams of chromite ore. The results are shown in Table 19.

TABLE 19

Results of Jig Test No. 12

Product	Weight %	Assay	S	Distribution %		
		Ag oz/ton	Co %	Ag	Co	
Hutch Bed Ta i l	26.4 3.6 70.0	4,489 6,229 683	11.04 7.52 7.31	62.8 11.9 25.3	35.1 3.3 61.6	
Feed	100.0	1,889	8.30	100.0	100.0	

A third jig test was made on a sample of Lot A concentrate in a jig equipped with a means of removing concentrate from the top of the jig bed. The results are tabulated in Table 20_{\bullet}

TABLE 20

Results of Jig Test No. 13

Product	Weight %	Assay	S	Distribution %		
		Ag oz/ton	Co %	Ag	Co	
Conc Hutch Bed Tail	35.2 13.7 5.5 45.6	2,770 3,488 3,109 823	10.44 10.74 8.95 7.61	48.7 23.9 8.6 18.8	40.3 16.2 5.4 38.1	
Feed	100.0	2,000	9.11	100.0	100.0	

Part C. Grinding, Screening and Flotation

In the previous investigation carried out on this material*, it was found that, by grinding and screening, the metallic silver was concentrated in the oversize fraction. In the following series of tests, a weighed amount of table concentrate was ground in the laboratory rod mill for the stated period of

* Mines Branch Investigation Report IR 66-77.

time. The ground pulp was screened on the designated screen and the + and - fractions were dried, weighed and assayed.

Test No. 14. (+65 Mesh)

2,000 grams of Lot A concentrate was screened on a 65 mesh screen. The +65 mesh fraction was ground in the rod mill for 30 minutes and screened on a 65 mesh screen. The +65 mesh material was dried, weighed and assayed. The -65 mesh material was screened on a 200 mesh screen. The +200 mesh fraction was ground in the rod mill for 45 minutes and screened on a 200 mesh screen. The screened fractions were dried, weighed and assayed. The results are tabulated in Table 21.

TABLE 21

Grinding and Screening at 65 Mesh

Mesh Weight		Assay	5	Distribution %		
· .	%		Co %	Ag	Co	
+65 -65 +200 -200	2.6 1.4 96.0	22,814 22,118 1,041	1.36 0.60 8.90	31.2 16.3 52.5	0.4 0.1 99.5	
Total	100.0	1,902	8.59	100.0	100.0	

The -200 mesh fraction was pulped in a 2000 gram Denver cell and conditioned for one minute with:

Aerofloat 208	-	0.10 lb per ton
Aero Xanthate 301		0.10 lb per con
Aerofloat 31		0.06 lb per ton

A concentrate was removed for 5 minutes. The concentrate was cleaned and recleaned. The results are tabulated in Table 22.

TABLE ZA	2
----------	---

,			1997 - 1997 -			
Product	Waight	Assay	S	Distribution %		
	<i>%</i>	Ag oz/ton	Co %	Ag	Co ·	
Cl conc Cl tail Ro tail	9.7 14.0 76.3	8,910 799 75	6.35 9.10 9.19	83.8 10.7 5.5	7.0 14.3 78.7	
-200 mesh	100.0	789	8.77	100.0	100.0	

Flotation of -200 Mesh Fraction

Table 23 is a tabulation of the combined results obtained by grinding, screening and flotation of the -200 mesh fraction.

Product	Weight	Assay	S	Distribution %		
	0/0	Ag Oz/ton	Co %	Ag	Со	
+200 mesh Cl conc	4.0 9.4	22,570 8,910	1.09 6.35	47.5 44.0	0.5 7.0	
Total conc Cl tail Ro tail	13.4 13.4 73.2	12,988 799 75	4.78 9.10 9.19	91.5 5.6 2.9	7.5 14.2 78.3	
Feed	100.0	1,902	8.59	100.0	100.0	

TABLE 23

Combined Results of Test No. 14

Test No. 15

This test was a duplicate of Test No. 14 except that the pulp was screened on a 100 mesh screen instead of a 65 mesh screen and the -100+200 mesh fraction was ground for 30 minutes. Flotation of the -200 mesh fraction was carried out with the same reagents and conditions as in the previous test.

The screening test results are shown in Table 24, the flotation results in Table 25 and the combined results in Table 26.

