This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

COPY NO. 19

INDUSTRIAL CONFIDENTE DATE DEC 12 AUTHORIZED BY

DEPARTMENT OF ENERGY, MINES AND RESOURCES

CANADA

OTTAWA

MINES BRANCH INVESTIGATION REPORT IR 67-17

CONCENTRATION OF MAGNETITE ORE FROM JAYBEE LANDRY EXPLORATION AND MINING COMPANY LIMITED, SUDBURY, ONTARIO

by

T. O. LLEWELLYN

MINERAL PROCESSING DIVISION

NOTE: THIS REPORT RELATES ESSENTIALLY TO THE SAMPLES AS RECEIVED. THE REPORT AND ANY CORRESPONDENCE CONNECTED THEREWITH SHALL NOT BE USED IN FULL OR IN PART AS PUBLICITY OR ADVERTISING MATTER.

FEBRUARY 14, 1967

Industrial Confidential

Mines Branch Investigation Report IR 67-17

CONCENTRATION OF MAGNETITE ORE FROM JAYBEE LANDRY EXPLORATION AND MINING COMPANY LIMITED, SUDBURY, ONTARIO

by

T. O. Llewellyn*

- - - -

SUMMARY OF RESULTS

The investigation showed that cobbing at coarse sizes (Tests 1 and 2) did not produce an acceptable shipping product.

By cobbing at -10 mesh, a 98.42% recovery with a grade of 60.0% iron was obtained. This cobbed concentrate was reground to pass a 100 mesh screen and subjected to a second stage of magnetic concentration. An overall recovery of 96.97% with a grade of 68.77% iron was obtained.

Other tests showed a decrease of less than 0.5% in recovery when the fineness of grinding was increased from 10 to 48 mesh before wet cobbing but the grade of concentrate increased over 5% to 65.2% iron at 48 mesh. These cobbed concentrates were further ground to pelletizing size and concentrated, producing a final product with a grade better than 70.0% iron. The copper content did not exceed 0.01%.

i

^{*} Scientific Officer, Metallic Minerals Sub Division, Mineral Processing Division, Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

INTRODUCTION

Shipment

On August 16, 1966, a shipment of iron ore, weighing 525 lb, was received at the Mines Branch Laboratories from Mr. J. Bardswich, Managing Director, Jaybee Landry Exploration and Mining Company Limited, Sudbury, Ontario.

Location of Property

The shipment was from a property which is located in Hess Township within a mile of the village of Cartier, Sudbury Mining Division, Sudbury, Ontario.

Description of Property

In his letter dated July 25, 1966, Mr. Bardswich mentioned that a dip needle survey of the deposit suggests a potential of 6,000 to 8,000 tons per vertical foot. Deepest penetration to date was 76 feet vertically in orebody. It was also mentioned that there is a possibility of finding other similar occurrences on the property.

Purpose of the Investigation

The following information was requested:

- 1 Feasibility of producing an acceptable shipping product by crushing, screening and magnetic concentration in the minus 2 inches plus 3/8 inch size.
- 2 Determine the degree of grinding, followed by magnetic concentration, required to produce an acceptable concentrate.
- 3 Copper content of concentrates.

Sampling and Analysis of the Shipment

Because coarse cobbing tests were requested, the shipment was not crushed and sampled according to standard procedures. After the initial coarse cobbing test the products were weighed, crushed and sampled for test analysis. After a second stage of crushing the fractions were recombined in proportion to their initial weights and a representative head sample was riffled out for chemical analysis. The analysis of the head sample is reported in Table 1.

TABLE 1

Chemical Analysis of Head Sample

Constituents	%
Total iron	51.30
Soluble iron	50.80
Silica	8.57
Sulphur	0.091
Phosphorus	0.02
Copper	0.036

Note: Analyses in the tables below are for soluble iron.

Test Procedure

As requested, the ore was crushed to minus 2 in., and screened on a 3/8 in. mesh screen producing two fractions, one minus 2 in. plus 3/8 in. and the other minus 3/8 in. The minus 2 in. plus 3/8 in. fraction was dry cobbed (Test 1) which produced a concentrate, middling and tailing with the percentage weight and assay shown in Table 2.

The minus 3/8 in. fraction was weighed and then sampled for analysis of soluble iron and the results included in Table 2.

A series of cobbing tests were carried out at different particle sizes. These cobbed concentrates were reground to various sizes and subjected to a second stage of concentration.

Test 2 Magnetic Cobbing at -1 In.

Each of the three products of Test 1 was crushed to minus 1 inch. A sample for assay was riffled from each product. The rejects of these three products were combined with a proportional weight of the -3/8 in. fraction of the original sample for further treatment. The combined product was split into two parts. One fraction was used in Test 2 and the other fraction was used in Tests 3 and 4. In Test 2, the material was concentrated by the Ball-Norton dry belt separator producing a concentrate, a middling and a tailing. For sampling purposes each product was crushed to minus 1/4 in. and riffled to give a sample for assay and a reject. The results of Test 2 are shown in Table 3.

