
This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER	STATISTICS N	
10 1	a Ti Si	oures
ID IX		
	and the second second second second	

DEPARTMENT OF ENERGY, MINES AND RESOURCES

CANADA

OTTAWA

MINES BRANCH INVESTIGATION REPORT IR 66-77

UPGRADING SILVER CONCENTRATES FROM COBALT REFINERY LIMITED, COBALT, ONTARIO

by

A. J. BOISONNAULT

MINERAL PROCESSING DIVISION

NOTE: THIS REPORT RELATES ESSENTIALLY TO THE SAMPLES AS RECEIVED. THE REPORT AND ANY CORRESPONDENCE CONNECTED THEREWITH SHALL NOT BE USED IN FULL OR IN PART AS PUBLICITY OR ADVERTISING MATTER.

COPY_NO. 8

SEPTEMBER 30, 1966

Industrial Confidential

Mines Branch Investigation Report IR 66-77

UPGRADING SILVER CONCENTRATES FROM COBALT

REFINERY LIMITED, COBALT, ONTARIO

by

A. J. Boisonnault*

SUMMARY OF RESULTS

Pilot plant investigations on two samples of high grade silver table concentrates produced five grades of product. One of the products from each test, containing between 53 and 66 percent of the silver, was suitable for direct treatment in the silver refinery. The treatment of these fractions could result in more efficient operation and a quicker return of a considerable percentage of the silver.

*Technical Officer, Mineral Processing Division, Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

INTRODUCTION

Most of the silver concentrates, both gravity and flotation, produced in the Cobalt area of Ontario are shipped to Cobalt Refinery Ltd. These concentrates contain large amounts of sulphide and gangue minerals and are not of a high enough silver grade for direct treatment in the silver refinery. It is necessary to employ a costly initial treatment including electric furnace smelting and chemical extraction before treatment in the silver refinery.

Purpose of Investigation

Mr. J. N. Cram, Vice President and General Manager of Cobalt Refinery Ltd., wished to determine the feasibility of using conventional mineral processing methods to produce, from purchased table concentrates, a high grade silver concentrate suitable for direct silver refining.

In a letter dated January 27, 1966 to Dr. John Convey, Mr. Cram requested the use of the Mines Branch facilities to corroborate the results of laboratory investigations carried out by Mr. Ramon Champetier at Cobalt Refinery Ltd.

Shipment

Five drums containing approximately two tons of table concentrate were received at the Mines Branch on January 31, 1966. Approximately one ton of Silverfield table concentrate and one ton of Agnico table concentrate were received on March 21, 1966.

The head sample analyses of the shipments are given in Table No. 1.

1	Composite	Langis	Hi Ho	Silverfield
Element	Sample	Silver Mines	Silver Mines	Silver Mines
Silver Cobalt Arsenic Iron Sulphur Nickel Copper	1980 oz/ton 8.6 % 35.4 % 10.0 % 8.0 % 3.1 % 0.4 %	1114 oz/ton 5.4 % 21.9 % 14.6 % 10.2 % 1.4 % 0.42 %	2822 oz/ton 8.5 % 35.2 % 7.2 % 3.5 % 3.5 % 0.24 %	2304 oz/ton 9.3 % 39.5 % 10.2 % 10.2 % 2.4 % 0.50 %

Analyses of Table Concentrates

OUTLINE OF INVESTIGATIONAL PROCEDURE

Laboratory investigations had been carried out in Cobalt so the present project consisted of four pilot plant runs comprised of screening, grinding, gravity concentration by means of shaking tables and flotation. The mill feed used in the first two mill runs was a composite sample of concentrate from various mills in the Cobalt area. These two tests were of an exploratory nature with inconclusive results. However, the experience and information gained led to the third and fourth tests which confirmed the laboratory findings.

The material used in the third test run was a composite sample from the Silverfield mine. A sample of Agnico mine concentrate was treated in the fourth test run. compute out to accurate to the

Equipment Used

- 1. One No. 12 Rotex screening machine
- 2. One Sweco 30 inch double deck separator
- 3. One Hardinge universal test rod-ball mill $20'' \ge 30''$ with 500 pounds 1'' to $1 \frac{1}{2''}$ steel balls
- 4. One Deister No. 15-S diagonal deck concentrating table
- 5. One standard size Wilfley concentrating table

- 6. One Denver 12" x 18" conditioner
- 7. Four Denver No. 7 flotation cells
- 8. Five Denver No. 5 flotation cells
- 9. Feeders, pumps, holding tanks etc.

DETAILS OF INVESTIGATION

Mill Run No. 1

Sixteen hundred and thirty-four pounds of composited table concentrate was screened on a Rotex screen fitted with an 80 mesh Tyler wire cloth. The minus 80 mesh material was stockpiled for later treatment. The plus 80 mesh fraction was fed to the ball mill at a rate of 350 pounds per hour. Water was added at a rate to give a ball mill pulp discharge of 50-60% solids. The ball mill discharge was pumped to the Sweco separator which was fitted with 60 and 80 mesh screens. Sufficient water was added to allow wet screening.

The plus 60 mesh fraction and the minus 60 plus 80 mesh fraction were collected individually in tubs to determine if coarse silver flakes were retained at these sizes. These fractions were combined later, and tabled to produce a concentrate and tailing. These products were collected, dried and sampled for assay.

When all the plus 80 mesh material had been fed to the ball mill, the mill run was continued with the minus 80 mesh material. This minus 80 mesh material was fed directly to the Sweco separator, by-passing the ball mill. All other treatment was the same.

The minus 80 mesh underflow from the Sweco separator was pumped to a Deister table on which a concentrate and tailing were produced. These products were collected in holding tanks and tubs.

The Deister concentrate was fed from a Pulva disc feeder to a Denver $12'' \ge 18''$ conditioner at a rate of 360 pounds per hour at 20-25% solids which overflowed to a No. 7 Denver flotation cell where a concentrate and tailing were collected for analysis.

A 200 pound portion of the Deister tailing was passed over a standard Wilfley concentrating table at a rate of 400 pounds per hour at 20-25% solids. A concentrate, middling and tailing were collected for analysis. The remaining Deister table tailing was fed at a rate of 360 pounds per hour at 25-30% solids to a Denver 12" x 18" conditioner which overflowed to four No. 7 Denver flotation cells. The first cell produced a silver concentrate, the second cell an iron concentrate and the last two a cobalt concentrate.