TABLE 2	24
---------	----

Grinding and Screening at 100 Mesh

Mesh	Weight	Assays	3	Distribution %		
	%	Ag oz/ton	Co? %	Ag	Со	
+100 -100+200 -200	5.3 1.7 93.0	19,783 16,029 722	3.00 2.66 8.59	52.6 13.7 33.7	1.9 0.6 97.5	
Feed	100.0	1,993	8.19	100.0	100.0	

•		CABLE	25	· · · · · ·
Flotation	of	-200	Mesh	Fraction

Product	Weight.	Assays	3	Distribution %		
Troduco	07	Ag oz/ton	Co %	Ag	Со	
Cl conc Cl tail Ro tail	11.1 17.5 71.4	5,459 447 52	7.00 9.92 7.91	83.7 11.0 5.3	9.0 20.3 70.7	
-200 mesh	100.0	772	8.59	100.0	1.00 .0.	

Combined Results of Test No. 15

Product	Weight	Assay	3	Distribution %		
	Troduco	%	Ag 02/ton	Co %	Ag	୦୦
	+200 mesh Cl conc Cl tail Ro tail	7.0 10.3 16.3 66.4	18,871 5,459 447 52	2.92 7.00 9.92 7.91	66.3 28.2 3.7 1.8	2.5 8.8 19.7 69.0
	Feed	100.0	1,993	8.19	100.0	100.0

Test No. 16

In this test, the Lot A concentrate was ground in four stages (total time 1 hour 25 minutes). At the end of each grinding stage, the pulp was screened on a 200 mesh screen. The results are shown in Table 27.

TABLE	27
-------	----

Mesh	Weight	Assays	3	Distrib	oution %
	%	Ag oz/ton	Co %	Ag	Co
+200 -200	7.0 93.0	17,574 789	1.20 8.77	62 .7 37 . 3	1.0 99.0
Feed	100.0	1,969	8.24	100.0	100.0

Grinding and Screening at 200 Mesh

The -200 mesh fraction was pulped in a 2000 gram Denver flotation cell and conditioned for one minute with:

Aerofloat 208			0.05	1b	per	ton,
Aero Xanthate	301	 ,	0.01	<u>]</u> b	per	ton
Aerofloat 31		-	0.07	lb	per	ton

A concentrate was removed for 5 minutes. The concentrate was cleaned 3 times. The flotation results are shown in Table 28 and the combined results in Table 29.

TABLE 28

Flotation of -200 Mesh

Product	Weight	Assays	3	Distribution %		
11 Gadeo	% %	Ag oz/ton	Co %	Ag	Co	
Cl conc Cl tail Ro tail	9.4 30.8 59.8	6,592 432 65	6.92 8.01 9.46	78.3 16.9 4.8	7.4 28.1 64.5	
-200 mesh	100.0	789	8.77	100.0	100.0	

TABLE 29

Combined Results Test No. 16

Product	Weight	Assays	3	Distribution %		
- Troutes	%	Ag oz/ton	Co %	Ag	Co	
+200 Mesh Cl conc Cl tail Ro tail	7.0 8.7 28.6 55.7	17,574 6,592 432 65	1.20 6.92 8.01 9.46	62.7 29.2 6.3 1.8	1.0 7.3 27.8 63.9	
Feed	100.0	1,967	8.24	100.0	100.0	

Cyclic Tests No. 17 to 21 Inclusive

A series of five flotation tests was carried out to determine the effect of cycling the silver cleaner tailing to the following rougher silver float and the cobalt cleaner tailing to the following rougher cobalt float.

2,000 grams of Lot A concentrate was ground in the rod mill for 30 minutes. The ground pulp was screened on a 200 mesh

screen. The +200 mesh fraction was ground for another 30 minutes. The ground pulp was screened on 200 mesh.

The +200 mesh fraction was dried weighed and assayed. The -200 mesh fraction was pulped in a 2000-gram Denver flotation cell and conditioned for one minute with:

Aerofloat 208		0.10	1b	\mathbf{per}	ton,
Aerofloat 31	•.	 0.06	1 b	per	ton
Aero Xanthate	301	0.01	lb	per	ton.

A silver concentrate was removed for 4 minutes. The pulp was conditioned for one minute with:

Aero Xanthate 30	0.10 lb per ton,
Aerofloat 31	 0.015 1b per ton.

A cobalt concentrate was removed for 4 minutes. Each of these concentrates was cleaned and recleaned.

A second batch of 2000 grams of Lot A concentrate was ground as outlined previously. The -200 mesh fraction was pulped in a Denver flotation cell. The silver cleaner tailing from the previous test was added to the flotation cell and the combined pulp conditioned for one minute with the same reagents as used in the previous test. After the silver concentrate was removed for 4 minutes, the cobalt cleaner tailing from the previous test was added to the flotation cell and the pulp conditioned for 1 minute with:

> Aero Xanthate 301 - 0.10 lb per ton, Aerofloat 31 - 0.015 lb per ton.

A cobalt concentrate was removed for 4 minutes. Each concentrate was cleaned and recleaned. The grinding, screening and flotation cycle was repeated 5 times. The results are tabulated in Table 30.

