DEPARTMENT OF MINES AND RESOURCES

BUREAU OF MINES

CANADA

Ottawa, January 23, 1947.

REPORT

of the

ORE DRESSING AND METALLURGICAL LABORATORIES.

Investigation No. 2168.

Laboratory Tests on a Low-Grade Gold Ore from the Properties of Colomac Yellowknife Mines Limited and Indian Lake Gold Mines Limited in the Yellowknife District, Great Slave Lake Area, Northwest Territories.

and a second sec

Note:

This report relates essentially to the samples as received. It shall not, nor any correspondence connected therewith, be used in part or in full as publicity or advertising matter for the sale of shares in any promotion.

(Copy No. //.)

00

R2165

Bureau of Mines

Mineral Dressing and Metallurgy Division

CANADA

DEPARTMENT OF MINES AND RESOURCES

Mines and Geology Branch

OTTAWA January 23, 1947.

REPORT

of the

ORE DRESSING AND METALLURGICAL LABORATORIES.

Investigation No. 2168.

Laboratory Tests on a Low-Grade Gold Ore from the Properties of Colomac Yellowknife Mines Limited and Indian Lake Gold Mines Limited in the Yellowknife District, Great Slave Lake Area, Northwest Territories.

while some more again that's back plate group when both when

Shipment and Instructions:

A shipment of 45 sacks of ore, of a net weight of 1,593 pounds, was received on November 23, 1946, from the above-named properties under instructions from Harry W. Darling, of Central Mining Services Limited, Suite 310, Concourse Building, 100 Adelaide Street West, Toronto, Ontario.

After some exchange of correspondence between Mr. Darling and the Department, Mr. Darling's final instructions were to consider the samples from both properties as one operation and to make four groups of the samples. One group carrying our test number 1 was of samples numbered 51 to 55; number 2, of samples numbered 101 to 110; number 3, - Page 2 -

(Shipment and Instructions, contrd) -

of samples numbered 301 to 315; and number 4, of samples numbered 501 to 515. Each group was to be sampled and assayed separately and then were to be combined for assay and test purposes in proportion to the widths of the ore bodies, these widths being given in Mr. Darling's letter of November 28, 1946.

Location of Properties:

The properties of the Colomac Yellowknife Mines Limited and the Indian Lake Gold Mines Limited from which the samples originated are in the India Take section of the Yellowknife district, Great Slave Lake area, Northwest Territories.

Sampling and Analysis:

The samples were arranged into four groups according to their numbering as explained above, and the ore in each group was individually crushed to approximately 20 mesh. A sample was cut out from each group and sent for assay.

The ore from each group was then proportionately combined in the following manner:

Department's Sample No.	Company's Sample No.	Width of X-cut, ft.	Soight Takon, in pounds
<u>ي</u>	51-55	75	50
2	101-110	175	116,5
õ	301-315	140	93.0
4	501-515	92	61.0
			320,5

The total weight of the combined sample was then made to pass a 20-mesh screen and a head sample was taken for assay and analysis.

(Continued on next page)

- Pago 3 -

(Sampling and Amalysis, contid) -

Mhe remainder of the combined ore sample was bagged for investigative purposes.

Some ore samples were taken, before the ore was crushed, for microscopic examination. These specimens were taken from samples 513, 305 and 309. These samples appeared to have ore particles more suitable in size for this work.

Assays made on the samples from the individual groups have the following results:

Dopart	tmossi.	15	NO.	
and the second s	A DESCRIPTION OF A DESC	and second and a	ALC IN A DATE OF	

1	576 307	Au, Ag,	0,1325 0,15	os./ton
\$	40 70		0.06 0.05	f3 [¥
27 13			0.06 0.04	L3 F0
ıtı.	64 1		0,065 0,045	1.0 L 3

The assay and analysis of the combined head sample gave the following results:

Gold	L-49	0.0825 oz./ton
Silver	~	0.07 1
Tron		5.13 per cent
Arsonic	5 ~0	None detected.
Sulphur		0.74 per cent
Nickol	****	None detected.
Antimony	643	None detected.
Insoluble	6 1	84.26 por cent