The desired pH was not attained during flotation because the acid being used was too dilute and the feed had been run through the circuit before the correct pH could be achieved. The material still in the conditioner and flotation cells at the end of the run was not removed but was left in place for Mill Run No. 2. Estimated weight was 125 pounds.

The ball mill was operated for one hour after all the ore had been fed to the mill. At the end of this hour, the material remaining in the mill was screened on a 60 mesh screen and the plus and minus 60 mesh fractions were dried and assayed.

Figure 1 shows the flowsheet used in Mill Run No. 1. The reagents used and conditions are shown in Table No. 2 and the results obtained are shown in Table No. 3.

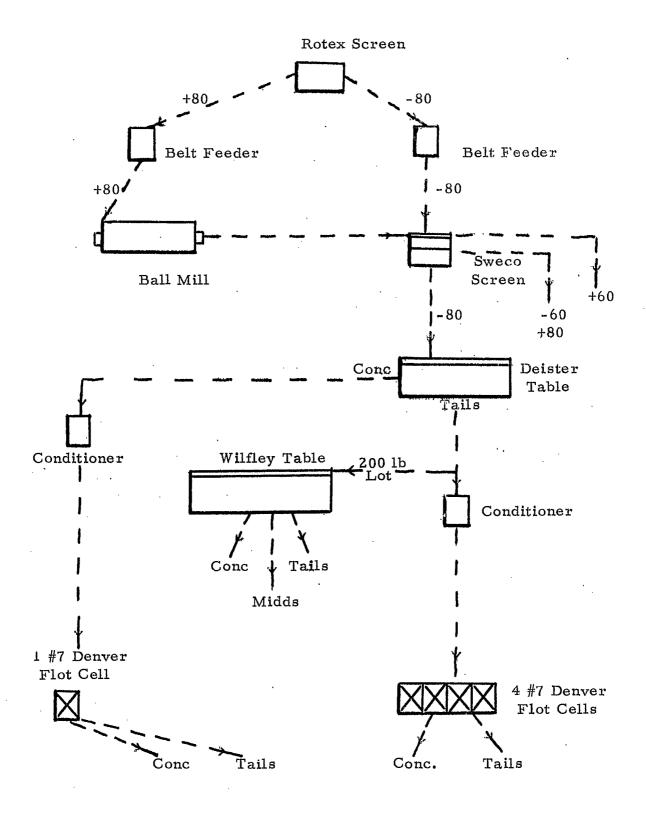


Figure 1. Flowsheet for Mill Run No. 1

ł

Reagents and Conditions for Mill Run No. 1

	· · · · · · · · · · · · · · · · · · ·	· · ·		
Material	Operation	Reagent	pH	1b/ton of Feed
Deister	Conditioner	Lime	11	1.50
Conc		Cyanide		0.375
	Flot Cell	Aerofroth 60	11	0.05
		Z6		U. 450
			· .	
Deister	Conditioner	Lime	11	1.50
Tails		Cyanide		0.375
	l st Flot Cell	Aerofroth 60	11	0.05
· · ·	· · · · ·	Z′6		0.450
	2 nd Flot Cell	Acetic Acid	6	10.50
	3 rd Flot Cell	Sulphuric Acid	<u>.</u> 5	9.00
· .	4 th Flot Cell		'5	,

6

`?;

TABLE'NO. 3

•

Results of Pilot Plant Run No. 1

\mathbf{Gr}	inding

	Weight	As	Distribution %				
Product	Product %	Ag oz/ton	Co %	Fe %	Ag	Co	Fe
Metallics	12.5	10,278	10.50	6.8	45.7	13.0	8.7
Sweco -80M	75.3	. 1,195	10.60	10.7	37.3	79.2	82.6
Sweco +80M	12.2	3, 362	6,48	6.9	17.0	7.8	8.7
Mill Feed	100.0	2,595	10.08	9.7	100.0	100.0	100.0

