BUREAU OR WINES

CANADA
ottawa, June 10, 1946.
$R E P Q R T$
of the

ORE DRESSING AND METALLURGICAL LABORATORIES.

Investigation No. 2057.

Sink-and-Float Tests on a Sample of Split Drill cores from an orebody containing both Massive and Disseminated Pyrite at Noranda Mines, Quebec 。

Note:
This report relates essentally to the samples as received It shall not, nor any correspondonce connected therewith, be used in part or in full as publicity or advertising matter for the sal of shares in any promotion.
CANADA

ORE DRESSING AND METAILURGICAL LABORATORIES
DEPARTMENT
of
MINES AND RESOURCES
MINES AND CEOLOGY BRANCH

$$
0 \text { TIA W A June } 10,1946 .
$$

 of the

QRE DRESSING AND METAILURGICAL LABORATORIES.

Investigation No. 2057.

Sirk-and-Float Tests on a Sample of
Split Drill Cores from an Orebody containing
both Massive and Disseminated Pyrite
at Noranda Mines, Quebec.

Shipments:
Two boxes of split drili cores, net welght 77 pounds, were forwarded to these Laboratories from those of the National Research Council, Ottawa, on November 23, 1945. A few days later, on November 27, 1.945, two more boxes of split drill cores, net weight 180 pounds, were forwarded to these Laboratories from the same place. The samples were submitted by Dr poul Gishler, of the taff of the National Research Council, acting for H. I. Roscoe, Vice president and General kanager, Norande. Mines Limited, Noranda, quebec.

Location of property:

The samples submitted were taken from a new orebody being explored at Noranda Nines Limited, Noranda, Quebec.

Sampling and Assaying:

Owing to the nature of the tests, the original ore was not crushed and sampled for assay, but an average head sample assay calculated from the products of a test is as follows:

Gold		0.058	oz./ton
Copper	-	0.37	per cent
Zinc	-	0.56	$" 1$
Iron	-	23.91	$"$
Sulphur -	25.66	$"$	
Insoluble-	46.02	$"$	

Purpose of the Test:
The test was conducted to find out whether or not a product containing 80 to 85 per cent sulphides could be produced in coarse sizes by the sink-and-float process, leaving the -8 mesh fines and the "sink and float" reject to be crushed and treated by other means, possibly gravity concentration and flotation.

Results of Experimental Iests:
The tests showed that a product of the desired grade could be made by the sink-and-float process from the sample submitted.

Maximum grade of product was obtained by separating with a medium density of 3.25 and with the feed crushed to $-3 / 4^{\prime \prime}$. With slightly coarsex crushinge about -1" or $-7 / 8^{\prime \prime}$, a higher recovery was obtained with a product slightly lower in Erade but still a little better than 83 per cent sulphides。

Conclusions:

These tests have been conducted on split drill core samples and until they have been confirmed on samples of ore mined and crushed by normal operations it would be well to consider them as tentative.

The reason for this hesitancy to accept the results as final is that the efficacy of a "sink and float" separation depends to a large extent on the way an ore will break in the crushing operation. It usually breaks along natural lines of weakness and this, of course, is not what happens in diamond drilling.

The test, however, indicates that with ore crushed to the size range $-2^{\prime \prime}+8$ mesh and separated at a density of 3.25, with the -8 mesh fines treated by jigs and tables, a product assaying 83 per cent sulphides and containing 78 to 82 per cent of the copper, zinc, iron and sulphur can be produced。

If the ore be crushed to the size range $-3 / 4^{\prime \prime}+$ 8 mesh and treated in the same way, the product will assay better than 85 per cent sulphides and contain from 74 to 80 per cent of the copper。 zinc, iron and sulphur.

The "sink and float" rejects, along with jig and table tailings, will assay around 20 per cent sulphides and could be reground for flotation or sent to direct smelting. The maximum grade of product obtainable by sink and float combined with jif and table concentration of -8 mesh fines appears to be about 85 per cent sulphides, and this can be obtained by crushing the ore to $-3 / 4$ " and then screening out the fines.