A screen analysis on the ore showed the values, association and distribution of the gold in the various mesh sizes to be as follows:

terni tununuujunees	Wolght,		3ays	1974 748 2015 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	Distribution,			
Meab	por	Oz./ton:	Pen	Cont	per cent			
Sizo	cont :	Aza	Fe	IS :	Au	Fe		
and a far a far and a far a fa	, an an a fair and a share a s	1 6. TUTTUT ALI MAYAA AYAA YAA WAXAA MATUKANA KUTARA MATUKA AYAA YAA	- The rest of the last of the second	**************************************	noth the profession in the second	£1271 APOOL (\$2.01 \$741 \$	att elle Exter eler & bartater Stra elle et	
⇒S8	11,5	0,08	4.28	0.63	8,2	10,8	9.1	
+35	21.5	0,055	4,12	0,60	10.4	19,5	16,5	
+48	12,5	0.085	3,97	0.62	9.4	11.0	10,1	
+65	13.2	0.27	3,92	0.62	31.7	11.4	10.5	
÷1.00	9,1	0,14	3,97	0.71	11.3	8,1	8,4	
+150	7,9	0.105	4.58	0,99	7.4	8.1	10.0	
+200	5.6	0,15	4.68	1.11	7.4	5.8	8.1	
-200	18.9	0,085	6.04	1.12	14.2	25.3	27.3	
#7 1 17 Th failed 2 head 1900	**************************************		***********		and a line of the grant particular.			
Total	100,0	0,1126	4.51	0.77	1200.0	100.0	1100.0	

Microscopia Examination:

Twelve polished sections prepared from the sample were examined microscopically for the purpose of determining the character of the ore.

<u>Ganguo</u> --

In the polished sections gangue material is a minture of light to dark greenish grey to almost black rock and grey to milky white quarts. The rock component of thi assemblage carries rather abundant finely disseminated carbonate (calcite) and in two or three sections it shows a slight schistose texture. In a few places the gangue bears small, local, light brown stains of iron oxides.

Merallic Minerals -

Metallic mineralization is very sparse in the twelve polished surfaces and is represented by pyrrhotite, pyrite, ilmenite, chalcopyrite, and sphalerite. While those minerals are named in their approximate order of decreasing abundance, none is really abundant, the last two in particular being present only in negligible amounts. All of them are sparingly and sporadically scattered through gangue as occasional to rare, medium coarse to very fine irregular grains. The largest seen is about 0.75 mm. (-20 +28 Tyler mesh) in size but the majority of them are much smaller.

No gold mineral or native metal was found in the twelve polished sections, but this is not surprising since there is so little gold in the sample.

Conclusions:

The one as represented by the sample received was of a grade lower than anticipated and, at 0.0825 oz./ton in gold (\$2.89 at \$35.00 per ounce), it must be considered as distinctly marginal from the standpoint of profitable - Pago 5 -

(Conclusions, contid) -

operation, at least under normal toppage and conditions.

Cyanidation of the ore proved to be the most efficient method of recovering the gold and, as in Test No. l_g an extraction of nearly 94 per cent of the gold with a teiling loss of 0.005 oz./ton was obtained. Fine grinding does not appear to be necessary, as the same results were obtained at a grind of 61 per cent minus 200 mesh as at 88 per cent minus 200 mesh. These extractions must be considered good on an ore of this gold content.

Naturally, straight cyanidation would involve the greatest expenditure for plant installation and would also involve the highest cost per ton in milling operation.

The ore does not respond to flotation as easily as it does to cyanidation, and in Tests Nos. 2 and 6 lower extractions and higher tailings loss resulted.

Straight amalgamation of the ore, as in Test No. 5, gave rather satisfactory results for this process, with an extraction of nearly 35 per cent and a tailing loss of 0.0125 oz./ton in gold at a comparatively coarse grind. From the standpoint of plant installation and cost of operation, amalgamation of the ore must be considered, though cost of operation plus tailing loss in this case would have to be balanced against these factors in the case of straight cyanidation.

While blanket table procedure would be simple, the extraction from this method would be low, as in Tests Nos. 7 and 8.

The ore presents no difficulty from a settling standpoint, as may be deduced from Test No. 4.

- Page 6 -

DEPAILS OF INVESTIGATIVE TESTS:

Test No. 1.

Two lots of ore of 1,000 grams each were ground to 61 per cent minus 200 mesh (A) and to 88.4 per cent minus 200 mesh (B) and agitated individually for 48 hours at 8 to 1 dilution with cyanide end lime.