Metallics Screened

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t `e			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	`e			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Total	
+60 Mesh 88.0 11.0 10,800 95.0 5.0		Ag	Co	Fe
-60+80M 12.0 1.5 6,450 5.0	- 4	<u> </u>		
-60+80M 12.0 1.5 6,450 5.0	- 4			1
	-	43.4	-	-
		Z.3	_	-
	1			
Metallics 100,0 12,5 10,278 10,5 6,8 100,0 -	- 12	45.7	13.0	8.7
Metallics 100.0 12.5 10,278 10.5 6.8 100.0 -	- J -	13.1	13.0	
+80 Mesh Tabled				
	<u> </u>			
Conc 51.7 6.3 6,116 10.3 8.6 93.8 82.0 64	4.41	16 0	6.4	5.6
			I	
Tails 48.3 5.9 422 2.4 5.0 6.2 18.0 3	5.6	1.0	1.4	3.1
Sweco+80M 100.0 12.2 3,362 6.5 6.9 100.0 100.0 100	0.01	17.0	7.8	8.7
-80 Mesh Tabled				
	T			
Conc 44.0 33.2 1,783 14.27 10.0 65.9 59.6 4	1. 512	24.6	47.Z	34. 3
	- 1			
			13.4	
Tails #2 33.0 24.8 784 7.60 11.0 21.2 23.5 33	3.9	7.9	18.6	28.0
Sweco-80M 100.0 75.3 1,195 10.60 10.7 100.0 100.0 100	0 03	27 2	79.2	82.6
Sweco-80M 100.0 75.3 1,195 10.60 10.7 100.0 100.0 100	<u>v. v</u> [-	51.5	1 7. 4	02.0
· · · · · · · · · · · · · · · · · · ·			•	•••
Electric of 20 Mach Table Cone				
Flotation of -80 Mesh Table Conc			1	
			1 1	
		116.9	1 2 /	
	0,8			3.7
Cell Cleanings 11,1 3,7 1,892 14,3 9,4 11,8 11.0 1	0.8		3.6	3.7 3.6
Con Creanings 1111 Stri 1987	0.5	Z. 9	5.2	3.6
		Z. 9		3.6
Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7	.0,5 78,7	2.9 4.8	5.2 38.4	3.6 27.0
Cont Creanings 1111 Str 1, 57	.0,5 78,7	2.9 4.8	5.2 38.4	3.6 27.0
Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7	.0,5 78,7	2.9 4.8	5.2 38.4	3.6 27.0
Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7	.0,5 78,7	2.9 4.8	5.2 38.4	3.6 27.0
Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10	.0,5 78,7	2.9 4.8	5.2 38.4	3.6 27.0
Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7	.0,5 78,7	2.9 4.8	5.2 38.4	3.6 27.0
Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 1	.0,5 78.7 00.0	2.9 4.8 24.6	5.2 38.4 47.2	3.6 27.0 34.3
Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>	.0,5 78,7	2.9 4.8 24.6	5.2 38.4 47.2	3.6 27.0 34.3
Conc 100.0 33.2 1,783 14.3 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 1	.0, 5 78, 7 00, 0	2.9 4.8 24.6	5.2 38.4 47.2 3.7	3.6 27.0 34.3 2.9
Conc 100.0 33.2 1,783 14.3 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 Image: Conc 17.3 3.0 1,240 12.5 9.6 31.5 27.6 1 Midds 67.1 11.6 638 8.1 13.2 66.4 69.4 7	.0, 5 78, 7 00, 0	2.9 4.8 24.6 1.5 3.2	5.2 38.4 47.2 3.7 9.3	3.6 27.0 34.3 2.9 15.7
Conc 17.3 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 1	.0, 5 78, 7 00, 0	2.9 4.8 24.6 1.5 3.2	5.2 38.4 47.2 3.7 9.3	3.6 27.0 34.3 2.9 15.7
Conc 100.0 33.2 1,783 14.3 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 Image: Conc 17.3 3.0 1,240 12.5 9.6 31.5 27.6 1 Midds 67.1 11.6 638 8.1 13.2 66.4 69.4 7	.0, 5 78, 7 00, 0	2.9 4.8 24.6 1.5 3.2 0.1	5.2 38.4 47.2 3.7 9.3 0.4	3.6 27.0 34.3 2.9 15.7 1.7
Conc 100.0 33.2 1,783 14.3 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 Image: Conc 17.3 3.0 1,240 12.5 9.6 31.5 27.6 1 Midds 67.1 11.6 638 8.1 13.2 66.4 69.4 7 Tails 15.6 2.7 85 1.6 6.1 2.1 3.0	0.5 78.7 00.0	2.9 4.8 24.6 1.5 3.2 0.1	5.2 38.4 47.2 3.7 9.3	3.6 27.0 34.3 2.9 15.7 1.7
Conc 100.0 33.2 1,783 14.3 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 Image: Conc 17.3 3.0 1,240 12.5 9.6 31.5 27.6 1 Midds 67.1 11.6 638 8.1 13.2 66.4 69.4 7	0.5 78.7 00.0	2.9 4.8 24.6 1.5 3.2 0.1	5.2 38.4 47.2 3.7 9.3 0.4	3.6 27.0 34.3 2.9 15.7 1.7
Conc 100.0 33.2 1,783 14.3 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 Image: Conc 17.3 3.0 1,240 12.5 9.6 31.5 27.6 1 Midds 67.1 11.6 638 8.1 13.2 66.4 69.4 7 Tails 15.6 2.7 85 1.6 6.1 2.1 3.0	0.5 78.7 00.0	2.9 4.8 24.6 1.5 3.2 0.1	5.2 38.4 47.2 3.7 9.3 0.4	3.6 27.0 34.3 2.9 15.7 1.7
Conc 17.3 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0.5 78.7 00.0	2.9 4.8 24.6 1.5 3.2 0.1	5.2 38.4 47.2 3.7 9.3 0.4	3.6 27.0 34.3 2.9 15.7 1.7
Conc 100.0 33.2 1,783 14.3 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 Image: Conc 17.3 3.0 1,240 12.5 9.6 31.5 27.6 1 Midds 67.1 11.6 638 8.1 13.2 66.4 69.4 7 Tails 15.6 2.7 85 1.6 6.1 2.1 3.0	0.5 78.7 00.0	2.9 4.8 24.6 1.5 3.2 0.1	5.2 38.4 47.2 3.7 9.3 0.4	3.6 27.0 34.3 2.9 15.7 1.7
Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 . <td< td=""><td>0.5 78.7 00.0 14.3 77.4 8.3</td><td>2.9 4.8 24.6 1.5 3.2 0.1 4.8</td><td>5.2 38.4 47.2 3.7 9.3 0.4</td><td>3.6 27.0 34.3 2.9 15.7 1.7 20.3</td></td<>	0.5 78.7 00.0 14.3 77.4 8.3	2.9 4.8 24.6 1.5 3.2 0.1 4.8	5.2 38.4 47.2 3.7 9.3 0.4	3.6 27.0 34.3 2.9 15.7 1.7 20.3
Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 Image: Conc 17.3 3.0 1,240 12.5 9.6 31.5 27.6 1 Midds 67.1 11.6 638 8.1 13.2 66.4 69.4 7 Tails 15.6 2.7 85 1.6 6.1 2.1 3.0 No. 1 Tails 100.0 17.3 656 7.8 11.5 100.0 100.0 10 Flotation of -80 Mesh Deister Table Tails No. 2 Image: Conc of the start table tails 10 10 10	0.5 78.7 00.0 14.3 77.4 8.3	2.9 4.8 24.6 1.5 3.2 0.1 4.8	5.2 38.4 47.2 3.7 9.3 0.4 113.4	3.6 27.0 34.3 2.9 15.7 1.7 20.3
Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 Image: Conc 17.3 3.0 1,240 12.5 9.6 31.5 27.6 1 Midds 67.1 11.6 638 8.1 13.2 66.4 69.4 7 Tails 15.6 2.7 85 1.6 6.1 2.1 3.0 No. 1 Tails 100.0 17.3 656 7.8 11.5 100.0 100.0 10 Flotation of -80 Mesh Deister Table Tails No. 2 No. 1 Conc 21.0 5.2 2,216 7.3 12.5 60.7 19.9 2	0.5 78.7 00.0 14.3 77.4 8.3	2.9 4.8 24.6 1.5 3.2 0.1 4.8	5.2 38.4 47.2 3.7 9.3 0.4 13.4 3.7	3.6 27.0 34.3 2.9 15.7 1.7 20.3
Conc 11.1 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 <	0.5 78.7 00.0 4.3 77.4 8.3 000.0	2.9 4.8 24.6 1.5 3.2 0.1 4.8 1.1	5.2 38.4 47.2 3.7 9.3 0.4 13.4 3.7	3.6 27.0 34.3 2.9 15.7 1.7 20.3
Conc 11.1 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 <	0.5 78.7 00.0 14.3 77.4 8.3	2.9 4.8 24.6 1.5 3.2 0.1 4.8 1.1	5.2 38.4 47.2 3.7 9.3 0.4 13.4 3.7	3.6 27.0 34.3 2.9 15.7 1.7 20.3
Conc 11.1 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 Image: Conc 17.3 3.0 1,240 12.5 9.6 31.5 27.6 1 Midds 67.1 11.6 638 8.1 13.2 66.4 69.4 7 Midds 67.1 11.6 638 8.1 13.2 66.4 69.4 7 No. 1 Tails 100.0 17.3 656 7.8 11.5 100.0 100.0 10 Flotation of -80 Mesh Deister Table Tails No. 2 2 2 2 2 6 13.4 1 1 9 2 No. 1 Cell Conc 3.0 0.7 4,000 3 13.4 1 3 4 1 No. 3 Cell Conc 0.7 0.2 2 8.1 10.0 0.3 13.4 1	0.5 78.7 00.0 4.3 77.4 8.3 000.0	2.9 4.8 24.6 1.5 3.2 0.1 4.8 1.1	5.2 38.4 47.2 3.7 9.3 0.4 13.4 3.7 2.5	3.6 27.0 34.3 2.9 15.7 1.7 20.3
Control Creatings Tails Total of the second structure Total of the second struc	0.5 78.7 70.0 14.3 77.4 8.3 00.0 23.9 111.5	2.9 4.8 24.6 1.5 3.2 0.1 4.8 4.8 1.1 0.0 1.4	5.2 38.4 47.2 3.7 9.3 0.4 113.4 3.7 2.5	3.6 27.0 34.3 2.9 15.7 1.7 20.3 6.7 3.2
Control Gramming Tails Tails <thtails< td="" th<=""><td>0.5 78.7 00.0 4.3 77.4 8.3 000.0</td><td>2.9 4.8 24.6 1.5 3.2 0.1 4.8 4.8 1.1 0.0 1.4</td><td>5.2 38.4 47.2 3.7 9.3 0.4 13.4 3.7 2.5</td><td>3.6 27.0 34.3 2.9 15.7 1.7 20.3 6.7 3.2</td></thtails<>	0.5 78.7 00.0 4.3 77.4 8.3 000.0	2.9 4.8 24.6 1.5 3.2 0.1 4.8 4.8 1.1 0.0 1.4	5.2 38.4 47.2 3.7 9.3 0.4 13.4 3.7 2.5	3.6 27.0 34.3 2.9 15.7 1.7 20.3 6.7 3.2
Control Creatings Tails Total Total </td <td>0.5 78.7 10.0 14.3 77.4 8.3 17.4 8.3 00.0</td> <td>2.9 4.8 24.6 1.5 3.2 0.1 4.8 1.1 0.0 1.4 0.6</td> <td>5.2 38.4 47.2 3.7 9.3 0.4 13.4 3.7 2.5 5 12.4</td> <td>3.6 27.0 34.3 2.9 15.7 1.7 20.3 6.7 3.2 18.1</td>	0.5 78.7 10.0 14.3 77.4 8.3 17.4 8.3 00.0	2.9 4.8 24.6 1.5 3.2 0.1 4.8 1.1 0.0 1.4 0.6	5.2 38.4 47.2 3.7 9.3 0.4 13.4 3.7 2.5 5 12.4	3.6 27.0 34.3 2.9 15.7 1.7 20.3 6.7 3.2 18.1
Cont Oreanings Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7 Tails 75.3 25.0 460 15.4 10.5 19.4 81.4 7 Conc 100.0 33.2 1,783 14.3 10.0 100.0 100.0 10 Retabling of -80 Mesh Table Tails No. 1 1 100.0 100.0 100.0 100.0 10 Midds 67.1 11.6 638 8.1 13.2 66.4 69.4 7 Tails 15.6 2.7 85 1.6 6.1 2.1 3.0 No. 1 Tails 100.0 17.3 656 7.8 11.5 100.0 100.0 10 Flotation of -80 Mesh Deister Table Tails No. 2 100.0 100.0 10 10 Flotation of -80 Mesh Deister Table Tails No. 2 13.4 13.4 13.4 13.4 13.4 No. 2 Cell Conc 3.0 0.7 4.000 17.4 17.4 17.4 17.4 No.	0.5 78.7 10.0 14.3 77.4 8.3 17.4 8.3 00.0	2.9 4.8 24.6 1.5 3.2 0.1 4.8 1.1 0.0 1.4 0.6	5.2 38.4 47.2 3.7 9.3 0.4 113.4 3.7 2.5	3.6 27.0 34.3 2.9 15.7 1.7 20.3 6.7 3.2 18.1