T	ABLE	30
-	*****	

Cyclic Test No. 17 to 21

ويرجين والمراجعة والمستجانية والمتحافية والمتحار المراجع والمحافظ والمحافظ والمحافظ والمحاف						
Product	Weight	Assays	3	Distribution %		
1100000	0%	Ag oz/ton	Co %	Ag	Co	
No. 1 + 200 mesh No. 2 + 200 mesh No. 3 + 200 mesh No. 4 + 200 mesh No. 5 + 200 mesh	1.5 0.7 1.3 2.0 1.6	15,433 23,508 16,834 12,076 15,019	3.66 0.60 3.00 4.58 3.34	11.9 8.9 11.8 12.4 12.3	0.7 0.1 0.5 1.1 0.6	
Total + 200 mesh	7.1	15,497	3.41	57.3	3.0	

(cont'd on page 19)

Distribution % Assays Product Weight 010 Co % Co Ag 02/ton Ag 7,711 10,770 9,722 6,088 No. 1 recl Ag conc No. 2 recl Ag conc 5.33 8.0 4.7 1.2 0.9 5.00 0.8 1.4 No. 3 recl Ag conc 1.2 5.00 6.1 2.4 7.5 1.7 6.00 No. 4 recl Ag conc No. 5 recl Ag conc 1.4 1.9 6,691 6.00 Total recl Ag conc 7,830 5.58 33.0 5.5 8.1 11.06 320 0.1 0.5 No. 1 recl Co conc 0.4 1,522 1,928 0.7 No. 2 recl Co conc 8.0 8.00 0.6 0.7 No. 3 recl Co conc 0.7 8.00 536 7.35 0.6 1.9 2.1 No. 4 recl Co conc 790 8.66 0.7 1.7 No. 5 recl Co conc 1.6 2.7 8.14 5.5 Total recl Co conc 5.6 914 0.2 9.9 10.1 8.00 48.4 No. 1 ro tail 18.2 No. 2 ro tail 0.8 9.00 16.6 15.7 8.66 0.8 16.6 No. 3 ro tail 101.6 15.1 9.34 0.8 13.3 No. 4 ro tail 112.4 15.3 8.66 0.8 16.1 No. 5 ro tail 95.6 75.9 8.77 3.4 Total ro tail 71.0 91.7 2,281 8.66 0.9 8.0 Recl Ag tail 0.7 1,320 2.8 9.67 1.6 Cl Ag tail 2.4 2.5 3.6 9.44 Total Ag tail 3.1 1,547 10.00 0.5 2.5 456 Recl Co tail 2.1 372 3.9 10.70 0.6 Cl Co tail 3.0 1.1 6.4 406 Total Co tail 5.1 10.41

TABLE 30 (concl'd) Cyclic Test No. 17 to 21

(cont'd on page 20)

TABLE 30 (concl'd) Cyclic Test No. 17 to 21

Product	Waight	Assays		Distribution %		
110000	%	Ag oz/ton	Co %	Ag	Со	
Combined Results	ار بین با این این با این بین بین می می بین این این این این این این این این این ا					
+200 mesh Ag conc Co conc Ag tail Co tail Ro tail	7.18.15.63.15.171.0	15,497 7,830 914 1,547 406 91.7	3.41 5.58 8.14 9.44 10.41 8.77	57.3 33.0 2.7 3.4 2.5 1.1	3.0 5.5 5.5 3.6 6.4 76 _° 0	
Feed	100.0	1,925	8,20	100.0	100.0	

Test No. 22

In this test, the Lot A concentrate was screened on 200 mesh. The +200 mesh fraction was dry ground in a pebble mill for 30 minutes and screened. The +200 mesh fraction was ground for 15 minutes and screened. The results are shown in Table 31.

TABLE 31

Screening on 200 Mesh

Mesh	Weight	Assays	5	Distribution %		
	%	Ag oz/ton	Co %	Ag	Co	
+200 Mesh -200 Mesh	7.0 93.0	20,198 714	2.10 8.77	67.9 32.1	1.8 98.2	
Feed	100.0	2,068	8.31	100.0	1.00.0	

The -200 mesh fraction was pulped in a 1000 gram Denver flotation cell and conditioned for one minute with:

Aerofloat 208	· ,	-	0.10	1b	per	ton,
Aero Xanthate 30	01	tead	0.01	lb	per	ton,
Aerofloat 31		-	0.06	1b	per	ton.

A concentrate was removed for 5 minutes. The concentrate was cleaned 4 times. The results are tabulated in Table 32.