Results of Dry Cobbing at -2 in. + 3/8 In. (Ball Norton Separator)

Test 1

١

Product	%	%	% Fe
	Weight	Fe	Distribut;ion
Mag concentrate	56.40	53.40	60.05
Middling	19.80	49.00	19.34
Tailing	8.00	29.80	4.74
-3/8 in. fraction	15.80	50.40	15.87
Head *	100.00	50.16	100.00

* Calculated

TABLE 3

Results of Dry Cobbing at -1 In.

Test 2

Product	%	%	% Fe
	Weight	Fe	Distribution
Mag concentrate	47.77	56.1	53.35
Middling	38.06	51.3	38.86
Tailing	14.17	27.6	7.79
Head *	100.00	50.23	100.00

* Calculated

Test 3 Dry Cobbing at -1/4 In.

The second portion of the -l in. sample was crushed to -1/4 inch. A small fraction was removed by riffling for Test 3. The remainder of the material was crushed to -10 mesh for subsequent tests. From the -10 mesh material a head sample was riffled out for assay. Results of Test 3 are shown in Table 4.

TABLE 4	
---------	--

Results	of	Dry	Cobbing	at	-1/4	Ino

Test 3			 1990 - میں اللہ اللہ الیے میں میں الیے الیے الیے الیے الیے الیے الیے الیے	
Product	% Weight	% Fe	% Fe Distribution	R/C
Mag concentrate Tailing	86.91 13.09	57.0 10.7	97 . 25 2.75	1.15 :1
Head *	100.00	50.94	100.00	

* Calculated

TABLE 5

Results of Screen Test on Tailing Test 3

Mesh	% Weight
-1/4 in. + 6 M -6 in. + 8 M -8 in. +10 M -10 M	22.90 7.63 8.02 61.45
Total	100.00

Test 4 Wet Magnetic Cobbing at -10 m

About 3200 grams of the -10 m material was riffled out for Test 4. The results of Sala wet magnetic separation are given in Table 6. A screen test was made on the concentrate.

Regults of Wet Magnetic Cobbing at -10 m

Test 4

Product	% Weight	°'' Fe	% Fe Distribution	R/C
Mag concentrat e Tailing	83 .1 0 16 . 90	60.00 4.75	98.42 1.58	1.2:1
Head *	100.00	50.66	100,00	

* Calculated

ጥ	AF	λT.	E	7	
1	AL	11	Ľ.		

Results of Screen Test on Concentrate Test 4

Mesh	% Weight	% Acum
-10+14 -14+20 -20+28 -28+35 -35+48 -48+65 -65+100 -100	17.05 21.00 13.20 10.70 7.85 7.15 6.95 16.10	17.05 38.05 51.25 61.95 69.80 76.95 83.90 100.00
Total	100.00	-

Test 5 Magnetic Concentration at -100m

Microscopic examination, of the screen fractions of Test 4 cobbed concentrate, showed the presence of a quantity of unliberated material. This cobbed concentrate was stage ground to -100 mesh and then concentrated by the Jeffrey-Steffensen 3 drum separator. The results are given in Table 8.

· _ ·

					<u>.</u>	<u>、</u>				
Product	% W	% Weight Analysis % % Distribution Fe (cal)			Analysis %				R/C in Original	
· · · · · · · · · · · · · · · · · · ·	Test	Original	Fe	Cu	Si02	S	Р	Test	Original	Feed
Combined * Conc + Midds	84.63	70.33	68.77	0.01	3.29	0.02	0.02	98.53	96.97	1.42:1
Mag concentrate Middling Tailing	82.68 1.95 15.37	1.62	69.00 59.00 5.65	0.01 0.02	3.04 13.79 -	0.02	0.02 0.02		95.05 1.92 1.45	1.46:1
Head	100.00	83.10	60.00			-		100.00	98.42	-

Results of Magnetic Concentration at -100m

Test 5

* Calculated

σ

Results of Screen Test on Concentrate - Test 5

Mesh	% Weight	% Acum
-100+150 -150+200 -200+270 -270+325 -325	25.95 27.70 9.05 8.90 28.40	25.95 53.65 62.70 71.60 100.00
Total	100.00	-

Tests 7 to 9 Cobbing at -10, -28, and -48 m

The following three tests were carried out to determine the effect on the recovery by cobbing the material crushed to pass three different size screens. Three separate samples were crushed and ground to -10m, -28m, and -48m, respectively, and passed through the Sala Magnetic Separator. The results are given in Table 10. A screen test was made of each concentrate.