Mill Run No. 2

Two thousand three hundred and sixty-four pounds of the composite table concentrate was fed at a rate of 360 pounds per hour to a Sweco separator fitted with a 60 mesh wire cloth. The plus 60 mesh fraction was fed to the ball mill. Water was added to give a ball mill pulp discharge density of 50-60% solids. Water was also added to the mill discharge which was pumped back to the 60 mesh Sweco separator to close the grinding circuit.

The minus 60 mesh fraction from the Sweco separator was fed to a Deister table which made a concentrate and a tailing. The tailing was pumped to a Wilfley table where a concentrate, a middling and a tailing were collected.

The Deister concentrate was fed at a rate of 360 pounds per hour and 25-30% solids to a conditioner and a No. 7 Denver flotation cell. A concentrate and a tailing were collected, dried and analysed. The Wilfley table concentrate was fed at a rate of 360 pounds per hour and 25-30% solids to a conditioner and a No. 7 Denver flotation cell. The concentrate was cleaned in a No. 7 cell to produce a cleaner concentrate and a cleaner tailing.

The Wilfley tailing was given no further treatment and was collected, dried and analysed.

The Wilfley middlings were fed from a Pulva disc feeder at a rate of 360 pounds per hour at 25-30% solids to a conditioner and four No. 7 flotation cells with the first cell producing a silver concentrate, the second cell an iron concentrate and the third and fourth cells a cobalt concentrate. The desired pH was not attained so the flotation tailings were re-run through number 2, 3 and 4 cells with stronger acid. The desired pH was still not attained.