Preduct	Weight	Assays		Distribution %		
Troduct	%	Ag oz/ton	Co %	Ag	Co	
Cl Ag conc No. 1 cl tail No. 2 cl tail No. 3 cl tail No. 4 cl tail Ro tail	5.0 11.3 3.0 2.5 2.0 76.2	9,499 490 1,059 1,532 3,111 72.9	3.68 8.94 8.42 7.36 6.31 9.21	65 .7 7.8 4.4 5.3 8.7 8.1	2.1 11.5 2.9 2.1 1.5 79.9	
-200 mesh	100.0	714	8.77	100.0	100.0	

TABLE 32 Flotation of -200 Mesh Fraction

TABLE 33

Combined Screening and Flotation

Product	Weight	Assay	S :	Distribution %		
11 Oddeo	%	Ag o_z /ton	Co %	Ag	Co	
+200 mesh Cl Ag conc	7.0 4.6	20,198 9,499	2.10 3.68	67.9 21.1	1.8 2.0	
Combined conc Cl tail Ro tail	11.6 17.5 70.9	15,937 1,002 73	2.73 8.40 9.20	89.0 8.4 2.6	3.8 17.6 78.6	
Feed	1.00.0	2,068	8.31	100.0	100.0	

Test No. 23

Test No. 23 was a duplicate of Test No. 22. 1000 grams of Lot A concentrate was screened on 200 mesh. The +200 mesh fraction was dry ground for 30 minutes in a pebble mill. The pulp was screened on 200 mesh. The +200 mesh fraction was ground for 15 minutes and screened on 200 mesh with the results as shown in Table 34.

The -200 mesh fraction was pulped in a 1000 gram Denver flotation cell and conditioned for 2 minutes at 25 per cent solids and pH 7.5 with:

Aerofloat 208			0.10	lb	per	ton,
Aero Xanthate 3	30 1		0.01	lb	per	ton,
Aerofloat 31		-	0.06	lb	per	ton.

	Dereenting		<u>, 011 2000</u>			
Product	Weight	Assays	3	Distribution %		
11 October	c/ /2	Ag oz/ton	Co %	Ag	Co	
+200 mesh -200 mesh	7.2 92.8	18,590 678	2.72 8.03	68.0 32.0	2.5 97.5	
Feed	100.0	1,955	7.65	100.0	100.0	

Screening and Grinding on 200 Mesh

A concentrate was removed for 5 minutes. The concentrate was cleaned 5 times. The flotation results are given in Table 35 and the combined results in Table 36.

TABLE 35

Flotation of -200 Mesh Fraction

Product	Weight	Assays	Distribution %		
	%	Ag oz/ton	Co %	Ag	Co
Cl Ag conc No. 1 cl tail No. 2 cl tail No. 3 cl tail No. 4 cl tail No. 5 cl tail Ro tail	5.2 17.0 7.6 4.3 3.0 1.9 61.0	9,020 204 405 667 1,380 2,241 45.2	10.40 10.90 10.90 10.00 10.90 9.10 6.36	69.6 5.1 4.6 4.3 6.2 6.1 4.1	6.7 23.1 10.3 5.4 4.1 2.1 48.3
-200 mesh	100.0	678	8.03	100.0	100.0

TABLE 36

Combined Results

Product	Weight %	Veight Assays Dist		Distri Ag	.bution %
+200 mesh	7.2	18,590	2.72	68.0	2.5
Cl Ag conc	4.8	9.020	10.40	22.3	6.6
Combined con c	12.0	14,732	5.82	90.3	9.1
Cl tail	31.4	525	10.69	8.4	43.9
Ro tail	56.6	45.2	6.36	1.3	47.0
Feed	100.0	1,955	7.65	100.0	

1

PILOT PLANT INVESTIGATION

Outline of Investigation Procedure

Briefly, the procedure was to grind the table concentrate to -200 mesh. A high-grade silver concentrate would be collected in the ball mill as +200 mesh metallics. A second silver concentrate would then be recovered by treating the -200 mesh material by flotation concentration.

Five separate pilot plant tests were carried out. Except for minor changes, the same flowsheet was used in each test. Figure 2 illustrates the flowsheet used in Pilot Plant Tests No. 1 and 2. Figure 3 illustrates the flowsheet used in Pilot Plant Tests No. 3, 4 and 5.

The grinding circuit consisted of a 20 x 30 inch Hardinge ball mill operated in closed circuit with a Sweco screen fitted with a 200 mesh screen. The ball mill was equipped with an internal grate with 1/2 inch openings. This grate was located about six inches from the discharge trunion. Approximately 50% of the metallic silver in the table concentrate collected in this space between the grate and the end of the mill and was removed periodically through peripheral discharge ports. This mill was the same one used in a previous investigation on table concentrates for this company and is described and illustrated in Mines Branch Investigation Report IR 66-77. The ball mill was charged with approximately 500 pounds of 1 inch to 1 1/2 inch steel balls.