Character of the ore:
Six polished sections, three from each sample, were prepared and examined microscopically for the purpose of determining the general character of the ore
"Disseminated" ore -
In two of the three sections made from this
sample the buik of the etallic mineralization occurs as narrow granular stringers which transect the pollshed surfaces; in the third section, sulphides are scattered more or less evenly and abundantly throughout gangue material. The latter mode of occurrence is thought to be more representative of this type of ore
pyrite preponderates as coarse to fine irregular grains and subhedral crystals disseminated through gangue. The largest grain visible in the polished sections is 3 to 4 millimetres in diameter. The grains range from that down to only a few microns, with the larger sizes predominant. The pyrite contains inclusions of chalcopyrite, an:alerite and gangue, but appears to be the first sulphide mineral formed.

Chalcopyrite, the next most abundant metallic, occurs as small masses and disseminated grains larely interstitial to grains of iyrite, although, as already noted, sone grains are included within apparently dense iron sulphide. The copper mineral encloses grains of pyrite and sphalerite as well as some inclusions of gangue.

Sphalerite is present in small amount as medium coarse to fine grains in gangue and in the other in...judu. In places it contains inclusions of gangue and of the other sulphides, particularly tiny dots of chalcopyrite which are characteristic of the copper mineral.
（Character of the Ore（cont＇d）－

In the polished sections gangue is composed of faixly hard，dense，creamy white material with abundant scattered erains and small masses of quartz。
＂Massive＂ore－
In the polished sections this type of ore consists or more or less solid granular masses of pyrite throughout which are scattered numerous，coarse to fine greins and small patches of chalcopyrite，sphalerite and gangue．The iatter constituent，of course，forms only a small part of the polished surfaces and is composed of similar material to that in the ＂disaeminated＂ore。

Conclusion from hicroscopic Ixamination－
The only difference between the two types of ore seems to be fn the density with which the sulphides are de－ posited．A sort or intermediate variety is pictured in figure $1, i 。 \theta_{0}$, ＂massive＂tending towards＂disseminated＂，in an effort to show the average type of mineralization which probably will be mined．
(Gharacter of the ore, contid) -

Figure 1.

X80.
PHOTOMICROGRAPH SHOWING AN APPROXTMATELY AVERAGE FIELD INTERMEDIATE BETWEEN THE TYPICALLY "MASSIVE" AND "DISSEMINATED" TYPES OF' ORE.

Note the tiny dots of chalcopyrite in lower half of largest grain of sphalerite. A 200 mesh screen opening
is superimposed.

```
Pyrite - white, high relief.
Chalcopyrite (cp) - Iight grey.
Sphalerite - grey.
Cangue and pits - black.
```

Details of Investigation:
The first shipment of two boxes was crushed in a jaw crusher set to give as coarse a product as possible but at the same time to do some appreciable crushing. Tests Nos. 1 and 2 were done on this sample. The two boxes of cores received later were crushed for Test No. 3 .

The product from the first crushing operation was screened as follows:

		$\frac{L b}{5}$
$-3 / 4^{\prime \prime}+3 / 8^{\prime \prime}$	-	$\frac{0 z}{6}$
$-5 / 8^{\prime \prime}+1 / 2^{\prime \prime}$	-	-
$-1 / 2^{\prime \prime}+3 / 8^{\prime \prime}$	-	14
$-3 / 3^{\prime \prime}+8$ mesh	-21	11
-8 mesh	-	12
Total	-	$\frac{12}{76}$

The products coarser than 8 mesh amount to 84.07 per cent of the weight of ore crushed, while 15.93 per cent of the ore is finer than 8 mesh. Each of the fractions coarser than 8 mesh was now divided into two approximately equal parts to be used for sink-and-float separations. The fraction finer than 8 mesh was sampled for assay and the remainder of it screened as follows: (waterial finer than 8 mesh cannot be treated by sink-and-float.)

$+20$			$-\frac{10}{4}$	$\frac{0}{12}$
$-20+35$	1		1	7
$-35+48$	"	-	0	9
- $48+65$	"	-	0	9
$-65+100$	"	-	0	10
-100	"	-	2	9
Total			10	8

The fraction coarser than 20 mesh, amounting to 45.24 per cent of the fines and 7.21 per cent of the total ore, was concentrated by jiéing without further crushing. The fractions finer than 20 mesh, amounting to 54.76 per cent of the -8 mesh fines and 8.72 per cent of the total ore, were treated separately on a table and the table products comolned for assay.

At this point attention is called to the fact that the same assays of jig and table products are used to compute
(Details of Investigation, contid) -
final results in Tests Nos. 1, 2 and 3 , to be described later, but small corrections will be noticed in the "weight, per cent" columns to correct for silght changes in weight distribution due to extra crushing with a greater proportion of fines.