Pulp filtored, washed, and sent for assay.

125

Results:

· · · · · · · · · · · · · · · · · · ·		13	23 83
Assay heads, Au oz./ton	**3	0,0825	0,0825
Assay residue " "	AT1	0.005	0.005
Per cent extraction, Au	e2	93.94	93, 94, '
MaCM consamed, 1b./ton ore Cao ", "	171	0,6	0.48
CaO to to the		3.08 ·	3.04
Reducing power (c.c. <u>N_KMnO4</u>	:		•
for 1000 c.c. solu	ttion	i) - 96	,
NaCNS, per cent ~		0.007	,

Test No. 2.

1,000 grams ore ground to 77.4 per cent minus 200 mesh and pulp transferred to a flotation cell.

Reagonts Added:

<u>Fo Grinding</u>		Ib./tom
Soda ash	***	0,5
Reagont No. 301	t.,	0,1
ⁿ No. 208	137	0.1
Pot. anyl xanthate	e14	O .l
Aerofloat No. 25	1718 1	0,035
To Conditioning		,
Pot. amyl xanthato	~	0.1 pH. 8.5.
Cus_{0_4}	****	0.1 pH, 8.5. 1,0 (3 mins.)
To Flotation		
Pine oil	-	0.05 (4 mins.)

(Continued on next page)

- Page 7 -

(Details of Investigative Tests, cont'd) -

Res	U.1.	$\mathfrak{T}\mathfrak{B}$	30
*********	* ** ** 2	******	

مينيان ميركزية في المقالية في الكانية التي المراقبة من منه المراقبة المعالية والمعالية ومعارية المسارية المعار (1997) - وقد المعارية المراقبة المعالية المعارية المعارية المعارية المعارية المعارية المعارية المعالية المعالية (1997) - وقد المعارية المعالية	Weight,		3 8 13 /	l y s	ر بهایمین میشوند باد. و بین به بین به المین میرد باد و بین باد بین به بین میرد ا ا ا ا ا ا ا	1.((strit	oution	505555555555 1
Product	por	Oz./ton	Pe	er Cor	3.6		per c	sont	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	cont :	Au	Fe	AB 8	S	A12:	Fe	AB 1	S.
יישראינע איז אייראי איז אייראין אייראי איז אייראין איז אייראין אייראין איז אייראין איי	and the survey of the second survey.	1 1 10229 14-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	82\$22948.31887 BCB10879849	}	1	l			
Flot, conc.	6,25	1.0	16.76	0,08	10.16	87.0	26.0	6.8	64.1
Plot.								2	
taj ling	93,75	U.01	5,18	0,08	0,38	13.0	74.0	93,8	35.9
Total	1.00,00	0.078	4.03	Ü,08	0,99	3,00.,Ó	100.0	100.01	0,00
ال الم الم الم الم الم الم الم الم الم ا		nego anti di 2013 al del anti del anti della di anti I della della di anti della di di anti della di seguna di 2020	ት መስከት እና የምምርም እና ነው የተመለከት የሚሰዱ አስት የምርጉ የስምር እና እና የደረጉ እና እና የ	189 2-2 5 6 5 4 7 6 6 5 % 7 16		A STREET, STREE	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	par - scoularg	ALAN I TRACTOR

Test No. 3A.

500 c.c. of pregnant solution from Tests Nos. 1A and 1B (combined) was deoxidized for 30 minutes with 0.1 gram PbNO3 added. Precipitated while under vacuum for 5 minutes with 0.3 gram zinc dust. Filtrate recovered.

Results:

Assay	oſ	pregnant	solution,	Au	oz./ton	177	0.044
		barren	19 9		f9		0,0055

Test No. 3B.

500 c.c. of pregnant solution from Tests Nos. 1A and 1B (combined) decridized for 30 minutes with 0.1 gram PbNO3 added. Precipitated while under vacuum for 5 minutes with 0.3 gram aluminium dust and 0.35 gram NaOH.

Results:

Assay of prognant solution, Au oz./ton = 0.044Assay of barron ", " " = 0.0035

Test No. 4.

500 grams of ore was ground to 79.1 per cent minus 200 mesh with 1.0 pound NaCN and 1.0 pound CaO per ton. Dilution brought up to 4 to 1 and pulp transferred to a cylinder. Settling rate was noted every minute for 10 minutes.

