DEPARTMIENT OF MINES AND RESOURCES

BUREAU OF MINES
CANADA

Ottawa, December 21, 1946.

$$
\begin{gathered}
\mathbb{R} \mathbb{P} Q R E \\
\text { of the }
\end{gathered}
$$

ORE DRESSING AND METAILURGICAI IABORATORIES.

Investigation No. 2153.

> Laboratory Experiments on Gold Recovery from a High-Grade Ore from the Property of Thunderbead, Gold Mines Ifmlted, Thunder Bay District, Ontario.

Note:
"Th1s report relates essen-
tially to the samples es received.
It shall not, nor any corrospond-
snce connected therewnth, be used
In part or 1 n fulu as publicity
or advertising matter for the sale
of shares. in any promotion.

DREARTMUNTI
 OF
 VINES AND FESONRCES

Puinos and Gomlogy Branch
-TTAWA December 21, 1946.

REPORT
 of the

 ORE DRESSING AND METALLURGICAL LABORATORTES.$$
\text { Investigetion No. } 2153 .
$$

Laboratory Expeximents on Gold Recovery from a. Highmarade Ore from the Property of Thunderhead Gold Mines Limited, Thunder Bay District, ontario.

Shipment:
On October 26, 2946 , a shipment of ore from the above-mentioned property was recoived under instructions from Mr. Robert Campbell, Presidont, Room 1504, Victory Building. 80 Richmond Street West, Toronto, Ontario. The shipment consfsted of two bags of ore, of a total welght of 98 pounds.

Mr. Campbell asked for test work to determine a rlow sheet for a 25-ton mill.

Location of Property:
The property of the Thunderhead Gold Mines Limlted from which the samples originated is in Gorham township, in the Thunder Bay district, onterio.

Sampling and Analysis:
The contents of the two bags were combined and crushed to approximately 20 mesh, and a ssmple was cut out for assay and analysis.

The remaining portion of the ore was then made to pass a 20 mesh screen and bagged for investigative purposes.

Berore crushing, some representative samples of the ore were taken for the preparation of polished sections for microscopic examination.

The analysis made on the head sample geve the following results:

Gold	-	1.70	oz $/$ ton
Silver	-	1.28	n
Iron	-	3.13	per cent
Sulphur	-	0.30	n
Insoluble	-	85.56	n

A screen analysis of the head sample showed the values, association and distribution of the gold in the varfous mesh slzes to be as follows:

Microscopic Examination:

Six polishod sections were prepared from the sample and exsmined under a reflecting microscope for the purpose of determining the charactor of the ore。

Gangue -
In the polished sections, gangue material consists essentlally of milky white quartz with small patches and
(Microscopic Examination, cont'd) -
narrow streaks of soft, dark greenish grey to almost black rock and a small amount of finely disseminated carbonate (calclte). The whole assemblage 18 transected by a few narrow sinuous fractures and bears locsl reddish-brown stains of iron oxides. In hand specimens, coatings of rust are abundant and show that the sample has been severely weathered.

Motal11c Minerals -

Metal110 minerelization is very weak in the polished sections and is represented by pyrite, "Ilmonite", and chaicopyrite. Megascopically, only two of the six polished surfaces appear to contain ore minerels but under the microscope the other foux are scen to contain negligible amounts disseminated very sparingly through gangue in very fine gratin sizes.

Pyrofte, the most abundant metallic, is distributed unevenly through gangue as euhedral to anhedral crystals, many of which are rimmed with "limonite" and contaln occasional small inclusfons of the same matexial as well as of gangue. The, largest grein observed in the polished surfaces is about 0.5 mm . In diameter and they range from that down to only a few microns but the coarser $51 z e s$ are predominant.
"Limonite" is comparatively common in gangue as locel reddfsh-brown stalns, small irregular grains, and narrow borders around pyrite and chalcopyrite. A practicaliy negligible amount of the latter mineral is visible as small uneven particles scattored sporadically through gangue.

Although each section was caxefully traversed under a high-power objective no gold on gold minerels were observed. An examination os̃ severel hand specimens under a binocular mioroscope met with a sfmilar result. Next, some of the
(Microscopic Examination, cont'd) -
head sample was ground in an agate mortar and panned on a watch glass. When the resultant concontrato was oxamined under the binocular microscope two free flakes of native gold were found. One of them measured approximately 0.1 mm . (-150 +200 Tyler mesh) across, and the other was somewhat smaller in size. Both were more or less equidimensional in shape and normal in colour.

Conclusions:

The ore as represented by the sample received is quite amenable to cyanidation, and the highest extraction on it is obtained by straight cyanidation. For maximum extraction by this process, fine grinding is perhaps necessary, as represented by Test No. 2 where nearly 99 per cent of the gold was extracted. Higher tailing loss at a considerably coarser grind was obtafned by cyanidation, as in Test No. 7, but the percentage of extraction was still high. These percentages of extraction are mainly due to the high grade of the ore which offsets a higher tailing loss than might bo expeoted from a normal grade of ore.

The standard flowsheet for a small-scale cyanidation operation could be used, but milling costs would be comparatively high.

Plotation of the ore followed by cyanidation of the concentrate gave a somewhat lower overall recovery of the Bold at 94 per cent, as in Test No. 6.