The sink-and-float separations were made in a galena-water suspension of 3.25 specific gravity, the maximum at winch our sink-and-float installation can be operated. The results of these tests are quite encouraging but were obtained from drill cores which we do not consider a good sample for this purpose, for the reason already given, namely, that the ore may not always be broken along its natural ines of weakness, and it may or may not be possible to duplicate these results with ore crushed in the normal way.

Test No. 1.
A size-density analysis was made on this sample. The screened fractions of coarse ore were separated and the products weighed and assayed as individual lots. The fraction $-3 / 8^{\prime \prime}+8$ mesh was separated as one lot but the separation products were screened on 3-, 4- and 6-mosh screens and these fractions were assayed individually.

The results of the size-donsity analyses are given in Table I_{s} in which the untreated -8 mesh fines is included in order to complete the picture of weight distribution with respect to the whole ore.

In Table II will be found a summary of the results of sink-and-float separation combined with jig and table concentration giving the final products to be treated for sulphur recovery on the one hand and by flotation or smelting on the other hand.

[^0](Separating density, 3.25; Size range of feed, $=1^{\text {mi }}+8$ mesh

TABLE II. - Summary of Results, Test No. I.


```
                    - Page ll -
(Details of Investigation, contid) -
```


Abstract

Test No. 2. In the size-density analysis it will be noted that the $+3 / 4^{\prime \prime}$ float 3.25 is much higher grade than the finer fractions of the "floats" and at the same time the $+3 / 4$ " "sink" at 3.25 is lower grade than the finer fractions of the "sinks".

In this confirmatory test it was therefore decided to crush the material coarser than $3 / 4$ inch until it would pass through a $3 / 4$-inch screen, with the hope of improving the grade of the sink product. This operation increased the -8 mesh fraction from 15.93 per cent of the total ore to 16.24 per cent with, of course, a corresponding decrease in the +8 mesh fraction.

In this test the sink-and-float feed was fed to the separator in bulk, as would be done in a commercial operation, and not in sized fractions as was done in Test No. 1. The results of this test are sumarized in Table III。 Table IV contains a summary of the combined results of "sink-and-float," jig and table concentration for Test No. 2.

A comparison of the results of the two tests show that Test No. 2 gives a higher grade product and slightly lower recovery than Test NO. 1.

[^1]TABLE III - Sink-and-Float Separation, Tost No. 2.
(Separating density, 3.24 ; size range of feed, $-3 / 4^{\text {in }}+5$ mesh).

Product	$\begin{aligned} & \text { Veight, } \\ & \text { per } \\ & \text { cent } \end{aligned}$	A S S A Y S					Distribution, per cent total					
		Cu: Zn :	Pe:	S	2301	z. t on	Cu	$2 n$	F'日	S	Insol.	Au
-8 mesh fines	16.24	0.430 .80	23.20	25.52	47.06	0.06	20.21	27.32	15.77	15.79	16.47	14.33
Float @ 3.25-3/4"-3 mesh	43.12	0.140 .17	9.37	9.90	76.58	0.055	17.47	15.42	16.90	16.27	71.16	34.87
Sink e $3.25-3 / 1^{\text {th }}+8$ mesh	40.64	0.530 .67	39.59	43.88	14.12	0.085	62.32	57.26	67.33	67.94	12.37	50.80
Si.nk and float feed (calc.)	83.76	0.330 .41	24.03	26.39	46.27	0.070	79.79	72.68	84.23	84.21	83.53	85.67
Ore (calco)	100.00	0.350 .48	23.90	26.25	46.40	0.068	100.00	100.00	100.00	100.00	10000	100.00

(Details of Investication, contld) -

Lest NO. 3

A further sink-and-flost test was oonducted on the second lot of split drill core samples received. This test was made with ore in the size range $-5 / 8^{\prime \prime}+8$ mesk and the separations were made in bulk。

A series of separations were made at different ciensities, as follows:

The crushed ore was treated first at a density of 2.80 , giving a finished float product which was kept ans assay and a sink product wich was retreated at a density of 2.90. This retreatment gave an intermediate float product which was kept for assay ald a second sink product which was again retreated at a densily of 3.00 . This process was repeated until six separations had iseen made at as many different densities, giving in all seven separation products for assay as well as the -8 mesh fincs.