The ball mill was operated for two hours after the feed was finished. At the end of this period the material remaining in the mill was screened on a 200 mesh screen. The plus and minus fractions were dried and assayed.

Figure No. 2 shows the flowsheet for Mill Run No. 2. Table No. 4 gives the reagents and conditions and Table No. 5 the results. Table No. 6 shows a possible grouping of the various products of the mill run, their projected further treatment. assays and metal distribution.

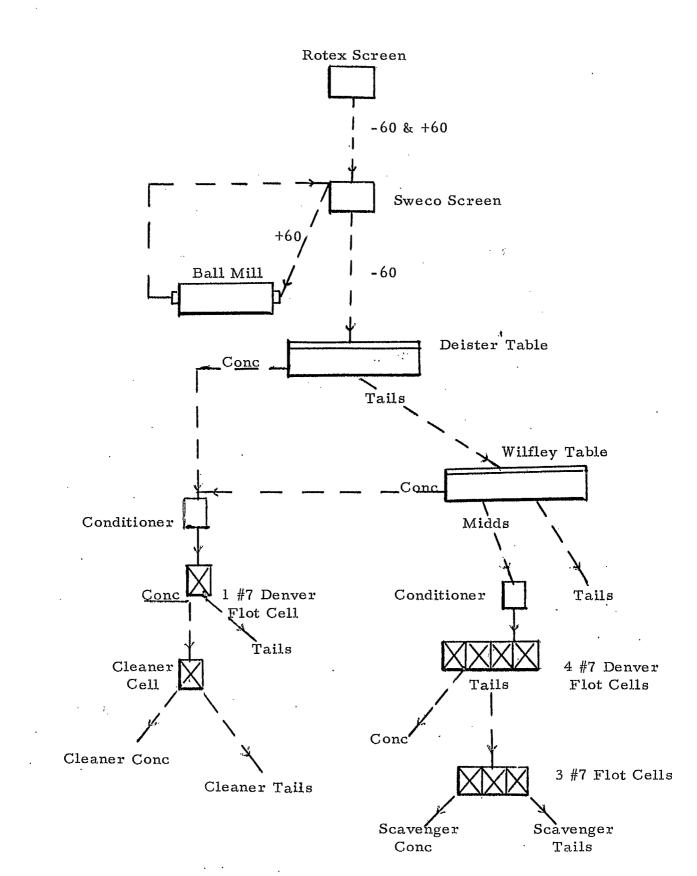


Figure 2. Flowsheet for Mill Run No. 2

Reagents and Conditions for Mill Run No. 2

Material	Operation	Reagent	Lb/Ton of Feed	pН
Deister	Conditioner	Lime	1.50	11
T a ble Conc	Flot Cell	Cyanide Aerofroth 60	.375 0.05	11
		Z6	.450	
Wilfley	Conditioner	Lime	1.50	11
Table Conc	Flot Cell	Cyanide Aerofroth 60	.375 0.05	11
	Recleaner Cell	Z6 None	. 450	
Wilfley Table Middling	$\operatorname{Conditione} \mathbf{r}$	Lime	1.50	11
	l st Flot Cell	Cyanide Aerofroth 60 Z6	.375 0.05 .450	· 11
	2 nd Flot Cell	Acetic Acid	10.5	6
	3 rd Flot Cell	Sulphuric Acid	9.0	5.
Flot Tailing				
Scavenger	2 nd Flot Cell	Acetic Acid	11.5	6
Flot	3 rd Flot Cell.	Sulphuric Acid Z6	10.0 0.20	4.5
	······································			

Results of Pilot Plant Run No. 2

Product	Weight	Ĩ	Assays		Dist	Distribution %		
Froduct	%	Ag oz/ton	Co %	Fe %	Ag	Co	Fe	
Metallics	3,5	20,155	2.63	3.6	39.1	1.2	1.5	
-60 Mesh	96.5	1,133	7.90	8.8	60.9	98.8	98.5	
Mill Feed	100.0	1.779	7.67	8.5	100.0	100.0		

Metallics Screened

Metallics	Weig	the second s		A				listrib	ution	0/			
Product	This	·····	oz/ton	Assays %	%	·····	This T			[otal			
Fiourer	Test	Total	Ag	Co.	Fe	Ag	Co	Fe	Ag	Co	Fe		
					<u> </u>			1		- <u> ~ ~</u>			
+200 Mesh	82.9	2.9	23,500	1.43	2.6	96.4	41.7	59.5	37.7	0.5	0.9		
-200 Mesh	17.1	0.6	3,990	8.40	8.5	3.6	58.3				0.6		
			-,										
Metallics	100.0	3.5	20,155	2.63	3.6	100.0	100.0	100.0	39.1	1.2	1.5		
	Metallics 100.0 3.5 20,155 2.63 3.6 100.0 100.0 100.0 39.1 1.2 1.5												
-60 Mesh	Deister	Table	1										
-													
Conc	21.0	20.2	2,600	10.53			27.2	1	29.6		21.8		
Tails	79.0	76.3	719	7.10	8.60	51.4	72.8	77.9	31.3	71.9	76.7		
									170-0				
-60 Mesh	100.0	96.5	1,133	7.90	8.80	100.0	100.0	100.0	60.9	98.8	98.5		
Flotation	of Doint	or Con	~										
r totation	T Delst		1	r	T	I	r	l	I	1	1		
Conc	19.3	3.9	9,916	7.0	8.5	73.6	13.0	178	21.8	3.6	3.9		
Tails	76.2	15,4	848	11.3	9.4	25.0	81.8			1	16.9		
Cell Cleanings		0.9		12.8	9.7	1.4	5,2				1.0		
och oreanings	1 3.3	0.7	004	1.0	1.1	1.1			0.4		1.0		
Delster Conc	100.0	20.2	2,600	10.5	9.2	100.0	100.0	100.0	29.6	26.9	21.8		
	1	1		1					- // 0		1		
Wilfley Ta	bling of	Deiste	r Tailing	s					·•				
	I	10.7	1 204	11.9	10 2	44.1	40.2	30.0	13.8	28 0	23.0		
Conc	25.1	19.2	1,284		10.3	36.7	39.5		11.5		33.2		
Midds	43.7	33.3	590	6.0	8.5	19.2	20.3			14.6			
Tails	31.2	23.8	440	4.9	7.5	19.4	20,3	20,1	0.0	14.0	B010		
Deister Tails	100.0	76.3	719	7.1	8,6	100.0	100 0	100.0	31.3	71.9	76.7		
Delater Talla	100.0	10.5	117		0,0	100.0	10010						
·													
Flotation	of Wilfle	ev Tabl	e Conc										
	1			11									
Cl Conc	7.3	1.4	10,240	6.1	6.7	58.0	3.8	4.8	8.0	1.1	1.1		
Cl Tails	14.6	2.8	1,340	11.6	10.7	15.2	14.2	15.2	2.1	4.1	3.5		
Ro Tails	74.0	14.2	438	12.5	10.5	26.8	67.0	80.0	3.7	22 7	18.4		
Cell Cleanings	4.1	0.8	438	12.5	10.5	40.0	04.0	00.0	2.1	23.1	10.1		
U U		•											
Wilfley Conc	100.0	19.2	1,284	11.9	10.3	100.0	100.0	100.0	13.8	28.9	23.0		
			•										
	•												
Flotation	of Wilfle	ey Tabl	e Middli	ngs							_		
								1					
#1 Cell Conc	2.4	0.8	4,280	7.2	10.3	20.0	2.8		2.3				
#2 Cell Conc	5.7	1.9	3,100	7.0	10.1	29.6	6.0		3.4				
#3 Cell Conc	6.3	2,1	932	9.5	8.9	9.5	8.8		1.1	2.5			
#4 Cell Conc	16.2	5.4	904	3.7	9.8	23.5	20.4		2.7	5.8			
HT 111													
Tailings	69.4	23.1	152	6.1	8.0	17.4	62.0	65.1	2.0	17.6	21.6		
Middlings	69.4 100.0	23.1	152 590	6.1	8.0 8.5	17.4		65.1		1	33.2		