Utilizing this proceduce, cost of milling would undoubtedly be lower than in straight cyanidation. Cyanidation would involve treatment of only some 6 per cent of the ore weight, which could be done in batch cyanidation. It is
(Conclusions, cont'd) ∞
a matter of closer calculation, influenced by local conditions, whether the lesser cost of operation, when flotation and cyanidation are used, would oifset the extra extraction by straight cyanidation. Approximately 78 per cent of tie silver is also recovereá in Test No. 6.

As a means of avoiding cyanidation of the concentrate, where the grade is 27 and 21 ounces gold per ton as in Tests Nos. 3 and 6, the concentrate could be shipped to a smelter for treatment.

Test No. 8 shows the ore to be a good settilng one and the thickener area could be reduced to a minimum.

Reagent consumption is comparatively low for an ore of this rrade。

TLST DETADLS:
Test INo. 1.
1,000 grams of ore ground to 71.6 per cent minus 200 mesh and amalgamated with 7 c.comercury, 0.5 gram Ca0, 1,000 c.c. water, and 6 small pobbles.

Results:

Assay heads, Au oz /ton -
Assay tailing,
Fxtraction of gold, per cent -
Fi.70

Test 110.2
1.,000 grams ore ground to 73.2 per cent minus 200 mesh. Cyanided for 48 hours at 2 to 2 dilution.

Results:

2,000 grams of ore ground to 78.4 per cent minus 200
mesli and transferred to a flotation cell.
(Test Details, cont'd) -

Reagents Added -

To Grinding:
Soda ash
Reagent No. 301
Reagent No. 208
Aerofloat No. 25
Pot. amyl xanthate

Ib./ton

- 0.5
- 0.1
- 0.2
- 0.035

To Conditionins:

> Pot. amyl xanthate $-\quad 0.05$ (3 mins.) pH, 9.2.

To Flotation:

$$
\text { Pine oil } \quad 0.025(7 \mathrm{mins} .)
$$

Results:

Test No. 4A.
$500 \mathrm{c} . \mathrm{c}$. of solution from Test No. 2 deoxidized for 30 minutes with 0.2 gram PbNO_{3} in a laboratory precipitation apparatus under vacuum. Preoipitated with 0.3 gram zinc dust for 5 minutes under vacum.

Results:

Assay of pregnant solution, $\begin{array}{rl}A_{n} & 0 z / t \operatorname{ton}\end{array}=0.834$
Assay of barren solution,

Tost No. 4B.
500 c.c. of solution from Test No. R deoxidized
for 30 minutes with 0.2 gram PbNOz under vacuum. Precipitated With 0.35 gram Na of and 0.2 gram aluminium dust for 5 minutos under vacuum.
(Test Details, cont'd) -

Results:

$$
\begin{aligned}
\text { Assay of pregnant solution, Au oz./ton } & =0.834 \\
\text { Assay of barren solution, } & =0.006
\end{aligned}
$$

Test No. 5.

1,000 grams of ore ground to 58 per cent minus
200 mesh.
Pulp run over a corduroy blanket table at 3 to 1 dilution with a slope of 3 inches per foot to the table.

Results:

$$
\begin{aligned}
& \text { Assay heads, Au oz./ton }=1.70 \\
& \text { Assay tailing, Au oz./ton }=0.50
\end{aligned}
$$

Test No. 6.
4,000 grams of ore ground in two lots of 2,000 grems each to 83.6 per cent minus 200 mesh. Mloated in two lots with products combined.

Flotation conditions the same as in Test No. 3 but time Increased to 10 minutos and pH of pulp 9.0.

Results:


```
(Test Details, cont'd) -
```

150 grams of flotation concentrate cyanided at 3.3 to 1 dilution for 48 hours without regrinding.

Results:

Test No. 7.
1,000 grams of ore ground for 10 minutes to 19.1 per cent minus 200 mesh.

Cyanlded at 2 to 1 dilution for 48 hours.
Results:

```
Cyanide heads, Au oz./ton \(=1.70\)
Gyanide residue, Au oz./ton \(=0.045\)
Per cent extraction of gold \(=97.4\)
NaCN consumed, \(1 \mathrm{~b} . / \operatorname{ton}\) ore \(=1.0\)
Ca0 consumed, \(3 \mathrm{~b} . \operatorname{ton}\) ore \(=2.56\)
```


Test No. 8.

2,000 grams of ore ground to 84.6 per cont minus 200 mesh with 2.0 2b./ton of NaCN and 1.0 1b./ton CaO.

Pulp transferred to a cylindor for settling tests. Dilution raised to 4 to 1. Pulp mixed. Pulp allowed to gettle for 10 minutes and measurements of clear solution noted every rainute for 10 minutes.

Enough cleati solution decanted to bring dilution to 3 to 1 and sattlement notod for 10 minutes.

Finough clear solution decanted to bring dilution to 2 to 1 and settlement noted for 10 minutos.

Hesults.
 10; minten $=3$, 75 fot per hour.
 10 minutes $=3.4$ ft. pon hom.

2 to d divitom, sebthomont 2 in tn 10 minutes $=1,020$. pes hous.

tromole
$A=\frac{2,3 \%(B-D)}{16}, 40$ whan
A. - botchenor area.
$D=x t a n d$ denat ty on thencenas diacharge
(pares sotution), and

906000000か0の
धबतीकण
O
$T \mathrm{~T}: \mathrm{TE}$.