The results of t_{1} is test are laid out in Table V and they show the effect of each increase or decrease in medium density。

In Table VI will be found the net results of separations. that might have been made at each of the foregoing densities Those results have been calculatad from those in Table V by collecting together in one group and averaging all those products that would float collectively at any given density and by collecting together in another eroup and averaging all those products that would sink collectively at the same fiven ciensity. for example, if the complete sample had been separated at a densfty of 3.10 the first four separation products listed in Table V would float off together while the remaining three would sink together.
(Details of Investication, cont'd) \sim
sini-sind-float products that might be expoted from separations made at any of these donsitios.

They indlate that, in order to get the erade of product asired for, the separating density will have to be very close to 3.20 .

A comparison of tie rosults of the test and of tine previons tests indicatea that a stoady docilne in recovany in the sink roduct will follow finor crushine of tig foes to the sink-an-float procoss. Whilo perhaps sone slicht imponot In the rmade of sink product might be expected from finer orushing, it seema thet 34 to BS per cont sulgiicos is about the maximun possible.

In Table VII, fon purposes of comprrison with Tests 103. 1 snd 2 , the same ji and tain le rowets wore combinod Wth the sink-and-float producta of leat $1: 0$ a was wone whe the toste $l l o$ e 1 and 2, Hlhouch tho actual -8 hesh fines rroduced from tho sccond lot of driza oores differed a littio from those rocuced iron the sirst lot ot drill coros orushod. This alfferonce will be noted by comarane Tables a and III with Gobe V.

Table VIlI ives a comparison of final rosults of all tiree testa.

TABLE V.
(Size range of ore treated, $-5 / 8^{\prime \prime}+8$ mosh.)

Product	$\begin{aligned} & \text { Welght, } \\ & \text { per } \\ & \text { cent } \end{aligned}$	ASSAYS					Distribution, per cent					
		Cu: Cn	F-	S	ก3SO1.	zo/ton	${ }_{6}$	Ln	- F'e	: \quad S	:Insol.	Au
-8 mesh fines	15.59	$0.48 \quad 0.75$	25.06	28.00	43.80	0.05	22.75	21.73	16.06	16.06	15.28	14.41
Float @ 2.80	15.84	0.050 .27	3.31	3.03	89.96	0.02	2.41	7.94	2.16	1.76	31.88	5.86
Fhoat 世2.90, sink @ 2.80	9.79	0.070 .15	6.74	6.11	82.88	0.02	2.08	2.73	2.71	2.20	17.93	3.62
Float e 3.00, sink a 2.90	3.89	0.110 .17	9.48	9.20	74.06	0.02	1.30	1.23	1.52	1.32	6.45	1.44
Float @ 3.10, sink e3.00	3.75	0.210 .32	13.69	13.93	66.58	0.04	2.39	2.23	2.11	1.92	5.60	2.77
Float «3.20, slake 3.10	6.63	0.300 .47	20.01	21.83	55.02	0.055	6.05	5.79	5.45	5.32	8.16	6.74
Float «3.25, sink 3.20	2.45	0.390 .80	29.69	32.63	35.80	0.06 j	2.91	3.64	2.99	2.94	1.96	2.95
Sink es 3.25	42.06	0.470 .70	38.75	44.26	13.54	0.08	60.11	54.71	67.00	68.48	12.74	62.21
Feed to sink-and-float (calc.)	84.41	$0.30 \quad 0.50$	24.19	27.04	44.86	0.055	77.25	78.27	83.94	83.94	84.72	85.59
Ore (calc.)	100.00	0.330 .54	24.33	27. 19	44.70	0.054	100.00	100.00	100.00	100.00	100.00	100.00

TABLE VI.
(Size range of ore troated, $-5 / 8^{\prime \prime}+8$ mesh ${ }^{\text {. }}$