The -200 mesh ball mill discharge was pumped to a cone in which it was dewatered and stored. The maximum rate that the mill could grind this material to -200 mesh was 180 pounds per hour. The desired flotation rate was 400 pounds per hour. Consequently, it was necessary to grind and store the -200 mesh material ahead of flotation. The flotation rate of 400 pounds per hour was required to provide a sufficient volume of rougher concentrate for the repeated cleaning stages.

The rougher flotation was carried out in four No. 7 Denver Sub A cells and the cleaning was done in No. 5 Denver Sub A cells.

During the grinding and flotation stages, all products were sampled at 15-minute intervals. All final flotation products were collected, dried, weighed and sampled for analysis.

Pilot Plant Runs No. 1 and 2

For Pilot Plant Tests No. 1 and 2, the Lot B concentrate was fed to the ball mill at an average rate of 180 pounds per hour. A total of 2,170 pounds of Lot B concentrate was ground. After the feed to the ball mill was stopped, the mill was operated for an additional 2 hours to grind the coarse circulating load. During the last half hour, the +200 mesh screen discharge was collected instead of being returned to the ball mill. At the end of the grinding period, the material remaining in the ball mill was washed out, collected, dried, weighed and sampled for analysis. The +200 mesh material was also sampled for analysis. The results are shown in Table 37.

24

Reagent 208

Cleaner Concentrate

Des a clas s t	Weight		Assay	S	Distribution %		
Product	lb	%	Ag oz/ton	Co %	Ag	Co	
+200 mesh metallics Ball mill metallics	10.20 71.25	0.5 3.3	13,747 23,088	Tr. 1.36	3.9 45.8	0.6	
Combined metallics -200 mesh material	81.45 2088.55	3.8 96.2	21,918 869	1.19 7.37	49 .7 50.3	0.6 99.4	
Ball mill feed	2170.00	100.0	1,662	7.13	100.0	100.0	

TABLE 37 Grinding for Pilot Plant Runs No. 1 and 2

The thickened cone underflow (-200 mesh material) was pumped to the first cell of the No. 7 Denver Sub A cells at a rate of approximately 335 pounds per hour for 2.3 hours. The rougher tailing was collected, filtered, dried and stored. The rougher concentrate was cleaned 5 times. The cleaner tailing was pumped to the first rougher cell and refloated. The cleaned concentrate was dried, weighed and sampled for analysis. The flotation reagents were fed to the first rougher cell as shown in Table 38. The flotation results are shown in Table 39.

TABLE 38

Flotation Reagents and Conditions for Pilot Plant Test No. 1

		· · · · · · · · · · · · · · · · · · ·
Aerofloat 208	₩ ¹	0.07 lb/ton
Aerofloat 242	ر	0.06 lb/ton
Aero Xanthate 301	144	$0.01 \ lb/ton$
pH sign states and states	. ***	8.3
Rougher cell density		25% solids
Aero Xanthate 301 pH Rougher cell density	وبین نیچو به مو	0.01 1b/ton 8.3 25% solids

TABLE 39

Pilot Plant Test No. 1 Flotation Results

Product	Weight		Assays	5	Distribution %		
Troduct	lb.	<i>ti</i> 10	Ag oz/ton	<u>Co %</u>	Ag	Со	
Flot conc Flot tail	31.25 740.00	4.0 96.0	3,801 80	8.44 6.66	66.5 33.5	5 .1 94 . 9	
Flot feed	771.25	100.0	229.6	6.73	100.0	100.0	

The only change in procedure for Pilot Plant Test No. 2 was the substitution of Aerofloat Reagent 33 for Aerofloat 242. Reagents and conditions are shown in Table 40 and the flotation results in Table 41.

TABLE 40

Flotation Reagents and Conditions for Pilot Plant Test No. 2

Aerofloat 208		0.06 lb/ton
Aerofloat 33	-	0.07 lb/ton
Aero Xanthate	, ,	0.01 lb/ton
pH	6162)	8.3
Rougher cell density	8×3	25% solids
Flotation time	êrs.	2. 3 hours

TABLE 41

Pilot Plant Test No. 2 Flotation Results

Product Weight		ght	Assay	'S	Distri	ibution %
1100400	1b.,	%	Ag oz/ton	Co %	Ag	Co
Flot conc Flot tail	44.7 740.0	5•7 94•3	12 , 794 90	3.32 10.00	89.6 10.4	2.0 98.0
Flot feed	784.7	100.0	81.4	9.62	100.0	100.0

Table 42 has been compiled by adding the similar products obtained in the flotation tests of Pilot Plant Runs No $_{\rm st}$ 1 and 2.

