DEPARTMENT OF MINES AND RESOURCES BUREAU OF MINES

CANADA

FILE GOPY

File

Ottawa, April 29, 1946.

REPORT

of the

ORE DRESSING AND METALLURGICAL LABORATORIES.

Investigation No. 2039.

Fatigue Properties of Three "As Cast" Magnesium Alloys (AZ92X, AZ80X and AZ63X).

anne ann an a star ann ann ann ann ann ann ann ann ann

(Copy No. L. .)

Division of Metallic Minerals

Research Laboratories

Physical Metallurgy

.

\$

GANADA

DEPARTAENT OF MINES AND RESOURCES Mines and Geology Branch

OTTAWA April 29, 1946.

REPORT

of the

ORE DRESSING AND METALLURGICAL LABORATORIES.

Investigation No. 2039.

Fatigue Properties of Three "As Cast" Magnesium Alloys (AZS2X, AZSOX and AZ63X).

Introduction:

This investigation was carried out to determine the fatigue properties of three "as cast" magnesium alloys. The magnesium metal used in these tests was produced by the Silicon Reduction process in the plant of Dominion Magnesium Limited at Haley, Ontario. The results obtained, together with values published by the Dow Chemical Company, Flint, Michigan, will be given in this report for comparative purposes.

Chemical Analysis:

The three alloys used in this investigation had the following chemical composition:

9	PAT	R	LE	I	
	127	1.1	110	20	0

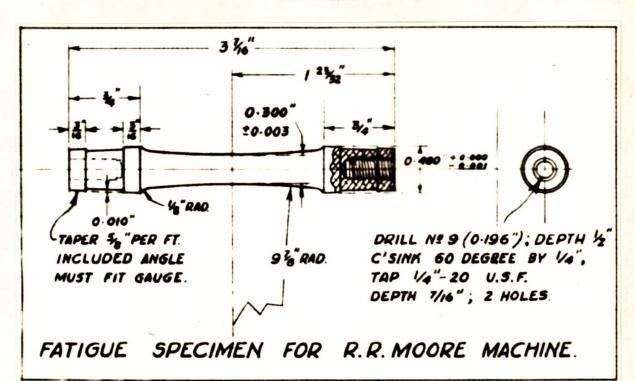
			Ar	1 a l	y s i	S			
	Heat	(hemic	al	Spe	sctro	raphic		Mg
Symbol		Al	Zn :	Mn :	Fe	S1 :	Pb :	Cu :	3148
AZ92X	EA	9.25	2.10	0.33	.001	,015	.004	001	Balance
AZ80X	EB	8.14	0.55	0,55	.00.1	.015	.004	°003	FB
AZ63X	EC	6.13	3.17	0.43	.001	0.15	.004	.002	18

TABLE II	Results	of Tensile	Tests.

Alloy	A292X	AZBOX	AZ63X	-
Ultimate stress, p.s.i.	28,100	30,200	32,100	
0.2 per cent proof stress, p.s.1.	17,600	15,500	14,700	
Elongation, per cent in 2 inches	2,2	5.6	6.8	
Modulus of elasticity, p.s.i.	6.5×10 ⁶	6.5 ×10 ⁶	6.5 <u>.10⁶</u>	
Brinell hardness (500-kg, load),	65	50	50	

Castings:

The test specimens were cast in sand moulds and were K-rayed for porosity before machining. The casting was a P.M.R.L. "as cast" tensile bar.


Rotating Bending Fatigue Tests:

The fatigue strength of the three alloys investigated was determined on a high speed Moore rotating beam fatigue testing machine operated at approximately 10,000 r.p.m. The test specimens used were standard Moore fatigue test pieces, as shown in Figure 1. After machining, the surface was polished longitudinally with 00 emery cloth. The alloys were tested to 10⁷ cycles. The results are given in Table III.

(Continued on next page)

- Page 3 -

1

MOORE FATIGUE SPECIMEN.

TABLE III.

Alloy	Specimen Number	Applied Stress, p.s.i.	Number of Cycles
AZ92X	EA-13	12,000	+107
	" 11	14,000	+107
	" 15	14,500	+107
	" 17	15,000	969,000
	" 14	15,000	1,018,000
AZ80X	EB-11	13,000	+107
	" 16	14,000	+107
	" 18	14,500	8,793,000
	" 17	15,000	6,503,000
	" 12	20,000	58,000
Z63X	EC-17	11,000	107
	" 12	12,000	107
•	" 38	13,000	107
	" 223	14,808	107 1,209,000

Summary:

The fatigue strength, in p.s.i. at ten million reversals, of the three "as cast" magnesium alloys tested are shown in Table IV, together with values published[®] by Dow Chemical Company, Flint, Michigan.

 In "American Foundryman" (A.F.A. official magazine), December 1945, p. 59, Table 6.

Figure 1.

(Summary, cont'd) -

Laboratory	Alloys		Endurance Limit, p.s.i. (107 reversals)
B. of M. Dow	AZ92X	A.C.	14,500 13,500
B. of M. Dow	AZ80X	10 10	14,250 14,200
B. of M. Dow	A263X	10	14,00 <mark>0</mark> 12,600

TABLE IV.

Remarks:

The values reported above were obtained on single determinations on samples taken from a heat of each alloy.

The results of this investigation show that the fatigue properties of "as cast" magnesium made in these Laboratories are equal, and in some cases superior, to properties reported for similar alloys produced by the Dow Chemical Company,

It is intended to perform further tests, using a larger number of samples.

NBB:LB.