Product	$\begin{aligned} & \text { Welght, } \\ & \text { per } \\ & \text { cent } \end{aligned}$	A S S A Y S						Distribution, per cent					
SEPARATING AT 3.25 -													
Average float 4.25	42.35	0.13	0.30	9.73	9.93	75.97	0.030	17.14	23.56	16.94	15.46	71.98	23.38
Sink 3.25	42.06	0.47	0.70	38.75	44.26	13.54	0.08	60.11	54.71	67.00	68.48	12.74	62.21
S.F. feed	84.41							77.25	78.27	83.94	83.94	84.72	85.59
SEPARATING AT 3.20-													
Average float $\mathrm{m}_{\text {c }} 3.20$	39.90	0.12	0.27	8.50	8.54	78.43	0.028	14.23	19.92	13.95	12.52	70.02	20.43
Average sink \& 3.20	44.51	0.47	0.71	38.25	43.62	14.77	0.079	63.02	58.35	69.99	71.42	14.70	65.16
S.F.feed	84.41							77.25	78.27	83.94	83.94	84.74	85.59
SEPARATING AT $3.10-$													
Averaga Ploat @ 3.10	33.27	0.08	0.23	6.21	5.89	83.10	0.022	8.18	14.13	8.50	7.20	61.86	13.69
Average sink \& 3.10	51.14	0.44	0.68	35.89	40.79	19.98	0.076	69.07	64.14	75.44	76.74	22.86	71.90
S.F. feed	84.41							77.25	78.27	83.94	83.94	84.72	85.59
SEPARATING AT 3.00 -													
Average float e3.00	29.52	0.07	0.22	5.26	4.86	85.19	0.020	5.79	11.90	6.39	5.28	56.26	10.92
Average sink @ 3.00	54.89	0.43	0.65	34.37	38.96	23.17	0.074	71.46	66.37	77.55	78.66	28.46	74.67
S.F. feed	84.41							77.25	78.27	83.94	83.94	84.72	85.59
SEPARATING AT 2.90-													
Average float e 2,90	25.63	0.06	0.22	4.62	4.21	86.87	0.020	4.49	10.67	4.87	3.96	49.81	9.48
Average sink e2.90	58.78	0.41	0.62	32.72	36.99	26.54	0.070	72.76	$67,60$	79.07		34.91	76.11
S.F. feed	84.41							77.25	78.27	83.94	83.94	84.72	85.59
SEPARATING AT 2.80-													
Average float $\because 2.80$	15.84	0.05	0.27	3.31	3.03	89.96	0.020	2.41	7.94	2.16	1.76	31.88	5.86
Average sink@2.80	68.57	0.36	0.55	29.01	32.58	34.44	0.063	74.84	70.33	81.78	82.18	52.84	79.73
S.F. feed	84.41							77.25	78.27	83.94	83.94	84.72	85.59

TABLE VII. - Summary of Results, Test No. 3.

TABLE VIII. - A Comparison of Final Products from Tests Nos. 1, 2 and 3.

	$\begin{aligned} & \text { Weight } \\ & \text { per } \\ & \text { cent } \end{aligned}$	$A \quad S$ S A Y S						Distribution, per cent					
Range treated by Sink-andFloat is 3.25 Density.		C	P P ¢	$\frac{r}{9}$	$0 .{ }^{n}$	tinsol:	Au, ton						
$\begin{aligned} & \text { Conc., Test No. 1, } \\ & -1+8 \text { mesh } \end{aligned}$	49.47	0.59	1.03	39.27	42.24	14.03	0.081	79.20	77.70	81.32	81.90	15.11	68.20
Tailing, Test No. $]_{\text {, }}$ $-1^{\prime \prime}+8$ mesh	50.53	0.15	0.29	8.84	9.13	77.07.	0.038	20.80	22.30	18.68	18.10	84.89	31.80
$\begin{aligned} & \text { Conc. }{ }^{\text {Test No, }} 2, \\ & \text {-3/4ng mesh } \\ & \text { Tailing Test No. 2, } \end{aligned}$	47.27	0.54	0.76	40.04	44.32	13.21	0.086	74.17	76.51	79.24	79.96	13.48	58.97
$-3 / 4^{\text {n }}+8$ mesh	52.73	0.17	0.21	9.41	9.95	75.90	0.054	25.83	23.49	20.76	20.04	86.52	41.03
Conc. Test No. 3 , $-5 / 8^{n+8}$ mesh	48.42	0.49	0.78	39.28	44. 62	12.76	0.082	73.44	70.01	79.12	80.70	13.77	70.43
$-5 / 8^{\prime \prime \prime}+8$ mesh	51.58	0.16	0.31	9.70	9.93	75.41	0.033	26.56	29.99	20.88	19.30	86.23	29.57

$$
=======
$$

$$
====
$$

Ottawa, Ontario.
June 10, 1946.
JDJ:LB.

[^0]: (Tables I and II follow, (on Pages 9 and 10.

[^1]: (Tables III and IV follow $)$
 (on Page 12.