Drug la star	%	Assay	/s*	Distribution %		
Products	Weight	Ag oz/ton	% Co	Ag	Co	
Ag Conc to Refinery	8.0	14,276	4.9	67.5	5.1	
Co Conc to Chemical Plant	34.7	765	11.8	15.0	51.8	
Conc to Electric Furnace	57.3	529	5.5	17.5	43.1	

Summary of Results of Mill Run No. 2

*Calculated

Mill Runs Nos. 3 and 4

The Silverfield's concentrate was used in Mill Run No. 3 and the Agnico concentrate in Mill Run No. 4.

The flowsheet used in each mill run was identical, but differed from that used in Mill Runs Nos. 1 and 2 as follows:

1. Elimination of Rotex screen and Deister table

2. Combining of Wilfley table middling and tailing to flotation

3. A different combination of flotation cells

4. Acids at full strength for desired pH

The material was fed from a Denver belt feeder at a rate of 420 pounds per hour to a 30" Sweco separator fitted with a 60 mesh wire cloth. The plus 60 mesh fraction was fed to a Hardinge 20" x 30" universal mill charged with 500 pounds of 1" to 1 1/2" steel balls. Water was added to the mill to give a discharge pulp of 50 to 60% solids which was pumped to the Sweco separator. Water was also added to the ball mill discharge pump and to the original feed hopper to allow wet screening. The minus 60 mesh material was pumped to a standard Wilfley concentrating table. The table concentrate was collected in settling tanks. The middling and tailing were combined and dewatered in a 9 foot thickening cone. The cone underflow was pumped to a conditioner and fed to four No. 7 Denver flotation cells where a silver concentrate was floated in the first cell, an iron concentrate in the second and a cobalt concentrate in cells 3 and 4. These products were dried and analysed.

The table concentrates were fed by a Pulva disc feeder at a rate of 360 pounds per hour at 20 to 25 percent solids through the same circuit. The silver concentrate from the first cell was cleaned in three No. 5 Denver cells. The cleaner tailing was returned to the No. 7 cell feed. The cleaner concentrate was recleaned in two No. 5 Denver cells. The recleaner tailing were returned to the recleaner cell feed. The various products were collected dried and analysed.

The ball mill was run for two hours after the feed was finished. When the mill was shut down, the material remaining in the mill was screened on a 200 mesh and the plus and minus fractions were dried and analysed.

Figure No. 3 shows the flowsheet for Mill Runs Nos.3 and 4. Table No. 7 shows the reagents and conditions. Table Nos.8 and 9 show the results of Mill Runs Nos.3 and 4 respectively. Table Nos 10 and 11 show the silver distribution and assays when the recleaned flotation concentrate from floating the Wilfley table concentrate was screened on a 150 mesh screen in Mill Runs Nos. 3 and 4 respectively.

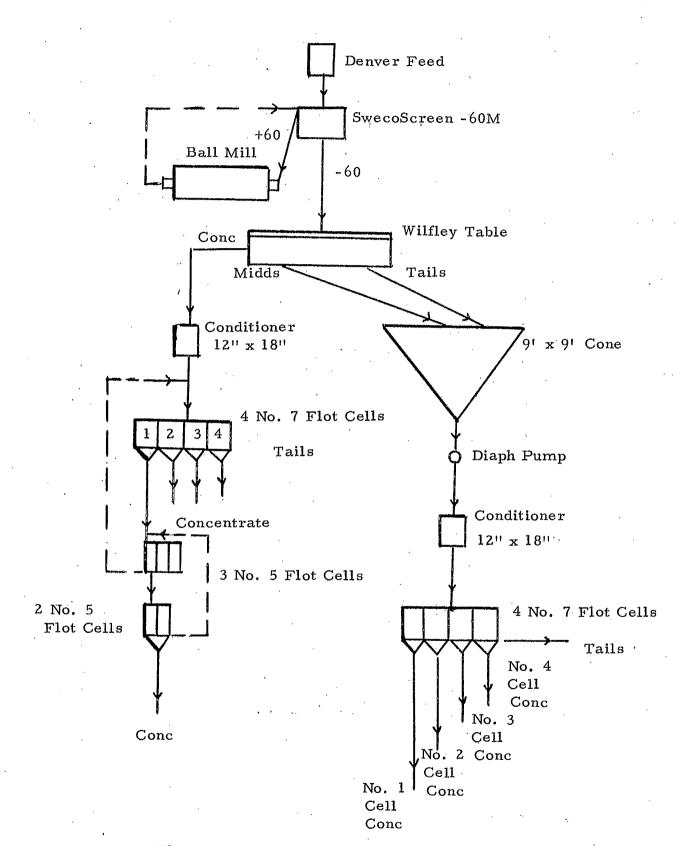


Figure 3. Flowsheet for Mill Runs Nos. 3 and 4.