TABLE 42

Pilot Plant Tests No. 1 and 2 Combined Flotation Results

Product	Wei	Weight		S	Distribution %		
	<u>1b</u>	%	Ag oz/ton	Co %	Ag	Ca	
Flot conc Flot tail	75.95 1480.00	4.9 95.1	9,111 85	5.42 8.33	84.6 15.4	3.2 96.8	
Flot feed	1555.95	100.0	819	8.19	100.0	100.0	

It will be observed that all the material ground in the ball mill and stored in the dewatering cone was not floated. If the recoveries as tabulated in Table 42 are applied to the total quantity of table concentrate used in this run, the results as shown in Table 43 would be obtained.

TABLE 43

<u>Pilot Plant Tests No. 1 and 2</u> <u>Calculated Total Results</u>

Product Weight		ght *	Assay	้ร	Distribution %		
Troduco	lb.	%	Ag oz /ton	Co%	Ag	Со	
Metallics Flot conc Flot tail	81.5 101.9 1986.6	3.8 4.7 91.5	21,918 14,924* 139*	1.19 5.00* 7.52*	50.1 42.2 7.7	0.1 3.3 96.6	
Ball mill feed	2170.0	100.0	1,662	7.13	100.0	100.0	

k Calculated

Pilot Plant Tests No. 3 and 4

For Pilot Plant Tests No. 3 and 4, Lot B concentrate was fed to the ball mill at an average rate of 180 pounds per hour. A total of 2,080 pounds of table concentrate was ground. The -200 mesh material was pumped to and stored in the dewatering cone. After the feed to the ball mill was stopped, the mill was operated for 2 hours to grind the coarse circulating load. During the last half an hour, the +200 mesh material was collected instead of being returned to the ball mill. At the end of the grinding period, the material remaining in the ball mill was washed out, collected, dried, weighed and sampled for analysis. The +200 mesh material was dried, weighed and sampled for analysis. These results are tabulated in Table 44.

The thickened cone underflow (-200 mesh material) was pumped to the first cell of the No. 7 Denver Sub A cells at a rate of approximately 450 pounds per hour. Two additional stages of concentrate cleaning were installed making a total of seven stages. The primary cleaner tailing was pumped to the dewatering cone for dewatering before rougher flotation. The cleaner concentrate and flotation tailing were collected, dried, weighed, and sampled for analysis. Reagents and conditions are shown in Table 45. Flotation results are given in Table 46.

TABLE 44								
Grinding	for	Pilot	Plant	Tests	No .	3	and	4

Product	We:	ight	Assay	/S	Distribution %		
Troduct	lb ·	%	Ag _{oz} /ton	Co%	Ag	Co	
+200 mesh metallics Ball mill metallics	15.5 48.5	0.8 2.3	19,556 23,159	0.50 Tr	8.8 32.4	0.1.	
Combined metallics -200 mesh material	64.0 2016.0	3.1 96.9	22,284 1,009	0.12 8.44	41.2 58.8	0.1 99.9	
Ball mill feed	2080.0	100.0	1,664	8.18	100.0	100.0	

Pilot Plant Test No. 3 Flotation Reagents

Aerofloat 208	12	0.10 lb/ton to ball mill
Aerofloat 208	==	0.15 lb/ton first rougher cell
Aerofloat 33	**	0.12 lb/ton
Aero Xanthate 301	22	0.01 1b/ton " " "
Dowfroth 250	=	0.01 lb/ton fed intermittently to third cleaner cell
рН	=	8.2
Pulp density	22	35% solids
Flotation time	**	3.25 hours

TABLE 46

Pilot	Plant	Test	No.	3 1	Flotatio	n Results
and the second sec	the second s	the second se	the second s			

Product	Weight		Assay	3	Distribution %		
	lb	%	Ag oz/ton	Ċο %	Ag	Co	
Flot co nc Flot tail	67 723	8.5 91.5	7950 104	4.54 8.50	87.6 12.4	4.7 95.3	
Flot feed	790	100.0	771	8.16	100.0	100.0	

The only change in Pilot Plant Test No. 4 was the collection of the cleaner tailing instead of recycling to flotation. The cleaner tailing was collected, dried, weighed and sampled for analysis. Reagents and conditions were the same as shown in Table 45. Flotation time was 3 hours. The flotation results are shown in Table 47.

TABLE 47

Deserves	Weight		Assay	5	Distribution %		
Product	lb.	%	Ag oz/ton	Co %	Ag	Co	
Flot conc Cl tail Flot tail	49.75 356.00 660.00	4.7 33.4 61.9	12,267 1,820 120	2.76 6.00 7.50	45.8 48.3 5.9	1.9 29.6 68.5	
Flot feed	1065.75	100.0	1,259	6.77	100.0	100.0	

Pilot Plant Test No. 4 Flotation Results

Table 48 has been compiled by adding the similar products from the flotation results of Pilot Plant Tests No. 3 and 4.