TABLE 10

Results of Cobbing at -10, -28, and -48 m

Test 7

ť

Ν

Feed -10 m Ore

Product	% Weight	% Fe	% Fe Distribution	R/C
Mag concentrat e Tailing	84.37 15.63	59.20 5.00	98.46 1.54	1.18 :1
Head *	100.00	50 .73	100.00	

Test 8

Feed -28 m Ore

Mag concentrate Tailing	79.90 20.10		98.11 1.89	1 . 25 :1
Head *	1.00.00	50.82	100.00	

* Calculated

(cont'd)

TABLE 10 (concl'd)

Test 9	Feed -48 m Ore					
Mag concentrate Tailing	76.20 23.80	65.20 4.25	98.01 1.99	1.31:1		
Head *	-	50.69	100.00			

* Calculated

TABLE 11

Results of Screen Test on Concentrates

Test 7		
Mésh	% Weight	% Acum
-10 +14 -14 +20 -20 +28 -28 +35 -35 +48 -48 +65 -65 +100 -100	14.45 19.10 13.30 11.20 8.70 8.60 7.60 17.05	14 -45 33 - 55 46 - 85 58 - 05 66 - 75 75 - 35 82 - 95 100 - 00
Total	100.00	-

Test 8		
Mesh	% Weight	% Acum
-28 +35 -35 +48 -48 +65 -65 +100 -100	22.10 19.70 16.25 13.40 28.55	22.10 41.80 58.05 71.45 100.00
Total	100.00	

(cont'd)

TALLE 11 (concl'd)

Test 9		
Mesh	% Weight	% Acum
-48 +65 -65 +100 -100 +150 -150+200 -200+325 -325	28.75 25.20 14.25 11.40 7.45 12.95	28,75 53.95 68.20 79.60 87.05 100.00
Total	100.00	-

Test 7B to 9B

١

The cobbed magnetic concentrates of Tests 7, 8 and 9 were reground to 79.5%, 70.2% and 64.5% minus 325 mesh, respectively, and subjected to a second stage of concentration in the Jeffrey separator. The results are shown in Table 12, A screen test was made of each concentrate.

TABLE	12
-------	----

Results of Magnetic Concentration

Test 7-B

1650 / =D		فندادي متوسين شورختين مرواهي		ومستركرته وتزوجين والمروا						
Product	% Wei	3		Ana	alysis	0% /0			ibution e	R/C in Original
· · · · · · · ·	Test	Original	Fe	Cu	Si02	S	Р	Test	Original	Feed
Mag concentrat e Middling Failing	80.93 2.62 16.45	68,28 2,21 13,88	7 0.7 66.6 7.2	0.01 0.012	0•79 5•30	0.02 0.028	0.01 0.02	95.15 2.89 1.96	93.68 2.85 1.93	1.46:1
Head	100.00	84.37	59.2·			· ·		100.00	98.46	· · · · · · · · · · · · · · · · · · ·
Combined * Conc + Midd	83.55	70.49	70.57	0.01	0.93	0.02	0.01	98.04	96.53	1.42:1
Test 8-B	· · · · · · · · · · · · · · · · · · ·									
Mag, concentrate Middling Tailing	85.00 2.49 12.51	67.91 1.99 10.00	70.5 66.0 8.1	0.009 0.012	0.78 5.91	0.011 0.031	0.02 0.02	95.76 2.62 1.62	93.95 2.57 1.59	1.47:1
Head	100.00	79.90	62.4					100.00	98.11	
Combined * Conc + Midd	87.49	69.90	70.36	0,009	0.92	0.011	0.02	98.38	96.52	1.43 :1
Test 9-B				· · · · · · · · · · · · · · · · · · ·						·
Mag concentrate Middling Tailing	90.66 2.32 7.02	69.08 1.77 5.35	70.20 65.60 10.05	0.009 0.014	1.19 7.45	0.012 0.024	0.02 0.02	96.61 2.31 1.08	94.69 2.26 1.06	1.45 :1
Head	100.00	76.20	65.20					100.00	98.01	
Combined * Conc + Midd	92,98	70.85	70.08	0.009	1.35	0.012	0.02	98.92	96.95	1.41:1

* Calculated

10

nesur	CS OI DETERM	lesus on concer		
Mesh	Test 7-B Test 8-B		Test 9-B % Weight	
Weight %		% Weight		
+200 +325 -325	4.5 16.0 79.5	9.1 20.7 70.2	15 .1 20.4 64.5	
Total	100.0	100.0	100.0	

]	ABLE	13	
Results	of	Screen	Tests	on	Concentrates

CONCLUSIONS

Results of the investigation showed that cobbing of coarse sizes (-2 in. + 3/8 in. and -1 in.) did not produce an acceptable cobbed concentrate.

By cobbing at -10 mesh a 98.42% recovery with a grade of 60.00% iron was obtained. Regrinding this cobbed concentrate to -100 mesh and then concentration by the Jeffrey-Steffensen Separator produced an overall recovery of 96.97% with a grade of 68.77% iron.

Other tests showed slight effect upon the recovery if cobbing was accomplished at -10 m, -28 m, or 48 m. By regrinding these cobbed concentrates to pelletizing size and a second stage of magnetic concentration, a final product with an overall recovery of more than 96.5% and a grade better than 70.0% iron was obtained.

ACKNOWLEDGEMENT

All chemical analysis in this investigation were made by the Analytical Chemistry Sub division, Mineral Science Division, Mines Branch, Ottawa.

TOL:dg