Operation	Reagent	pH	Lb/Ton of Feed
Conditioner	Lime		1.02
	Cyanide		0,375
	Z6		0.360
#1 Flot Cell	Aerofroth 60	9-10	0.05
#2 Flot Cell	Acetic Acid	4- 5	71.5
	Z6		0.360
#3 Flot Cell	Sulphuric Acid	1.5-2	73.0
	Z6		0.360
	Aerofroth 60		0.05
	Conditioner #1 Flot Cell #2 Flot Cell	Conditioner Lime Cyanide Z6 #1 Flot Cell Aerofroth 60 #2 Flot Cell Acetic Acid Z6 #3 Flot Cell Sulphuric Acid Z6	Conditioner Lime Cyanide Z6 #1 Flot Cell Aerofroth 60 9-10 #2 Flot Cell Acetic Acid 4-5 Z6 #3 Flot Cell Sulphuric Acid 1.5-2 Z6

Reagents and Conditions for Mill Runs Nos, 3 and 4

Note: High acid consumption.

Ļ

Results of Mill Run No. 3

Grinding

Product	Weight	A	Assays			Distribution %		
1 Iouuer	%	Ag oz/ton	Co %	Fe %	Ag	Co	Fe	
Metallics -60 Mesh	7.3 92.7	21,014 1,181	2.3 10.3	2.3 11.2	58.3 41.7	1.7 98.3	1.6 98.4	
Mill Feed	100.0	2,684	10.0	10.6	100.0	100.0	100.0	

Metallics Screened

Metallics Screened											
		ght %		Аввауя				Distribu	ition 7		
Product	This	Total	oz/ton	%	%		his Te			Tota	
	Test		Ag	Co	Fe	. Ag	Co	Fe	Ag	Co	Fe
+200 Mesh	95.9	7.0	21,800	2.0	2.0	99.4	82.4		58,0		1.3
-200 Mesh	4.1	0.3	Z,684	10.0	10.0	• 0.6	17.6	18.8	0.3	0.3	0.3
Metallics	100.0	7.3	21,014	2.3	2.3	100.0	100.0	100.0	58.3	1.7	1.6
Wilfley Ta	abling of	<u>~60 M</u>	esh					· · · · · · · · · · · · · · · · · · ·			
				15 0							
Conc	58.3	54.0	1,567	12.9	10.Z	77.2	72.5	53.0		71.3	
Tails	41.7	38.7	642	6,8	12.6	22.8	27.5	47.0	· 9 . 5	27.0	46.2
(0.3.6.1	100.0	0.7	1 101	10.0		100.0	100 0		47 6	00 0	
-60 Mesh	100.0	92.7	1,181	10,3	11.2	100.0	100.0	100.0	41.7	98.3	98.4
· ;											
Flotation	of Wilfle		o Cono								
L'IOLA,LION	OI WILLIG	sy 1 a.u.				T					
ReCl Conc	13.3	7.2	8,940	8.3	7.1	76.1	8.6	9.2	24.5	61	4.8
#2 Cell Conc	2.8	1.5	1,204	10.6	11.3	2.2	2.2	3.1	0.7		1.6
#3 Cell Conc	33, 3	18.0	212	13.5	11.0	4.3	34.9			24.9	
#4 Cell Conc	18,6	10.0	264	14.4	10.6	3.1	20.8	19.1		14.8	
Tails	32.0	17.3	693	13.5	10.4	14.3	33.5	32.6		23.9	
	2-11							02.0		10.1	
Table Conc	100.0	54.0	1,567	12.9	10.2	100.0	100.0	100.0	32.2	71.3	52.2
							l	ļ		<u> </u>	<u> </u>
1											
							•				
Flotation of	of Wilfle	y Table	rails_							t1	
	10 0		2 /1/		13.7	74,	7 19.	3 19.9	7.1	5.2	9.2
#1 Cell Conc	18,3	7.1	2,616	7.2		12.				7.0	13.3
#2 Cell Conc	19.9	7.7	380	8,8	18,3						12.4
#3 Cell Conc	25.6	9.9	240	9.7	13.2	9.					
#4 Cell Conc	9.6	3.7	200	8.5	12.0	2.					
Tails	26.6	10.3	. 23	1.6	7.3	1.	1 6.	5 15.4		1 4. (1.4
	1 4		1.10	1		100	0 100	0 100 4	0 9.5	27 0	46.2
Table Tails	100.0	38.7	642	6,8	12.6	1.00.	01100.	0 100.0	9.5	44.0	-10.14

Results of Mill Run No. 4

(÷n•	1nc	ling	
~ ~ ~	111/	11116	

Product	Weight		Assays		D	istributio	n %
Product	%	Ag oz/ton	Co %	Fe %	Ag	Co	Fe
Metallics Table Feed	2.9 97.1	23,613 944	2.28 9.22	2.28 13.42	43.5 56.5	0.7 99.3	0.5 99.5
Mill Feed	100.0	1,601	9.02	13.09	100.0	100.0	100.0