TABLE 48

Pilot Plant Runs No. 3 and 4 Flotation Results Combined

Product	Wei	.ght	Assay	้ร	Distribution %		
i i ouuco ,	l.b	%	Ag oz/ton	Co %	Ag	Со	
Flot conc Cl tail Flot tail	116.75 356.00 1383.00	6.3 19.2 74.5	9,800 1,820 111	3.77 6.00 8.02	58.8 33.3 7.9	3.2 15.6 81.2	
Flot feed	1855.75	100.0	1,050	7.37	100.0	100.0	

It will be observed that all the material ground in the ball mill and stored in the dewatering cone was not floated. If the recoveries as shown in Table 46 are applied to the total quantity of table concentrate used in this test, the results would be as shown in Table 49.

Т	ABLE	49
-	********	~~/

Product	Weight		Assay	s	Distribution %		
	lb.	%	Ag oz/ton	Co %	Ag	Co	
Metallics Flot conc Cl tail Flot tail	64.0 127.0 387.1 1501.9	3.1 6.1 18.6 72.2	22,284 9,421* 1,751* 107*	0.12 4.28 6.85 9.19	41.2 34.6 19.6 4.6	0.1 3.2 15.6 81.1	
Ball mill feed	2080.0	100.0	1,664	8.18	100.0	100.0	

Pilot Plant Runs No., 3 and 4 Calculated Total Results

* Calculated

Pilot Plant Test No. 5

In this pilot plant run, Lot B concentrate was fed to the ball mill at an average rate of 180 pounds per hour for approximately 10 hours. A total of 1,714 pounds of table concentrate was ground. The -200 mesh material was pumped to and stored in the dewatering cone. After the feed to the ball mill was stopped, the mill was operated for 2 hours to grind the coarse circulating load. During the last half an hour, the +200 mesh material was collected instead of being returned to the ball mill. At the end of the grinding period, the material remaining in the ball mill was washed out, collected, dried, weighed and sampled for assay. The +200 mesh material was dried, weighed and sampled for analysis. The results are shown in Table 50.

T	۸	RT	.Ħ.	50
. L	11	101	111	

Product	Weight		Assa	/S	Distribution %		
TIOUUCO	1 b .	0% %	Ag o_z /ton	Co %	Ag	Co	
+200 mesh metallics Ball mill metallics	13.0 82.8	0.8 4.8	18,145 23,016	1.00 0.96	6.0 48.1	0.1 0.4	
Combined metallics -200 mesh material	95.8 1618.2	5.6 94.4	23,355 1,124	0.97 10.53	54°1 42°9	0.5 99.5	
Ball mill feed	1714.0	100.0	2,310	10.00	100.0	100.0	

Pilot Plant Test No. 5 Grinding

The thickened cone underflow (-200 mesh material) was pumped to the first cell of the No. 7 Denver Sub A cells at a rate of approximately 450 pounds per hour. The primary cleaner tailing was pumped to the dewatering cone for dewatering. During the last hour of the run, the cleaner tailing was collected instead of being recycled.

Reagents and conditions are tabulated in Table 51. Flotation results are tabulated in Table 52.

	LADLO			
<u>Pilot Plant Te</u>	st No	<u>5 Flotati</u>	lon	
neagenus	anu u	Onarorons		
Aerofloat 208		0.10 1b/ton	to ball mil	<u>]</u>
Aerofloat 208	-	0.05 lb/ton	to first ro	cell
Aerofloat 33	. 🕂	0.12 lb/ton	to first ro	cell
Aero Xanthate 301		0.01 lb/ton	to first ro	cell
Hc	-	8.3	· . · ·	
Pulp density	-	35%	• ;	
Flotation time	b 4	15 hours		
· · · ·		•		

TABLE 51

T	A	BI	E	5	2	
-	**	_		_		

Pilot Plant Run No. 5 Flotation Results

Product	Weight		Assay	rs	Distribution %	
TIGUUCO	lb,	%	Ag oz/ton	Co %	Ag	Co
Flot conc Cl tail Flot tail	186.5 254.0 1429.0	10.0 13.6 76.4	9,103 1,794 90	6.53 13.00 9.35	74.6 19.9 5.5	6.8 18.5 74.7
Flot feed	1869.5	100.0	1,222	9.56	100.0	100.0

It will be observed that the quantity of material floated in this pilot plant run exceeded the weight of material ball-milled. The material floated included material which had accumulated in the dewatering cone. If the recoveries tabulated in Table 52 are applied to the correct weight of material, the results would be as tabulated in Table 53.