Enough clear solution decanted to bring dilution to 3 to 1, and settlement noted for 10 minutes.

(Continued on next page)

- Pago 8 -

(Details of Investigative Tests, cont'd) -

Enough clear solution decanted to bring dilution to 2 to 1, and settlement noted for 10 minutes.

Results:

4 to 1 dilution, settlement 7 inches in 10 mins. = 3.5 ft./hr. 3 to 1 6 n ${}^{4_{2}}$ 6 n 10 n = 2.37 n 2 to 1 n 9 2-5/8 n n 10 n = 1.31 n

Sottling area required can be ascertained from

the formula

$$A = \frac{1.333(F-D)}{R}, \text{ in which}$$

Test No. 5.

1,000 grams of ore ground to 67.2 per cent minus 200 mesh.

Amalgamated for 1 hour with 7 c.c. mercury,

0,5 gram CaO, and 6 pobbles.

Assay heads, Au oz./ton = 0.0825Assay tailings, " " = 0.0125Per cont extraction Au = 84.9

Test No. 6.

Conditions of this test were the same as for Test No. 2 with exception of the pH of the pulp at 8.0 and flotation time 6 minutes.

Results:

an an anna an taona an an anna an anna an anna an anna an an	A S S S Y S IDISCRIDUCION,								
	Weight,	A f	3 8 8 Y	18	Dist	n buv)	$OU^{\mathfrak{s}}$		
Products	per	Oz./ton	Por (loat l	្រុខរ	e cont			
אין אין איין איין איין איין איין איין א	cont	Au	Fo	S	Au	Po	S		
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		00-252 He II HILL I I I I I I I I I I I I I I I I	1.22.00.022321.027FB.00044.	******	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ane estimate a second	WARDS AND A		
Flot, cone.	8,62	0.54	13.16	6,19	67.0	28°5	60.6		
Flot, tailing	91.38	0.025	3.12	0,38	33.0	71.8	39.4		
Total	100,00	0,0695	3,98	0.88	100.0	0.00.0	100 0		
Flot, cone. Flot, tailing	cent 8.62 91.38 1.00.00	0,54 0,025 0,0695	Fe 13,16 3,12 3,98	6.19 0,38 0.88	<u>Au</u> 67.0 33.0 100.0	F6 28.2 71.8 100.0	80.6 39.4 100.0		

- Page 9 -

(Details of Investigative Tests, cont/d) -

Tosi No. 7.

1,000 grams of ore ground to 72.6 per cent minus 200 mesh and run over a corduroy blanket table at a slope of 5 inches per foot. Dilution of the pulp was 3 to 1.

Results:

jweight; Assays (Distribution,								
Products	per	OE./ton:	Per ()on's	per	cent	-	
د از بر این می از این می این این می این این این این این این این این این ای	coni:	Au	Fe	S	AU	Fe	8	
Blanket conc. Blanket tailing	8.25 91.75		7.20 4,2	2,58 0,68	76,5 23,5	13.4 86.6	25.4 74.6	
Total.	100.00	Include Management and and and the state	4.44	0,83	100.0	100.0	1.00.0	

Test No. 8.

Same procedure as in Test No. 7, except that two blankets in series were used.

Reaults:

	Weight, Assays			Distribution,			
Products :	per	Uz,/ton/ Per Cent per cent					
5 17/101/101/1010/00/00/00/00/00/00/00/00/00	cent	Au	Fe	S	Au	Fo :	S
A state of the	* 384 STAD & AVA & AVA WAR IN THE THE TAT A	1 + 1 C	TENEDER MORE AREAS	58455314.31.97983.879	ere 1128030327-203-533	1.949 #\$##################################	In the second second second
Blanket conc.	10.7	0.64	7.53	2,54	81.4	19.3	<i>\$5.6</i>
Blanket tailing	89,3	0.0175	3,78	0,54	J.8 . 6	81.7	64.4
Construction Top of August Construction Construction Construction Date	C. LEIL IN MARY PROPERTY.	a	**************************************	CIT PARTY PARTY (CIT	*******	, 1242 at 14, 54, 64, 44, 57, 54, 64, 46, 46, 46, 46, 46, 46, 46, 46, 4	8.7V875777777777777777777777777777777777
Total	100.0	0.084	4,18	0.76	100.0	100.0	100.0

00000000000 0000000 00

"H:LB。