Screening Metallics

Screening Metallics Weight % Assays Distribution %											
		ight %	the second second	Assays					tion y		
Product	This	Total	oz/ton	%	%		is Tes			Total	
	Test -		Ag	Co	Fe	Ag	Co	Fe	Ag	Co	Fe
+200 Mesh	96.6	Z.8	24, 360	Z.00	Z.00	99.5	85.7	80.0	43.3	0.6	0.4
-200 Mesh	3.4	0.1	Z,700		10.00	0.5	14.3	20.0	0.Z	0.1	0.1
			-,								
Metallics	100.0	2.9	23,613	2.28	2.28	100.0	100.0	100.0	43.5	0.7	0.5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				L						h	
							•••				
Wilfley Tab	1400			•							
Williey, Tabing											
	37.6	36.5	1,486	11 60	11.50	61.1	47.6	32.2	34.5	47.3	32.1
Conc			617		14.57	38.9	52.4	•	1		67.4
Midds & Tails	62.4	60.6	011	. (• (*	14,57	,	Ju. 1	0110			
	100 0	07 1	944	0 22	12 12	100.0	100.0	100.0	56.5	99.3	99.5
Table Feed	100.0	97.1	944	9.44	15.44	100.0				1///0	
Flotation of	E Wilfle	y Table	o Conc			T		<u>.</u>	1	 	
				•							
Cl Conc	12.9	4.7	9,876	7.5	6.8	85.5	8.2	7.5	29.5	3.9	Z.4
#Z Cell Conc			-							120	12 6
#3 Cell Conc	32.0	11.7		10.6	14.1	2.9				13.8	
#4 Cell Conc	34.3	12.5	224	13.3	12.0	5.Z	38.9			18.4	
Tails	20.8	7.6	448	13.3	9.6	6.4	23.7	17.4	2.2	11.2	5.6
							1				
Table Conc	100.0	36.5	1,486	11.7	11.5	100.0	100.0	100.0	34.5	47.3	32.1
			••••••••••••••••••••••••••••••••••••••		4		50.000 ·································				
Flotation of	Wilflow	mable	Midda 9	Taile		· .					
FIOLATION OF	W LLILEY	Table	IVIIUUS Q		1	1	t	1	1	-1	¢
	74 4	763	1 500	0.1	1.0.2	747		1 22 4	1, ,		22 6
#1 Cell Conc	26.6	16.1	1,580	9.1	18.3	73.2		1			22.5
#2 Cell Conc	18.5	11.2	536	9.8	15.4	17.3	1				13.Z
#3 Cell Conc	11.1	6.7	168	10.6	17.2	3.2			1		
#4 Cell Conc	13.5	8.2	180	10.6	13.6	4.1	18.5				
#1 Tails	5.4	3.3	88.	7.0	11.5	0.9					
#2 Tails	24.9	15.1	·30	2.1	10.0	1.3	6,7	17.1	0.3	3 3.5	5 11.5
Table Midds &	100.0	60.6	617	7.7	14.6	100 0	100	D 100.0	22 0	57 (67.4
Tails	100.0	00.0	011	1	1.4.0	100.0	1.00.0	100.0	44.	5 54.0	

Results of Screening Flotation Concentrate from Mill Run No. 3

Product	Weigh	t %	Assay	Distribution %		
11044Ct	This Test	Total	Ag oz/ton	This Test	Total	
Plus 150 Mesh Minus 150 Mesh	22.2 77.8	1.6	14,100 7,300	35.1 64.9	8.6 15.9	
Flot Conc	100.0	7.2	8,940	100.0	24.5	

TABLE NO. 11

Results of Screening Flotation Concentrate from Mill Run No. 4

Product	Weigh	t %	Assay	Distribut	ion %
F roduct	This Test	Total	Ag oz/ton	This Test	Total
Plus 150 Mesh Minus 150 Mesh	17.0 83.0	0.8 3.9	16,500 8,500	34.6 65.4	10.2 19.3
Flot Conc	100.0	4.7	9,876	100.0	29.5

DISCUSSION AND CONCLUSIONS

The concentrates as received had a high silver, cobalt, arsenic, iron and sulphur content with minor amounts of copper, nickel, silicates and other gangue minerals (See Table No. 1).

The main objective of the pilot plant work was to recover metallic silver from this material. However, of equal importance while doing this, was the feasibility of making the following products:

 A tailing for sale to a copper smelter or low enough grade to discard.
 A high grade cobalt concentrate suitable for roasting and treatment in the cobalt plant.

- (3) A concentrate similar to the flotation concentrates being purchased and suitable for smelting in the electric furnace.
- (4) Metallics suitable for direct smelting in the silver refinery.
- (5) A concentrate similar to the table concentrate being purchased which would require retreatment.

The results of Mill Runs Nos.3 and 4 shows that the investigation was successful in making the above products as illustrated by the following tables.

TABLE NO. 12

Summary of Results of Mill Run No. 3

Product	Weight	Assay	s .	Distribution %		
1 10000	%	Ag oz/ton	Co %	Ag	Co	
Tails to Copper Smelter Co Conc - Roast & Chemical Plant Conc - Electric Furnace Metallics - Silver Refinery Conc - Retreatment	10.3 45.3 21.3 8.6 14.5	23 407 284 20,367 4,284	1.6 13.7 9.1 3.2 8.0	7.0 2.3 66.6	1.7 63.6 20.1 2.7 11.9	
Table Concentrates	100.0	2,684	10.0	100.0	100.0	

TABLE NO. 13

Summary of Results of Mill Run No. 4

	Weight	Veight Assays		Distribution %			
Product	%	Ag oz/ton	Co%	Ag	Co		
Tails to Copper Smelter Co Conc - Roast & Chemical Plant Conc - Electric Furnace Metallics - Silver Refinery Conc - Retreatment	15.1 31.3 29.9 3.6 20.1	30 390 239 22,614 2,928	2.1 12.1 10.2 3.2 8.8	0.3 7.8 2.8 53.5 35.6	3.5 41.8 33.9 1.3 19.5		
Table Concentrates	100.0	1,601	9.0	100.0	100.0		

The most significant feature of the pilot plant investigation was the recovery of 53.5 to 66.6 percent of the silver in a concentrate grading over 20,000 oz per ton. For the most part this was recovered in the grinding mill itself. The ball mill was a 20 x 30 in. Universal mill with a grate about 6 inches from the discharge end (See Figure 4). There are no lifters between the grate and the trunnion discharge so that the metallic silver which is liberated in the mill is trapped between the grate and the discharge end when the mill is operated at high discharge with the peripheral discharge ports plugged. At the end of each mill run, the ball mill was run for one to two hours after the feed was shut off. The metallic silver was then drawn from the mill by opening all of the peripheral discharge ports.

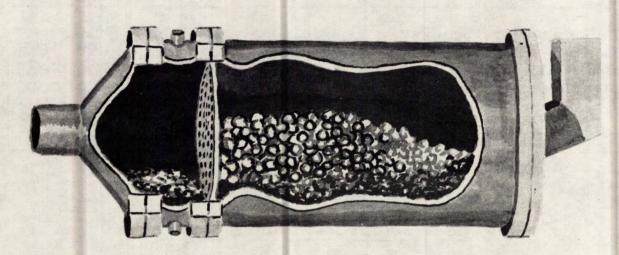


Figure 4. Diagram of 20 x 30 in. Universal Mill Used to Trap Metallic Silver.

ACKNOWLEDGMENTS

The chemical analyses of this investigation were carried out by the staff of Mineral Sciences Division and Cobalt Refinery Limited.

AJB:rlm