During pilot plant run No. 5, simultaneous grab samples of the rougher concentrates from each of the seven cleaner concentrates and the rougher tail were taken and assayed with the results as shown in Table 54.

	TABLE 53							
Pilot	Plant	Test	No.	5	Calculated	Total	Results	

Product	Veight		Assay	/S	Distribution %	
	lb	01 10	Ag oz/ton	Co %	Ag	Ço
Metallics Flot conc Cl tail Flot tail	95.8 161.3 219.9 1237.0	5.6 9.4 12.8 72.2	22,355 8,470* 965* 81*	0.97 7.12* 14.36* 10.30*	54.1 34.2 9.1 2.6	0.5 6.7 18.4 74.4
Ball mill feed	1714.0	100.0	2,310	10.00	100.0	100.0

* Calculated

TABLE 54

Sample Assays

Samule	Assays			
Dampro	Ag oz/ton	Co %		
Rougher conc No.1 cl conc No.2 cl conc No.3 cl conc No.4 cl conc No.5 cl conc No.6 cl conc No.7 cl conc Rougher tail	2,042 5,722 8,657 9,196 9,975 13,370 14,799 16,051 124	8,20 6,53 5,35 5,20 4,60 3,45 2,65 2,65 10,02		

Discussion of Results and Conclusions

If the similar products of the five pilot plant runs are combined, the calculated results of the pilot plant investigation would be as summarized in Table 55.

It should be pointed out that, in a commercial plant, there would be no final production of cleaner tailing as it would be recycled to flotation. Consequently, at least half of the silver in the cleaner tailing would report in the concentrate and increase the recovery to over 90%. This is illustrated in Pilot Plant Tests No. 1 and 2, which shows 92.3% recovery of the silver and in Pilot Plant Test No. 3 where the silver recovery is 92.9% (see Table 43 and Table 44 and 46).

		·				
Des-des-str	Weight		Assays		Distribution %	
Product	lb	%	Ag oz/ton	Co%	Ag	Co
Metallics Flot conc	241.3 379.2	4 .4 6 . 9	22,191 9,319	0.82 5.46	51.5 34.0	0.4 4.7
Total conc Cl tail Ro tail	620.5 610.0 4,292.0	11.3 11.0 77.7	14,327 1,809 95	3.65 8.92 8. 57	85.5 10.6 3.9	5.1 12.2 82.7
Ball mill feed	5,522.5	100.0	1,884	8.06	100.0	100.0

TABLE 55Combined Results of Pilot Plant Investigation

The combined metallics and flotation concentrates produced in Pilot Plant Tests No. 1 and 2 assayed 15,763 ounces silver per ton and 3.22% cobalt. Pilot Plant Tests No. 3 and 4 has a combined concentrate assaying 14,209 ounces silver per ton and 2.48% cobalt. Pilot Plant Test No. 5 had a combined concentrate assaying 13,600 ounces silver per ton and 4.64% cobalt.

The recovery of metallic silver from table concentrates as reported in Mines Branch Investigation Report IR 66-77 has been investigated further and improved recoveries obtained. This is illustrated by the results shown in Table 31. The +200 mesh metallics assayed 20,198 ounces silver per ton and 2.10% cobalt in a concentrate weighing 7.0% of the total weight and containing 67.9% of the silver and 1.8% of the cobalt in the feed to the test. The flotation concentrate from the -200 mesh fraction assayed 9,499 ounces silver per ton and 3.68% cobalt. These two concentrates combined to give a concentrate assaying 15,937 ounces silver per ton and 2.73% cobalt and representing 11.6% of the original weight. The silver recovery was 89.0% with only 3.8% of the cobalt in the test feed.

The combined pilot plant operation resulted in the production of a concentrate assaying 14,327 ounces silver per ton and 3.65% cobalt and with a recovery of 11.3% of the weight, 85.5% of the silver and 5.1% of the cobalt (see Table 55).

Each of these combined concentrates, the one produced in the laboratory and the one from the pilot plant, are suitable for direct treatment in the silver refinery.

Attempts to upgrade the table concentrate by cycloning, tabling and jigging were not successful. The results obtained in ten cycloning tests under various conditions were unsatisfactory and did not warrant further investigation. The results obtained by tabling showed some concentration (see Table 17) but the concentrate was not suitable for direct refining. Jigging resulted in an upgraded concentrate which was not suitable for direct refining.

Table 54 illustrates the feasibility of producing a flotation concentrate of a grade of silver and cobalt suitable for treatment in the silver refinery.

ACKNOWLEDGEMENT

The chemical analyses of this investigation were carried out by the staff of Cobalt Refinery Division, Kam-Kotia Mines Limited.